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Journées Équations aux dérivées partielles

Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

Canonical commutation relations and interacting

Fock spaces

Zied Ammari

Abstract

We introduce by means of reproducing kernel theory and decomposition
in orthogonal polynomials canonical correspondences between an interact-
ing Fock space a reproducing kernel Hilbert space and a square integrable
functions space w.r.t. a cylindrical measure. Using this correspondences we
investigate the structure of the infinite dimensional canonical commutation re-
lations. In particular we construct test functions spaces, distributions spaces
and a quantization map which generalized the work of Krée-Ra̧czka [KR] and
Janas-Rudol [JR1]-[JR3].

1. Canonical commutation relations

Canonical commutation relations have their roots in the basic concepts of quantum
mechanics and quantum field theory. The abstract formulation of those theories
consists of considering in analogy with the classical mechanics formulation the mo-
ments coordinates p1, · · · , pn, · · · and the positions coordinates q1, · · · , qn, · · · of a
quantum system as a self-adjoint operators on a Hilbert space H, satisfying the
Heisenberg commutation relations:

[qk, ql] = [pk, pl] = 0,(1.1)

[qk, pl] = iδk,lI.(1.2)

It can be elementary noticed that Equ. (1.2) implies that both qk and pl are un-
bounded self-adjoint operators. In order to avoid several complications arising from
domain problem one considers the following operators:

U(a) :=
∏

k

eiakpk, and V (b) :=
∏

l

eiblql,

where a = (a1, · · · , an, 0, · · · ) and b = (b1, · · · , bm, 0, · · · ) in RN. Clearly U(a) and
V (b) are unitary bounded operators and using a formal calculus one obtain from
Equ. (1.1)-(1.2) that U and V satisfy the relation:

(1.3) U(a)V (b) = ei
P

k akbkV (b)U(a).
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The above identity is called the restricted Weyl commutation relation.
It is von Neumann who suggested to combine U and V in one operator namely

the so-called Weyl operator:

(1.4) W (a, b) = e−
i
2

P

k akbkU(a)V (b)

We get from Equ. (1.3):

(i) W (a, b)W (c, d) = e
i
2
σ[(a,b),(c,d)]W (a+ c, b+ d).

(ii) W (a, b)∗ = W (−a,−b).

where σ[(a, b), (c, d)] =
∑

k akdk − bkck is the canonical symplectic form over the
space `2(N)⊕ `2(N).
We say that a family of unitary operators satisfies the Weyl commutation relations
if (i)− (ii) hold. If in addition

(iii) R 3 t 7→W (tek, tel) is continuous, with ek = (0, · · · , 1, 0, · · · ).

holds then we call it a regular Weyl commutation relations. Some care is needed
when we pass from a form of commutation relations to another. For example the
regular Weyl form of commutation relations leads to the Heisenberg form however
the opposite is in general not valid.

In conclusion we have different forms of the canonical commutation relations.
The Weyl form is widely considered in the literature for the simplification that
carries and we will do the same. An elegant way to formulate Weyl canonical
commutation relation is briefly described in the following subsection.

1.1. The CCR algebras

Let (H, σ) be a symplectic space (i.e: a linear space endowed with an anti-symmetric
non-degenerate form). A CCR algebra U is a C∗-algebra generated by a family of
elements {W (z), z ∈ H} satisfying:

(1) W (z1)W (z2) = e
i
2
σ(z1,z2)W (z1 + z2).

(2) W (z)∗ = W (−z).

One can remark that the element W (0) is the unit of the algebra U. The following
fact is due to Slawny [Sl].

Theorem 1.1. For any symplectic space (H, σ) there exists a CCR algebra over
(H, σ) unique modulo *-isomorphisms.

In the sequel A(H, σ) will denote the unique class of equivalence of CCR algebras
over (H, σ) relative to the equivalence relation induced by *-isomorphisms. Let us
recall some jargon used later.

- A representation (π,H) of A(H, σ) is a *-morphism π and a Hilbert space H
such that π maps A(H, σ) into B(H).
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- A representation (π,H) of A(H, σ) is said regular if the map R 3 t 7→ π(W (tz))
is continuous for the weak topology in B(H).

- A representation (π,H) is said irreducible if the only invariant subspaces w.r.t.
π(A(H, σ)) are the trivial ones.

- A representation (π,H) of U is called cyclic if and addition it admits a vector
Ω such that π(U)Ω generates the space H.

