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Abstract. This article proposes the construction of Wigner measures in the
infinite dimensional bosonic quantum field theory, with applications to the
derivation of the mean field dynamics. Once these asymptotic objects are
well defined, it is shown how they can be used to make connections between
different kinds of results or to prove new ones.

1. Introduction

The bosonic quantum field theory relies on two different bases: On one side the
quantization of a symplectic space, the approach followed for example by Berezin
in [5], Kree-Raczka in [34]; on the other side the gaussian stochastic processes pre-
sentation also known as the integral functional point of view followed for example
by Glimm-Jaffe in [25] and Simon in [43]. Both approaches have to be handled
in order to tackle on the most basic problems in constructive quantum field the-
ory (see [3,15]). The interaction of constructive quantum field theory with other
fields of mathematics like pseudodifferential calculus (see [6] or [35]) or stochastic
processes (see [2,38]) is often instructive.

In the recent years the mean field limit of N-body quantum dynamics has
been reconsidered by various authors via a BBGKY-hierarchy approach (see [4,16,
17,19,20,45] and [21] for a short presentation) mainly motivated by the study of
Bose—Einstein condensates (see [12]). Although this was present in earlier works
around the so-called Hepp method (see [32] and [24]), the relationship with the
microlocal or semiclassical analysis in infinite dimension has been neglected. Diffi-
culties are known in this direction: 1) The gap between the inductive and projec-
tive construction of quantized observable in infinite dimension; 2) the difficulties to
built algebras of pseudodifferential operators which contain the usual hamiltonians
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and preserve some properties of the finite dimensional calculus like a Calderon—
Vaillancourt theorem, a good notion of ellipticity or the asymptotic positivity
with a Garding inequality; 3) even when step 2) is possible, no satisfactory Egorov
theorem is available.
Recall the example of an N-body Schrédinger hamiltonian
1
HN:—A—FN Z V(l’z—df‘y), on RdN,
1<i<j<N
and consider the time-evolved wave function
Uy (t)=e Vv y®N e LP(RY).

The 1-particle marginal state, the quantum analogous of the one particle empirical
distribution in the classical N-body problem, is given by
Uy (t)> .

The mean field limit says that in the limit N — oo, the marginal state evolves
according to a non-linear Hartree equation

o' () = z(t)){z() +o(1), as N — oo,

. i0z=—Az+ (Vx|z[)z on R, x R
with {z(tZO)zw.

and in the Fock space framework with e-dependent CCR, (i.e.:

N
ZI®-~I®I® AQRI® --®I
=1 ;

3

Te[Ag ()] = <qu(t> x

By setting N =

[a(g),a*(f)] =€ (g, [)), the problem becomes
Hy = 1 / Va*(xz)Va(z) dx +/ V(e —y)a* (z)a* (y)a(x)aly) dxdy
£ Rd R2d
Ly
5
e~ HN _ —itH®

Tr [Ao' ()] = (Un(t), dT(A) TN () = (Un(t), pa(z)V " TN (1)),

where p,4 is the polynomial ps(z) = (z,Az). Higher order marginals, taking
into accounts correlations, can be defined after using the polynomials pa(z) =
(2% A2®F) with A € Z(L*(RF)).

On this example, the scaling of the hamiltonian, of the time scale and of
the observables as Wick operators enters formally in the e-dependent semiclassical
analysis. The Hepp method concerns the evolution of squeezed coherent states [12,
24,32], which amounts in the finite dimensional case to the phase-space evolution
of a gaussian state according to the time dependent quadratic approximation of
the non linear hamiltonian, centered on the solution to the classical hamiltonian
equation. We refer the reader to [13] for accurate developments of such an approach
in the finite dimensional case.
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In the nineties and as a byproduct of the development of microlocal anal-
ysis, alternative and more flexible methods were introduced in order to study
the semiclassical limit with the help of Wigner (or semiclassical) measures (see
[10,21,29,36,46]). Such objects are defined by duality and rely on the asymptotic
positivity of the e-dependent quantizations. It gives a weak but more flexible form
of the principal term of the semiclassical (here mean-field) approximation. Via the
introduction of probability measures on the symplectic phase-space, it provides an
interesting way to analyze the relationship between the two basic approaches to
quantum field theory. Further in finite dimension, the Wick, anti-Wick and Weyl
quantizations are asymptotically equivalent in the limit e — 0. This is not so
obvious in infinite dimension.

Several attempts have been tried to develop an infinite dimensional Weyl
pseudodifferential calculus with an inductive approach. Lascar in [35] introduced
an algebra and a notion of ellipticity in this direction, making more effective the
general presentation of [34]. The works of Helffer-Sjéstrand in [28,31] and Amour—
Kerdelhué-Nourrigat in [1] about the pseudodifferential calculus in large dimension
motivated by the analysis of the thermodynamical limit enter in this category.
With such an approach, it is not clear that the infinite dimensional phase-space is
well explored and that no information is lost in the limit € — 0. Meanwhile this
inductive approach is limited by Hilbert—Schmidt type restriction like in Shale’s
theorem about the quasi-equivalence of gaussian measures. It is known after [26]
that the nonlinear transformations which preserve the quasi-equivalence with a
given gaussian measure within the Schrédinger representation are very restricted
and do not cover realistic models. Hence no Egorov theorem can be expected with
Weyl observables.

Simple remarks suggests alternative point of views. The Wick calculus with
polynomial symbols present encouraging specificities: It contains the standard
hamiltonians, it makes an algebra under more general assumptions (the Hilbert—
Schmidt condition can be relaxed) and allows some propagation results when tested
on appropriate states (see [19,20]). Meanwhile the Wigner measures in the limit
€ — 0 can be defined very easily via the separation of variables as weak distribu-
tion, in a projective way which fits with the stochastic processes point of view.

After reviewing and sometimes simplifying or improving known results and
techniques about the mean field limit, our aim is to show the interests of the
extension to the infinite dimensional case of Wigner measures:

e After the introduction of the small parameter ¢ — 0 and the definition of
Weyl operator W (z), z € 2 the phase-space, choosing between the quantiza-
tion of symplectic space and the stochastic processes point of view is no more
a question of general principles nor of mathematical taste. It is a matter of
scaling. The symplectic geometry arises when considering macroscopic phase-
space translation W (%), while the operator W (z) is used with this scaling in
the introduction of Wigner measures via their characteristic function. Correc-
tions to the mean field limit considered for example in [11] with a stochastic
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processes point of view can be interpreted within this picture: They attempt
to give a better information on the shape of the state in a small phase-space
scale.

e Once the Wigner measures are well defined as Radon measures, it is possi-
ble to make explicit the relationship between different kinds of results and
to extend them in a flexible way. It accounts for the propagation of chaos
(result obtained via the BBGKY approach) according to the classical hamil-
tonian dynamics in the phase-space. Actually we shall prove in a very general
framework that the propagation of squeezed coherent states as derived via
the Hepp method implies a weak version of the mean field limit for product
states. Further propagation results can be obtained for some non standard
mixed states without reconsidering a rather heavy analysis process.

e The comparison between the Wick, Weyl and anti-Wick quantization can be
analyzed accurately in the infinite dimensional case. With the Wick calculus,
complete asymptotic expansions can be proved after testing with some spe-
cific states. The relationship of such results with the propagation of Wigner
measures works in a rather general setting but has to be handled with care.

e The gap between the projective and inductive approaches can be formulated
accurately in the limit € — 0. We shall explain in the examples the possibility
of a dimensional defect of compactness.

This work is presented and illustrated with examples simpler than more realistic
models considered in other works like [4,16,17,24,32] with more singular interac-
tion potentials. That was our choice in order to make the correspondence between
various approaches more straightforward and to pave the way for further improve-
ments. We hope that this information will be valuable for other colleagues and
useful for further developments.

The outline of this article is the following. In Section 2, standard notions
about the symmetric Fock space are recalled and Wick calculus is specified. In
Section 3 the Weyl and Anti-Wick calculus are introduced in a projective way
after recalling accurately (most of all the scaling) of finite dimensional semiclassical
calculus. The Section 4 recalls the distinction between coherent states and product
or Hermite states, and their properties when measured with different kinds of
observables. The two methods used to derive the mean field dynamics, the Hepp
method and the analysis through truncated Dyson expansions, are reviewed within
our formalism and with some variations in Section 5. The Wigner measures are
introduced in Section 6 with the extension of some finite dimensional properties
and specific infinite dimensional phenomena. Finally examples and applications
are detailed in Section 7, in particular: 1) reconsidering a simple presentation of
the Bose—Einstein condensation shows an interesting example of what we call the
dimensional defect of compactness; 2) a general result says that the propagation
of squeezed coherent states, which can be attacked via the Hepp method, implies
a slightly weaker form of the propagation of chaos (formulated with product states
and Wick observables); 3) the mean field dynamics can be easily derived for some
states which present some asymptotically vanishing correlations.
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2. Fock space and Wick quantization

After introducing the symmetric Fock space with e-dependent CCR’s, an algebra
of observables resulting from the Wick quantization process is presented.

2.1. Fock space

Consider a separable Hilbert space 2 endowed with a scalar product (., .) which is
anti-linear in the left argument and linear in the right one and with the associated
norm |z| = /(z,2). Let ¢ = Im(.,.) and S = Re(,,.) respectively denote the
canonical symplectic and the real scalar product over 2. The symmetric Fock
space on Z is the Hilbert space

oo n

where \/" 2 is the n-fold symmetric tensor product. Almost all the direct sums
and tensor products are completed within the Hilbert framework. This is omitted
in the notation. On the contrary, a specific & superscript will be used for the
algebraic direct sums or tensor products.

For any n € N, the orthogonal projection of ®" 2 onto the closed subspace
V" Z will be denoted by .#,. For any (£1,6a,...,&,) € 2™, the vector & V & V
V&, € V2 will be

1
EVEV V=T 06 0&) = Y & @) O
Toen,

The family of vectors (§1V -+ V &y )e, e is a generating family of V" % and a
total family of \/" 2. Thanks to the polarization identity
Xn

1 n
V&LV VE=o D e (D] (1)
! <

ei==%1

the same property holds for the family (z®”)n€N_’Z€ff .
For two operators Ay : \/i’“ & — \/jk Z, k = 1,2, the notation A;\/ Ay

stands for
P14z J1+7J2
A1 \/ A = T 45, 0 (A1 ® Az) 0.7, 4, Eg( \VAEZY, gg)

Any z € Z is identified with the operator |z) : \/'Z = C 3 A — Az € & =
\/! Z while (z| denotes the linear form 2 3 ¢ — (z, £) € C. The creation and

annihilation operators a*(z) and a(z), parameterized by € > 0, are then defined
by:

a(z)‘\/n = \EN <Z| ® Ivnfl oz

a*(2)yrz = Veln+1) Fppo(12)@Iynz) =Veln+1) 2\/Iyn .
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Each of (a(z)).c2 and (a*(z)).c2 are commuting families of operators and they
satisfy the canonical commutation relations (CCR):

[a(z1), a*(22)] = &(z1, 22)1 . (2)
We also consider the canonical quantization of the real variables ®(z) = % (a*(2)+

a(z)) and TI(z) = ®(iz) = ﬁ(a(z) — a*(z)). They are self-adjoint operators on
A and satisfy the identities:

[@(21), ®(22)] = ico(z1,22)], [®(21),11(22)] = ieS(21,22)] .
The representation of the Weyl commutation relations in the Fock space
W (2)W (2) = e~ 57C1220W (2 + 2,) (3)
= e TR (29)W (1)

is obtained by setting W(z) = €'®(*). The generating functional associated with
this representation is given by

(QW(2)Q) =5,

where (Q is the vacuum vector (1,0,...) € .. The total family of vectors E(z) =
W(%)Q = ezl ()=a2)Q) 2 € 2, have the explicit form

E(z) = e = i Lar,

|
n=0€n n!
_‘2\2 > _n/22®n
= 5 - 4
e 3 §Oa - (4)
n=

The number operator is also parametrized by ¢ > 0,
N‘VNQV = €TLI‘Vngg.
It is convenient to introduce the subspace

alg n

A =B\ 2

neN

of 2, which is a set of analytic vectors for N.
For any contraction S € Z(Z), [S|g(4) < 1, I'(S) is the contraction in
defined by

F(S)‘vng:S@)S"'@S.

More generally I'(B) can be defined by the same formula as an operator on %%,
for any B € Z(%). Meanwhile, for any self-adjoint operator A : & D 2(A) — &,
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the operator dI'(A) is the self-adjoint operator given by

e%dl"(A) _ F(eitA)

d].—‘(A)‘vn,alg_@(A):E kzll®® A ®®I
= k

For example N = dI'(]).

2.2. Wick operators

In this subsection we consider the Wick symbolic calculus on (homogeneous) poly-
nomials. We will show some product and commutation formulas useful later for
the application. For example time evolved Wick observables can be expressed as
e-asymptotic expansion of quantized Wick symbols. For a detailed exposition on
more general Wick polynomials we refer the reader to [15].

A (p, ¢)-homogeneous polynomial function of z € % is defined as Py(z) =
0(z®7,2%P), where { is a sesquilinear form on (%Y %) x (R %), with
Py(A\2) =NI\PPy(z). Owing to the polarization formula (1) and the identity

1 1
E(n®q’§®10) — / / E([emwen + eQiﬂ'g@g]@q, [62“—97’] + eZimpg]@p) eQiﬂ'(gG—pgp) do d(p
0 0

the correspondence ¢ — Py is a bijection when the set of forms is restricted to the
sesquilinear forms on (\/q’alg ) x (\/* 919 9) Any of the continuity properties of
P, are thus encoded by the continuity properties of the sesquilinear form ¢ with
the following hierarchy (from the weakest to the strongest)

(V- Vg, &a Ve VE) < Crlmlg - Mgl g 11l g -+ [€pl o

P q
(0,0 < Crldlya gy [Wlyr e, vV Z, ¢\ Z
(6)

S l(di )| <Co| Y ol @1y ,
tshIsk IshIsk Ve 2) VP 2)
q P
K eN, cije(C, ¢i€\/ff, wje\/ff. (7)

For example, when p = g = 1 the two first ones define £ (%), while the third one
defines the space of Hilbert—Schmidt operators. By Taylor expansion any (p, q)-
homogeneous polynomial P admits Gateaux differentials and we set

8§8§/P(z)[u1, Uk Vs U] = Oy o Oy Oy - Oy, P(2)

where 0,0, are the complex directional derivatives relative to u,v € Z.
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Definition 2.1. For p,q € N, the set of (p,q)-homogeneous polynomial functions
on Z which satisfy the continuity condition (6) is denoted by &), ,(Z):
b= LLoralb(z) e (V" 2.V Z),

plq!

(b(z) € ?p,q(g)) At { b(z) = <Z®q7 Bz®p>'

The subspace of &, ((Z°) made of polynomials b such that b is a compact operator
be 2>\ 2\ Z) (resp. be (V" 2,V Z)) is denoted by Z% (Z) (resp.
P o(Z)).

Remark 2.2. In the case of 2 = C? the symbol is often written b(z,z). Of course
our polynomials have an holomorphic and antiholomorphic part but we prefer to
keep the notation b(z). The symbol b is simply considered as a function of the
point z € Z. The writing b(z,Z) would suggest that 2 is endowed with a complex
conjugation operator, which is not necessary at this level.

It will be sometimes convenient to consider b as an operator from @ Z into
®? Z with the obvious convention for symmetric operators b= fq?)yp. Owing
to the condition b € Z(\/? Z,\/* &) for b € P, ,(Z), this definition implies that
any differential 8%65()(2) at the point z € 2 equals

808b(z) = o flkﬂ (qf’y)l (<Z®H| \/ Iy fg) b (Z®p7k: \/ Iy« ff)

e,g(\’}g,\j/g). ®)

We will mainly work with fixed homogeneity degrees p, ¢ but the key statement of
this section (Proposition 2.7) says that EB;EGN{@}W(EX) is an algebra of symbols
with the same explicit product formula as in the finite dimensional case.

With any “symbol” b € &, ,(Z), a Wick monomial b"* can be associated

according to:
bWiCk : <%pfln — %m 5 (9)

bWick -1 ’I’L'(n—l—q—p)' ptq [~ n n+q—p
e [p,+oo)(n)—5 ’ (b\/IV”*PgX) e”Z \/Q”, \/ ),

(n —p)!
with b= (p!)~'(¢!) "' 070%b(z) .
Here are the basic symbol-operator correspondence:

(2.6) = a"(§V25(&2) «— @(§)(zA4z) «— dI(4)

(€2) «— al®) V2o(&2) — T() [ — N.
Other examples can be derived from the next propositions. The first one is a direct
consequence of the definition (9).
Proposition 2.3. The following identities hold true on 5y, for everyb € 2, ((Z):
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(i) (C(2)b(z)A(2))" " = oWickpWick g\Wick i A € B, (%), C € Py 3(Z).
(i) eitdl(A)pWick ,—itdl(A) _ (b(e—itAZ»Wick
on & .

, if A is a self-adjoint operator

Proposition 2.4.

(i) The Wick operator associated with b(z) = [[;_, (z,m:) x [1j=1 (&5, 2), mi, & €
%, equals

pWik = a* (m)---a”(mp)a(&a) -~ al&y) -
(ii) Forbe Ppq(Z) and z € Z the equality

) ) klj! ptq b i
Z®], bchkZ®k _ 5+ ) — 5 P p+i—q b(z 10
< > k—p,j—q (kfp)'(]fq)' | | ( ) ( )
holds for any k,j € N. The symbol 5;5 denotes 04,5110, +00) (@) where 64,5 is
the standard Kronecker symbol.

