\input fig4tex.tex

\figinit{cm}
% 1. Characteristic points
\figpt 0:$\Omega$ \figcoord{1}(-0.8,-1.2) % Inversion center
\def\Rinv{7}\def\sRinv{2.64575} % Inversion ratio and sqrt(ratio)
\figpt 1:$O$ \figcoord{0}(0,0) % Origin O
\figptinv 11 :$O'$= 1 /0,\Rinv/ % Its image O' by the inversion
\figptrot 2 := 11 /0,90/\figpthom 2:$P$=2 /0,1.3/% Compute another point P...
\figptinv 12 :$P'$= 2 /0,\Rinv/ % ... and its image P' by the inversion
\figptell 21 :$M$: 0;\sRinv,\sRinv (80,0) % Point M lying on the invariant circle...
\figptinv 22 :$M'$= 21 /0,\Rinv/ % ... and its image M' by the inversion
% 2. Creation of the graphical file
\figdrawbegin{}
% Draw (half of) the invariant circle
\figset (dash=4)
\figdrawarccirc 0;\sRinv(0,180)
\figdrawend
%
% 3. Writing text on the figure
\figvisu{\figBoxA}{Inversion of center $\Omega$ and ratio \Rinv.}{
% Show the invariant circle
\figptell 5 :: 0;\sRinv,\sRinv (20,0)
\figwritee 5:$\leftarrow$ Invariant circle(4pt)
% Show the involved points
\figset write(mark=$\figBullet$)\figwritee 0:(4pt) % Inversion center
\figset write(mark=$\times$)\figwritene 1,2,21:(4pt) % Points O, P, M,...
\figwritesw 11,12,22:(4pt) % ...and their images O', P', M' by the inversion
}
\centerline{\box\figBoxA}
\bye