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Abstract

The scattering theory for a class of fermionic Pauli-Fierz models is considered. We give
a proof of the asymptotic completeness of the dynamics in the case of massive fermions.
The result applied to the Hamiltonian of a quantized spin-% Dirac particle interacting with
an external field through a cutoff Yukawa interaction and to the Hamiltonian of a
system of finitely many confined particles coupled to a fermionic field with a quadratic
interaction.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the scattering theory for a class of fermionic Pauli-Fierz
models. An example is an interacting spin—fermion model. The spin system describes
a system of finitely many confined particles. Its Hamiltonian is a bounded from
below self-adjoint operator K with compact resolvent acting on a Hilbert space #".
Let g be a finite-dimensional Hilbert space describing internal degrees of freedom
(e.g. spin) of a fermion field. We denote by [) == Lz([R{d, dk) ® g the one-particle space
of this fermion field. The state space of the fermionic system is the anti-symmetric
Fock space A(D). Let » be a positive, operator-valued function in C(RY, %(g)),
representing the dispersion relation of a single fermion. The free field Hamiltonian is
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given by the second quantization of w,

dI'(w) = b*(k)w(k)b(k) dk.
Rd
We assume the interaction between the spin and the fermion system to be a
K3-bounded, even Wick polynomial P given by a family of kernels w,, which
are continuous linear maps from the Schwartz space S(RY7*?) into
HI(K)® @ 9,4 ®®4),

P ,,Z /Rdw b (k). " (kg (K1, oo K KD oK)

gEE

X b(kL) ... b(K, ky ... dkcy di, .. dK}. (1.1)

Here b*, b are the usual creation and annihilation operators representing the CAR on
b, and Z is a finite subset of {(p,q)eN?|p+ ¢ge2N}. We impose an ultraviolet
cutoff on w, , and require a smoothness condition on w, ;, such that P is a symmetric
K3-bounded operator (see Section 2.2). We obtain such interaction by starting from a
formal local and transition invariant interaction then introducing an ultraviolet and
space cutoffs. The construction of the perturbed Hamiltonian is obvious in this case,
and self-adjointness follows, for example, by the Kato—Rellich Theorem. The
interacting Hamiltonian is given by

H=K®1+1®dI'(w)+ P, acting on # =H QA(D). (1.2)

Let us mention some typical examples belonging to this class of models:

(i) The first is a quantized spin—% Dirac particle interacting through a momentum
cutoff Yukawa interaction with an external neutral scalar field [20]. Let 2#° = C and
§ = L*(R?,S) where S is a four-dimensional spinor space. Let o', &%, &> and 8 be the
usual Dirac matrices [29]. We denote by © the Dirac operator

D= —ia-V + fm.

Recall that & decomposes into two parts R, which are the subspaces of positive and
negative energy. We denote by P the corresponding projections on K. Let U¢ be
the unitary operator given by ifia® in the standard representation. The charge
conjugation C is the operator acting on Lz(lR3,S) and defined by Cy := Ucy. C
interchanges the subspaces R4, and according to the Dirac theory the one-particle
space decomposes as

I) = 5{4, @ R+.

The Hilbert space of the quantized Dirac particle is the Fock space A(D). The gauge
transformations f ¢’/ which leave the Dirac equation invariant are implemented
in the Fock space by €, where Q == dI'(1@ — 1) is the total charge operator. For
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ve L*(R3,S), we define the field operator to be the following bounded operator:
®(v) =bPrvD0)+ 5" (0 CP_v).

ForfeLz(lR3) and u;, j =1, ...,4, an orthonormal basis of S, we set

4
S(f(-—x)) = Z WRP(f(- — x)u;), where f(- —x) =f(y — x)e L*(R,dy).

J=1

We denote by D, == P, DP,. For ge L' (R?) a real-valued function, the Hamiltonian
is given by

Hy = AT, @D+ [ 00/ =) Fo(/(- = x) () .

where the interaction between dots :: denotes the Wick-ordered monomial with all 5*
to the left and b to the right.

(i1) The second example is a system of a finitely many particles interacting with
a quantized spin-% Dirac particle. Consider the N-body Schrédinger operator on
A = LR, dx) given by

1 P
K = —% J; ij + V(X], ...,XP),

with V' such that limyy|, o, V(x) = 0. Let /e L>(R?) and &, b, @ be the same objects
defined in the example (i). The interaction between the quantum system and the
quantized Dirac field is given by

I(xj) = : &(f (- = %)) BO(S (- = x7)) =

The Hamiltonian of the interacting quantum system with the quantized Dirac
particle is given by

P
Hy =K®1+1QdI(D, @D,)+ > Ix
Jj=1

The main result of this work is the proof of existence of the wave operators and
their completeness for the class of Hamiltonians defined by (1.1)—(1.2), including the
examples (i)—(ii). This holds true under some hypotheses which are given in detail in
Section 3. We briefly describe that hypotheses. Let "y, "> denotes respectively,

the Hilbert spaces (K), @(K%) endowed with their corresponding graph norms and
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AV, A, their topological duals. For B a Banach space we define the Schwartz
norms on S(R",B):

8
||f||m = Z Supn ||X“D/f”%> (13)
o +pl<m <R
where «, 8 are multindices in N” and x* == (x}', ..., x%), D == (1 o), ...,%65””). Let

Sy (R, B) be the Banach space defined by ||.||,,- We set
B =BA1Q R g, 4 ® ®Y), B =BAHQR's, A Q®R),
and
By =B(H1pQ R, N ®RIS), Bip=BAH® ®"g, A7), ® ®g).

Forp,qeN, g = [%d(p + ¢q)] + 3, we introduce the classes of symbols S;,q, e=1,1/2,

to be the Banach spaces SQ(R“’(PW), B.DAR.).
Let G denote the conjugate operator introduced in Section 4.3 given by

G = dF(—%(Va)(k).Dk + Di.Vo(k))), acting on A(b).