- Two representations (π1,H1) and (π2,H2) are called unitary equivalent if there
exists an unitary transformation U : H1 →H2 such that

Uπ1(A)U−1 = π2(A).

1.2. Realization of CCR’s in finite dimension

We consider as a symplectic space R2d equipped with its canonical symplectic form.

A- The Schrödinger representation:
This is the main arena for the study of Schrödinger equation. The Hilbert space H
in this representation is L2(Rd, dx), and qj = xj , pj = −i∂xj

. Starting from qj , pj a
large class of observables can be constructed using different procedures for instance
using Weyl, Kohn-Nirenberg, or Anti-Wick quantization. However two operators
are of particular interest in QFT. Namely the creation and annihilation operators:

(1.5) z∗j =
1√
2
(qj − ipj); zj =

1√
2
(qj + ipj).

Hence if we introduce the field operator φ(a) =
∑

k akz
∗
k + ākzk then the Weyl

operator is given by:
W (a) = eiφ(a),

leading to a representation of the CCR algebra over R2d.
There exists an algebraic structure related to the creation and annihilation oper-

ators. In fact zj for all j has eigenvector associated to the 0 eigenvalue given by the
normalized gaussian H0(x) = 1

πd/4 e
−|x|2/2 and called usually the vacuum. Moreover

using Hermite functions

Hα(x) :=
(−1)|α|

πd/4
1√

2|α|α!
e|x|

2/2∂αe−|x|2, α ∈ N
d,

we get
z∗jHα =

√
αj + 1Hα+1j

, zjHα =
√
αj Hα−1j

.

It follows from that fact that Hermite polynomials are the orthogonal polynomials
associated to the gaussian measure that one can decompose the L2(Rd, dx) as a direct
sum of the orthogonal subspaces Vect{z∗αH0, |α|1 = n}, where z∗α = z∗

α1

1 · · · z∗αd

d . We

can establish a correspondence between Vect{z∗αH0, |α|1 = n} and ⊗|α|1
s Cd where

the subscript ”s” stands for the symmetric tensor. Consider {ej} a basis of Cd then
the following map

z∗αH0 ↔ e⊗α1
1 ⊗s · · · ⊗s e⊗αd

d ∈ ⊗|α|1
s C

d.
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extends to an unitary transform between L2(Rd, dx) and ⊕∞
n=0 ⊗ns C

d which is the
the symmetric Fock space over Cd.

B- The Fock representation:

The symmetric Fock space is denoted by Γs(C
d) = ⊕∞

n=0⊗nsCd. In this representation
the annihilation operator is given by:

A(f)f1 ⊗s · · · ⊗s fn =
√
n

1

n!

∑

σ∈Sn

(f, fσ1)fσ2 ⊗ · · · ⊗ fσn ,

and the creation operator by:

A∗(f)f1 ⊗s · · · ⊗s fn =
√
n + 1f ⊗s f1 · · · ⊗s fn.

Furthermore A∗(f) and A(g) satisfy the relation

(1.6) [A(f), A∗(g)] = (f, g)I.

We have the field operator Φ(f) = A∗(f) + A(f) and the Weyl operator W (f) =
eiΦ(f) satisfying the Weyl commutation relations. This representation is particularly
preferred by physicists and one can implement quantization procedures in the Fock
space. For instance the quantized Weyl operator is defined by:

(1.7) Bw
ϕ :=

∫

R2d

ϕ̃(x, y)W (x+ iy)
dxdy

(2π)2d
.

where ϕ̃(x, y) =
∫

R2d e
−i(x⊕y,ξ⊕η)ϕ(η, ξ)dξdη. In a similar way one can define also

the left/right quantization however we mention that the mainly used observables in
QFT are the so-called Wick polynomials for a reason which will be clear later.

C- The Segal-Bargmann representation:
It is realized in the Segal-Bargmann space (see for instance [B1]):

HL2(Cd, dµg) = {F : C
d → C, analytic :

∫

Cd

|F (z)|2dµg(z) <∞},

where dµg(z) = π−de−|z|2dz. The creation and annihilation operators are respec-
tively A∗

j = zj , Aj = ∂zj
. The vacuum is the vector Ω0 = 1 annihilated by Aj . This

representation is the most rich in structures. The Segal-Bargmann space possess
the properties of a reproducing kernel Hilbert space and moreover quantization pro-
cedures can be naturally constructed. For a symbol ϕ one can corresponds:
- The Toeplitz operators:

(1.8) TAWϕ F (z) =

∫

Cd

ϕ(w̄, w)ezw̄F (w)dµg(w).

