Reynald Lercier

[fr]  [en]

Welcome  





Adresse DGA MI

Route de Laillé

35170 Bruz

Adresse

Université de Rennes 1

IRMAR

Équipe Géométrie Algébrique Réelle, Calcul Formel et Cryptographie

Room 612

 

Fax33 2 99 42 64 50
Melreynald.lercier (at) m4x.org
  • open
    close
    Publications
    • • Papers
    • • Talks
  • open
    close
    Software
    • • Magma
  • open
    close
    Computations
    • • Discrete logarithms
    • • Counting points on elliptic curves
    • • Elliptic curves of prescribed order
    • • Counting points on hyperelliptic curves
    • • Integer factorization
Links
ZEN IRMAR
[LS08]

R. Lercier and T. Sirvent. On elkies subgroups of l-torsion points in elliptic curves defined over a finite field. Journal de Théorie des Nombres de Bordeaux, 20(3):783-797, December 2008.

As a subproduct of the Schoof-Elkies-Atkin algorithm to count points on elliptic curves defined over finite fields of characteristic p, there exists an algorithm that computes, for l an Elkies prime, l-torsion points in an extension of degree l-1 at cost O˜(l max(l, logq)2) bit operations in the favorable case where l<=p/2. We combine in this work a fast algorithm for computing isogenies due to Bostan, Morain, Salvy and Schost with the p-adic approach followed by Joux and Lercier to get an algorithm valid without any limitation on l and p but of similar complexity. For the sake of simplicity, we precisely state here the algorithm in the case of finite fields with characteristic p>=5. We give experiment results too.

[ bib | preprint | publication ] Back

Top


  Site powered by GuppY v4.5.14 © 2004-2005 - CeCILL Free License