We assume the following:

® The particles system is confined, i.e:
(K +1)"" is compact. (%)

® The fermion dispersion relation is smooth, massive, may have only one
critical point k£ = 0 and moreover we assume that w has a smooth diagonaliza-
tion with eigenvalues A,(k), ..., (k) with constant uniform multiplicity for

keR, ie:

A a(kyeL™ (RY), |B|=1,
Vo(k)#0, for k+#0,
m |lo(k)[lyq = ©,  (4)

k| >
w(k)zmly,m>0,

inf |:(k) — ij(k)| >0.
keR? i)
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® The interaction is regular and of short-range type, i.e:

Wp7qESl/2 (/70)

y2UN
5 Mwpgs Glllgz< e (201)
PYEE §
rtq B
S L Mkt (Ve wpglly, <CRH p> 1. (2)
PgeE i=

We now state our main result, Theorem 1.2. The following proposition is proved
in Proposition 5.1.

Proposition 1.1. Assume (M),(Ry), and (&) hold. Then the following strong
limits:

bE(h) =s— Jim ep(e " n)e ™ heb.
exist.
We define the space of asymptotic vacua
AT ={Penx|b*(h)¥ =0,heh}.

Let define the wave operators by

QL A QAN > A,
YRIIL b ()@ I b (fi)'Y,  fieb,

where Q is the vacuum vector in the Fock space A(h). We denote by #,q(H) the
space of bound states of H.

Theorem 1.2. Assume that (%), (M), (Ro,1), and (¥ hold. Then Q* is unitary and the
asymptotic completeness holds, i.e:

HE=AHEQAD) = A, and A = Hra(H).

To prove the completeness of the wave operator, we mainly use the method
developed in the work [11]. The main tool is the construction of the asymptotic
velocity using propagation estimates and taking advantage of the structure of Fock
space. This allows the identification of asymptotic vacua as states with zero
asymptotic velocity and then as bound states using a Mourre theory. Let us mention
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that asymptotic completeness holds for certain QED models such as almost-solvable
massless spin boson [28], massive spin boson [11], space cutoff P(¢), [12], ultraviolet
renormalized Nelson model [1], Rayleigh scattering [14], Compton scattering [13].

The particularity of our example is that the interaction is of arbitrary higher order
on Wick monomials with kernels taking into account the degrees of freedom of the
spin system. To deal with such interaction we use an abstract fermionic Wick
formalism and study commutation relations, estimates on commutators and
introduce Wick tensor products and their properties, see Section 2.2. This allows
to study the scattering theory with the same strategy as in [11], and similar to the N-
body Schrédinger Hamiltonians. Note that the class of models considered in this
paper has features such that it is an interesting example in the study of dynamical
stability of zero temperature KMS states and where asymptotic completeness could
apply. Moreover, it serves as a non-trivial example for the non-existence of the
Moller morphisms [2].

The paper is organized as follows. In Section 2 we introduce notation and
recall some related material to the fermionic Fock space. Essentially, we study
the fermionic exponential law and construct the scattering identification operator 1,
as well as its right inverse. We introduce Wick polynomials in Section 2.2
and establish some commutator relations and estimates. We state the hypotheses
and the main theorem in Section 3. We prove a HVZ-type theorem and a
Mourre estimate in Section 4. Section 5 is devoted to the proof of asymptotic
completeness. We construct the wave operator in Section 5.1. We establish in
Section 5.2 some propagation estimates among them a minimal velocity estimate.
In Section 5.3 we construct the asymptotic velocity and finish the proof of the main
theorem Theorem 3.2.

2. Basic theory

In this section we introduce the notation which will be used in the sequel. We recall
the definitions of some operators acting on the fermionic Fock space, especially
those related to the study of the scattering theory. Among this operators we cite the
scattering identification operator, introduced in [11,23] and which play a fundamental
role in the proof of asymptotic completeness. In Section 2.2, we follow the formalism
in [12], defining Wick polynomials in the fermionic case. Furthermore, we derive
some commutation relations and estimates satisfied by Wick polynomials.

2.1. Fermionic Fock spaces

Let h be a Hilbert space. Let A"(h) be the anti-symmetric n-fold tensor product
of [). The fermionic Fock space over |y is

A(b) = é@ A(),
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where A°(h) == C. The vacuum vector (1,0, ...) will be denoted by Q. Let b, be a
subspace of ), we denote by ® '3, by the algebraic n-fold tensor product of b, and by

Aie(ho) the space of anti-symmetric vectors in ® 4, by We set A™M () to be the
vector space generated by the union of Ay, (hy), neN.

Let Sy30—>7,€%(®"D) be the unitary representation of the permutation group
S, defined by

Tf1® - Qfy =15, ® - ®fs,, where fieh, fori=1,...,n

Let A, be the orthogonal projection from ®"} into A"(D). It acts as follows:

1
/\ = Z ¢(0) g,

n gesS,

where ¢(o) is the signature of ¢. For e A"(h), p A™(h), we set

Yrd= N\ V@9

n+m

We have yandp = (=1)"p Ay and nay Ap = e(a)fy AP, 6€S,m. We denote by A
the orthogonal projection given by >, -, /\, and we consider A"(D) as a subspace

of A(b).
Let I be a set of indices. By means of Cantor’s well-ordering principal we equip
with a total order. If J <[ is finite, then J is an increasing sequence j;,s = 1, ..., $J.

We set for (f);c,<b:

Ajedli = /\ ®jerfis

where ® ey fj =/ ® ... ®f},, written in the increasing order w.r.t. the order relation
on J. If A;e (A" (h)), i = 1,2 we set:

Aiady = \ A ® Ay B(A" (h) @A™ (h), A" (D).

dI' operators. We define the second quantization of a one-particle operator A
denoted by dI'(4) as

n
dr () oy =Y A,
=

where A4; is the operator acting as A4 in the jth component and as the identity in the
others. An example is the number operator N = dI'(1). We mention that in general
dI'(A) is an unbounded operator even if 4 is bounded and it is bounded if and only if
A is trace class.
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2.1.1. Creation—annihilation operators
We recall respectively the creation and annihilation operators:

by = VN ha,

b(hy = VN + 1(hlyr), eA(D).

We will use the notation b*(.) to simplify the writing of statements which hold for
both b(.) and b*(.). Note that b*(h) is bounded operator with ||b*(h)|| = ||A]|,
satisfying the canonical anti-commutation relations:

{b°(h),b*(9)} = 0, (2.1)

{b(h),b"(9)} = (hlg)T. (2.2)

Let J be a totally ordered finite set of indices we set [];.; b* (i), [1,.; b*(hj) to be

respectively the increasing and the decreasing product of b#(hj), jeJ, w.r.t. to the
ordering on J. For any orthonormal basis {e;};.; of ) and a total ordering in I the
family {e,|J <=1, J finite} given by

ey =V $J! NjeJ€j
= Hb*(ej)g7

jedJ
defines an orthonormal basis of A(D). In the same way [[;_; b*(¢;)Q defines an
orthonormal basis which we obtain by the above procedure by inversion of the total
order.

