\input fig4tex.tex
%
% 1. Definition of characteristic points
\figinit{5cm, rea}
% Vertices of a cube
\figpt 1:(0,0)
\figpt 2:(1,0)
\figpt 3:(1,1)
\figpt 4:(0,1)
\figptstraC 5=1,2,3,4/0,0,1/
% Center of the cube (target point)
\figptbary 49:[2,8;1,1]
% Points on a Bezier curve
\figptBezier 31::0.2[4,8,7,2]
\figptBezier 32::0.4[4,8,7,2]
\figptBezier 33::0.6[4,8,7,2]
\figptBezier 34::0.8[4,8,7,2]
\figptBezier 35::0.9[4,8,7,2]
% Derivatives at some point
\def\numpt{34}\def\tb{0.8}
\figvectDBezier 21:1,\tb[4,8,7,2]\figpttra 25:=\numpt/0.1,21/
\figvectDBezier 22:2,\tb[4,8,7,2]\figpttra 26:=\numpt/0.03,22/
% Projection of these points on the plane xOy
\figvectC 10(0,0,1)
\figptsorthoprojplane 11=31,32,33,34,35/1,10/
%
% 2. Creation of the graphical file
\figset projection(targetpt=49, distance=3)
\figset projection(longitude=-110, latitude=27)
\figdrawbegin{}
% Cube
\figset (color=default, dash=2)
\figdrawline[1,2,3,4,1]
\figdrawline[5,6,7,8,5]
\figdrawline[1,5]\figdrawline[2,6]\figdrawline[3,7]\figdrawline[4,8]
% Derivatives
\figset (dash=default)
\figdrawarrow[\numpt,25]\figdrawarrow[\numpt,26]
% Bezier curve
\figset (color=\Redrgb, width=1)
\figdrawBezier1[4,8,7,2]
% Projection on the plane xOy
% 1. points
\figset (dash=4)
\figdrawline[31,11]\figdrawline[32,12]
\figdrawline[33,13]\figdrawline[34,14]\figdrawline[35,15]
% 2. curve
\figset (dash=2)
\figdrawcurve[4,4,11,12,13,14,15,2,2]
\figdrawend
%
% 3. Writing text on the figure
\def\dist{3pt}
\figvisu{\figBoxA}{}{%
%\figshowpts[1,8]
% Show the vertices of the control polygon of the Bezier curve
\figset write(mark={$\bullet$})\figset write(ptname={\bf #1})
\figwritew 4:(\dist)
\figwriten 8,7:(\dist)
\figwritee 2:(\dist)
}
\centerline{\box\figBoxA}
%
\bye