Proof. (i) is a direct consequence of Proposition 2.3 with ((z, £))"** = a*(¢) and
(€, 2)Wk — a(e). |
(ii) This comes directly from the definition (9) of b"WcF O

The next result specifies the boundedness properties of b"V°¥,

Lemma 2.5. For b e &) (%), the estimate

DVIE| ok s ) S Oh i (GE)2 (ke)® |b

’f(VPf,vq z)’

iapagb, (11)

with b= P
plg!

holds for any k,j € N.
This implies

()2 pvick (v) (12)

< |b .
L) ’ ’,%(VPQ”,\/‘JEZ)

Proof. A consequence of (10) is bViek(\/* ) c \)! 2 with j = k — p + ¢. For
(NS \/kﬁ”andj:k—p—&—q, write

Wick
L VP
\/]'k' pta
(k—p)'€ %(b@]@k*?féﬂ)w \/JQ"

Z2@"2.Q'Z)

. q P ' k'
< (je)2 (ke)> \/(j _jq)!jq \/(k —p)kP
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An important property of our class of Wick polynomials is that a composition
of biVick o bIVick with by, by € EBZ{% Pp.q(Z) is a Wick polynomial with symbol in
@38 2, «(Z). In the following we prove this result and specifies the Wick symbol
of the product.

For b € &, (Z), specific cases with j = 0 or k =0 of (8) imply

k * J
okb(2) € <\/ ff) and  dZb(z) € \/ Z,

for any fixed z € 2. For two symbols b; € &, .(Z),i=1,2, and any k € N, the

new symbol 9¥b;.0%by is now defined by

VEz)yvr ez
We also use the following notation for multiple Poisson brackets:
{b1, b} *) = 0Fby .05 by — OFby.0FDy
{b1.bo} = {by, b}

These operations with polynomials are easier to handle than there corresponding
versions for the operators b; € £ (\/** 2, /% ). Nevertheless their explicit oper-
ator expressions as contracted products allow to check that &3'8. 2, /(%) is stable
w.r.t these operations.

Lemma 2.6. Fiz p1,p2,q1 and g2 in N. For two polynomials b; € &), 4. (%), i =
1,2, set b; = (p;lg;!) =1 0P:0%'b; and for any k € {0,..., min{p;,q2}}

1
pitp2—kgiita—k [gkp  oakp 1
(p1+p2 — k)1 + q2 — k)!az % [3Z 10z 2]

~ k ~
b1 ©by =

Then

. ! ! P b
b — P1 q2 ; yql+q27k(b1 ® I®q27k' y)(.[@mfk X b2)

~ k
by ®by =
R T =R (g — k)

p1+p2—Fk q1+q2—Fk

with the estimate

~ Kk ~
b1 © by

g(vmﬂ)z—k gg7vq1+q2—k ggﬂ)
p1! 02! ’51‘ ‘ By

T (=R R Ly 2y 2)
Proof. For ¢ € \/"* 2 and ¢ € \/™ Z, introduce the vector

k
—k)!

‘ . (15)
g(VPQ ‘QF7VQ2 Qp)

(207 9) = (2 M @ Ighy ) 6 =
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with by(2) = (2%, ¢) and the form

®p1—ky ._ (1 — k)! k * ) ; _ ®p1
Wz = P e (V) L it bt = (. 2n).

The identity

<<w7 z@Pl—k>, <Z®QQ—k7 ¢>>(\/k 2y
= <,(/)®Z®q2_k7z®p1_k ®¢>®Pl+q2—k2" (16)
is obviously true when ¢ = £%P* and ¢ = n®% with &, € Z. Since (£%")¢cz is a

total space of \/" 2 with the polarization identity (1), the identity (16) holds for
all p € \/? 2 and all v € \/"* 2. After noticing the relations

| |
9kp _ b ®p1—k ok _ 92 ®q2—k
z 1(2) (pl_k,)!<w7z >7 Z Q(Z) (Q2—k>!<z v¢>7
with 1) = b52®% and ¢ = byz®P>, the identity (16) leads to
kb, .08y (2)
p1! q2!

= Qat+a—k (i = . opatoit
= ) gs ] <z DTRTE (b ® Igyar—» o) (Igri—r g @ b2)2¥P>TP >

Therefore  9%b,.0¥b, is a  continuous homogeneous polynomial in

Py +ps—ku+qa—k(Z) with the associated operator given by (14). The estimate
(15) follows immediately by (14). O

Proposition 2.7. The formulas

(i)

in{p1,q2} ek
ming{pi,q2 k Wick
. . £ _
b¥Vzck bngk _ Z E afblaibe = (68<82,8w>b1 (Z)bQ(W) |z:w) )
k=0 '

(17)

(i)
' . max{min{pi,q2} , min{p2,q1 } } Ek Wick
[bll/Vzck, bgV’LCk] — Z E {bl’ bg}(k) , (18)

k=1
hold for any b; € Pp, (%), i = 1,2 as identities on .

Remark 2.8. This result has exactly the form of the finite dimensional formula.
Lemma 2.6 gives the relation with the writing which can be found in [19].

Proof. The second statement (ii) is a straightforward consequence of the first
one (i). Let us focus on (i) which will be proved in several steps.

Step 0: Before proving the identity, first notice that both sides are well defined.
Actually, for any b € 2, ,(Z), the operator b"°* sends #};, into itself. Hence,
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the product b‘l/ViC’C o b‘Q/V ik is well defined as an operator Hin — Hpin. Finally we
know from Lemma 2.6 that e*(9=:92)p, (2)by (w)|z=w belongs to @gf%@pvq(ff).

Step 1: Consider by (z) = (n, z) and ba(z) = (2, £)7, ¢ € N. The formula
a(n)a*(€)" = a*(€)%a(n) +eq(n, &a*(€)""

is exactly
b}/VickbgVick — (b1b2)Wick + €(azb1.agb2)WiCk .

Step 2: Consider by(z) = B,(z) = (n, 2)" and ba(2) = (2, £)?, p,q € N. The
induction is already initialized for p = 1 according to Step 1. Assume that the
formula is true for p — 1 and all ¢ € N and compute

min{p—1,q}
ic ic ic ic ic ic € Wick
By ickpiick — gVick [gWichpllick] — giViek | " 7 (08,1, 9ba)
k=0

min{p—1,q}

—a | X Sy o e AU
min{p—1,q} (p— 1)1 o -

telg— k), a* ()7 ()~ ¢+

min{p,q} Kk
e"(n,§)"q!(p — 1)! k
kZ:o k!(q —k)l(p—1—k) [0,p 1](k) + (p— k) [l,p](k)
x a* (€)1 a(n)P*
min{p,q} ok Wick
- Z o (05, , OFbs) .
k=0
We used several times the relation
, n! . .
agﬁn z) = ; ) # " @7
(2) (n_j)!@? )]

and its dual version for 82b, .
Step 3: From Step 2, the statement (ii) of Proposition 2.3 leads to
a* (€)™ a(n )P a* (&) =a(n?)?
min{p1,a2}

=Y (B ) B (e e o)

k=0

) Wick
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for any £, €2, n',n? € 2 and any p1,q1,p2,q2 € N. Again the polarization for-
mula (1) in the form

n
n

Hah(fi):$ Y oerven || D e ;
j=1

i=1 Tei==1

yields the result for any

that is for any be in the form

b= gV VE NIV vl ], =12, (19)

Step 4: We want to check the identity

min{pi,a2}

(s, B F 0 bRy, ) =N %(wn/ , (0Pb102by)" *Fap, )

p=0

for any 1, € \/" 2 and any 1),/ € \/n/ Z,n,n' €N.
From the definition of b"*¢* the left-hand side equals
<w , b}/Vick ° bgViCk'(/J >
- n,n’,p1,2,q1,2,€ <wn’ ’ (61 \/I|\/n+t12*p2*p1 gg’) (52 \/I’\/n*m g’) wn>
= Cn prosgrzne <(8>1k \/I|Vn/—q1 g) (D (62 \/I|\/n—:n1 ff) ¢n> .

Similarly and owing to Lemma 2.6, every term of the right-hand side satisfies
(ur, (026102b2)" " )
= Chorpipmarme (V[ (118 g s 2) (Igm-s 2 @ 8) \/ Iynsrceass 2] )
= Chorpisnme (B @I g 5) s (Igors 2 @ b @ Lysnsass ) ) -

Hence for fixed 9y, ¥ns € H}in, both side are sesquilinear continuous expression of
(51, b~2) when the first factor is considered with the x-strong topology of operators
and the second one with the strong topology. The operators (19) for which the
equality is true, form a total family for these topologies. This can be proved in two
steps: approximate first any finite rank operators by linear combinations of the
specific rank one operators (19) and then any bounded operators by finite rank
operators. Thus the equality holds for any by € &), ,,(Z£), £ =1,2. O
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Remark 2.9. The formulas (17) and (18) make sense with e-dependent symbols.
One can work with polynomials in

b(z,6) =Y e%al2), ba € Ppo(Z)
a=0
or with asymptotic sums
b(z,8) ~ Y e%a(2) ba € Ppy(Z).
a=0

The expression (17) and (18) take then the form
Wick

ic ic i 1
pWickpWick ZEJ Z 45(851717@.65()2,@
j=0 a+B+k=j

3

Wick

[p}Vick piVick] Zgj Z %(afblﬂﬁifbg,g—8fb2,@.6§b1,a) ,
j=1 atftk=j

for by ~ 32, %10 € Py, (Z) and by ~ 35 ePby g € Py 0.(Z) . Here (p1,q1)
(resp. (p2,g2)) does not depend on « (resp. 3).

We have the following useful result.

Proposition 2.10. For any b € GBZ%EN‘@pvq(g) we have:

(i) BWick s closable and the domain of its closure contains
Hy = vect{W(2)¢, ¢ € Hpin,2€ Z}.
(ii) By setting E(z) = W(%)Q according to (4), the identity
b(z) = (E(z), 0" B(2)) (20)

holds for every z € % .
(iii) For any zo € & the identity

W <\Z_/fzo> pWickyy (fm) = (b(z + zo))WiCk

holds on 2 where b(- + zg) € @:}ieN:@p,q(f) .

Proof. (i) b™°* is closable by Proposition 2.3 (i). It is enough to consider b €
P, .(Z) when we prove that 74 is a core for the closure of bk, The last
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statement is deduced from the estimate
> 1 ) -
> = ’bwwk ‘I’(Z)nv?(k)‘}f < blzyr 2y z) [9Plyr 2

|
n=0 s

i [e(n+k+q)] % |2

< 0 (21)

x f: Wf?” (n+k)!
=0

for any pF) € \/k Z and z € 2. In order to prove (21), use Lemma 2.5 and
estimate the action of b * on ®(2)"0®) by maxycpchin [BV | L7 gy r-roy

and bound the norm of ®(z)"p®) by [p*)| || W
(ii) One writes for b € &) (%) and z € &

2 <Z®n1 , bWickz®n2>

(B(z), W'*B(z)) =em 5 Y NN

n1,m2EN
- Y
ni—q,n2—p g
ni,ns €N \/(nl - q)'\/(n2 —p)!{f Ea
=0(2).

(iii) The fact that b(. + zp) remains in the class @Z{ieNﬂp,q(g) come from

the Taylor expansion and (8). In order to prove the equality, differentiate A(t) =
[W(gtzo)b(z + tzo)WiCkW(gtzo)*] in a weak sense on .. Proposition 2.7 im-

plies

i0;A(t) = W (ﬁtzo> — l(b (f%) bz +tz0)Wick]
w (ﬁtzo>
i€

ic
= W=tz [(zzo,3zb(z+t20)>*<8zb(z+zo),zzo>+zatb(z+t20)

2 *
x W <\,[t20>
1€

=0. O

6%|Z|n1—p+nz—q

b(2)

+ i0pb(z + tzg) Wik

:| Wick

Remark 2.11. The relation (20) allows to define easily the Wick symbol of an
operator which is defined as a series, when it makes sense, instead of a Wick
polynomial. For example the Wick symbol of the Weyl operator W (&) equals

(B(z), WOE(R) = (2, e = Bw(e)0) = V€5 ()
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A variation of Proposition 2.10 ensures that b(Az+zp) can be Wick quantized
for any bounded complex affine transformation in 2 when b € &2, ((Z). Actually
real symplectic affine transformations of symbols in #, ,(Z) may also be Wick
quantized but only under a Hilbert—Schmidt condition on A which agrees with
Shale’s theorem or the presentation of general Bogoliubov transformations (see [5]).
The following result will be useful in Subsection 5.1.

Proposition 2.12. Let B € £(Z) and let By € £*(Z) be an Hilbert-Schmidt
operator on % and let J : 2 > z w— Jz = Z € & be any anti-unitary oper-
ator on Z. Then for any b € Pp (%) the polynomial b(Bz + BsZ) belongs to
By tq'=pt+qPp g (Z) with the estimate

ag/ag’b(BerBQz)’ S
2 2N )

ol
< Cpg(IBlyz) + 1Bal gz z)) " ‘b

LNTZNTZ)
Proof. For b € 2, ,(%) write, after recalling b = .7,b.%, in L(Q" %, R* %),

)

b(Bz + By7) = < (B2 + By2)%9, b(Bz + Bgz)®p>

Il
1M 2
11~ 17

Cyct ((B2)P17 @ (Bo2)® , (Ba2)° o (B2) ")

C]Ck gk ®q+k J ®P+j—k)_

MQ

0
The sesquilinear form ¢, is defined on (R z als ®k Z) x (R % @
Q" " %) by

Ui (61 62,001 © ) = (B 1) @ (BY ), H(BF*3a) @ (B )i ).

It satisfies for ® = Z(’Ll P10 ® ¢2,o and ¥ = Ejgv:1 V1,3 Q2
N

£k (@,9) = 7 ((BE7023), Co(BH )i s )
B

.
Il
~
I

I
—

Mz

(a5, (B3)® Co(BOP F)iy g)

B=1

with

Cy = i (<B®q—j¢1,a| ® Igi gg’) (\B $2,0) ® Igr- kg) e¥ (%f ®f‘f>
a=1

Since B®j is a Hilbert—Schmidt operator the estimate

15 (2, 9)] < [Baly ) 1Bl ICol v 2.5 ) [Wi@o—s 2
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holds for any ¥ € &’ 2 @9 Q""" % . In order to estimate Col o (@r—+ @7 )
take any U € ®j Z and any V € ®p7k Z and compute
N
(U, CaV)] = |3 (B o4 ®U,HB§%qa®vﬁﬂ

a=1

N
Z P1oa, (B Cyy B ¢3.0)

with  Cyy = (Iges o @ (U))b(Igr 2 @ V) <®§f (X),@f)
Again the Hilbert—Schmidt condition implies

. . ]
(U, CaV)| < 1Balyo( )| BI% ) Ul s ‘b’f(vpgyvqy) Vigrs 2 [Blgass

We have proved an estimate for |Cp| which implies that the estimate

) j+k p+q—k—j |1
6562, 9)| < B2l |BIZE 7 Bl e

extends continuously to any ® € ®?7/* %2 and any v e Q" 2. It
holds in particular when ® € \/* /™" 2 and W e \/*7"7 2. Hence £,4(2) €

Pp—ktjq—i+k(Z) holds for any (j,k), 7 < ¢ and k < p, with a norm estimate
which yields the final result. O

|(I)|®q7j+k K |\Ij|®p7k+j ;

3. Weyl and Anti-Wick quantization

Our extension of the Weyl and Anti-Wick pseudodifferential calculus to the infinite
dimensional case is based on a separation of variables approach within a projective
setting. This is slightly different than the one developed by B. Lascar in [35] where
the inductive approach leads to a natural Hilbert—Schmidt condition and restricts
the exploration of the infinite dimensional phase-space % .

3.1. Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections on 2 and for a given
p € P let L,(dz) denote the Lebesgue measure on the finite dimensional subspace
pZ. A function f: 2 — C is said cylindrical if there exists p € P and a function g
on pZ such that f(z) = g(pz), for all z € Z. In this case we say that f is based
on the subspace pZ. We set .#,,,;(Z) to be the cylindrical Schwartz space:

(f€ Z(Z)) & (I eP,Ige L), f(z)=g(p2)).

It is well known that the FourieerVigner transform defined by the expression

20 V[6,9](2) = (0, W(V212)¢)



1520 7. Ammari and F. Nier Ann. Henri Poincaré

for any ¢, 1) € S, belongs to L?(pZ’, L,(dz))NCo(pZ’) for every p € P. Introduce
the Fourier transform of a function f € 7, (Z) based on the subspace pZ as

FUE) = [ f€) 2500 1, (ag)
pZ
and its inverse Fourier transform is
f(z) = / FZf)(z) ™5E=9 [ (dz).
pZ

Therefore the so-called Wigner transform can be written as #/[¢, y| =.Z [V [, ]].
With any symbol b € 7, (%) based on pZ’, a Weyl observable can be associated
according to

pWevl — / Fb)(2) W(V2rz) Ly(dz). (23)
pZ
It can be expressed as a quadratic form in the following way

(0,07 e) o = | Fb)(2) V6, 0](2) Ly(d2)
)

p%

/ ) V1
/pg b(z) #[6,¥](2) Ly(d2).