Let g be a finite-dimensional Hilbert space describing some internal degrees of
freedom of fermions. If h = L?>(R?,dk)®g, then any vector in A"(h) can be
considered as a function in L*(R™ ®"g). Let o;,i=1,...,/ =dim(g) be an
orthonormal basis of g. Let ¥, ®e A(Dh), we denote by

P (k) = (o @ gnry P,

the L2(RY) function with values on ®"'h. The map b x A(h)> (h, @) (b(h)¥|P)
is a continuous bilinear form and hence there exist a unique vector in h® A(h) which
we denote by b(k)¥ such that

1) = [ UV @)y k.

In fact, b(k) is an operator-valued function in L*(R? dk) acting from A() into
g® A(h). Moreover, one can define the annihilation—creation distributions in this
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case by

b)) ey, k) =0 ST (1) Sk — k)P Ky, K, L k) e ®T g,

where lgj means that k; is omitted and ¢ is the Dirac function. We have

4

b(k)V =) 0, ®@bi(k)¥, PeA).

=1

We retrieve the annihilation and creation operators b(h),b*(h),hely using the
integral representations:

b(h) =Y

p R4

by (k) (k) dk, b (h) ::2/: b (k) hy (k) d.

R4

A=1

In the same way if f € L*(R?), the map g x h> (g, ®) — (b(f ® g) ¥|®) is a continuous
bilinear form and we define b(f)¥ to be the vector satisfying

(b(N)P]g@P) = (b(f ®9)¥|®P).

The operator b(f) is bounded from A(h) into g®A(h) and furthermore we
have

/ _

b(f) =Y %@b(f @) = /R B(KITR dk.

A=1

Let #;, i=1,2 be two Hilbert spaces describing a given system of particles.
Let o#; = A4 ;®A(h), i =1,2 be the Hilbert space of the joint system. We can
extend b*(h) to an operator acting from #; into #,. Let ve B(A 1, # @),
we define

b (v)p @Y = VN v A,

b()p@Y =VN+1\v'¢®@y, vedl), pex.

Note that in the definition of b(v), v* acts only in the first component #'; ® ) and in
the rest as the identity. In the case ) == Lz(Rd ,dk)®gq, and A", A, separable we can
represent ve B(A |, A, ®b) as a function Rsksv(k)eB(AH 1, #2®g) defined
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almost every where such that

v(k)p = (vp)(k), for all pex'|, and k a.e. in RY,

A1 X 13 (b a) / (K)11b2) o, dk = (06 00) 1

is a continuous quadratic form. We have the following anti-commutation rela-
tions for all v,weZ (A1, # 1 ®b) such that [v*(k),w(k’)] =0,v(k)@T,w(k’) =
w(k')®14v(k), for a.e. k, k' in R%:

{b%(0),6°(w)} =0,

{b(v),b"(w)} = v'w®T 4

2.1.2. Other operators
Let B be an operator acting on ). The operator I'(B) is defined by

r(B): A(h) - A(b),

[(B) ) = BE™

with the notation B®™ = B® --- ® B, n times.
Let A, B be two operators on ). We define

dI'(4, B) : A(h) > A(D),

dI (A4, B) g : ZA®!1®B®A®"J

Note that I'(4) and dI'(A4, B) preserve the projection /\ and the number operator N.
We recall a useful estimate, proved in [11, Lemma 2.8 (vi)] and which extend
straightforward to the fermionic case.

Lemma 2.3. Let A, B and C be three operators on by such that ||A||<1. Let u,veb,
we have

1)
((dI(A4, BC)ulv)|< || dI'(B*B)"?v|||| dI(C*C) ]|, (2.3)
(ii)

(N + 1)72dI'(4, B)u||<||d[(B*B)'u]|. (2.4)



312 Z. Ammari | Journal of Functional Analysis 208 (2004) 302-359

2.1.3. CAR representation

Let (L,S) be an orthogonal space (i.e: a real topological vector space endowed
with a continuous positive definite symmetric bilinear form S on L). A CAR
representation over (L, S) is a pair (2, ®,) consisting of a Hilbert space & and a
linear map Laht— @, (h) e B(2) into self-adjoint bounded operators and satisfying

{@r(h), @:(9)} = S(h,9)1 (Clifford relations).

Assume that (L,S) is equipped with a complex structure consisting of an anti-
involution .# : L— L, .#> = —1 compatible with the symmetric bilinear form S in the
following sense:

()
S(h, 7g) + S(Fh,g) = 0.

This allows the construction of creation—annihilation operators

BL(0) = (alh) — 1(51),

Ba(h) = % (Pa(h) + B2 S1)).

Moreover, B,(h), Bi(h) satisfy canonical anti-commutation relations as in (2.1)—
(2.2), with the complex structure ik := #h and the inner product (%|g) = S(h,g) +
iS(h, #g). For more details, see [7,8]. Note that a Hilbert space endowed with the
bilinear form Re(.|.) and the anti-involution i is an orthogonal space with a
compatible complex structure.

A vector Q is called a vacua for a CAR representation (2, @,) over a Hilbert space
9 iff Qe 2 and satisfies B,(h)Q = 0,Vhe 9.

Lemma2.4. Let (Z;,®,,), i = 1,2 be two CAR representations over a Hilbert space
and Q;€ Z; be cyclic vacua for ®,. Then the map

U: @1 —>§Zz,
n n
U [[ B, ()@ =[] B, ()2
j=1 j=1

extends as a unitary map from 9, to 9,.

Proof. The lemma asserts that (Z;, ®,,) are unitary equivalent which follows by
computing scalar products using the CAR relations preserved by U. [
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The Fermionic exponential law." Let b, b, be two Hilbert spaces. We define the two
following maps labelled by 1, r referring to left/right:

Uyye : A(by @by) > A(hy) @ A(by),
such that
Uy @ =00,
Ui b*(ln @ha) = (b* () @1 + (=1)" @b () Uy,
Up b (h @ hy) = (b () @ (1) +1®b* () U, (2.5)

where h;el;, i=1,2. Clearly, U, extend to unitary maps using Lemma 2.4. Let
pi, i = 1,2 be the projection from b; @b, into b, and #; be the canonical injection of
b, into h; ®bh,. We set

Ny =N®1, N, =1®N, acting on A(h;)A(b,).