- The Wick operators:

(1.9) TWϕ F (z) =

∫

Cd

ϕ(w̄, z)ezw̄F (w)dµg(w).
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- The Quantized Weyl operators:

(1.10) Twϕ F (z) =

∫

Cd

ϕ(w̄,
w + z

2
)ezw̄F (w)dµg(w).

The Segal-Bargmann space in finite dimension was carefully studied by Bargmann
in [B1] and [B2] for test functions and distributions spaces.

All of the above three CCR’s representations are regular. In fact we are only
concerned by regular CCR representations although there exists non regular repre-
sentation of physical interest [Re].

In the finite dimension case we have the following fundamental fact due to Stone
and von Neumann [St], [vN].

Theorem 1.2. Let (H, σ) be a finite dimension symplectic space. Then any reg-
ular irreducible representation of A(H, σ) is unitary equivalent to the Schrödinger
representation.

The situation is quite different in the infinite dimensional case since there exists
an infinite number of non equivalent irreducible regular representations of the CCR
algebra A(H, σ).

1.3. Extension to the infinite dimension

Before discussing how to extend the above representations to the infinite dimensional
case one need to introduce a complex structure on the infinite dimensional symplec-
tic space (H, σ). A complex structure is anti-involution J : H → H , J2 = −I
compatible with the symplectic form σ, i.e:

σ(Ju, Jv) = σ(u, v)(1.11)

σ(u, Ju) > 0 for all u 6= 0.(1.12)

H becomes a complex pre-Hilbert space when equipped with the inner product
(u, v) := iσ(u, v) + σ(u, Jv) and we will denote by HC its completion.

The extension of the Schrödinger representation fails since we lack an extension of
the Lebesgue measure to infinite dimension spaces. However the Fock representation
is well adapted to the infinite dimension and it is extended easily by replacing in
(B) the space Cd by the Hilbert space HC.

The Segal-Bargmann representation extends also to the context of infinite num-
ber of degrees of freedom. This can be achieved using two approaches. Namely the
inductive approach and the theoretical measure approach. For simplicity here we
only consider the inductive approach formulated in a non invariant way by consid-
ering the space `2

C
(N). This means that we restrict our selves to separable Hilbert

spaces and we fix a basis.
Let `2

C
(N) be the space of square summable complex sequences. We denote by

TL : C
d → `2

C
(N) the injection associated to a subspace L of finite dimension d ∈ N

of `2
C
(N). The Segal-Bargmann space can be generalized as below:

HL2(`2C(N)) := {F : `2C(N) 7→ C analytic : sup
L

∫

L

|F ◦ TL(z)|2dµg(z) <∞}.
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The creation and annihilation operators are defined as:

A∗(u)F (z) = (u, z)`2
C
(N)F (z);

A(u)F (z) = lim
λ→0

F (z + λu)− F (z)

λ
.

The Fock representation is unitary equivalent to the Segal-Bargmann represen-
tation. The correspondence is given by the Segal isomorphism:

ISf1 ⊗s · · · ⊗s fn =
2n/2√
n!

:
n∏

j=1

(fj, z) :

where : : stands for the Wick polynomials (i.e: the orthogonal projection on the
subspace generated by Hermite polynomials of degree n but orthogonal to Hermite
polynomials of degree n− 1).

2. Classification of CCR’s representations

The classification of regular representations of the CCR algebra which have induced
sub-representations leading to a restricted Weyl commutation relations can be con-
sidered using two different approaches as mentioned before, the inductive approach
due to Segal and the theoretical measure approach due to Araki and Gelfand.

In this talk we will only consider the inductive approach. Let H be a Hilbert
space and consider an exhaustion K:
(i) Every K ∈ K is finite dimension subspace of H .
(ii) ∀K,L ∈ K, ∃M ∈ K : K ⊂M,L ⊂M .
(iii) ∪K∈KK = H .

Let τσ(K,H) be the Borel σ-algebra over H generated by the family of sets
C(K,A) = {x ∈ H : PKx ∈ A,A ∈ B(K)} where B(K) is the Borel σ-algebra of K.
We denote by τ(K, H) the union of all τσ(K,H), K ∈ K which is a boolean algebra.

A cylindrical measure is a positive map on τ(K, H) such that the restriction
µK on τσ(K,H) is a σ-additive Radon probability measure (i.e: µ(H) = 1) and
satisfying a compatibility condition:

µK |τσ(L,H) = µL when L ⊂ K.