Note that b is a well defined bounded operator on J# for all b € .%,.,,(Z’) since
¥ [p,1](2) is a bounded function and .Z [b](z) isin L' (pZ, L,,(dz)). Remember also
that this quantization of cylindrical symbols depends on the parameter ¢ like the
Weyl operators W (v/272).

The next estimate will be useful. A similar inequality can be found in [15].

Lemma 3.1. For any § € [0, 1] there exists a constant Cs > 0 such that the estimate
|[W (1) = W(z)] (N +1)72| < C5 |21 = 2l [min(e]zal, e]2))? + max(1,¢)7]
holds for all e > 0, and all z1,29 € Z .
Proof. We have by Weyl’s relation

|[W (1) = W) (N +1)7572]

< ‘[W(zl —z) — I](N + 1)—5/2‘ + etz ] (24)

The estimate |’ — 1| < Cjs |s|?, leads to

eisa’(zl,zQ) _ 1‘ —

eisa(zl—ZQ,zQ) _ 1‘

— ieo(z1,22—21) _

(&

1‘ < Cs5e® |21 — 20|° min(|z1], [22])° .

The first part of the r.h.s. in (24) is estimated via a complex interpolation ar-
gument. Indeed, for § = 0 notice that |[W(z; — 22) — I| < 2 and for § = 1 the
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estimate |ei8 — 1| < C1|s| combined with the spectral theorem yields
(W21 = 22) = (N + 1) 2] < € 101 = 22) [V +1)71/2y)|
e ‘<I>(z1 ~ ) (N + 1)—1%‘ :
Now by the number estimate (12) we obtain

‘ [W (21 — 22) — I|(N +1)~/2

< C max(l,e) |21 — 22| O

3.2. Finite dimensional Weyl quantization

The finite dimensional Weyl calculus provides us a collection of results on the
Weyl quantization. We specify here the relation between the Weyl quantization
defined on Z via (23) and the usual semiclassical Weyl quantization within the
Schrédinger representation on RY.

For p € PP the orthogonal projector I —p is denoted by p*. Let I's(p.2°) denotes
the symmetric Fock space over p2’. The separation of variables in finite dimensions
extends to general symmetric Fock spaces owing to the canonical isomorphism of
Fock spaces

T,: # =T,(Z) - T,(pZ)2T,(p" %), (25)

for any finite dimensional projector p € P, with T,,Q2 = Qr% @ QP Z when QP
and QP2 are the vacuum vectors of the corresponding Fock spaces. We will omit
the notation T}, and identify directly the tensor products.

Fix p € P. The tensor decomposition of the Weyl quantization comes from
the Weyl relation which implies

W(E+&)=W(EOW(E) =W,(§) @ W, (€)
for any (&,¢') € pZ x pt % . The symbols W, stands for the Weyl operator defined
on the Fock space I's(pZ’) and the Weyl quantization of b € . (F), for any finite

dimensional complex subspace F' of 2, is denoted by b;veyl. Hence the Weyl
quantization of b € %, (%) based on pZ equals

bWeyl = /gﬁ’[b](z)W(\/ﬁwz) Lp(dz) = b;vgfyl & IFS(pLQﬂ) .
p

In order to apply directly the finite dimensional results on Weyl quantization,
we need to specify the correspondence of representations.
On R? the Weyl quantization is often introduced as
e (T +Y dédy
wWevl(x, hD :/ R , .
(@hDJu(w) = | e 3¢ ul) o

By a simple conjugation with a dilatation, it becomes aweyl(\/ﬁx, \thx) where
the position (z) and frequency (§) variables play the same role. An equivalent
definition can be given with the help of the phase translations :

i(§or—x0Dy) _ (ei(ggm—mgg)>Weyl , [szgou](ﬂ?) _ eifO(Qx—aco)/Qu(x_xo) )

T(x0,60) = €
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BVt (Vi VAD,) =

T*Rd
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F[b)(y, n)e?m @ VRotn-VRD2) gy gy

= /T*Rd9[5](31,77)7(,%@,,,%@@,) dydn .

The symplectic form [, ] and the scalar product ( , ) on T*R? are defined according

to

[(@,8), (y,n)]] =&y —xn=—Im(z+i&, y+in) = —o(z +i&,y +in)
((2,8),(y,n) = xy+&n=Relz+if, y+in) = S(z + i,y +in).

After noting

[\/ﬁx + Vhdy, Vha — \/584 =2h,

the correspondence with the definition (23) is summarized in the next table

p% ~ C4
[y(pZ) ~ T4(Ch,

(z1,22) = S(21,22) + i0(21, 22)

v (Np2)"), o (Npz)*)

T*R?
L*(R)

z=e (z+if)
((z1,&1), (22,&2)) = &1.62 + 122 = S(21, 22)
[(z1,&), (22,&)]] = &.w2 — 316 = —0(21, 22)

d
a(z)= Zaﬁ-(\/ﬁ@xﬁ- \/Exj)

Jj=1

a*(z)

d
Zaj(—\/ﬁazj-i-\/ﬁxj)
j=1

e=2h [a(z1),a"(22)] = 2h (21, 22)
=x0+i€  V2h(zo.x + &.Dy)

=0 T(—/3heo v/ 2hzo)
iy Tyt ( Ve )

ViV
Hermite function
(n!)*1/2 [zo.(—az + x)]n(wfd/‘*e*%)
JRY), S(RY

Once this is fixed, the general results on the semiclassical Weyl-Hérmander
pseudodifferential calculus (see for example [8,33] for the general introduction
and [37,39,41] for the small parameter version) can be applied for any fixed p € P.
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The notion of slow and temperate metric and weight depend only on the symplectic
structure which is given by o(z1,22) = Im(z;, 22). With such a metric the gain
function A is given on pZ by

(T
)\(2)2: inf g7(T) with
Tep2\{0} g.(T)
2 2
@)= sup LS, TS

sepz\{0}  9(5) sepz\{0}  9(5)

With a slow and temperate metric ¢ and a slow and temperate weight m, is
associated a symbol class usually denoted S(m, g).

After writing X = (x,£) € T*R? for the complete phase-space variable, the
differential operator D is (D, D¢) = (i~ 10,17 10¢). In the composition formula

of symbols, the differential operator % [Dx,,Dx,] appears. After recalling
0z = %(Vm +iVe) and 0, = %(VI —iVe)
it equals
O D, Dx] = £ (0,05, — 05,.0.,).

We refer to [39] for an explicit semiclassical writing of the Weyl-Hormander cal-
culus within the Bony—Lerner presentation [8] and with a general version of the
Beals criterion following Bony—Chemin [7].

Proposition 3.2. Let g be a slow and temperate metric on p%, dimc(pZ) =
d and let my and mo be two slow and temperate weights for g. For by €
Spz(me,g),l = 1,2, the operator bxzéil acts continuously on Ngen D((Npz)*)
and on Ugen D((Npz)F)*.

The symbol bi#5/%by of bypegf o bgf;%f satisfies

b/ b (z) = e (P02 =92002 )b, ()b (20)

1 j
= 3 (5005 = 05,0 ) ben)alz2)
~ JI\2
0<j<v
+EyRy(b1’b2;E)

zZ1=2z2=2

mima

where R, (b1, by; ) is uniformly bounded w.r.t € in the Fréchet space Sy (™55, 9) -
The Calderon—Vaillancourt theorem

Weyl
bp Py

< Cpi (b
2y S OPra®)

and the Garding inequality

(b>0) = (b5 = ~C'p}, (b)e)
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respectively for b € Spa(1,g) and b € Sp2 (X, g) . The index kq for the seminorms
Dk, and pfw recalls the dimension dependent number of derivatives required in the
estimates.

The typical example Héormander metrics Which will be used here, are |dz|? =

da? +dg? (A(z) = 1) and LEL = 4% 4 A (3\(2) = 1+ |2f). Both of
them split up in the (x, &) coordinates and the Beals criterion of Bony—Chemin [7]
translated in the semiclassical case in [39]-Appendix-A can be applied. Following
the method recalled in [30]-Chapter-4, this allows to check that functions of fully
elliptic self-adjoint pseudodifferential operators are pseudodifferential operators,
with an explicit knowledge of their principal symbol. In particular, this can be
applied with 1+ U™ 4 N o = (1+ 2] )Weyl while noticing that 1+ 4" 4 N, o

|dz|?
9 <Z)2

is a fully elliptic operator in S((z)> ) (such a result with € = 1 can be found

also in [27]).

Proposition 3.3. Fiz p € P, fiz the exponent s € R and let Ny = dI'(Ip%) be the
number operator on Us(pZ). For any s € R, (1+ “h% + Npz)*/? can be written

(b(s,s))zvifyl with e~ (b(z; 5,€) — (2)*) uniformly bounded in S((z)*"?, |<d;>|22) .

3.3. Weyl quantization and Laguerre connection

In this paragraph, the relationship between the Wick and Weyl calculus is checked
in the infinite dimensional setting. It specifies the relation between the representa-
tion of the Weyl algebra, generated by the W(¢), and the number representation
which puts the stress on Wick symbols or Hermite states 2®%. This relies on the
introduction of Hermite and Laguerre polynomials, recalled below.

Let h,(x) denote, for any n € N, the n-th Hermite polynomial in C:

[n/2]

2 d" 2 n!
hn — (—=1)"e (%) = —1)" 2 n72r. )
(€)= (1 Gl = X () a0 (26)
Those classical polynomials are also given by the generating function
oo [oe]

t" 22 (=t )" a2 B T
Zﬁhn(x) =e [Z Tf@ ] — % et “le” ] g2t (27)
n=0 " n=0 ’

Lemma 3.4.

(i) For any & € &, the following identity holds in Hpin:

Naik ivase )\
-, ()

n=0
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(ii) For any n,j,k € N the estimate

) Wick

)0 b (iVES(E.) " 010y ()

FAVAEAEES
< (T +2v2(k + )z [¢]) Tl
holds for any € € & .

Proof. Using the generating function (27) with ¢ = f|§| and ¢ = &/25(6:2) implies

Vel

the equality of the Wick symbols

VISl _ RS v ag? Z (VElE)™ h iV25(&, 2) .
27n! [VEE]
Nevertheless the equality of the the series of Wick quantized operators has to be
checked.

Recall that elements of J#%;,, are analytic vectors with infinite radius of con-
vergence for the field operators. Hence the sum

W(Ew =Y = @)™, V€ Hun,

is absolutely convergent for all £ € 2. Therefore to prove (i) it is enough to
compute the Wick symbol of ®(£)™ for all n. Indeed using the Wick ordering
rules, we have

[n/2] r n—2r
! €17

S Y G e e

[n/2] n—2r

Wick
|£|n n! 2n- 2r n—2r—s
B 27“ z_;) T'(n - 2’1”')' < <|£|n 2r Z 27“ z § <£’ > ? )

n n—or\ Wick
e (B (2vEs(2)
2n ‘ rl(n — 2r)! €]

r=

To prove the second statement (ii), take ¢ € \/* 2 and ¢; € \/! 2 and write

Wick
<wj o (iV25(6,2)) wk>
[n/2]

= X g (1 (@ n™™)" ).
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Using Lemma 2.5 one obtains

(7. (iv3st6.2)) " wk>‘
[n/2]

< Walys 2 Wiy 2 3 G5 oy (V2D

<|¢J|Vﬂy|wk|\/ Qf’z ,,(2\/ (k+j)e ‘§|) 8/2]

B Ve B

The Laguerre polynomials are defined by the formula

QIR T L)
=> (-1 (k—ni)!(ji)m)!m!t , teC.

m=0

The following proposition gives the Laguerre connection (see [18], [40]).

Proposition 3.5. For z,§ € & with |z| = 1, the next equalities hold according to
the ordering of j and k € N,

]2 Z@jl( ¢ ) (@=L (e P 2 ekt k> g,
mv/2e (i) k\/]:,L,(j (e, 2 2)<z,§>]_ke_‘5‘ 2 >k
(28)

Proof. Let us establish the expression of #[2®*, 2®7] in the case k > j. The case
7 < k is similar. Using Lemma 3.4 one obtains

() ()
Z\);Lnn' <®j7 . \[f" >

Now let use the explicit form of h,, and Proposition 2.4. We obtain for |z| = 1,

V[, 2%9) <7r§f>

o [n/2] n—2r

i €| n - s N—2r—s Wick
=22 2 5im i i =z Cor & <z®J,(<g,.> (L) Z®k>

n=0 r=0 s=0
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- g 28 Ky VEGT
:2:0 — Z ZTT!(k—j—FS)!S! |<€7Z>| <£7Z> j(j_s)! 6k—n+2r+s,j—s

. J oo 2r 1)5k! v _J
\/TZZ 27‘7»|.|€‘ s k_§+l) (] S)' ‘<€7Z>| <£’Z>k

s=0r=0

o

The last term gives the claimed identity. 0

3.4. Anti-Wick operators

The Anti-Wick quantization is introduced by a separation of variables process like
the Weyl quantization. For a given p € P, set p- = 1 — p, and use the tensor
decomposition (25). The Weyl operators on p2” and p=2 are denoted by W, (&)
and W1 (&) with W (& @1 &) = Wy (&) @W,1 (&) . For any € € pZ, the coherent

state F, (&) is defined by E,(§) = Wp(%)QP’?. Introduce the projector Pe on
J after tensorization with I (1

pZ 3 & PE = (|E,(ONERN)]) @ Ir, (pr ) -

The Anti-Wick operator associated with a symbol b € 7, (Z) based on pZ
is then defined by

A—Wick (dé) A—Wick
b / b Pf (ﬂ-g)dlmpff bpg ® I]_‘*S (pj‘ g) .

The above formula can be first considered in a weak sense or as a Bochner integral
when b € . (pZ’) and the bounded projector P is continuous w.r.t. £. The finite

dimensional identification of the Weyl symbol of |Wp(%)9pff )(Wp(%)flpg [,
can be deduced after completing the table of correspondences in Subsection 3.2:
p% ~C*  z=x+4+i¢ T*RY
Ts(p2) ~Ts(Ch, e=2h L*(R%)

V2 e
Ep(z20)=Wp <.20 P =g — i Tiag g (T /e~
e iV

G G «2 _y?
QPENQPE| = e (m)~ 2T =% = gV (Vha, VhD,)
\Z\?,o 224 ¢2
v(z) = 9de= 5 = with g(z,&) = 2%~ "

From the conjugation

T s @V (VR VRD, )

=

g, = al- — o, — €)W (Vha, VhD,)

s Vh

ﬂ\

the above correspondence gives

2
lz—¢12 5

[Ep(ONE(E)] =~ with e(z) = 2% =7




1528 7. Ammari and F. Nier Ann. Henri Poincaré

Hence the usual finite dimensional relation between the Weyl and Anti-Wick quan-
tization now reads (after tensorization with Ip_¢,1 )

lz‘?)y Weyl
A—Wick _ e 7
’ B bpf?’ (me/2)dimpZ (29)
:/fﬁ[b](g) W (V2r¢€) e~ 5 lEls L, (d€), (30)
p

for any b € S (pZ) by setting
b= [ Went - ) L),
pZ P

From (29), the Anti-Wick quantization can be extended to symbols in S(1, |dz|?)
with the next properties (see [29]).

Proposition 3.6. Fiz p € P. Let b € Sp»(1,|dz|?), the following statements hold
true:

(i) If b > 0 then bA=Wick >0,

Y [pA—Wick

(ii) |b ’3(%) < bl poepay-
(iii) The comparison with the Weyl quantization is given by (29) with the estimate

|bA7Wick < Cdpkd (b)€

1 Weyl

b |$(%)
where the constant Cq > 0 and the seminorm py, depend essentially on the
dimension d = dimpZ .

A variation of it holds when b € Z ! (#,(pZ’)), when .#,(pZ’) denotes the
set of bounded (Radon) measures on pZ and comes directly from (30).

Proposition 3.7. For any p € P and any b € F 1 (My(pZ)), the Anti-Wick and
Weyl observables are asymptotically the same:

35% ’bA7Wick _ bWeyl‘g(jf) —0.

Proof. Recall that b"We¥! can be defined for any b € .7/(pZ) as a continuous
operator from Ngeny D(NJy) ~ F(R?) to Upen D(NJy)* ~ '(RY), with d =
dimpZ and (30) is still valid for such a symbol. Assume .#b=v € #,(pZ’). The
identity

(, (pW el — pA=Wick)) — / ; (4, W(2re)p) (1- e F 1) an(e)

pZ

holds for any ¢, € Nken D(Nllfg). This implies

e —Wic _ex? g2 —0
A P </ﬂ(1e Pl apl ) =0, 0

) =
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3.5. Weyl quantization and specific Wick observables

In finite dimension, that is for any fixed p € P, polynomially bounded symbols can

be introduced after considering the class of symbols User Spa ((2)°, gp) where g, is

2
either the metric |dz|? or |<dzz>|2 on p%. According to Proposition 3.2 it is an algebra

with the Moyal product, #°/2, associated with the composition of Weyl quantized
observable with a complete asymptotic expansion of b;#/2b,y. For any m,q € N,
the finite dimensional space &y, ((pZ’) of (m, ¢)-homogencous polynomials on 2
is contained in .%,%((z)™"%,g,). The comparison between the Weyl and Wick

quantizations is symmetric to (29) (see [6]):

2 Wick
\Z|pgz

67 e/2

a Weyl
Vb€ O Pna0Z) . b = | b

For polynomials the deconvolution is possible and we get for any m,q € N and
any b € Zp, 4(pZ)

e 0pE = byt = cpz ()
where the symbol ¢(e) equals

|z‘12,_ox
1 e /2

X
v (me/2)dmnZ

cle)=¢

and is uniformly bounded in S, ((2)™*972 g,) w.r.t € € (0,2).
The space P, 4(pZ) is identified with a subspace of &, (%) and even of
any &), (2Z) for any r € [1, +oc] with
Vb€ P %), Yz Z, b(z)=0bpz+pz)=0b(pz)
b= p®q ob Op®m = Fs(p)grs(p) :

After tensoring the finite dimensional comparison with It ¢, %), we have proved

Proposition 3.8. For any p € P, any m,q € N, the class of symbols P, o(pZ)
is contained in P}, (2) NSpz((2)™19,g,). Moreover the operator e (b"Vir —

Weyl with c. uniformly bounded in S, ((z)™F972 g,) w.r.t

bWevl) can be written cY

e € (0,2). (The metric g, can be either |dz|? or ‘<d;>|22 on pZ.)