Lemma 2.5. Let b;e B(b,), i =1,2. We have

U, = Ul(_l)dr(lh)dr(ﬁz) _ (_I)NINZ U (2.6)
Z I’l' ®m @n—m
Uy 4y, @1, = ,;) mm ®p, . (2.7)
. m+k) . )
Ul [Z31 ®u2 = ( m'k') F(l1)u1 /\F(lz)blz,
. m+k) . m
Vi@ =[P s A, for we (b)) med'h). (28)
by O
Uy dr 0 by =(dI'(b)®T+1®dI(h)) Uyr. (2.9)

Proof. To prove Egs. (2.6)—(2.8) it is enough to check them in a basis of A(#; @)),).
Let {e;};c, (resp. { fi};c;,) be an orthonormal basis of by, (resp. b,) with a total order
on Iy, I>. Then {e;®0};., W{0@®f};.;, is an orthonormal basis of h; @b, which we
consider as indexed by the set I = I, ul, endowed with the total order relation
induced by those of Iy, 1, and i<j,Vielj,jel,. We set e =¢;®0, [ = 0®f;.

'T thank C. Gérard for pointing out to me the right map U, and its properties [16].
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Hence we get two bases of A(h; @1),) given by

Lrn = /\jejlejo/\ /\jerj;Oy
and

SRJl,Jz = /\_/erf,-O/\ Njel e;),
where J; =1}, J, = I, finite. Furthermore, using the CAR we have

Ry, = (—1)”‘”2 e .
Now using the above identity and (2.5) we obtain
ULy 0 = Nene® nep fj = UsRy, - (2.10)

This proves (2.6). Moreover if $J, = k, #J, = m, Eq. (2.10) leads to

(]18]1,’]2 = /\ (®jeJIej)® /\ (®A/€J2J9)
k m
k !
= ( +m) p1®k ®P2®m /\ ®jell e](‘)® ®.f€J2];'O' (2'11)

lin!
ktm! k+m

One can write A\, = ngesﬂm Ty, and hence the r.h.s. of (2.11) follows by

noticing that only the €S, ® S,, have non-zero contribution. This proves the first
identity of (2.8). The second holds using the first and (2.6).

Now, to prove Eq.(2.9) it suffices to show it for a rank one operator. Let
by = |h > <My, by = 191> {ga|, then using (2.5) and the fact that dI'(h) =
b*(hy)b(hy),dI’ (by) = b*(g1)b(g2), we see that (2.9) holds true. O

2.1.4. Scattering identification operator
Let i be the map defined by

i:h@h—-b,

(ho,hoo ) ho + hos
Set
Ny =T®N and Ny = N®1 acting on A(h) ® A(D).
We define the scattering identification operator I:
1:A(h) ® A(h) > A(D),

I =T\U g =T0HU", 7= (-1)"" @1, acting on A(h) ®A(H).
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We have the following formula:
n p ¥4 n
I rmee I e =11 b @) I o- 2.
=l Jj=1 Jj=1 i=1

Notice that I is an unbounded operator since it contains an operator I'(i) and

|li]] = V2. In the case b = L*(R?,dk)®g, we can express I using the following
integral formula:

@y = Wk, oo o) B (K)o b (e .k, we A(h), e A ().

1
The linear map 7 : u— lu®y is bounded on A(b) for all y € A}, (b) fixed. Moreover

I(N + 1) ®1 is bounded on A(h) @ A" (h).
We would construct a right inverse for the scattering identification operator. This
is the subject of the following paragraph.

I'(j) Operators: Let j == (jo,j) a map such that
J:b—>bdb,
hi— (joh,joh).
We define the operators I’ /e(J) by
Lye(j):A(D) = A(h) ® A(b),
L (j) = Uil ().

Lemma 2.6. We have:

@ Hb* =H(b*(joh»@ﬂ+<—1>N®b*<jwhi>>9®9,
i=1
r.() [T o ()@ =[] & Goh) ® (D)"Y +1@b (j 1) Q@ Q.
= i=1
.o s . n— n! . n—. .
(i) iy (Noo ) e (g = (1) mJo@( Y ®jsk,
S n! n—k) & i®k
Ty (N )1 () pryy = W]o ®j5
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(i) If jo+jw =1,
I1:(j) =1, 1/h(j)=1.

(iv) Ny (Noo ) Te(f) gy = 151 {k}(Nw)fl(j)\A”(b) = Z Jo @ ey
#{ei=00 }=k

where the sum runs over the set of ¢€{l, ...,n}{o’w} such that ${e; = w0} = k.

Proof. Points (i)—(iii) follow by simple computation and Lemma 2.5. Let us prove
(iv). Tt is enough to check (iv) on a pure wedge product on A"(h). Note that using

(2.9) we get
y 0 0
oo [3 )

Let h;eh, i=1,...,n, we have

F(j)/\?:l hi = /\?:1 (]Ohl®]3€hl) = m Z H Ai78i97
3 i=1

where {1, ...,n}**} and

A b*(johi®0) if & =0,
P b (0@ ki) if &= 0.

Then it follows that we have

0 0 n n
i =/l o
tafor([ 3)rodn=i 5 Tae

Mg (N)F() A h=Val Y7 T 67 Gk,

He=0}=k 1

and hence

which proves (iv). O

Let j = (jo,jw), I = (lo,l) be two maps from b into h@h. We define the
operator dI'(j, 1) by

dr'(j,1): A(h)— A(h) @ A(b),

dr(j, 1) = U, dr(j,1.
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Lemma 2.7. Let j = (jo,jw), | = (l,1x) be two maps in B(hH,h@b).
() Let j(t)e C'(R,2(h,h@b)). We have

& P = dF (o), S0,

(i1) Let b be an operator on . We have
(I (b)) @1 +1@AI(b))I+(j) — I'+(j) AT (b) = dT(j,ady( /),

where ady(j) = ([b,jol, [b,jx))-
(i) Let u,ve Z(dI(|1,F)),e =0, c0. We have

(@F (7 Dule) <1 (o) ull | 4T (o]l

11 dr(|2, ) Pul| | dU(|0]) o).