Cylindrical measures can also be formulated using the theory of martingales.
A tame function is a measurable function F : H → C such that there exists

K ∈ K, F (PKw) = F (w). In such case we call F a K-tame function. The family of
spaces Lp(H, τσ(K), H), µK), K ∈ K forms an inductive system and we will denote
by Lp∞(H, µ) the completion of ∪K∈KL

p(H, τσ(K), µK) with respect to the naturel
norm carried by those of Lp(H, τσ(K), µK).

We recall that a measure in finite dimension vector space is said quasi-invariant
if the translation preserve null sets. This is equivalent to the fact that the measure
is absolutely continuous w.r.t. to the Lebesgue measure. The notion of quasi-
equivalence need to be modified in the case of infinite dimension topological spaces
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by the almost quasi-invariance notion. We say that a cylindrical measure µ is almost
quasi-invariant if there exists a function Db ∈ L1

∞(H, µ), b ∈ H such that for every
K ∈ K,

∫

H

F (x)dµbK(x) =

∫

H

Db(x)F (x)dµK(x), for all F K-tame function.

where µbK is the translation by b of the measure µK .
The following theorem gives a classification of CCR representations and it is due

to Segal [BSZ].

Theorem 2.1. For every cyclic regular representation (π,H,Ω) of the CCR algebra
A(H, Im(., .)) over a Hilbert space H there exists an almost quasi-invariant cylin-
drical measure µ on H such that (π,H) is unitary equivalent to the representation
over the space L2

∞(H, µ) defined by:

U(a)F (x) = ei(a,x)F (x);

V (b)F (x) =
dµb

dµ

1/2

(x)F (x+ b);

where dµb

dµ
(x) stands for the inductive limit of the Radon-Nikodym derivatives of the

translated measure µb w.r.t. µ.

We briefly describe the questions considered in the work [Am].
A)- Realization of CCR’s:
Using an extension of the correspondence in Accardi-Bożejko [AB], Accardi-Nahni
[AN], Asai [As], Asai-Kubo-Kuo [AKK], we provide provide a realization of a large
class of CCR’s representation on a reproducing kernel Hilbert space and an inter-
acting Fock space.
B)- Construction of test functions/distributions spaces:
Using the work of Martens [M] in inductive/projective limits of spaces of analytic
functions (an alternative to the work in non-gaussian analysis of Albevereo-al[ADKS]
and Kondratiev-al [KSWY]).
C)- Quantization procedures:
Generalization of the work of Krée-Ra̧czka [KR] and Janas-Rudol [JR2].

Our starting point for all the following is an analytic cyclic representation (π,H,Ω)
of the CCR algebra over the space `2

C
(N) ⊕ `2

C
(N) carried by the induced sub-

representations (U, V ) satisfying the restricted Weyl commutation relations and such
that Ω is cyclic vector for the family of operators U(a), a ∈ `2

C
(N). Therefore by

Thm. 2.1 the representation (π,H,Ω) is unitary equivalent to the realization of CCR
on the Hilbert space L2

∞(`2
C
(N), µ) with a given almost quasi-invariant cylindrical

measure µ.

3. Polynomials of infinitely many variables

In a concern of simplicity we consider polynomials on the space `2(N). The general
case can be treated using tensor analysis.
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Let us introduce some notations. Let D be a countable set (here D = N although
we can consider countable sets without order using Köthe sequences spaces). We
denote by ω(D) the space of real sequences and by ϕ(D) the space of finite sequences,

`p(D) = {a ∈ ω(D) :
∑

j∈D

|a(j)|p <∞}

Let M(D) = {a ∈ ϕ(D) : a(j) ∈ N}, and Mn(D) = {a ∈ M(D) : |a|1 ≤ n}. We set
xα = Πj∈Dx(j)

α(j).
Let T = {τ ∈ ω(D) : τ(j) ≥ 1} be a weight set. We define the following scaled

Hilbert spaces:

(3.1) H±[τ ] := {a ∈ `(D) :
∑

j∈D

τ(j)±1a(j)2 <∞}.

The family (H±[τ ])τ∈T is respectively a projective/inductive system. Moreover we
have the following nuclear triplet:

(3.2) ϕ(D) = lim
τ∈T

prH+[τ ] ↪→ `2(D) ↪→ lim
τ∈T

indH−[τ ] = ω(D)

In the infinite dimension case we can distinguish three type of polynomials of
infinitely many variables in the space L2

∞(`2(D), µ).
- Cylindrical polynomials:

Pncyl := {P : `2(D)→ R;P (x) =
∑

β∈Mn(D)

aβx
β , aβ ∈ ϕ(D)}.