4. Coherent and product states

We distinguish the coherent states E(z) = W(gz)ﬁ (resp. the projector
|E(2))(E(2)|) from the product or Hermite state 2®* (resp. the projector
|z@k) (2®F]). Although they are intimately related, the asymptotics of coherent
state E(z) tested on Wick, Weyl or Anti-Wick observables encoded exactly the
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geometry of the phase-space 27, while the asymptotics of the product states z®*,
ke — 0 keeps track of the gauge invariance

Vo € [0,2n], |(e2)®F)((e"2)®F| = [2¥F)(2"|
with variations according to the quantization.

Proposition 4.1. Fiz z,§ € & with |z] = 1.

(i) The convergence

e—0 o 2
ke—1

27
lim 7/[ k ®k—m](£) _ i/ eQ-rrz'S(ze,g)e—imé) d@,
0

holds for any fived m € N by setting 2% = e¥z
(ii) The coherent state E(z) = W(%z)ﬂ satisfies
. € 2 £— .
V[E(2), B(2)] () = XTS5 °20 2mis(e2),

Proof. i) Set j = k —m and compute ¥ [z®%, 2®7](¢) with ¢ = % according to
Proposition 3.5:

T (f%) - “)m\/gLY”) (FHe.aR) (5)™" terayemiers
Z s_j;' 01(8 )\/(j J;)!ks\/(jsl;!!km“

s+m

(ef) T AP 2y

The bounds (k) < C and > o, 3T

s+m)' < oo imply

Ji, 712" JT(f) Z—|<5xz>|25<§',z>’”,

|
=29 0272 sl(s+m)!

. . . . k
owing to Lebesgue’s theorem. A simple series expansion e = Y7 & for t =

iV28(29,¢') gives

1 27 \/§S( 0 ) e’} s
- 7 z7,&") ,—imbo do = |<£/ >|25<£/ >m
e e ——— (¢, 2 J2)
2m Jo 2) 2 (s +m)!
ii) is a straightforward consequence of (22). O

The next result specifies the similarity and the differences between the prod-
uct states and the coherent states in the mean-field or semiclassical limit.

Theorem 4.2. Let 2 € 2 and m € N be fized with |z| = 1 and set 2% = %z for
0 € [0,27]. The next limits exist as e — 0, ke — 1.
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(i) Forbe Soep(Z),

) B ) 1 27 .
gl_{% <Z®k m’ bWeyl Z®k:> _ Eh_{% < ®Kk—m bA Wick ®k> 27T b(ze)e szdG.
ke—1 ke—1

Meanwhile the coherent state E(z) satisfies
. Weyl 1 A—Wick _
lim (B(:), BYE(2)) = lim (E(=), b4~V B(2)) = b().
(ii) Forbe P, (%), with p,q € N fized,

) 1 [27 .
lim (z®F=m pWick ,0ky — 5 0 b(2) = — b(z)e ™04 .
kEe:)Ol n 0

Meanwhile the coherent state E(z) satisfies
Ve >0, (E(2), "V *E(2)) =0b(2).
Proof. Set j =k —m, with m € N fixed.
For (i), fix b € Z.,1(Z). The definition of b"¥! in (23), says

(259, pWent @k _ / F)(E) (59, W(v/2nE) 25 L (de)
p%

- / | PO VEF ) L(d6).

Since Z[b] € . (pZ) and ¥ [2¥F, 23] (£) converges pointwise according to Propo-
sition 4.1, Lebesgue’s theorem yields

2
lim (2®7 pWevl ;OF) — / Fb)(€) (1 / ei2mS(=.8) g im0 d9> L, (d€)
24 0

e—0 2
ke—1
1 2m
~or

The limit with Anti-Wick observables is a consequence of the formula (30):

(289, pA7Wick 28k — / FIE) (=29, W(VEne)=®) =5 b L, (de).
24

b(z%)e ™0 qg .

The statement about the coherent state E(z) is even simpler by referring to Propo-
sition 4.1 (ii).
Let us prove (ii). The statement (ii) of Proposition 2.4 gives

< ®J bchk ®k> —§F k'j' Ei < ®q bz®p>

F=pi=a \[ (k—p)l(j — q)!

o \/ k — p)lke \/ (J—a) 'kq (k)7 (259, 550)

We conclude again with \/(kf;')lkp \/(jj]')!kq —lask — oo. O
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5. An example of a dynamical mean-field limit

In order to illustrate the general presentation, the standard example of the mean
field derivation of the Hartree equation from the non relativistic Hamiltonian of
bosons with a quartic interaction is considered. Two standard methods are consid-
ered: The coherent state method (see [24,32] or [12] for a rapid presentation) also
known as Hepp method and the propagation of chaos approach with a truncated
Dyson expansion according to [16,17,19,20,45].

Consider 2 = LZ(R%, dz) and take V € Lg°(R? dz) such that V(—z) =
V(x). The polynomial Q(z) = (22, Qz®2> is associated with the operator Q €
ZL(R* %) defined by

Q: % — %,
u(zy)w(xe) — %V(wl — zg) u(zy)w(xs).
The Hamiltonian is defined as
H. = dl(=A) + Q™"

where —A is the Laplacian of R, while H? denotes the free Hamiltonian d['(—A).
It is well known that H. is a self-adjoint operator on . (see [24]) and the quantum
time-evolution group is denoted by U.(t) = e %cf while U%(t) = e icHo =
['(e*?) stands for the free dynamics. Although the Wick quantization of non
continuous polynomials has not been introduced here, this Hamiltonian appears
as the Wick quantization of the energy functional

h(z) = /]R V2 do+Q(2). (31)

It is also well known that the mean field limit is the nonlinear dynamics issued
from the Hartree equation

iatzt = —AZt + V % |Zt‘22t = afh(zt) (32)

with initial condition zg = z € Z.
An important property of the dynamical groups U, (t) and U?(¢) is that they
preserve the number

Ue(t)*NUE(t) =N, [HE;N] - [Hng] = [QWiCka} =0.

Remark 5.1. All the results of this section can be easily adapted with a self-
adjoint operator A on 2 and a polynomial Q(z) € @ZEN@”JL(ZZ’ ). Nevertheless
it is better to stick to this concrete presentation which fits better with a widely

studied problem.

5.1. Propagation of squeezed coherent states (Hepp method)

In finite dimension it is nothing but checking the propagation of gaussian wave
packets. Although it works only for some specific states it is a direct and very
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flexible method. Moreover it agrees very well with the phase-space geometric intu-
ition. Extensions with more singular potentials or about the long time behaviour
have been carried out in [24,32].

Proposition 5.2. For any zy € 2, the estimate

) 2
eI B(z) — W <f2t> Ua(t,0)2

<C eCIV\Loo<Zo>2(ItI+1) cl/2
1€ -

S
holds with
10z = — Az + (V % |zt\2)zt, Zi—0 = 20 (33)
/ Q=) (34)
ied,Us(t,0) = —A) + Q2(t)V | Us(t,0), U(0,0)=1, (35)

Qalt,2) = 5[<62Q<>
(292, 2Q(=)) + 2z, 0:0.Q(2)2)) (36)
(02Q(=) ,2%2) = 2(Q 22, 25%) € P(2),

<z, %@zQ(zt)@ = 4<z Vi, Qz \/zt> € 2.1(Z).

®2>

Proof. This proposition says that the evolution of a coherent state is well described
after applying a time dependent (real) affine Bogoliubov transformation like the
ones considered in Proposition 2.12.

It is sufficient that

w(t 2
’L Hse g)W (;C%&) Ug(t,O)Q

_ eiéHEF( ztA) w(f)W <\_/§eitAzt> F(eiitA)UZ(tao)Q

1€

remains close enough to E(zp). The quantities U.(0,t) = etz HD (D), Uy(t,0) =
(e "2)Usy(t,0) and 2; = e "2z solve the differential equations

i€, U.(0,t) = —U(0, )T (e "*)QW* D(e"2) = —U.(t,0)Q(t)""* . (37)
ie0,Us(t,0) = T(e ) Qo () VIFD (™) Uy (t,0) = Qo(t)V** Uy (¢,0),  (38)
i&‘tét = eiitA(V * |€itA2t|2)€itA aEQA( ) ) 20 =20, (39)

after setting

Qt,z) = Q(e”’Az) and Qg(t,z) = Qa(t, e“Az) ) (40)
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The main properties of Us (t,0) are derived in [24, Proposition 4.1] and in particular
we know that Us(t,0)Q belongs to the domain of the closure of any b"°* with
1
be @Z’ieN@p,q(ﬁ”).
The differentiation of the Weyl relation (3) on 57, says

icO,W (fzt> = [-Re(%, i0:2) + ﬂ@(iatgt)}w<fzt>

{*Re<2t 5 8?@(@ ZA’t)> +a* (%Qt(ét)) + a(&th(ét))] w <Zt>

[—Re<ét, 0Q(t, 2)) + 2Re(z, 6%@(2«,5»”’“} W(ﬁ@) :

The translation property (iii) of Proposition 2.10 then leads to

eitHe i 2y (f%) Us(t,0)2 — E(20)

t
_ 1 l'L(O,s)eigw <25> o (s)Vik Ty (s5,0)Q ds

1€ Jo
after testing both sides on %;, and setting

o (s,2) = —Q(s,2 + 25) — w'(s) + Re(Zs, 0:Q(s, %)) + 2Re(z, 8:Qs(25))
+ QQ(Saz)
=—Q(s, 24 2,) + Q(2:) + (2, 0:Q4(2,)) + (0:Qs(25) , 2) + Qa(s,2) .

The last equality is given by our choice of w(t) in (34). It suffices to find a uniform
estimate w.r.t s € [0,¢] of the squared norm

e*ms)mc%(s,om\;
— 2 <Q’ U2(0’ S)sz(s)wmk’*d(s)wic’c(k(37 0)Q> . (41)

The important point is that the symbol 7(s) vanishes at the second order at
z = 0. More precisely it can be written

A (s) = @ 2(s) + o1 (s) + ap(s) with
'Q{P,q(s) gzp,q(g) and

S
(0| o gy 3y S CoalVIw l20l 777
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Owing to Proposition 2.7 and Lemma 2.6 the operator o7 (s)Wick:* g7Wick(s) takes
the form
2
%(S)Wick,*%(s)wmk _ Z Ek Z %k,p,q(s)wmk with
k=0 6—2k<p+q<8
> 2 2
’(@k’p’Q(S)‘j(vp EAVEES) S Gl [V (20" -

The estimate of every term
k=2 <Q LU0, 5) B p.g(5)W iU (s, O)Q> . ptqg>6-2k
is given by the Lemma 5.3 below and yields the result. O

Lemma 5.3. Consider the time dependent Wick operator Qs defined by (36) (40)
and parametrized by zog € Z. Consider the associated unitary operator Us(s,0)
defined by (38). For any p,q € N, there exists a constant C), 4 such that the estimate

(2, Uz(O,s)bWic’“Uz(s,O)Q>‘ < Cp,g eFralVlies (20)*(sl+1) jb\ of
LN\NPZNTZ)
holds for any b € &, ((Z) and any s € R.
Prqoﬁ By introducing an anti-unitary operator Jz = Z, the R-linear operator
0zQ2(t) can be written
BgQg(t)z = R(t)z+ Ra2(t)Z.

The definitions (36) (40) ensure that R(t) is a bounded operator strongly contin-
uous with respect to ¢ € R and that Ry(t) is a Hilbert—Schmidt operator which
depends continuously on ¢ € R in the Hilbert—Schmidt norm. Moreover the follow-
ing uniform estimates hold

IR(D| () <2Vl 20”5 [Ra(t)] g2y < 21V |20]” -
Hence the equation
i0,®y = 0zQ2(t) Py = R(t)®y + Ra(t)J P,
defines a dynamical system of bounded R-linear operators with the estimate

P2 (t2,t1)| 4,2y < elt2—t1] |V o0 |20

More precisely the Duhamel formula
Lot ta Lt
Do (to, t) = Te * et Bls) ds _ z/ Te " Je* B) ds po (1) J®y (¢, 1,) dt
ty
implies that the R-linear operator ®s(to,t1) can be written

(I)Q(tg,tl) = B(tQ,tl) + Bg(t27t1)J Wlth
2
|Blta, t1)] (o) +Bata, 11) g (o) < C Voo |20]? ([t2—ta|+1)eCM2 71 IVILc 0™
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According to Proposition 2.12, for any ¢ € @pyg=m P ¢(Z) and any t € R, the
polynomial ¢(t, z) = ¢(®2(0,t)z) belongs to Bptg=m Ppq(Z) with

Z 0202 ¢(t, Z)Lg?(vp PAVEED)

ptg=m

< CLeOmIVInee Gl UHD N 19208 0(2)| o oy o)
ptg=m

Applying the characteristic method, that is differentiating ¢(z) = c(t, ®2(t,0)z),
shows that ¢(z,t) solves the equation

10¢c(t, z) + O.c(t, z).agQg(t, z) — 8ZQ2(1§, 2)0zc(t,z) =0.

Thanks to the Wick calculus in Proposition 2.7 and the fact that Us(t,0)Q2 €
NkenZ(N*) (see [24, Proposition 4.1]), this leads to

i0:U5(0, £)e(t)ViF U, (t,0)Q
5(0,1) (5—1 [cWic’f@), Qo ()] + iatc(t)Wick) Us(t,0)02

= U,(0,8) ({c }2>)W”k Us(t,0)02.

>

Take b € ®pigmmy, Pp,q(Z) and apply this result with ¢ defined by c(s, z) = b(z),
which means

c(®2(0, )2) (s, ) b(z) or
c(z) = b(P2(5,0)2) € Bptgmmo Pp,q(Z) with

S 10202e() ey oy Cine TR

p+g=mo

IN

X Z |02026(2)| v s ) -

p+qg=mg

This leads to
(2, 02(0, 50"+ 05 (s,0)92)

:<Q,cWickQ>+/ <Q at( 5(0,t)c ()Wic’c@(t,())> Q> dt

0

——5 [ {0 00,0 ({et0.020} ) " Gatr.00) ar
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By noticing that the symbol {c(t),Q2(t)} vanishes when mg < 2 or belongs to
Optg=mo—2Pp,¢(Z) with

> |otor{e), Qa3

Z(P 2N Z)

p+g=mo—2
2
< OV |20 Z |3§3§c(t)|$(\/p >NZ)
p+g=mo
2 Ch V] oo (20)2(2]8]+1
< C|V| o |20] C}noe o [V Loo (20)2(2]s|+1) Z |a§3§b|$(vp P
ptg=mo
the result is proved by induction on mg and by using ™ < nle® for z > 0. O

5.2. Truncated Dyson expansion

We focus now on the propagation of chaos point of view which has been considered
by several authors in [4,16,17,20]. In the bosonic setting Hermite states tested on
some Wick observable is exactly the BBGKY hierarchy. For example the reduced
one particle density matrix can be defined as Tr[g; A] = Tr[odl'(A)] = Tr[oe/ Wik
with &7 (z) = (2, Az). While reproducing the Dyson expansion analysis of [20], we
check here that a full asymptotic expansion can be written, when Wick observables
are tested after the suitable number truncation.

The strategy of the proof in [20] relies on an analysis of the Schwinger-Dyson
expansion of a time evolved observable U, (t)* & U.(t) given by

Ue(t)" 0 Uc(t)

_ﬁt+Z( ) /dtl / - thk7...[foick7@]...] (42)

where ¢y = US(t)*0 U(t), QWick = U%(s)*QWi* U(s). The commutation
relation in Proposition 2.3 (iii) yields
QL/Vick _ (<(€iSAz)®2,Q(eiSAz)®2>)WiCk 7

or shortly Qs(z) = Q(e***2) and we shall set more generally for b € 2, ,(Z) and
seR _

bs € Ppqo(Z) : Vze %, by(z)=b(e?z).
Although the convergence of the series can be proved as an operator acting on
\/k %, with k € N fixed, the e-asymptotic analysis is done with its truncated
version

U.(t)*OU( ﬁt-s-Z(.) /dtl.../otnldtn[ Wick . [QWick g,]...]

