Reynald Lercier

[fr]  [en]

Welcome  





Adresse DGA MI

Route de Laillé

35170 Bruz

Adresse

Université de Rennes 1

IRMAR

Équipe Géométrie Algébrique Réelle, Calcul Formel et Cryptographie

Room 612

 

Fax33 2 99 42 64 50
Melreynald.lercier (at) m4x.org
  • open
    close
    Publications
    • • Papers
    • • Talks
  • open
    close
    Software
    • • Magma
  • open
    close
    Computations
    • • Discrete logarithms
    • • Counting points on elliptic curves
    • • Elliptic curves of prescribed order
    • • Counting points on hyperelliptic curves
    • • Integer factorization
Links
ZEN IRMAR
[DL10]

C. Dunand and R. Lercier. Normal Elliptic Bases and Torus-Based Cryptography. In Daniel Panario Gary McGuire, Gary L. Mullen and Igor E. Shparlinski, editors, Finite Fields: Theory and Applications, Contemporary Mathematics, pages 137-153. American Mathematical Society, 2010. Ninth International Conference Finite Fields and Applications.

We consider representations of algebraic tori Tn(Fq) over finite fields. We make use of normal elliptic bases to show that, for infinitely many squarefree integers n and infinitely many values of q, we can encode m torus elements, to a small fixed overhead and to m φ(n)-tuples of Fq elements, in quasi-linear time in logq. This improves upon previously known algorithms, which all have a quasi-quadratic complexity. As a result, the cost of the encoding phase is now negligible in Diffie-Hellman cryptographic schemes.

[ bib | preprint | publication ] Back

Top


  Site powered by GuppY v4.5.14 © 2004-2005 - CeCILL Free License