- Continuous polynomials:

Pn := {P : `2(D)→ R;P (x) =
∑

β∈Mn(D)

aβx
β ; aβ ∈ `2(D)}.

- Measurable polynomials: Consider

Vnµ := Pn 	 Pn−1,

where Pn is the closure of Pn in L2
∞(D, µ). The space of measurable polynomials is

defined by

Pnµ = ⊕nk=0Vkµ .
Therefore we obtain

Pncyl ⊂ Pn ⊂ Pnµ .
Let Pn be the orthogonal projection on Vnµ . We denote by : xα : = Pxα.

Lemma 3.1. (i) The family (: xα :)α∈Mn(D) spans Vnµ .
(ii)The family (: xα :)α∈Mn(D) is linearly independent.

The classical three terms relations hold in this context.
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Theorem 3.2. There exists three operators An,i : Vnµ → Vn+1
µ , Bn,i : Vnµ → Vnµ and

Cn,i : Vnµ → Vn−1
µ satisfying:

(3.3) (ei, x)Pn = Pn+1An,i + PnBn,i + Pn−1Cn,i

where P−1 = 0 and C−1,i = 0.

The proof is elementary since the relation follows form remarking that (ei, x)Pnψ
has vanishing components w.r.t. Vkµ if k 6= n − 1, n, n + 1. Moreover An,i =
Pn+1(ei, x)Pn, Bn,i = Pn(ei, x)Pn = B∗

n,i, and Cn,i = Pn−1(ei, x)Pn = A∗
n−1,i.

The operators An,i, Bn,i, and Cn,i are not arbitrary. They satisfy some additional
commutation relations specified in the following theorem.

Theorem 3.3. The families of operators An,i, Bn,i, Cn,i, n, i ∈ N, i ∈ N introduced
in the above theorem satisfy the following relations:

Ak,iAk+1,j = Ak,jAk+1,i;(3.4)

Ak,iBk,j +Bk+1,iAk,j = Bk+1,jAk,i + Ak,jBk,i,(3.5)

Ck,iAk−1,j +Bk,jBk,i + Ck+1,iAk,j =(3.6)

Ak−1,jCk,i +Bk,iBk,j + Ck+1,jAk,i,

for i 6= j and where A−1,i = 0.

Lemma 3.4. We have:
(i) L2

∞(`2(D), µ) = ⊕∞
n=0Vnµ ,

(ii)
∑n

j=1 Ran(An,j) = Vn+1
µ ,

(iii) An,j : Vnµ → Vn+1
µ is injective.

Results and proofs in this section are quite similar to those of the well known
situation of polynomials of several variables [DX].

4. Interacting Fock spaces

We recall the definition of interacting Fock space as in [AN].

Definition 4.1. Let H̃0 be a pre-Hilbert space. An interacting Fock space is a
Hilbert space

H = ⊕∞
n=0Hn, where H0 := CΦ,

such that there exists a family of densely defined operators a+(v) onH for all v ∈ H̃0

and furthermore:
(i) The map H̃0 3 v 7→ a+(v) is linear.
(ii) The set

Nn := {a+(v1) · · ·a+(vn)Φ, vi ∈ H̃0Φ} ⊂ D(a+(v)), for all n ∈ N;

and N := Vect{Nn, n ∈ N} is dense in H.

(iii) a+(v) has densely defined adjoint operator a−(v) for all v ∈ H̃0.
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Proposition 4.2. The space L2
∞(`2(N), µ) has an interacting Fock space structure

given by:
L2
∞(`2(N), µ) = ⊕∞

n=0Vnµ , H̃0 = ϕ(N), Nn = Pcyl
n .

and the operators

a+(v) := ⊕∞
n=0An,v where An,v =

∑

j

vjAn,j, and v =
∑

j

vjej ∈ ϕ(D);

a−(v) := ⊕∞
n=0Cn,v where Cn,v =

∑

j

vjCn,j.

Moreover we have a family of commuting operators given by:

Xj = a+(ej) + a0(ej) + a−(ej),

where a0(v) := ⊕∞
n=0Bn,v and Bn,v =

∑
j vjBn,j.