( ) / dh - /té 1dt4 Us(te) U2 (te) [Q1Y Ik, - -

- [QUR, 6] - TUL(t0) U () - (43)

The Poisson brackets analogue of the multicommutators will be necessary.
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Definition 5.4. For n,r € N, r < n and any fixed b € &), (%), the polynomial
C™ (¢, ..., t,) is defined by

C™ (ty, ... t1,t)
1 e en
= 27 Z {Qtna"'a{Qtubt }( 1)"'}( ) € yp—r+n,q—r+n(g)v (44)

g{i: e;=2}=r cie{1,2}

and O™ (tl, ..y tn,t,2) denotes its values at z € 2 while Cﬁ”)(tl, coytn,t) or

simply C’T( ™) denotes the associated operator according to Definition 2.1 .
We shall prove.

Theorem 5.5. Fiz p,q € N and assume b € &), ((Z). Then the asymptotic expan-
sion

B n Wick
U ()W ik (¢ Z S /dt1 / dt,, [Cﬁ”’(tn,...,tl,t)]
r=0 n=0
+5ZR5(5,t)

holds for any ¢ € N and any 6 > 0 in 2(\* 2,V 7T %) with the uniform
estimate

|R€(5at)|g(\/k oy kE-rra ) S Cos
when ke <1+406/2 and 4(1+20)[t]|V];e <1
A particular case takes a more explicit form.

Theorem 5.6. Take b € P ((%). Let z € & be such that |z] =1 and call z the
solution to (32) with zp = z.

(i) Then the expansion

(2257, UL(8) 0V U () 2%°) = 6p—g.m [Ze B, 2,k,8) + Ou(eh) |, (45)
holds as ¢ — 0, ke — 1 by setting
BO(tL, 2, k, ) = b(z),
k—p+r
; k!(k —m)! epta+2(n—r)
BNtz k)= D i Y k—(ptn—r) / e
N tn—1

/ Aty CT (ty, ... 11,1 2), (46)

0

and as soon as 4|t| V]~ < 1.



Vol. 9 (2008)  Mean Field Limit for Bosons and Phase-Space Analysis 1539

(ii) More generally the limit
lim (2¥F™ U ()W RU(t) 29%) = 6p—q.m bl2e)

e—0,
ke—1

holds for all times t € R.
Corollary 5.7. In the specific case m = 0, ¢ = p, the expansion (45) takes the form

) s t tn—l
<Z®k:7 Ug(t)*bWZCkUE(t) Z®k}> _ &8 Z i / dtl A / dtn
0 0

s=0 n=0

~
|
—_

@M (ke) O (b, .t 1 2) | + OEY)
j=0
where the coefficients Oz;’”(/i) are polynomials in Kk given by

p+n—r—1

Z a;’n(n)sj =r(k—e)(k—2)(k—(p+n—r—1)),

=0
and the convention that o™ =0 when j > (p+n—1) orr >n.

Proof. We are considering the particular case p = ¢, m = 0. Setting k = ke =
(k —m)e gives:

klept(n=r) ) )
=kk—¢€)(k—2¢)---(kK—P+n—r—1)).
G oy = e s = 29) (s (p )e)
Putting together the terms of order €%, s less than £ — 1 in Theorem 5.5 (ii), yields
the result. O

Before proving Theorem 5.5 and Theorem 5.6, let us collect some technical
preliminaries.

Lemma 5.8. Forbe &, ,(Z) the identity

1
en

n

[ l/TIL/ick7 o 7[ngick’bl/(/ick]] _ ZET (Cr(n)(tm bt
r=0

)

) Wick
holds with the symbols o™ (t1,...,tn,t) defined according to (44) in Definition 5.4.
Proof. Proposition 2.7 provides the induction formula

1 _
O = {Qu., OV} + 5{Qu,, GV, (47)

with C’fl) =0if [ <7 or r < 0. In particular, we get

Oén) = {Qtna ey {Qtlabt}} .
A simple iteration of (47) yields the result. O
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Lemma 5.9. Let b belong to &y ((%).

(i) The estimate

= < V0o |b P q g
’ 1’3(\/%1%\/“1%_ (P+q) VL= bleyr zye 2)

holds by sctting =1 = HOTTHQ. b}V e 2 (VT 2 I 2).

(p+1)‘ q+1)'
(i1) Similarly, the inequality

—_
—

<[pp—=1) +qlg—1)] VL~ [blenr 2,y 2)

Yleyr 2y 2)

holds with 2y = L 20P01{Q,, b} @ .

p' q!
(iii) For any n € N and r € {0,1,...,n}, the operator C’T(n) associated with the

symbol Cﬁ”)(tn, oot t) € Ppin—rqin—r(Z) according to Definition 5.4
satisfies

‘cﬁ”)

g(\/p«i»nfr fé“”,\/q*”*" 2‘”)

(p+n—r—1)

<2"TCT (p+m— 1) (p—l) V1L [Bleyr 2y 2)

when p > q with a similar expression when q > p (replace (p +n —r,p— 1)
with (g+n—r,g—1)).

Proof. The statements (i) and (ii) are particular cases of Lemma 2.6. The estimate
in (iii) is a consequence of (i)(ii) and the definition (44). O

Proof of Theorem 5.5. Set j = k—p-+q. Since U.(t) and U?(t) preserve the number
like Q}V°* the equality

U (t) *bWick U (t)

y tn 1
dt chk7 L [QVYiCk, bWick] . ]
n=0 ( ) / . / ' '
+ C) / dty - - / dte Ue(te)*U2(te) [Q1F, -

chk bW@ck . Uo(tg) U. (tg)
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derived from (43) holds in .2 (\/* Z,\/? %). Then Lemma 5.8 implies

Us(t)*bWickUE(t)
—1 t trn_1 n Wick
=y i / dt1~-~/ dt, Y e [Cﬁ")(tn,...,tht)} (48)
=0 0 0 —o
t te— ¢ Wick
+if/ dtl---/ dty Us(t) U2 (to)e [Cé)(tg,...,tl,t)} U (t)*U.(t,)
0 0
(49)
-1 Wick
+z/dt1 / dty U-(te)* U (t, ZST[ cO( tg,...,tl,t)} UL (o) Us(ty) .
r=0
(50)

Keep untouched the part (48)—(49) and iterate the Dyson series on the third
term (50). While doing so, use the formula

thvfiik ézfg (RTINS )}WM]

=0
Wick
=> & [Cﬁ"*”(tnﬂ, . ,tl,t)]

:| Wick

0
5 2
+ 5 |:{Qtn+1a (tn-i-l?"'atlat)}( ) ) (51)

inductively for n = £, 0+ 1,..., M — 1. After M — £ steps, collecting the factors of
el yields

Us (t) * bWick U (t)

1 t t1 min(£—1,n) Wick
:Zi" /dt1~~/ dt, Y & [Cﬁ”)(tn,...,tl,t) (52)

n= r=0
—|—z” dtl/dtU)() (53)

n= l

Wick
[{Qtn,d" Yt 1,...,t17t)}(2)} UO(t,)*Us(tn)
thrr—1
+iM/ dt1~--/ dtar Us(tar) U (tr) (54)
0 0

-1 Wick

x Y e [Cﬁm(tM, . ,tl,t)} UO(t21)* U (tar) .

r=0



1542 7. Ammari and F. Nier Ann. Henri Poincaré

Assume that for § > 0 there exists a constant Cy such that

[e'S) 0 t
> (1+9) ;)/0 dty - -

n=~_
tn—l
, / dt,
0

According to Lemma 2.5, the first term (52) of (52) (53) (54) provides in
Us (t)*bchk Us (t) |\/k .
\V/FTPT %) when ke < 1+ ¢. With the same argument the remainder term (54)
vanishes as M — oo and ke < 1+ 3. By referring to Lemma 5.9 (ii) and again
to Lemma 2.5 the factor of e in (53) is associated with a series which converges
in .,?(\/k Z, \/k_p+q %) as M — oo uniformly w.r.t. (k,e) when ke <1+ %. The
sum of the series is simply denoted by Ry(t, ). Let us prove (55) to finish the proof
of (ii). Lemma 2.5 and Lemma 5.9 say

e [ [
Z , |
S;“” Z*'Mmiziq

& ¢ nr|tn
<> (1+4)" Z

n=~{ r=0

x|V bl vpyVQf>

™ (ty, ... 1,1 <Cs. (55)
x(varn—r fcw’qurn—r ff)

the partial sum of a convergent series in Z(\/* Z,

™ (ty, ... ,tl,t)’
g(v p+n—r 57\/ qg+n—r ff)

n=

Cﬁ”)(tn,...,tl,t)‘
i/ﬂ(\/l?+"—7‘ fg’\/qﬁ-n—r fg)
r(p+n—r—1)!

rlp+n—r)p+n—r-1)] 1)

on—r -
< Z (L+a0)"[¢" Z (P+n)"Ch oy [V [Blzyr 2ye 2)
<2 (14 6™t (n +p)* Vi blzyr 2.y 2) -

n=~{

The last r.h.s. is finite whenever 4|t[|V|,~ < (1 + §)~!. The condition (1 +
26)4[t]|V | < 1 is sufficient and provides the uniform bound Cjs in (55). O

Proof of Theorem 5.6. Set j = k—m. By Theorem 5.5, the right-hand side of (45)
vanishes when m # p—q and the convergence of the series in Z(\/* 2, \/* 71 %)
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combined with Proposition 2.4-ii) implies

<z®j ,Us(t)*bWiCkUE(t) z®k>

k11 epta+2(n—r)

-1 o
— T -1 5+ )

t trn—1
></ dtl---/ dt, O™ (ty, ... t1,t;2) + Os5(eY),
0 0

when ke < 1+ g, for any § > 0. By considering the limit ¢ — 0, ke — 1 every

factor
k!4l eptat2(n—r)
(k—=@+n—r)IG—(¢g+n—7))

converges to 1. Therefore this proves (ii) for small times ¢ such that 4|t||v|~ < 1
up to the identification of the first term as b(z;). From our definitions we know

b(z) = <zt®q, 52§p> = bt(eﬂ‘SAzSﬂ

s=t "’

—isA

By setting ws = e zs, the quantity b(z:) equals

t t
b(z0) = bu(wo) + / B, [br(ws)] ds = by (wo) + / De0.D<bu(ws) + Ouby (w,).Dsws ds
0 0

Moreover the equation (32) has the equivalent form with the vector w, = e "%z,
and w,

iasws = e_iSA&zQ(zs) = a?Qs(’ws) - Zasm = azQs(ws) .

Hence we get

be) = o) i [ {Qusb () s

An induction with wg = z and the convergence of the series already checked yields

9] t tn—1
b(Zt):ZZn/O dtl.../o dtn Cén)(tn7...,t1,t;z>-
n=0

Now let us prove the limit (i) for all times by following the argument in [20,45].

Assume that the result is true for [¢| < ﬁ. Let s be such that |s| < 1/4|V|pe.

The convergence of the series given in Theorem 5.5 and the fact that U, (t) preserves
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the number gives
<z®j U.(t + s)* bV kU (t + 5) 2©F)

— Z / dsy - - / N 1dsn<z®j,Ua(t)*[CT(”)(Sn,...,sl,s)] WiCkUE(t) z®k>
Z / dsy - / d3n<z®j, U ()" [C’é")(sn, .51,8)] WiCkUg(t) z®k>

+ O (e) (56)

with an absolutely and uniformly convergent series in the (56) when ke is close
to 1. Hence the limit £ — 0, ek — 1 and the sum ) in (56) can be interchanged
when 4|s||V|p~ < 1. An induction on K = 0,1,2... finishes the proof. O

5.3. Coherent states and Wick observables

We show here that information on the propagation of coherent states can be di-
rectly deduced from the results about Hermite states.

Proposition 5.10. For any zo € & and any b € P, ((Z), the limit

tim (UL () E(z0) . DU, (1) Bz0)) = b(z1)
holds for any t € R when z; denotes the solution to the Hartree equation (32).
Proof. By symmetry, one can assume m = p — ¢q > 0. Recall that E(zy) =

=0 - . .
e 2= > \/»/2 2™ and start first with |29| = 1. Since U.(t) preserves the

number, one gets

oo —-n

(U-(4)E(z0), 0" U(8) E(z0)) = eff”%an (=) with

an (e71) = ™2\ /n(in—1)...(n—m+1) (5, Ug(t)*bWiCkUg(t)z(?TL> .

By Lemma 2.5 the quantity a, (') satisfies

jan (7Y | < (ne)™

< (ne)? b

‘g(\/P zN z)

‘ ‘f(fofv\/qQ")

Hence Lemma A.1 applied here with A = ¢!

the proof of

and g = p reduces the problem to

s2
e 2
]'m a - dg.

The uniform estimate

p
s
‘a[ﬁs+>\](>‘)‘ <G <1 + \|[|\> < Czl> <5>p

and the pointwise convergence induced by Theorem 5.6 with z = zg, k = [\f)\s—I— Al
and € = A7! yields the result.
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For a general |zg| > 0, write
> (5/)—n/2

E(z) = P Z i

n=0
ﬁ . By replacing the e-quantization by the &-quantiza-

()°" = B'(+)

with z{ = oy and g =

tion, with
pVicke — 5| PTpVik for be B, (Z)
H. = |zo|?dle (—A) + |Zo|4QWiCk’5/ and
(ievu = How) & (i'0u = dTor (= A)u + |20 QYR 'u)

Hence the previous result applied with E’(z(), |z5] = 1 and the &’-quantization
implies

lim (U. (t)E(20) , bV U (t)E(20)) = |20/" 77 b(2})

e—0
where z; solves
20
£
Since this mean field equation preserves the norm |z;| like (32) does for |z|, this
implies

. 2
10z = —Az + |20 (V * |51)2), 2o = 20 =

z, = |z:0|_1 2 = \zt|_1 2 and |z0/PTIb(2)) = b(z). O

Remark 5.11. Another proof can be obtained directly from Proposition 5.2 after
checking uniform number estimates for Us(¢,0)2. But working in this direction is
more efficient with the help of Wigner measures.

6. Wigner measures: Definition and first properties

The notion of Wigner (or semiclassical) measures is well established in the finite
dimensional case. We refer the reader to [10, 22, 23, 29, 36, 46] for details. The
extension that we propose here to the infinite dimensional case follows a projective
approach.

6.1. Wigner measures of normal states

Consider the algebra of cylindrical sets ., (2) = {X(p, E) =p ' (E),pe P,E €
B(pZ)} where B(pZ) denotes for any p € P the set of Borel subsets of pZ.
A cylindrical measure  is a mapping defined on %, (Z) such that:
o u(Z)=1,
e For any p € P, puy(A) = p(p~'(A)) for A € B(pZ) defines a probability
measure p, on B(pZ).
The family of measures {y,}pep is often called a weak distribution.
This notion is often introduced within the framework of real Hilbert spaces
(or more generally real topological vector spaces). This makes no difference at this
level. The real structure on 2, namely the real scalar product S, is useful for the
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application of Bochner’s theorem. For any £ € % the function z — e~ 27 5(:4) ig g

cylindrical measurable function and the Fourier transform of u is well defined by

Fll©) = [ 250 au.

z

Bochner’s theorem characterizes the Fourier transform of a weak distribution. It
says (see for example [3]) that a function G is the Fourier transform of a weak
distribution if and only if

e G is normalized: G(0) =1,

e (G is of positive type: Zgj:l ANNG(& — &) >0,

e For any p € P, the restricted function G|, is continuous.
An important point is that 2 is a separable Hilbert space. Hence the o-algebra
generated by the cylindrical sets, that is containing %.,;(%), is nothing but the
Borel o-algebra, Z(%), associated with the norm topology on . A probability
measure well defined on (%) will be shortly called a probability measure on
Z. The tightness Prokhorov’s criterion (see [42]) has within this setting the next
simple form.

Lemma 6.1 (See [44]). A cylindrical measure p on % extends to a probability
measure on Z if and only if for any n > 0 there exists R, > 0 such that

VpeP, p({z€Z, [pz| <Ry})=21-n.

By recalling that for any R > 0 the ball {z € 2 : |z| < R} is weakly compact,
this can be reinterpreted by saying that a weak distribution p extends as a Borel
probability measure if and only if its outer extension is a Radon measure on %
endowed with the weak topology (see [42]).

Consider a family (p°).c(o,s) of non negative trace class operators on .7 such
that Tr[p®] = 1, or equivalently normal states & — Tr[p°0] on the space of all
bounded operators .Z () . An additional number estimate assumption allows to
associate with such a family, Wigner probability measures on 2.

Theorem 6.2. Let (0%).c( s be a family of normal states on £ () parametrized

by €. Assume Tr[N°pf] < Cs uniformly w.r.t. € € (0,2) for some fized § > 0 and
Cs € (0,400). Then for every sequence (ep)nen with lim, .o &, = 0 the exists a
subsequence (en, )ken and a Borel probability measure pn on 2 such that

Jim Tt b = Tim Trfpfre ik = / b(z) du(z),
— 00 — 00 ‘Q‘)

for all b € Upep F 1 (My,(pZ)).
Moreover this probability measure p satisfies [, |2|*° du(z) < oco.
Remark 6.3.

a) By introducing the reduced density matrix ¢ € £ (s(pZ’)) defined for
p € P as a partially traced operator Tr[o; A] = Tr[o(A @ Ir (1 #))], one
could consider the Husimi function uj, of g; which is its finite dimensional
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Wick symbol. It is known that this makes a weak probability distribution
which admits weak limits after extracting subsequences ¢, — co. The num-
ber estimate implies in finite dimension that such a limit is a probability
measure. Our results say essentially two things: First after a proper extrac-
tion of subsequences, the family (u,),cp makes a weak distribution, i.e. the
convergence can hold simultaneously for all the non countable family p € P.
Secondly the weak distribution is a Borel probability measure.

b) The estimate [, 2% du(z) < +oo will be proved in the more precise form

/ (1+ |22 )6 du(z) < liminf Tr [o** (1 + N)°] < C§ < +o0.
o Eny, —00

Contrary to the finite dimensional case, the first inequality is not an equality
even when the right-hand side converges. Examples are given in Section 7.4.
¢) For a non negative trace-class operator p, the assumption

C > TI‘[N(SQ] = sup Tr[Ag] = sup Tr [N‘;/Ql[o’k] (N)olpo,x (N)N‘;/Q]
Ae L) keN
0<A<N?