(v) If jgjo +Jijw <1. We have
[1(No + Noo) ™2 AL (G Dull < || AT (Gl + 12, Lo Jul -
Proof. Part (i) is elementary. Part (ii) follows using Eq. (2.9) in Lemma 2.5. To prove

part (iii) we apply estimate (2.3) with B = (|lg|1/2, 0),C = (sgn(lg)|lg|l/2, 0), e=0, 0.
Using estimate (2.4) we obtain (iv). [

Letj := (Jo,J« ) be a pair of maps such that jy,j, : h—b. We set I() to be the map

1(j) = A™(H) ® A™ (h) > A™ (D),

1(j) = 1T (jo) ®T (jo0)-

Clearly I(j) = fr(j*)* with the identificationj: h@h—-b, j(hoDhw) =joho +Jjohe -
2.2. Wick polynomials

Let we Z(®% D), ®71). We define the Wick monomial of order ( p,q) with symbol
w to be the operator Wick(w) given by

Wick (w) : AT () - A (p),

nl(n+q—p') ® (n— .
. Ak LI S PN (] U DR TS n=p,
Wick(w) gy = (n—p)!
0 otherwise.
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We call Wick polynomial a finite sum of Wick monomials with symbols belonging to
B(®7 b, ®%),jeJ a finite family of indices. We mention that a Wick monomial
can be defined even if the symbol is an unbounded operator, but we restrict ourselves
to bounded symbols.

We introduce the following ‘contracted” symbols to simplify the notation. Let
ue A" (D), veA"(Dh), we B(®?h, ®11) with m<p, n<q, we set

(vlw = (| @1P)weB( @D, (®"D),
wu) = w(lu) @12 ™) e B(@" ™D, ®D),

(vwlu) = (o] @ T w(|u> @ TP e (R, ®I"D).

The following lemma should enlighten the motivation behind the above definition.

Lemma 2.8. We have

() 2e2(®°)~C, Wick(1) =

(i) we4(b), chk(w) dr(w),

(iii) we Z(®"h, ®D), Wick(/\ w) = Wick(w) = Wick(w A),

@iv) hy, ..., hy€b, Wick(Jhy A -+ Ahy)) = b*(hy)...b* (hy), Wick((hy A -+ Ahy|) =
b(hy)...b(hy).

M

)

Let #;, i = 1,2 be two auxiliary Hilbert spaces. We extend the definition of Wick
polynomials to symbols acting on ;. Let weZ(#' 1 ® ®’h, A, ® ®1D), we
define the extended Wick monomial Wick(w) with symbol w as follows:

Wick(w) : 1 @A™ (h) > A >, ® A™ (D),

nl(n+q —p)! -
( q|p) 1n® A\ wel®e7),
(n_p) n+q—p

WiCk("V)‘J{/l ®An(b) =

If veB(H 1, 42 ®D), we have
Wick (v) = b*(v), Wick(v*) = b(v),

where b* are the extended creation—annihilation operators in Section 2.1.

Let us summarize properties of these Wick polynomials in the following lemma.

Lemma 2.9. Let we B(A 1 Q@ @2, /2@ ®1Y),uec A"*(h), ve A" (). We have

(i) Wick(w)" = Wick(w*).
(i) Wick(|u) Aw A (v]) = Wick(|u)) Wick(w) Wick((v]).
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An alternative way to express Wick polynomials is to decompose the symbol on
a basis. Let {¢;},.; be a basis of h with I a totally ordered set of indices. If
weB(A1Q RN, A, ® ®11), then Wick(w) can be written as a weakly convergent

sum on A} ® A™(h) x A5 @ AT (p):

Wick(w) = > P (Ajereilwlnjese) TT b7 () [] ble),  (2.12)

JJ cI5T=p 8J'=q jer Jsj

where (Ajesej|W|Ajese))€B(A 1,4 >) and the sum runs over ordered subsets
J,J'=I w.r.t the order relation of I.

Let us consider the case [) := Lz(R‘l, dk) ® g where g is a finite-dimensional Hilbert
space with a given basis {o;}. Let fie L*(R?), i =1, ...,n, we denote by

(fil )= (fil =) u® i@
A

and
(L, fil: ®"D—>®"s, (®L, /il = ®L, (fil

Notice that IT{_;1 g ;®b(f;) is a bounded operator from A(h) into @" g® A(h),
which we shortly denote by II7_,b( f;), and where b(f;) is introduced in Section 2.1.
Considering (®7_,f]| as a symbol in Z(®’hH, ®” gR®C) it follows that
Wick((®L/il) = T b(fi).

Let {e;};_; be a basis of L>(R?) and we (A", ® ®” b, #»® ®71), then w can be
decomposed as the following weak sum

w = Z ‘@jeJ ej)(@je] ejlw|® e ej)(@jej’ €j’-

JJ 1|8 ]=p sJ'=q

Thus we have

Wick(w) = Z H b*(¢)(®icsejlw|®ies €) H b(e), (2.13)

JJcl|g]=ptl'=q jeJ jel

where the sum runs over all subsets J,J' <1.

We denote by S(R?),S'(R?) the Schwartz space and its dual and we set for 8
a Banach space S'(RY,B):=2(S(RY),B). Let weZB(A Q@ ®"H, #>,®@ ®1Y),
Ve Q@R g, peA @ ®1g, and ue L*(R?). The vector u@y is in 41 ® ®”h
and the map

Lz(Rd") X Lz(de) > (v,u)— (v®¢|1vu®¢)fz® @1 (2.14)
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is a bounded sesquilinear form. Hence it defines an operator in #(L*(R%), L*(R%))
and using the kernel theorem we can associate to (.® ¢|w.®y) an element of

S'(R¥P+4)), Therefore, we associate to we B(A"| ® AP (h), #> @ A4(D))) a kernel in

S’(Rd(”" B(A1® ®Fg, #>2® ®7g)), which we still denote by w.
Recall that b(k) introduced in Section 2.1 is an operator-valued function acting

from A(D) into g® A(h). In fact, one can see that IT,_b(k;) maps A™(S(R?)) into
®”? g® A™(S(RY)) as an operator-valued function in S(R%). This gives meaning to
the quadratic form

HH @A™ (S(RY)) x A @ A™(S(RY)) - C
(D, %) " (L b(ki)@lw(ky, ... kg, K, ... k)
I ,b(k) W) 4, 0 01 v aqr) Ak dK.