Theorem 4.3. Let H be a Hilbert space and H0 a dense subspace in H. Consider

Γ(H) := ⊕∞
n=0Wn,

where Wn is the completion of the symmetric algebraic tensor product ⊗n,sAlgH0 w.r.t
a given family of norms (., .)n. Assume that H is endowed with a family of bounded
operators

a+
n (j) :Wn →Wn+1, a

−
n (j) :Wn →Wn−1, a

0
n(j) :Wn →Wn,

satisfying the commutation relations (3.4)-(3.6) and defining a commuting family of
operators a+

n (j) + a0
n(j) + a−n (j).

(i) The space Γ(H) has an interacting Fock space structure.
(ii) We have a canonical isomorphism

T : L2
∞(`2(N), µ)→ Γµ(`

2
C(N))

P

n∏

i=1

(vi, x)1 7→ ⊗ni=1vi,

where Γµ(`
2
C
(N)) is constructed w.r.t. to the norms on Vnµ . Hence T transforms

An,i, Bn,i, Cn,i respectively into a+
n (i), a0

n(i), a
−
n (i) satisfying (3.4)-(3.6).

In gaussian analysis the Segal-Bargmann space can be defined using reproducing
kernel Hilbert spaces (RKHS). We use a similar construction to generalize the Segal-
Bargmann space and establish a canonical correspondence with the interacting Fock
space.

Theorem 4.4. We have the canonical isomorphism:

L : Γµ(`
2
C
(N))→ F (`2

C
(N), Kµ)

Ψ 7→ L(Ψ)(z) = (Ψ,
z⊗n√
n!

),

where F (`2
C
(N), Kµ) is the RKHS defined by the kernel Kµ(x, y) :=

∑∞
n=0

1
n!

(x⊗n, y⊗n)
and having an interacting Fock space structure.
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To summarize we have the diagram of isomorphisms:

Γµ(`
2
C
(N)) → L2

∞(`2(N), µ)
↓ ↓

F (`2
C
(N), Kµ) → HL2(`2

C
(N), µ̃)

where F (`2
C
(N), Kµ) is the functional RKHS and the space HL2(`2

C
(N), µ̃) is the a

generalized Segal-Bargmann space defined by

{F : `2
C
(N) 7→ C; analytic : sup

L

∫

L

|F ◦ TL(z)|2dµ̃ <∞},

where the cylindrical measure µ̃ obtained form the complex (Hamburger) moment
problem.

5. Test functions/Distributions and quantization

The space F (`2
C
(N), Kµ) is rich in structure and we will take advantage form this fact

to construct the spaces of test functions and distributions using technics elaborated
in the work of Martens [M].

For a ∈ ω+(N) positive sequences we define

Ka
µ(x, y) := Kµ(ax, ay).

Let T := {a ∈ ω(N) : a(j) ≥ 1}. We introduce the family of spaces Find[a] :=
F (ϕ(N), Ka

µ). It is clear that (Find[a])a∈ω+(N) is an inductive system i.e:

a ≤ b =⇒ Find[a] ↪→ Find[b].

For a ∈ T we introduce the space Fproj[a] := F (, Ka−1

µ ). The family (Fproj[a])a∈T is
a projective system i.e:

a ≤ b =⇒ Fproj[b] ↪→ Fproj[a].

We define

Find[T ] := lim
a∈T

indFind[a], Fproj[T ] := lim
a∈T

indFproj[a].

Proposition 5.1. We have the following nuclear Gelfand triplet:

Fproj[T ] ↪→ F (`2C(N), Kµ) ↪→ Find[T ].

Proposition 5.2. For any bounded operator Q : Fproj[T ] → Find[T ] there exists
kernel QK(z, z′) = (Kµ(z, .), QKµ(., z

′)) in Find[T ]⊗ Find[T ] such that

Q =

∫ ∫
|Kµ(z, .)〉〈Kµ(., z

′)|QK(z, z′)dµ(z)dµ(z′),

holds in the weak sense.
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Using the reproducing kernel Hilbert space representation of the canonical com-
mutation relations, one can introduce quantization procedure similar to the case
with respect to the gaussian measure and in finite dimension case. Hence we define:
- The Wick operators:

TWp F (z) := (Kµ(z, .), p(., z)F ),

- The Anti-Wick operators:

TAWp F (z) := (Kµ(z, .), p(.)F ),

- The quantized Weyl operators:

Twp F (z) := (Kµ(z, .), p(.,
.+ z

2
)F ).

First the above definitions can be applied to cylindrical symbols then it can be ex-
tended using the strong topology as in [JR2]. The construction of a test/ditribution
spaces allows to study unbounded quantized operators. For a detailed exposition of
the ideas presented in this talk we refer the reader to the paper [Am].
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