=sup Tr [91/21[07]6](]\7)]\75@1/2}
kEN

implies (1 + N)%/2p(1 + N)%/2 € £() with a norm estimate.
Reciprocally, assuming ’(1+N)5/2g(1 +N)9/2 ‘zl < C implies that the quan-
tity Tr[IN? o] defined as the above supremum is bounded by C. Such an equivalence

is no more true when p > 0 is not assumed and the second version has to be con-
sidered (see Proposition 6.4).

Proof. 1) The Proposition 3.7 implies
|TI‘ [erWeyl} — Tr I:stAfl/Vick] | < }bWeyl . bA7Wick 5:;0 O7

for fixed b € Upep F ! (M, (pZ)). Hence the result is true when it is proved after
considering simply the Anti-Wick observables.
ii) Consider for € > 0 the function

Ge(§) =Tr [QEW(\@ﬂf)} e’#‘g‘z =Tr [Qs(e%ﬂs(&-))AfWick} .

The positive type property and the normalization come from

GE(O) =Tr [QE] =1

N
Z Ak62iﬁs(§k,.)
k=1

The continuity when £ is restricted to any fixed finite dimensional pZ can be writ-
ten with uniform estimates w.r.t ¢ € (0,&). Consider the estimate Tr [o°(1 + N)%]

N 2 A—chk
D ANNG(& - &) =Tr | o >0.

i,j=1
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< Oy, with 6; € (0, min(1,24)). Write for any &,n € 2

51/2
G20 - Gu(6) = [ [P

2, 12 2.2
+‘ef%m el

51/2
W (/Bmn) — w(Varg) |

< ‘ (W (V2mn) — W (V2r€)] (N + 1)*51/2’ Te[(N + 1)% 7]

L(#)

2 2
4 ‘effg Il _ o~ lel?

We have found by Lemma 3.1 two constants d; € (0,1) and Cj > 0 such that
VEne X, |Gen) = Ge(O < C, In— ™ [(n* + g™ +1], (57)

holds uniformly w.r.t. € € (0,) and we recall the uniform estimate |G-(§)| < 1.
Hence for any € € (0,2), G. is the Fourier transform of a weak distribution u®
such that

Tr [QabA7Wick} — /g b(z) dua(z)

holds for all b € Upep F ! (M, (pZ)).
ili) Actually the uniform estimate (57) allows to apply an Ascoli type argu-
ment after considering sequence (&, )nen such that lim, . &, = 0:

e Since & is separable, it admits a countable dense set A = {&, ¢ € N}. For
any ¢ € N the sequence G., (&) remains in {o € C,|o| < 1}. Hence by a
diagonal extraction process there exists a subsequence (e, )ren such that for
all £ € N, G, (&) converges in {0 € C,|o| <1} as k — oo. Set

G(&) = lim G., (&)

for all £ € N.

e The uniform estimate (57) implies that the limit G is uniformly continuous
on any set A4 N{z € 2 :|z| < R}. Hence it admits a continuous extension
still denoted G in (2| |4). An “epsilon/3”-argument shows that for any
£ € Z limy0 Ge,,, (&) exists and equals G(¢).

e Finally G is a normalized function of positive type as a limit of such functions.

Finally the uniform estimates |G.(§)] < 1 and |G(£)] < 1 allow to test the
convergence against any v € #,(pZ’) and to apply the Parseval identity with
b= .7"1(v). From any sequence (g,)nen such that lim, .., &, = 0, one can ex-

tract a subsequence (&, ) and find a weak distribution such that the limit

k—o0
lim Tr [ank bweyl} = lim Tr [QS"’C bA*WZ‘Ck] :/ b(z) du(z)
N — 00 N — 00 o

holds for any b € .F (L*(pZ, L,(dz))) and therefore for any b € .7,;(Z).

iv) The Prokhorov’s criterion for u in the form stated in Lemma 6.1 is again
a consequence of the uniform number estimate Tr [N 0 ,QE} < Cs. Fix any p € P and
set d = dimp. The operators N, = Ny @ I (p1 ) = (dF(ngg) ® IFS(pJ_g)) =
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dl'(p), Np» = (Ipx @ dU(I,1 )) = dI'(p*) and N = dI'(I) make a commuting
family of non negative operators such that N = N, + N,.. Thus the inequality

d : d :
<1+2E+N> > (1+25+Np)

holds for any s > 0. Hence the estimate Tr [QEN 5] < Cs implies

. de g . de o
c(1+5+N, F(1+5+N

Tr <Tr <Tr[e°(2+ N)°] < Cj,

with C§ > 0 independent of € and p as soon as € < é.
Let x € € (pZ) be a non negative function on pZ, such that x = 0 in a
neighborhood of {|z| < 1}. For any R > 1 the estimates

(1+R?)° 1
=
holds with uniform estimates of the left-hand side in S, (1, Idzi) The pseudodif-

(2)?
ferential calculus in pZ with the metric |<d:>f , provides the inequality of bounded

operators on I'y(pZ)

(1+ R?)° -1
EE T

Weyl

:| Weyl

(1+R2)6AOBR0A—CS§[ <14Ce

) B Weyl o
with A:[(1+|z|2) 5/2} , Br=[x(R7'2)] and  |[Brlgr, (pa) <O

with a constant C' > 0 independent of € € (0, é) and R > 1. By Proposition 3.3,
there exists a constant C’ > 0 independent of € € (0,%) (and R > 1) such that

< (C'e.
ZL(s(pZ))

de 0
A2 o (1 + ? + Npg) — IFs(pff)

Hence the inequality
(1+ R2)x(R 'p2)Wevl < (14 20e)A~°
after tensorization with I (,1 ) and testing on the normal state ¢ yields
(1+ R?)Tr [QEX(R—lpz)Weyz] <
with a uniform constant C§ with respect to ¢ € (0, %) and R > 1. After taking the

limit ng — o0, €5, — 0, we get

/53’ 1{\pz\2R} (Z) d,u(z) < /SX X(R—lpz) du(z) = nilinoo Tr [ank X(R—lpz)Weyl]
<CY(1+4R*»7C.
This inequality is valid for any p € P and the Prokhorov’s criterion of Lemma 6.1
is satisfied. The weak distribution  is a probability measure on Z.
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v) First the function <z)26 is Borel measurable in 2. Take p € P and R > 1
and take now xo € 65°(pZ), such that 0 < xo <1 and x¢ =1 in a neighborhood
of 0. Consider the estimates

(14 N)° > (14 N,)° > (14 N, xo(R'p2) V¥ (1 + N,)/? — Cpe(1 4 N,)°

:| Weyl

> [((1+ |pz|2))6X0(R_1pz) ~ Cle(1+N)?

where the two last inequalities are again derived from the finite dimensional Weyl
calculus (with a uniform control w.r.t. R > 1). After taking the limit n; — oo,
€n, — 0, this implies

s Weyl
[ 1) ol B2 d(z) = T [g (0 b)) 192 ]
. k

< liminf Tr [p*"+ (1 + N)°] < Cj.

nE—00
Taking the supremum w.r.t R > 1 and then w.r.t a countable increasing sequence
(pn)neNa Pn € Pa such that SUP,,eNPn = Iffa ylelds

/ (14 [2[%)°du(z) < C§ < 400. O
z

6.2. Complex Wigner measures, pure sequences

More general families of trace class operators can be considered by linear decom-
position

0° = Mg Ot — AR 0p— T iAT 074 —iAT_07_, (58)
with
1 * * 1 * *
Ay 05y = 1“954‘(98) |+0°+(0)"], Ap_ok- = 1[\95+(95) |—0°—(0°)*]
£ £ 1 £ £\ * . £ . £ *k £ £ 1 £ £ *k : £ . £ *
7L07, = ZUQ — () |—ie"+i(0°)*] . Aj_oi_ = 1[\/} —(0°)*|+io®—i(0°)*] .

such that A5 >0, o5 > 0, Tr[e3] = 1 and
Ry FAR- FALL AT < 4|g€|31(%,) .
Proposition 6.4. Let (0°).c(0,z) be a family of trace class operators such that

(1+N)5/205(1+N)5/2

<C, 99
iy <G (59)

uniformly for some § > 0 and some Cs < +00. Then for any sequence (e, )nen such

that lim,, .o €, = 0, one can extract a subsequence (en, )cn and find a (complex)
Borel measure p on % such that

klim Tr{p=rs bW eV = klim Trlpere pA=Wick] — / b(z) du(z), (60)
—00 —00 %

for all b € Upep F 1 (My,(pZ)).
This measure satisfies [, ()" d|p|(2) < +o0.
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After assuming additionally the stronger uniform estimate
Tr[(1+ N)°|o° + (&)*[] + Tr[(1 + N)°|o" — (&)*]] < C5, (61)
this measure satisfies [, ()% d|p| (2) < 400
Proof. Owing to the estimate
Ny N + M54 + X5 < 410% g o) < 4G,
with all the Ay non negative, the extraction of a subsequence allows to reduce the
analysis to the case when all the A\{» converge: lim,, o, A\5» = A0 € [0, +00) .

If one A equals 0O then |A\"p5" P " 0 and
lim., o Tr [BVU (A;m057)] = 0, for all b € (), and the corresponding term
does not contribute to the asymptotic measure .

Hence the problem is now reduced to the case when all the A\J are positive,

and therefore for Ny > 0 large enough, all the (AS"),>n, are uniformly positive.
Set in this case

¢ =min {AF A7 AL AT > Nop >0
for Ny > 0 large enough. The decomposition (58) implies
(1+ N)6/40€(1 + N)5/4 = Ao TRie — Ar-TR-5 TN T 5 —IA-TT 5
with 755 = (1+N)"4p5(1+ N)** > 0.

All the terms rffs are estimated in the same way as follows. For k € N, consider
the quantity:
Tr 10,4 (N) 734 5 Loy (V)]

Te[(Jo7 + (o) + 07 + (o)) (1 + N)*21j0 4y (N)

D,

1 *
= |le + @y Ny ()|

2L ()

1
— (1 N5/2 en (] N&/Q’ .
+QC\< FNPRE N

The polar decomposition p°» + (o°")* = U., |0 + (0°")*| provides the inequality

16 + (&) (1 + )10,y (V)|

L)
<2‘U* 1 N*W’ ‘1 N)¥/2pn (1 N‘W’ .
<2|UZ (L+N) gﬂ)(+)9(+)$1(%)
Therefore, this yields
1
Te [r5] = sup T [10,9(NV) 135 Lo (N)] < = |1+ N)% /20 (14-3)°/2| .
Pl =sup T 08 (N) e Loy (V)] < = | (1 N)*Z™ (1+N) w1

Hence the four families of normal state (95"),~n, fulfill the assumptions of Theo-
rem 6.2, with 0 replaced with §/2 and in the symmetric writing of Remark 6.3 ¢).
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Hence four Borel probability measures, pri, pr—, pr+ and py— exist and a sub-
sequence (€, )ren can be extracted so that

lim Tr [bWelei"k} :/ b d/L.,
z

k—o0

with the estimates [, (2)2(®/?) du, < +0o. We conclude by taking

= Apy Ry + Ap iR+ iAT e — A
Finally the last statement with the exponent 26 comes from the operator inequal-
ities
1

(14 N 205 (14 N)P2 < (14 N)P2 [0 + (07)"[ (1 +N)*/2, and

1
(L4 N)72g55 (1 4+ N)P/2 < oo (14 N)2 o — (¢°)°] (1+ N)™/2,
&

while considering the case when all the A\ are positive. 0

Definition 6.5. For a family (0%).c (<), satisfying (59), the set of Borel measures
w which satisfy (60) is denoted .# (¢°, e € (0,2)) or simply . (o).

Such a family (0%).c(0,z) (resp. a sequence (0°" )nen) is said pure if .Z (o7, ¢ €
(0,2)) (resp. A (¢°",n € N)) has a single element pu.

When the family (0%).c(o,z) is pure the limit in (60) can be written with
lim._¢ instead of lim,, .. This provides a characterization of .#(¢°) = {u}.
For simplicity, we shall often assume that the family (0°).c(o,7) is pure, when the
reduction to such a case can be done after extracting a suitable sequence.

6.3. Countably separating sets of observables
In order to identify a Wigner measure of p € .#(o°) it is sufficient to test on
a “dense set” of observables. The good notion is given by the Stone—Weierstrass
theorem for L' spaces. It can be recovered from the standard Stone-Weierstrass
theorem for continuous functions in our case.

Lemma 6.6 (cf [14]). Let v be a Borel probability measure on a separable Banach
space X and let {fn,n € N} be a countable set of bounded v-measurable functions
which separates the points

Ve,ye X, dneN, fu(z)# fuly).
Then for any p€0, 00), the algebra generated by { f,,,n €N} is dense in LP (X, dv).

Since “the” Wigner measure is not known a priori, the good notion of “dense
set” that we shall use is the following.

Definition 6.7. A subset 2 C Upep F ~H(#),(p2Z)) is said countably separating
whenever it contains a countable subset, 2 D %y ~ N, which separates the point
of Z:
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Proposition 6.8. Let y11 be a bounded Borel measure on 2 and let (0°).c(0,z) be a
family of operators which fulfills the assumptions of Definition 6.5. The two next
statements are equivalent:
L A (07) = {m}
2. There exists a countably separating subset 9 C Upep F N My(pZ)) such
that

Vbe 2, lir% Tr (06" V] = lirr%) Tr [gsbA*WiCk] :/ b(z) dui(z) .
e— e— %

Remark 6.9. A similar equivalence is obtained for pu; € .#(0°) after a subsequence
extraction.

Proof. Assume p € #(¢°). There exists a sequence (e, )ren and a Borel measure
p such that (60) holds for any b € Upep F ~'4,(pZ). In particular this holds for
any b € 9:
/ b(z) du(z) = lim Tr [o°"* bweyl] :/ b(z) dui(z).
3 k—oco o
The set 2 is dense in L'(Z, d|u1|) and in L' (2, d|u|) so that the above equality of
the extreme sides extend to any bounded Borel function. This implies g = p1. O

The next examples will be useful in the application and allow to reconsider
an inductive point of view.

Proposition 6.10. Let (p¢)een be an increasing sequence of projectors in P such that
supy pe = Iz and let the family of operators (0°).c(o,z) satisfy the assumptions of
Definition 6.5. Then the identity .#(0°) = {p} is equivalent to any of the next
statement
L. Forallb € Upen .7 (pe %), the quantity Tr{o*b™ “¥'] converges to [, b(z) du(z)
as e — 0.
2. For allb € Soy(Z), the quantity Tr{o*b™ V'] converges to [, b(z) du(z) as
e —0.

Proof. It suffices to notice that Ugen ' (peZ), and therefore .7, (Z’), is countably
separating because the weak topology separates the points. U

6.4. Orthogonality argument

Complex Wigner measures are especially interesting while considering the joint
measure associated with two families of vectors (u).c(0,z) and (v%).¢(0,z). Intro-
duce the notation

Qo = [u) (V7]

Proposition 6.11. Assume that the family of vectors (u%).c(0,z) and (v°).c(oz) sal-
isfy the uniform estimates

(14 N)O/2uf

1 N5/2€ <C € — o€ -1
LN <l e = 1l
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for some fized 6 > 0 and C' > 0. Assume further that any u € A (0%,) and any
v e M (0,) are mutually orthogonal. Then the family (05, )-c(07) is pure with

M (070:€ € (0,7)) = {0}
. : e Weyl, e\ _ 1; e A—Wick, e\ __
i.e. ;li%<’u,,b v>—€hg(1)<u,b v>—0
for any b € F Y My(pZ)) and any p € P.

Proof. Assume A (0yy) = {p} and A (¢5,) = {v} with p L v. Take n > 0. There
exist two bounded closed subsets K7 and K5 such that

wKy)>1—n, v(Ke)>1-n, KiNKy=0.
Since K, and K, are compact in the weak topology, K1 C CKy, K, open in the
weak topology, there exists a finite covering of K; of the form

K K
Ec U {Ipi(z = zx)| <71}, Y, {lpx(z — zx)| < 2r} N Ky =0

with pp € P, 2z, € 2 and r, > 0 for all k € {1,..., K}. By choosing for any k
a function y, € €5°(pr2) such that xi(pr(z)) = 1 when |pr(z — zx)| < 7 and
Xk (prz) = 0 when |pg(z — z;)| > 2r) the sum x(z) = Zk L E;U;c(;k(;ifz) defines a
cylindrical function x € %y (£) such that x =1 on K; and x =0 on K.

