% 1. Definition of characteristic points
\figinit{in}
% Data
\figpt 0:$O$(-0.5,0)\figpt 1:$C$(2,0)
\def\Rx{1}\def\Ry{0.7}
% Computations
\figptbary2:$A$[0,1;1,1]\figget distance=\RHO[2,1]
\figptsintercirc 3[1,\Rx;2,\RHO] % Computes points 3 (I') and 4 (J')
\figptbary 10:[0,1;6,-1]\figptbaryR 11:$B$[0,1;-1,2.5]
\figget angle=\ThetaI[1,11,3]
\figget angle=\ThetaJ[1,11,4]
\figptell 3:$I$: 1;\Rx,\Ry (\ThetaI,0)
\figptell 4:$J$: 1;\Rx,\Ry (\ThetaJ,0)
\figptbary 13:[0,3;-1,3]
\figptbary 14:[0,4;-1,3]
% 2. Creation of the graphical file
\figdrawbegin{}
\figdrawarcell 1;\Rx,\Ry (0,360,0)
\figdrawline[10,11]\figdrawline[0,13]\figdrawline[0,14]
\figdrawend
% 3. Writing text on the figure
\def\dist{4pt}
\figvisu{\figBoxA}{\bf Tangent lines to the ellipse passing through $O$}{
\figwriten 0:(\dist)\figwriten 11:(\dist)
\figset write(mark=+)\figwriten 2:(\dist)
\figset write(mark=$\figBullet$)\figwriten 1:(\dist)
\figset write(mark=$\times$)\figwriten 3,4:(\dist)
}
\centerline{\box\figBoxA}