Dates: 29 to 31 may 2013
Location: Rennes
Contact: J. Angst, I. Bailleul
Since the pioneering work of K. Itô on the parallel transport along Brownian paths in the early 1960s, the study of interactions between probabilities and differential geometry has become a very rich branch of mathematics. The stochastic approach often proves powerful in (pseudo)-Riemannian Geometry (index formula of Atiyah-Singer, Greew-Wu conjecture) and back recent progress on the geometry of infinite dimensional manifolds help to understand the structure of paths spaces of stochastic processes. The purpose of this meeting is to provide an update on the latest developments at the interface between probability theory and geometry and to initiate new interactions.