Take now any b € 7, (Z) and write

’< pWevly, a>| _ |< () Veuly a>| n ‘< (b(l B X))Weylua>
< (5(1 o X))WeleE B + |(bX Weyl 5|
From the Weyl pseudodifferential calculus we get
_ 2
(B —0)" | < Tr [ (1= )2 ) "] + Con

where the right-hand side converges to [, [b|*(1 — x)?(2) du(z) as ¢ — 0. The
property x = 1 on K; with p(K7) > 1 — n implies

A

X)) Weylu

2
li b(1 — s o<nbP.
im sup | (b( %0—77||L

e—0

and with the symmetric argument limsup,_, |(bx)Weylvs|; < n[b[7 . Hence we
get
vn >0, limsup|(u® ,bweylv5>} <21b|; 0 /1
e—0
for any b € 7.,1(Z). This implies .#(¢5,,,c € (0,2)) = {0}. O

A straightforward consequence is the next proposition.

Proposition 6.12. Make the same assumptions as in Proposition 6.11 with the
additional condition A (05,) = {pu} and A (05,) = {iw}. Then the family of
trace class operators (05,1, . 1v)ee(0,z) Satisfies

%(giﬁkv,uﬁrv) = {M’U« + /Jv} .
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Proof. Write simply
(uf +0°, pWeul (42 +0°)) = (uF, bWeylu6> + (vF, bWeleE>
+ (u®, bweylv5> + (v*, bweylu5> ,
and take the limit of every term as ¢ — 0. O

6.5. Wigner measure and Wick observables

Up to some additional assumption on the state and by restricting the class of Wick
observables, we check in this subsection that testing with Weyl, (or Anti-Wick)
and Wick observables provides the same asymptotic information as € — 0.

Fix once and for all p € P, the choice of the metric g, = |dz|? or g, = ‘Zi;)‘z .

From Proposition 3.8 we know that the class of symbols Upep ser Spz ((2)*, g,) and
@ilfqu@m’q(Q”) both contain all the classes &, ,(pZ), with a good comparison
of Weyl and Wick quantizations on these smaller sets. In the limit ¢ — 0, this

comparison can be carried out to any b € @ffquﬂﬁq(f).

Theorem 6.13. Assume that the family of operators (0%)z¢(0,z) satisfies
1 N5/251_|_N§/2 <C
1+ NP N

uniformly w.r.t € € (0,2) for any 6 > 0.

1. For any fived 3 € Upep,ser Spz ((2)", 9p), the families (B V' 0%).c(02) and
(ﬁA_WiCkQE)EE(OVg) satisfy the assumptions of Definition 6.5 and

M BV 0 = (BAVIN0%) = { B, € ()} (62)
2. For any fized § € @ifquyﬁf,q(ff) the family (Yo%) c(0z) satisfies the
assumptions of Definition 6.5 and
M (B0 ={Bu, pe . (o)} (63)
A particular case holds when the measure is tested with b = 1.
Corollary 6.14. Assume the uniform estimate |(1+ N)%/2p°(1+ N) 5/2|$1 oy <

Cs for all 6 > 0 and further #(¢%) = {u}.
1. The equality

hm Tr [ﬁweyl E} = hm Tr [ﬂA Wick 6 / 6(z) du(z

holds when 8 € Upep ser Spz ((2)°, gp)
2. The limit

hm Tr [6”/”]’3 c / 6(z) du(z)

holds for any 3 € B¢, P (Z).

m,qEN
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Proof of Theorem 6.13. 1) The relation (29) extends to any b € S,2((2)°%,gp)
and implies e~ 1(BWevl — pA=Wick) — ¢(e)Wevl with ¢(e) uniformly bounded in
Sy ((2)°72, gp). The result for 4~k can be deduced from the one for 3Wev!.
Take p € P, s > 0 (this contains the case s < 0) and 3 € S, ((2)*®, gp). Let
Np = Npz @I (pr ) and Ny = Ip () @ N1 5. Our assumption on (0%).c(0.)
and the commutations [N,., N,| = [N, pWesl] = 0 imply for any § > 0
(14 N)Y/2pWevlp2(1 4+ N)*/2 = ABA'RC  with
A= (14 N)721+ N,) 721+ N,.)~/?
B = (1 +Np)5/26W€yl(1 +Np)75/27s
A = (14 N,)2T(1+ N, )2 (14 N) 0~
R=(14+N)""¢*(1+ N)°** and
C=(1+N)"2s,
The factors A, A’ and C are uniformly bounded operators when ¢ > 0 (and s) is
fixed. The trace class norm of the factor R is uniformly bounded by Cs. Finally
the Weyl pseudodifferential calculus on p2° implies that B = y"Ve¥! with ~(e)
uniformly bounded in Sy, (1,gp,) and therefore |B| g, < Cj uniformly w.r.t
e € (0,8).
Hence the family (8" o) ce(0,7) satisfies the assumptions of Definition 6.5.

Let p1 belong to . (3" ¥ o%). After extracting the proper sequence (&, ),en such
that lim,, .. £, = 0, one can assume

n—0o0

lim Tr [p"VevigWevl gen ] :/ b(z) dpi(z) and
z

for any b € 7.,,1(Z). But the finite dimensional pseudodifferential calculus implies
pWesl gWevl — (pB)Wevl + Oy (en) With b3 € 7y (Z). This implies

/ b(z) dy (=) = / b(2)B(2) du(z)
z %

for all b € S (Z). According to Proposition 6.10 this implies 14 = Su.
2) Since the Upep ser Spz ((2)°, gp) contains Uy o (@?rlfqu @T’q (p.ﬁf))N, the
result is proved for any polynomial symbol b € &2 (Z) such that b = T'(p)bI'(p)

for some finite dimensional projector p € IP. Consider now a general b € Z» (%)
with m,q € N. By Lemma 2.5, the operator

(1+N)5/2bWick(1+N>—5/2—m/2—q/2

5+m-+q
£
= 0°(

is uniformly bounded for any 6 > 0. Since the trace class norm of (1+N) 1+
N) S s uniformly bounded w.r.t ¢ € (0,%), the family (3"*¢%) satisfies the
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assumptions of Definition 6.5. Introduce now an increasing sequence (pg)sen of P
such that sup,cyp¢ = I and consider for £ € N

Be(z) = B(pez) ., e = pZ@q o f3 opy™.

Since /3’ is a compact operator, the finite rank operator Bg converges to B in the
norm topology in .Z(\/"™ 2,\/? Z). The uniform estimates

’(ﬁ — B Wick(1 ¢ N)—m/Q—q/2’ ‘5 B ’

(L 2P) ™2 (18)] +18(2)] ) € with  Jim By(z) = B(2),

z(%) VA ACES

and the convergence

Vbe Sopu(Z), lim Tr [bweylﬂé/‘/“kgs”} = /g b(2)0Be(2) du(z)

n—oo
after extracting a sequence (£, )pen, iy oo £, = 0, With [, (1+[2[*)™/279/2 dp(z)
< 400, lead to

Vb€ F(Z), lim Tr [pVevigWickgen] = /&w b(2)B3(2) du(z). O

n—oo

The previous results provide the behaviour of lim._ .o Tr [ﬁka ] for g €
f;llgqu@m (Z) when # (0°) = {u}. The next result checks the other way.

Proposition 6.15. Assume that (p°).c(0,s) is a family of normal states satisfying
for any C > 0 there exist Ko > 0 such that

Tr{N*p°] < K,
kzok/Q ] c <00

holds uniformly w.r.t € € (0,2). Assume that there exists a Borel measure p such
that

lim Tr [bWiCkQE] z/ b(z) du(z)
e—0 a
holds for any b € ®%8, 252 (Z). This implies

AM(07) = {n}-

Remark 6.16. A similar result for non self-adjoint trace-class operators with com-
plex valued measure can be obtained by replacing the quantities Tr[N*o°] with
Tr[N*]o" + (0°)*]] + Tr[N*|o® — (0°)*|] like in (61).

Proof. 1t is enough to prove the following statement:

lim Tr[W (¢)p°] = / eV2iS(E2) gy,
Fa

e—0
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It is done when the right-hand side of

:i“ﬁf‘n T |, [(Y250E2) " (64)
2o gl "\ TIVEE g

is proved to be an absolutely convergent series, uniformly w.r.t. € € (0,&). With

Te[W(€)p"] = lim Tr[W(&)1pan(N) p°]

M—o0
= lim ih@ﬂ” Tr | h W o 1 (N)p®| (65)
Mk 2l »\ TVE o.M L) P

and
Wick
V2S(€,
Tr | hn (l |\/g(§|z)> Ljo,an(N) p
Wick
M, |(N 1*n/2hn W N 4+ 1)~"/2 ,
< Mo (N 1) ( [V ey

ZL(H)

with M,, = Tr[(1 + N)"¢°], Lemma 3.4 implies

) Wick
(N + 1)~ , (%) (N 1)

- (14 24/2(k+j)e)" n!

i (ke + 1)n/2(je + 1)n/2 (n/2]!

L()

This leads to

n @\/55 - Wick ) o 4\[
Zl\z/;ﬂ "(\/g(; )> L. (N) p Z n/|2g Mo

N

00 (66)

uniformly w.r.t. € € (0,&) and M > 0. Hence we can take the limit M — oo inside
in all the terms of (65). This leads to (64) with a uniformly absolutely convergent
series in the right-hand side according to (66) and our initial assumption.
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Thus the sum and the limit as € — 0 can be interchanged in (64):

=, Jgl VasE )\
Iy W EOF] =3 qugy Iy | VT (w) g

- Zi' [, @vasie.s)" au

_ / eVES(E2) g,
z
The last equality follows owing to the dominated convergence theorem and

o0
o 2|2 . 5k
/y ezl gy = gli% ,;,O HTI" [p°dl(1,2)"] < o0,

for any § > 0 and any p € P. This completes the proof. O

7. Examples and applications of Wigner measures

7.1. Finite dimensional cases
The first examples are given by Theorem 4.2

1. For any z € 2 the family of operators ¢° = |E(z))(E(z)| has a unique Wigner
measure

AM(|E(2)(E(2)], €(0,7)={d.}.
2. For any z € 2 and any m € 2 the family of operators o° = |z®Fe—m)(;@k¢|
with |z] =1 and lim._,g k. = 1 has a unique Wigner measure

1 2w .
S (|PF (P e e (0,2)) = — / e=im05, 0. d.
2T 0
3. In case 1) and 2) the convergence can be tested with Weyl, Anti-Wick or

Wick observables according to Proposition 6.4 and Theorem 6.13.
Beside the explicit calculation of Theorem 4.2 these results can be considered
through an inductive approach since E(z) or z®" lie in I';(Cz). The natural ex-
tension comes from Proposition 6.10-1) with a proper choice of the first term in
the increasing sequence (ps)sen.

Proposition 7.1. Assume that the family (0°).c(0z) satisfies the assumptions of
Definition 6.5. Assume further that there exists a finite dimensional space pg € P
such that

0" =T(po)el'(po) = 0, ® [N(Q
Joralle € (0,8) with g5, € £ (Ds(poZ)). Then the Wigner measures of (¢0%)-c(0,7)
are given by

M (%) = {/ﬂ ®5o,p0¢gg7 w1 € //Z(QZO)}



1560 7. Ammari and F. Nier Ann. Henri Poincaré

7.2. Superpositions
Two kinds of superpositions can be considered: 1) convex or linear combination of
trace class operators; 2) convex or linear combination of wave functions. The first
one is the simplest.
Proposition 7.2.

1. Let (M, m) be a probability space. Let (Qs(m))ee(o 2),meM be a family of op-

erators such that

L+ NP m) N2 < Csm)

for w-almost every m € M with Cs € L*(M,dr) for some § > 0. Assume
further 4 (0°(m), € € (0,€)) = {u(m)} for m-almost every m € M, then the
Jamily ([,, 0°(m) dm(m)).ee(oz) satisfies the assumptions of Definition 6.5

and
([ fom sy, ec©.2) ={ [ um) dnm}.

2. Any bounded Borel measure on Z can be achieved as a Wigner measure.

Proof. 1) Set o° = [}, 0°(m) dm(m) and write

1+ N)2p°(1 + N)*/2 </ dr(m).
(L NP Ny s | Gym) drom)

Then apply Lebesgue’s convergence theorem to
Tr [bweylgs] :/ Tr [bweylge(m)] dm(m) .
M

2) After reducing the problem to the case when p is a Borel probability
measure on 2, apply 1) with M = 2, 7 = u, m = zand ¢°(z) = |E(2))(E(z)|. O

The second type of superposition requires an orthogonality property. It is
given by Proposition 6.12. Here are a few examples

1. Take u§=E(z) for £=1,..., L, with LeN fixed, and set u®=L"1/2 31" us.
When the 2z, are distinct, the family (Ju®)(u®[).cz) has a unique Wigner

L
A (|u”)(u]) = {L_l 25@} :
=1

2. Take for any £ € {1,..., L}, uj = 2% with |z,| = 1 and lim. o k. = 1. The
family (Ju®)(u®]).c(oz) has a unique Wigner measure:

L 27
() () = {(QWL) ;/0 5o, de}.
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3. For z € 2 and uf = ZEEEZ wigh |2 = 1 and lim, o k. = 1, the family
u®){u® _, has a unique Wigner measure:
e€(0,8) g
1 1 27
Hu|) =19 20, + — Opio, dO ¢ .
(o) = { 50+ - [ bz a0}

4. All this examples can be tested with Weyl, Anti-Wick or Wick observables
according to Proposition 6.4 and Theorem 6.13.

7.3. Propagation of chaos and propagation of (squeezed) coherent states
Let us go back to the example of Section 5 where U.(t) = e """ with H, =
dl(—A)+QWik | Q = LV (z1 — z2) and 2 solution to i0;z, = —Az+ (V x|z|?)z.
Theorem 5.6, Proposition 5.10 and Proposition 6.15 imply:
1. For any zop € 2 with |z9| = 1, the family (|Ug(t)z?ka><UE(t)z8§k5|)5€(0’g) with
lim._,qgek. = 1 is pure with

2. For any zp € 2, the family (|U:(t)E(20))(U(t)E(20)|)ee(0,z) is pure with
M (|U-(6)E(20))(Ue () E(20)]) = {02, } = A (|E(20))(E(24)]) -

These results are derived from the results for product states after testing with
Wick observable (any b € @%§q<@m7q(ﬁp )) . Actually it is possible to recover the
second one directly from the Hepp method. For any b € .#,;(Z), Proposition 5.2
implies

21
ot (W00 1) = {5 [ 6o, a0} = (1) a6

2 0

lim Tr
e—0

bw<|U€<t>E<zo>><Us<t>E<zO>|

> ‘| - 0 .
By the finite dimensional Weyl quantization, the second term equals
(Us(t,0)9,b(. — 2) V' U (2,0)2)

and it suffices to check that the family (|Ua(t,0)2)(Uz(t,0)Q|)cc(0,7) admits the
unique Wigner measure dp. This is a consequence of Lemma 5.3 which first says
INEUy(t,0)Q| 2 < Cf for any k > 0 and then lim. o (Us(t,0)Q, bWk Uy (¢,0)Q) =
0 when b(0) =0.

7.4. Dimensional defect of compactness

In the last example the mean field propagation of Wigner measure attached
with U.(t)E(z9) can be proved directly without using the result on Wick ob-
servables. As a corollary, this provides the result for Wick observables b"Vick
when b € @28 2 (Z) according to Theorem 6.13. The result for a general
b € B8 P q(Z) is still true but comes from a direct proof or from Proposi-

tion 5.10.
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A natural question is whether the result of Theorem 6.13 can be extended
to any observable b"W°* with b € @%%q@m’q(ff). The answer is no, because in
the infinite dimensional case there can be some defect of compactness w.r.t to the
dimension variable.

Here is a typical example. Consider a family (2:).¢(0z) such that z. converges
weakly to 0. There exists a constant C' > 0 such that |z.| < C for all € € (0,2) and
the family (£(z:))z¢(0,z) satisfies the assumptions of Proposition 6.15. The Wigner
measures (1 € A (|E(z:)(E(z:)])) are determined by testing on any b € Z5¥ (Z).
But Theorem 4.2 says

(B(2e) , 0"V * E(z.)) = b(z2) = (229, b28™).

When m + g > 1 the operator bis compact, the right-hand side converges to 0 as
€ — 0. According to Proposition 6.15 this implies

M (|E(z))(E(ze)]) = {00} -

Meanwhile testing with N = dI'(I) = (|z|2)WiCk
(E(2),NE(z.)) = |2

where the right-hand side can reach any possible limit in [0, C].

implies

7.5. Bose—Einstein condensates

The thermodynamic limit of the ideal Bose Gas presented within a local algebra
presentation in [9] can be reconsidered by introducing a small parameter ¢ — 0.
Namely, the large domain limit where bosonic particles are moving freely in a
domain A, with volume |A| — oo, can be formulated with |A| = 1 and e — 0. For
a fixed particle density the total number of particle is O(1) coherent with a mean
field approach. Before considering any dynamical problem, Wigner measures of -
dependent Gibbs states bring some interesting presentation of the Bose-Einstein
condensation.