Thus Wick(w) has the following weak integral representation:

Wick(w):/b*(kl)...b*(kq) (ST O A 3
b(K,)...b(K}) dky ....dk, dK...dK;. (2.15)

In the sequel we will use decomposition (2.13) with a particular choice of the basis
of L*(RY dk). Let e(s) = —\/%jl Pi(s)eo(s), jeN, where P; are the Hermite

polynomials satisfying 4 We 5= (—l)j Pi(s) ¢~7. The family of Hermite functions

(& = ®jese, J{l, ..., d}"}
is an orthonormal basis of Lz(Rd). Let weZ(A1® ®P D, #»,® ®?1), we have

Wick(w) = > Hbe,/l,JHbeJ

IeN¥ JeN® i=

i = (®L &lw|®) &) (A1 @@ g, #20@%),  (216)

where the sum runs over all I = (1), _,,J = (Ji),_,, i, Ji€ N, The r.h.s. in (2.16) is

weakly convergent on 4"} ® A™(h) x # ', ® AM(p).

2.2.1. Boundedness of Wick polynomials
In the case b:LZ(Rd,dk)(@g, we recall a well-known estimate [17] giving
a sufficient condition to the boundedness of Wick monomials. For p,q,peN,
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we denote by &7 the class of symbols given by the Banach space S;,(IR‘“”*‘I)7
B(A 1 ® QT g, #,® ®?g)), defined in Section 1, by the norm in (1.3).

Theorem 2.10. Let we B(A1® @b, # 2@ ®4Y) and ¢ = [3d(p+ q)] + 3. There
exist C, 4 such that:

[Wick(w)[[< Cp g [[w(ki, ---=kpak/17 D) q)”/"’

P4

Proof. Using the decomposition (2.16), we see that

[[Wick(w)||<pg Z 411 |,@(,[1 QR M > Q ®%g)"
17
Notice that &; = ®/, EJ 7J = (Jj) € N% are eigenvectors of the harmonic
oscillator @4, = %Zj‘lﬁ dsz + 57 — 1 with Og4e; =|J|e;. In the sequel we omit
the subscript in the norm of (41 ® ®” g, 4> ® ®7 g).
Using Hélder inequality, we have the following estimates for o = [¢ (p + ¢)] + 1.

Sl < S Wl (214 ]+ 1), (2.17)
1.J 1.J

(lehjl (] + 1) )(Z (1 + 171" >% (2.18)

IJ

C(e1|04,w0, " er) : (2.19)

/=0

IJ

<CN(Oup + Oug) Wik, .ok, Kl oo K| it 0 s 0 @yt @ @iy (2:20)

<Clwkn, cor oKy oo K (2.21)

Note that o is chosen such that the second term in (2.18) is bounded by a finite
constant. In (2.19) we have a Hilbert—-Schmidt norm which we replace by the
L? norm of kernel (2.20). The last inequality follows by estimating the norm of
the operator (@4, + O4)" by a Schwartz norm through a L* estimate, (see e.g.
[26, Example 7]). O

Hence, the map )  sw> Wick(w)e Z(A4 1 @ A(D), # 2@ A(h)) is continuous. It
is also equivalent to the continuity of the application which maps a sequence A; s
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with values in (4" @ ®” g, #>,® @7 g), satisfying 3, ; H}L”H2 (] +J))** < oo,
into the Wick monomial (2.16).

2.2.2. Wick commutation relations
We give now some commutation relations satisfied by the Wick polynomials.

Proposition 2.11. (i) Let weB(A# 1@ b, #,® ®4Y) and A a linear operator
on Y. Then
[dI'(A4), Wick(w)] = Wick([dI'(4),w]).

(ii) Let ge B(h). Then
I'(q)Wick(wI'(q)) = Wick(I'(q)w)I'(q),

I'(q)Wick(wI'(q)) = Wick(T'(¢)wI'(¢*))I'(q), for q isometric,
I'(q)Wick(w)I'(¢~") = Wick(I'(¢)wI'(¢™")), for q unitary,

[I'(q), Wick(w)] = I'(q)Wick(w(1 — I'(9))) + Wick((I'(g) — 1)w)I'(¢)-

(i) Let heh, we B(A1® ®Ph, #»® ®11Y) and p + q even. Then
[Wick(w), b*(h)] = pWick(w|h)), [Wick(w),b(h)] = gWick((h|w).

Proof. To prove (i) it is enough to show it for w = | A{h; > { Alg;|. Note that

-

(A7 (), T b ()T yb(gi)] = ) Micib" (hi)b" (Ahi) s jb" () 1T b(g1)

Jj=1

P
+ I 6% (h) Y I <ib(hi)b(A) ;s ib (). (2.22)
j=1

Hence (i) holds since the r.h.s. in (2.22) is a Wick monomial of order ( p, ¢) with the
symbol [dI'(A4),w]. Statements (ii), (iii) are easy and left to the reader. O

2.2.3. Wick tensor product

The idea of adding a copy of Fock space describing asymptotic free particles had
already proved its depth. In this way, we need to construct observables with an
another copy of Fock space.
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Let for n= (ni,m), p=(p1,p2), A =AH" or A, T! be the unitary map
defined by

T A" @@"h->@""h " ”here ®”"h®®"”h,
U® ®nlh ®®1 gj'_)®pl+1h ®®p2+1 gj®‘//® ®p1h ®®1 gj-
We set ay, 4, (N) = N> + q2q1, %, p,(N) == Np2 + pap1.
Let weB(A1 @ A7 (b)) ® A7 (h,), H > @ AT (h;) ® A9 (D,)), we define the left/

right tensor Wick monomial with symbol w by

Wick® (w): #'1 ® A™(h,) ® A™(b,) —» 4, ® A™(h;) ® A" (b,),

Val(n —pi+ @)l /m!(m — ps + q2)!
(n—p1)! (m—pa)!

Wi0k1 (‘V)\Jifl@/l“(f)l)@/l’"(bz)

(ﬂ#@ A ® A ) (T)7 % (1 ® (1) 12V @1 4,)

n—pi+q (m—pa+q2)

(ﬂ ®" 71, ®W®ﬂ®lﬁpzbz) X Tfl)l X ((71])“”"”2<N)®1]/1(b2)),
and

Wick® (w) : A1 @A™ (b;) @ A" (hy) > A @A™ (h) @ A" (by,),

~/nl(n—pr+q)! \/ml(m = py + ¢2)!
(n—p1)! (m— py)!

