% 1. Definition of characteristic points \figinit{2cm} % Demi-abscisse du point A. \def\demia{0.6} % Angle du point de tangence en haut. \def\ang{48} % Angle droit. \def\Dim{.1} % Point O \figpt 1:(0,0) % Centre Omega du cercle \figpt 6:(\demia,0) % Point A \figptbary 2:[1,6;-1,2] % Point B \figptbary 3:[1,2;-1,2] % Perpendiculaire a (OB) passant par B. \figvectN 0 [1,3] \figpttra 4:=3/.6,0/ \figpttra 5:=3/-.4,0/ % Perpendiculaire a (OB) passant par A. \figvectP 0 [3,1] \figptstra 12=4,5/1,0/ % Point de tangence en haut. \figptrot 7:=2/6,\ang/ % Points d'intersection M2 et P. \figvectN 0 [6,7] \figvectN 100 [1,3] \figptinterlines 8:[7,0;1,100] \figptinterlines 9:[7,0;3,100] % Point M1. \figvectP 0 [3,9] \figpttra 10:=8/1,0/ \figptrot 10:=10/1,180/ % Point R de tangence en bas. \figvectN 0 [9,10] \figvectP 100 [9,10] \figptinterlines 11:[6,0;9,100] % \figvectP 0 [9,8] \figpttra 14:=8/0.1,0/ \figvectP 0 [9,10] \figpttra 15:=10/0.1,0/ % 2. Creation of the graphical file \figdrawbegin{} \figdrawline[4,5] \figdrawaltitude \Dim[6,8,9] \figdrawaltitude \Dim[6,10,9] \figdrawaltitude \Dim[6,5,4] \figdrawaltitude \Dim[6,13,12] \figdrawline[14,9] \figdrawline[15,9] \figdrawline[12,13] \figdrawcirc 6(\demia) \figdrawend % 3. Writing text on the figure \def\disti{3pt} \figvisu{\figBoxA}{Figure 4}{% %\figshowpts[1,12] \figwritesw 1:$O$(\disti) \figwritese 2:$A$(\disti) \figwritese 3:$B$(\disti) \figwritenw 6:$\Omega$(\disti) \figwritee 9:$P$(\disti) \figwritesw 8:$M_{2}$(\disti) \figwritesw 10:$M_{1}$(\disti) } \centerline{\box\figBoxA} |