Consider the Laplace operator Hy = —A, on the e-dependent torus
R?/(e=Y/4Z)® with spectrum o (Hy) = {e?/?|2mn|,n € Z?}. The one particle space
is 2¢ = L?(R%/(¢=1/7)%) and the bosonic Fock space is J#° = T'y(2°). For
the inverse temperature § = kB’LT > 0 and a chemical potential u, the Gibbs
grand canonical equilibrium state is associated with the operator e~ #4 (Ho—nl) —
['(e=AHo=1D)) wwhich is trace class if and only if i < 0 (see [9, Proposition 5.2.27]).
This Gibbs state on Z(J¢) is given by

1
Tr[[(e=A(Ho—1))]
It is convenient to introduce the parameter z = e’* and this Gibbs state re-
stricted to the CCR-algebra (the C*-algebra generated by the Weyl operators

Wi(f), [ € Z¢) is the gauge-invariant quasi-free state given by the two-point
function: we(ai(f)ai(g)) = (g,ze o (1 — ze7PHo)=1 f}  The index ; means that

we(A) =Tr[p.A] with o, = F(e_B(HO_“)), w<0.
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the CCR are written at this level in their initial form: [a1(g), a5 (f)] = (g, f). This
is proved in [9, Proposition 5.2.28] with the straightforward rewriting

wE(Wl(f)) = exp [— <f, (1 —|—zefﬁH°)(1 — zefﬁH0)71f>/4} .

The mean field analysis consists here in introducing a(f) = £%/2a1(f) and W (f) =
W1 (51/2f)2

we(a*(flalg)) = e(g, ze”Mo(1 = ze~ o)=L f)
we (W(f)) = exp [f e(f, (1+ ze PHoY (1 — ze*ﬁHO)*1f>/4} .

Further a rescaling motivated by the observation of the phenomena on a large
scale, is implemented with f(z) = e'/2p(e'/?z) = D.p. After conjugating with the
unitary transform I['(D,) : 5 = D(Z) — #° = [4(Z°), with & = L?(R4/Z4)
we are led to consider the asymptotic behaviour as € — 0 of the normal state

1

Tr[F(e*B(*EQ/dAfl‘))]

o =T(D:)"0.T(D:) = e

which satisfies

Te[o"W (f)] = exp {_Z<f7 (1+ zeﬂewdﬁ)(l _ zeﬁEQ/dA)_1f>fg}

c €
— e~ il l% exp |:_§<f7 zeﬁsz/dA(l B zeﬁsz/dA)_1f>g]

Tr[o*a*(flalg)] = elg, 2% A1 — 2271y

The above expressions are explicit after the decomposition in the Fourier basis
[ =2 neze Fn€2™™ % of any element f € 2. For a given z < 1 and 8 > 0 the
rescaled particle density is given by

Z€7ﬁ52/d\2ﬂ'n|2

€z €z
1—2 te Z (1 _ 26—562/d|27rn\2) - 1—=2 + VE(B’ Z) ' (67)
nezZ\{0}
One checks easily for ¢/ > e and 2/ <z < 1
—B|2mul?
e—0 ze
ver(B,2) S ve(B,2) — (B, 2) = /Rd T se—pmar W

and Ve € [0,1), v.(B,2)>v.(8,2).

Here comes the discussion about the Bose—Einstein condensation. In dimension
d > 3 (this restriction may change with an alternative Hamiltonian Hy = A(Dy)),
the quantity
e—Bl2mul?
v(B,1) = /Rd R ] du < 4+00.
is well defined.
We focus on the case d > 3.
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The previous discussion imply
v‘€>07 VZE(O,I), VE(ﬁyz)SVO(ﬂvl)

while any total density can be achieved by (67). The Bose-Einstein condensation
occurs while considering the limit ¢ — 0 with the constraint 12—525 +ve(ze,8) = v
with 6 > 0 and v > 0 fixed. There are two possible cases:

e v <yy(B,1): Then lim. 2. = z < 1 and lim._,o ff; =0.

o v > 1(f,1): The inequality v — 1p(3,1) < 2= < v leads to z. = 1 —
=D T o(g) . The proportion 1 — v(f3,1)/v of the gas lies in the ground
state n = 0 of the one-body Hamiltonian. This is the Bose—Einstein conden-
sation phenomenon.

It is interesting to reconsider this limit € — 0 with 8 > 0 and v > 0 fixed (d > 3)
within the Wigner measure point of view. This is possible owing to the explicit
formula

e—ﬁ&‘z/d|27rn|2

Tr |:QEW(\/§7Tf)} = e =™l exp | —em? Z | ful®

nezd

; (68)

Ze
(1 _ zEe*ﬁEZ/d‘Qﬂ'nP)

where f =3 _q fne?™* Remember that the characteristic function of Wigner
measures are determined after considering the limit € — 0 of the above expression
for any fixed f € 2. Hence the problem is reduced to the application of Lebesgue’s
theorem in the argument of the exponential.

Zie—ﬁez/d\27rn\2

(1_Zse—ﬁs2/d\2wn\2)

d/2 <1 and z. < 1. Hence we get

For any n # 0 the quantity converges to 0 as € — 0 because

em?z,

- 5 1 _ 2
i T [ W vam)] = e |7 .

With the constraint IE_Z; < v < 400, there are two possibilities

e First lim._o ;= = 0 implies v < vy(B, 1) and 4 (0°) = {do}.
e The second case lim._,q ff;s =v —1p(f,1) > 0 implies

lim Tr [0 W(V2r f)] = e =Bl = o= w=ro (BN
e—0

Hence the Wigner measure of the family (0%).s0 equals v, ® §p on & =
C1 x {1}" where v, is the gaussian measure

__1=l?
e v—vo(B1)

F)/V(Zl) = (7‘[‘(1/ — 1/0(57 1))d/2 )

Our scaled observables can measure asymptotically only the Bose-FEinstein phase
in a non trivial way. The rest of the state provides the factor §y. While testing
with the observable (|z|2)"?* = N, the dimensional defect of compactness phe-
nomenon already illustrated in Subsection 7.4 occurs again: only the density of
the condensate remains.

2z €C.
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Remark 7.3.

i) Tt is possible to consider various dispersion relations Hy = A(D,) and the
discussion about the dimension may change. Other boundary conditions (here
periodic boundary conditions are considered) and the discussion about the
convergence of lim. oz, = 1 may change a little bit. We refer the reader
to [9] for the case of Dirichlet boundary conditions.

From (68) it is possible to consider the limit for any fixed f € 2 ase — 0 with
various behaviours of z.. This provides asymptotically a weak distribution.
But the uniform tightness assumption Tr [Qa(l + N )5] < C' is not satisfied.
The scaling has to be adapted differently to the dimension d = 2 or d =1
by taking care of the singularity at the momentum 0, in order to allow a non
trivial Wigner measure in the thermodynamic and mean field limit.

ii

~—

7.6. Application 1: From the propagation of coherent states to the propagation of
chaos via Wigner measures

In the previous sections we showed how the propagation of (squeezed) coherent
states can be derived from the propagation of Hermite states or directly via the
Hepp method. The Hepp method is very flexible (see [24] for example) and there-
fore it is interesting to know whether a result for coherent states provides an in-
formation for product states or more general states. Here is a simple and abstract
result which relies on some gauge invariance argument.

Theorem 7.4. Let U. be a unitary operator on J possibly depending on e € (0,)
which commutes with the number operator [N,U.] = 0. Assume that for a given
z € & such that |z| =1, there exists zy € % such that

M (|UE(2)(UeE(2)]) = {020} -

Then for any non negative function ¢ € L'(R,ds) such that [, ¢(s)(14s])° ds <
oo for some § >0 and [, p(s) ds =1, the state

0, = Z 51/290(51/2(71 - 5_1)) |Ue2®")(U:2%"|

n=0
satisfies the conditions of Definition 6.5 and
1 e
///(pr) =5 ; Ogio 5, dO.
Proof. Owing to the relation
F(efie)bWeylF(eiQ) _ einNbWeyleiGN _ b(efie')Weyl )
Our assumptions imply

M (D(e?)U-E(2))(U-E(2)|T(e™")) = 6,02,
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for any # € R. The assumptions of Definition 6.5 are satisfied because U, preserves
the number. After taking the average w.r.t 6 € [0, 27

1 2m . .
of = L) U.E(2)(U.E(2)|[T (e~ ) db
™Jo
this implies
1 27
///(a):% ; Ogit 5, dO

where the right-side is an extremal point of the convex set of Borel probability
measure which are invariant after the natural action of S!' on 2: S' x & >
(v:2) =12z € Z.
Again the commutation [U., N] = 0 and the expression (4) for E(z) imply
27
=@2m)7" [ UD(e?)E(2))(D(e”) E(2)|Us df
0

27
— (27)! A UL | B¢ 2)) (B 2)| U df

_1
5

_Zgnl| 2N U

For any b € .7, (%), the quantity

i 6_% <U Rn bWele P > Tr [bWeylo_e]

nnl
n= 06

converges as € — 0 to (2m)~* fOQﬂ b(e?2y) df . By Lemma A.1 this implies

2 27
Vb € Seyi(Z), i g (e € 2 ds = (2m)L b(eid a6,
yl( ) EIL% RCL[ /254 ]( )\/ﬂ s = (2m) ; (e"zv)

where [t] is the integer part of ¢t € R and
an(e™h) = (U2, 0V U25m)

52 . o e .
Call v the Gaussian measure e~z \}1257 on R. For any finite subdivision . =

{l ..., I} of R =1y U...U I, with intervals, the states

—1 —1/24 -1 —1/244 -1
UZ = ('Y(Ié)) . |UEZ®[E +e ]><UEZ®[E +e ]| d’Y(S)
£

satisfy the assumptions of Definition 6.5 with the gauge invariance
F(ew)oZF(e”G) =0,

Moreover the state

L
e~ 1/2¢ 6—1 e—1/254 1
/|U ol o<y (17,8 st iy () = 3 (),
/=1
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is a finite barycenter of the 07, with a unique Wigner measure (27) fozﬂ Ogio 5, dO.
Since .# is finite (or countable), from any sequence (07/') with lim, o &, = 0,
one can extract a subsequence (&, )xen such that

Moy ke N) = {v}.

Since the measure py is an extremal point in the convex set of gauge invariant
probability measures, all the v, have to be identical to uy. Since this holds for
any sequence (&y,)nen, we have proved for any interval I = (a, ) with a < 3,
M (05,2 € (0,7)) = L)

Now take ¢ € L'(R,~) and consider the state

L
Qf/) = /]R |UEZ®[E*1/23+6*1]>(Uez®[€*1/23+5’1]| d’Y(S) = ny([e)o-i X
(=1

If there exists > 0 such that [ (1+|s])°%(s) dy(s) < 400, the family (@5,)ee(02)
satisfy the assumption of Definition 6.5. Let (¢,)nen be a sequence such that
M(ay,n € N) = {v}. Fix b € S,(Z). The function 1) can be approximated
in LY (R, dy) by ¥. € €°(R). After choosing a finite subdivision .# such that the
diameter of any I, intersecting the support of 1. is bounded by A one gets

Tr {bweyl 6"} —Tr [pWevt Z fle wc <Cy |:UJ(¢C)A + W - ¢C|L1(R7’y)

where w(1.) is the continuity modulus of .. Hence the right-hand side can be
made arbitrarily small, uniformly with respect to ¢,, while we know that the
second term of the left-hand side converges when 1. and .# are fixed. We have
proved

/ b(z) dv(z) = lim Tr[b"VeV! o] :/ b(z) duy(2)
7 3

n—oo

for any b € #,,/(2°) and this proves v = py. Since this holds for any v € .Z(c3,),
we obtain

M (ay) ={po}-

- el (/ (t) dt) s

kEZ

The result for of, comes from

0
E:}O

|05 — a3, ) S

L'(R,ds)

with I = [¢1/2k—e= Y2 eV/2(k+1)—e /2] and ¢ (s) = p(s) 97e’s . The condition
Je(1+1s])° @(s)ds < 400 ensures that .2 (o) is well defined. O
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7.7. Application 2: Propagation of correlated states
This a simple application of the orthogonality of Wigner measures combined with
the results of Subsection 7.3.

Let H. = dI'(—A) + Q"* be the Hamiltonian studied in Section 5 and
let z; denote the solution to id;z; = —Az + (V x \zt|2)zt. The family of integers
(ke)ee(o,z) is assumed to satisfy lim. o ek = 1.

1. Let 200 € &, £ =1,..., L, satisfy |20¢| = 1 and set u* = L~/2 Zngl zgz”ff,
us(t) = e~"eHey . At any time ¢ € R the identity

L 27
///(|u5(t)><ug(t)\) = {(27TL)_1 Z/ Seioz, , dG}
¢=1"0

as soon as 2y, ..., %, are linearly independent. In particular this holds for
any t € R when L = 2 and zp,; and zp 2 are linearly independent.
2. Let 29 € Z satisfy |z| = 1 and set u® = 271/2:5% 4+ 271/2F(2)) and
uf(t) = e e H y,. Then
1 2

1
. N (t)]) =< =d,, + — Ogio,, df 5.
ANl = {50+ - [ b a0 |
3. Moreover the convergence can be tested with Weyl, Anti-Wick and Wick
operators according to Theorem 6.2 and Theorem 6.13.

Appendix A. Normal approximation

We prove a technical lemma which is a slight adaptation of the normal approxi-
mation to the Poisson distribution. Recall that for all —co < a < 8 < oo we have
the well known fact:
A" B s2
e 2
lim e = ds. 69
A—00 Z n! /a V2 ( )

st

Lemma A.1. Let {a,(\)}nez >0 be a family of complex numbers with a,(\) =0
if n < 0. Assume that there exist p € N and Cy, > 0 such that:

n\ —H~
supJan (VI (3) < C-
neN;A>0
Then the equality

oo 32
lim S° 2 e g0 (A) = lim o\ d (70)
i —e " ay = 1i a ——ds
Mmoo £ n A—oo g [VAs+A] /o

holds whenever one of the two limits exists.
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Proof. Notice that both the series and the integral in (70) are absolutely convergent

n

for finite values of X. By hypothesis @, (\) = a,(\)(%) " are bounded and moreover
they satisfy

lim %e—kan(A) (1 - <§>”) ~0, (71)

Jim [ s, ) (1—<WA+A]> ) ‘i;%ds:o (72)

since we may bound uniformly for A large each of the terms inside the sum and
the integral respectively by

oo

Z Api <0 and 02/\\#67

ds<Cp, VA>1.

Therefore there is no restriction if we assume all a,,(A) bounded by 1 since if we
prove (70) for a,(X) then it holds for a,(\) by the limits (71)—(72).
For all h > 0 there exists o < (8 such that

00 “2 « 2
ds < h/T7, / ds < h/T.
| v S
Now by (69) we have

2
L X =% L O o=
lim e = / —=ds, lim et = / ds
A—00 Z n! 8 V2 A—00 Z n! 0o V2

1+ 2 <z 21+

Therefore there exists A\; such that for all A > \; we have

)\n a /\n )
3 “re N < hf6, > —ret<n/6.

= [ a1 /xe (V) 5= ds. We obtain for all A > Ay:

AT e e~z
> e an()\)f/ el ds
s n' o [ ] q/2
<l > A= (A) = I g(\)| +2R/3. (73)
>~ ) n o, .
a<"\/‘<,@

Ja,8(N)
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Using the Stirling formula there exists Ao such that for all A > Ay we have

/\lew\ _L .
a<“z‘;<5 n! {1 \/%(n/e)"] n(A)] < h/9.

1 i n _(n=X
Ja,ﬁ(/\) < Z _6)\@(7) —e ( \5\)\)2/2:|

a< k <pB
—(m2)%/2
+Y (N — (V)| +h/12,(74)
n—X\
a< VN <p
La,p(N)

where ¢(x) = x — 1 — zIn(x). To complete the proof one needs to estimate in-
finitesimally the two terms in the r.h.s. of the above inequality. Notice that by
means of Riemann sums we have

—(22)%/2 —(22)%/2 B o—s/2
fm 3 e =m 3 e (75)
a<tZ22<p a<tZ2<p
We have
O n22)?/2
Y G-y ),
n—X\ 2mn <n=X A
a<t2<B o <B

where ¢(z) = x — 1 —xIn(z) + (x — 1)?/2 which is an increasing function null at 1.
Therefore one obtains

DI PRI
2mn

a< "’\})\’\ <p

B 6_52/2
ds
a V2T

5B
with a r.h.s. converging to 0 when A\ — oo since limy_, NPT = 1, which we
bound by h/12 for X larger than a given A3. One can obtain the estimate

|:e)“/~’(%+1) -1, (76)

—(252)2/2
Lasy<| Y € an(N) = Ins(\)| + h/18,
n—A>A

— V2T
a< <B
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using the fact that

3> R ! — 1] < h/18
\/ n—\\ 1 - ’
acitep VIR ORI+

since limy_ (1) = 0 and the sum is uniformly bounded by (Equ. 75). By splitting

the integral in I, g(\) over the intervals [”—\}/\)‘, "*\1&7)‘) one can show that

n4+l—X —82/2

n—X\ L)\)\ v 27T

ds| < h/18.

This yields

—(E2)72 mbA g
e VX VA e
Las(N) <h/9+ Y l%A o AN ds] (77)
v =V

with a r.h.s. converging to 0 when A — oo which we bound by h/18 for A larger
than A4. Combining the estimates (74), (76) and (77) with (73) we obtain that for
all h > 0, there exists Ag such that for all A > \g we have

i&e_ka ()\)—/Ooa ()\)ﬁds <h

= n! " oo [VAs+3] V2T -

This gives the claimed result. O
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