Wick® (), g 4106, @ 47(0) =

(“/@ A e A ) (T3)7" % (12 ® L) @ (=1)™)

n—pi+qi (m—pa+q2)

X(ﬂ ®" 71, ®W®1] M2 bz) X Tr’il X (ﬂf] ® 1]/1”([)1) ® (—1] )Npl).

In the case where b, =b, = L>(R?,dk)®g, we have the following integral
representation for tensor Wick monomial with symbol weS'(RY(P+aitrta)
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B(A 1@ @ g, A H@ N g)):

q1 q2
WiCk1® (W) = /W(kl-,17"7k/1717"7k2717"’kl2,17") H b*(kl,)®1] H(—ﬂ)N®b*(k21)
i=1 i=1
1 1
x [T (0" @bk, [ bk, @1 dk dk', (2.23)

j:pz i:[)|

where we integrate over all variables k;;, kj ;.
We collect some properties of tensor Wick monomials in the following lemma.

Lemma 2.12.
(1) Let mi e B(AH 1@ A7 (b)), H 2R AT (Y,)), and wye B(AP*(b,), A (b,)). We have

Wick® (w; @wy) = (=1)" 12N Wick (w;)(=1)"172N) @ Wick(w,).

(i) Let w=[A{L 7> AL gLl @A E By > S AT g2l Then

q1 42
Wick® (w) = [ 6" () @1 ] (-1)" @b (ha)
1 1
1 1
X H (_ﬂ)N®b(92,i) H b(g1) ®1.
P2 D
q1 q2 1 1
Wick® (w) = [[ 6" () @ (DY [[ 1@ (hao) [[ 1®6(g20) [ b(91.:) @ (-D)*.
1 1 P2 2

(iii) Let jieB(Y,), i=1,2. Then

F(jr) @ (j2) Wick(?, (w I'(j1) @ T (j2)) = Wick5. (I () @ ' (j2)w) T'(j1) @ T (2)-

(iv) Wickl(?r(w*) = Wickf?r(w)*.

V) Ify = LX(RY, dk)®g, 0 = Bd(p+q)] + 3, then the map
‘sﬂ§1+pz,q1+qz B W'_)WiCkS()r(W) e‘%(‘%f] ®A(b) ®A(b)7 ’%/'2 ®A(b) ®A(b))a

is continuous.
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Proof. (i)—(iv) follows by a simple computation on each sector 7'} ® A"(h) ® A" (D).
We can decompose a symbol of a tensor Wick monomial using Hermite functions in
a similar way as in (2.13). Now applying the same argument as in the proof of
Theorem 2.10 we obtain (v). [

Let us summarize some properties of tensor Wick monomials in the following
proposition.

Proposition 2.13. The following assertions hold.
() Let we (A1 @A7(h; @b,), #2@AY(h; ®,)).

Uyje Wick(w) Uy, = Wik (DwT"),
where
~ !
vudn= (pptff’ rGunT (i), ue (b)), veAd(h,),
and
T N M ekg 00k
[A"(b; @b,) — vt (Vl — k)'k'pl ) :

(i) Let we B(A" 1 @ AP (b)), A > ® A4(D)).

Wick(w)I = IWick® (Pw),

(p+9q)
r'q!

Tu®uv = unv, ued’(h), veAl(h),
and

P:AM(H) 5> AT (D) @A™h,  Pu=u®Q.

(i) Let j= (jo,joo) be a pair of maps acting on by and weB(# | ® A’ (h),
A 2@ AU(D)).

Wick(I'(j)w)T:(j)" = I(j) Wiek® (PwIT(j) ®T'(j%,)-

Proof. We first assume without loss of generality that #° | = #", = C. To prove (i)
it suffices using linearity and anti-symmetry to consider w a rank one operator
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such that:
w= Al <A gl by, greh @y,
P2y = 0,1<j<q1,p1hj =0,q1 +1<j<q,
p2g; = 0,1<j<q,,p19; = 0,¢, +1<j<{.
We have
Unih = Z k(g — k)! Z PP @ @y
ses,

= /\1 'pih;® /\q1+1p2hj'
Hence we obtain
UwU" = | Af'pihy > AT PG @A ipahy Y A L pag)l-
This yields
UWick(w) U7 =1I{'b"(prhy) @I (1) @b"( pahy)

HZ;H( DY @b(p2g)11, ¢+10(P19) ®1;

UWick(w)U; =I{'b*(pi1hj) ® (—1 ) 0 I @b (pahy)

115 1@b(pag)) 11} b(prg) @ (-1)".

Therefore using Lemma 2.12 (ii), we obtain (i).
One can reduce (ii) to the case where w = |ATh; > { Algj|, hj,g;€b. Let us first

compute Pwl. For u* e A" (b), p* +p~ = p, we have

~ _ t4p)! _
(whgy T @u) =L P (gt @)
1 )4
——— > o), & g ut@u).
pp " g€, 1

For each It <{1,...,p}, I =1I\I", p™ == #I", there is a unique permutation o+
sending {1,...,p"} onto I'" and {p™ + 1,...,p} onto I~ and respecting the order
relation. Set 6(1 *) =¢(or+). The set S, splits into classes of permutations such that
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({1, ...,p}) = I'". In each class a permutation ¢ can be written as the product of ¢+

by a permutation of /™ and a permutation of /. Using this fact and the anti-
symmetry of U%, we obtain

(Mg T @u)y = 3" elI")(njergi® Ajer-gju @u),

It <{l,...p}
ie:
r SUS Z e(IT) Njergi ® Ajer-gj-
It<{1,...p}

This yields

Pwl= Y e(IN)AORY {Ajerg;® Ajer gjl,

It <{1,...p}
= Z 8([+)|/\L{hj></\jel+gj|®|Q></\jel—gj|. (224)
Itc<{l,...p}

Let us now compute Wick(w)/. We have
b*(W)I (i) = L())b*(iTh), b(h)I'(i) = [(i)b(i*h), heb,
and hence
Wick(w) = 111" (h)IT,b(g;)
Wick (w)I(i) = (i) IT{b* (i hy) [T, b(i" g;)
Wick(w)I = I (i ) ® (~ 1) IT(1 ®b(g;) + blg) ® (~1)").
Let now Aji be operators. Then

1 -\ — 1 4%
MAf +4;7)= Y A7

To ae{l,...,p}'"} we associate I+ = {Jley = +}. This yields with 4 = b(g;) ®
(=", 47 =1®b(g)) to

H})(A;r_i_A]*) = Z 8(1+)H1+Bl'ﬂ®b(ql)H1+9lb(qj)®(_l)Na
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Hence

Wick(w)I =1 Z eI 5 A ®b(g)15ib(g) @ (—1)"

I+<{l,...p}
= IWick® (PwI),

using (2.24).
Part (iii) follows by using the fact that I',(j)* = IT(j;) ® ['(j*,) and by combining
part (i) with part (iii) of Lemma 2.12. [

Proposition 2.14. Let we B(A QA (h), X ® A1(Y)), p+q even and j= (jo,ju):
h-b@®D. We have

I (j)Wick(w) = Wick(w) @1 I ()
+ I'(/)Wick(w(1 = T'(j)))
+ Wick® ((F(j5) = ) QT (joo )T *wP*)I*( )
+ Wick® (1 — (I(j%,) — [ <QNT WP ().
The proof follows from simple computation, we leave it for the reader.

We finish this subsection with some commutator estimates in the case }) =
L*(R?,dk)®g. Recall that we define the Schwartz semi-norms on S(R") as

W= > KD e ey
4B <m
Let geC(RY), and set ¢R —q( 5, R>1. Let jo,j,eC”(RY) and set
IR = jo(2),jR =j, (2%). We denote by #* the Sobolev space of functions

in LOO([R{‘J) such that all their derivatives of order equal or less than s are in
L™ (RY).

Theorem 2.15. Let weB(A 1@ A" (h), # 2@ A7 (), 0= Bd(pi+p2)]+3, and
00 = d(p1 + p2) + 2. We have

@) If [|qll px (gey<1. Then

I[T(g"), Wick(w)]|| < Cp, (||f]< >||WO+ >max(P1sP2)1

Pitp2

X zl: ||ﬂ®;;]®(l )@1] 171+[72 I‘V”(/
i=

P1:P2
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(i) Let jo,jo as above such that jojs + joji, <1. Then
|1 (") Wick (w) — Wick (w) @ 11* ()|

[k _ k max( py,p2)—1
f°(§) ff(ﬁ) “)

pPitp2
D Mo @ (1 =) @ Tyocra-awllge
i=1

:

< CplsPZ <‘

W A

P12

P1:P2

pitps
‘R
+ E ||ﬂb®([—l) ®J, ®1]b®(/;1+pzfz)\/v||yo .
i=1

Proof. Using Lemma 2.11 (ii), we see that the commutator is equal to
(™), Wick(w)] = I'(¢")Wick(w(1 — I'(¢"))) + Wick((I'(¢%) — )w)I'(¢").

Since ||qR®1]g||b< I, we have only to estimate Wick((I'(¢®)—1)w) and
Wick(w(1 — I'(¢®))) using Theorem 2.10. One can write

w1 =g = 3" w(e @ (1) @1© - 1),
=1 —

1

(I'(g") —1w= i PR ®(@R-1) 1@ 1)w.
N—_——

i=1 !
i

Let 0= ®)71 ¢"®@1eB(A™(h)), 0; = @7} ¢** @1 eB(A" (), Wi = (¢ — 1)w
and W; = (1 — ¢®*)w*. We have
P1

P2
[T (q), Wick(w)][|< D [[Wick(Q; )l + > [[Wick(Q:W7)]].
i=1

i=1

Hence (i) reduces to estimate the terms ||Wick(Q; W;)|| and ||[Wick(Q;W;)||.
Using inequality (2.19) in the proof of Theorem 2.10, we obtain

HWiCk(Qi I/V,) || < Cplapz Z ||kaallj Qi I/V1| |L3(R”( P B(A @ ®F 0,42 ® ®1 D))"

[o[+|Bl< o

By simple computation one can write k*Q; =35, €5 ® =] 7w P gR(BE)k .

(&)

Therefore, we get

i—1
1Willss

P1P2

[Wick(QW)II< Gy pe

W
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This leads to the bound given in (i). The second statement (ii) is similar to the
above one. The fact that jyjj + jj% <1 yields that I(j®) is bounded and by
Proposition 2.14 one have only to estimate

Wick((1 = I'(jo))w),  Wiek® (PwI(I'(jo) = 1) ®I'(jz0)).
Wick® (PwI1® (I'(j,) — 2> <Q))).
This can be done using Theorem 2.10 with the kernels written as follows:

PwI(I'(jo) = @I (juo)

4
1) . @ (5—i
= Z s!(pi —s)! Z Pw(jg " V@ (o = 1) AJE )4y @ L)
~ R ®
: _ _ o S A ®p —s s
PwI(I'(jo) — 19 <Q]) = ; S(pr—9)! wi Ty @1 i) O

3. Hamiltonians and main result

The class of fermionic Pauli-Fierz models considered in this paper describes in
physics a confined finite many particles system interacting with a fermionic field. The
free and the perturbed dynamics are described by a free and an interacting
Hamiltonians. In this section we will introduce those Hamiltonians and state our
hypotheses and our main theorem.

3.1. The model

3.1.1. The free dynamic
Let 4" be a Hilbert space and K a bounded below self-adjoint operator on 4~

describing the atomic Hamiltonian. Let g be a Hilbert space, we consider ) =

L*(R?, dk) ® g to be the one-particle space of the fermionic system. We denote by the
italic letter k the one particle fermionic momentum and by the italic letter x =iV}
the one particle fermionic position.

In all the sequel we assume

K bounded below,
(HO) { (K +1)"" compact,
g finite dimensional.
We can assume without loss of generality that K is a positive operator and we denote

by A"y, A > respectively, the Hilbert spaces Z(K), ¥ (K%) endowed with their graph
norms.
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Let » a matrix-valued function in C(R?,%(g)) be the dispersion relation of
fermions. Let 4;(k), ..., A;(k) be the eigenvalues of w(k) with uniform constant
multiplicity for keR?. We assume that o satisfies the following hypothesis:

Va(k)#0, for k#0,
lim ||w(k)

lk| = o0
inf  (w(k)y|y), =m>0,
(H1) keR?||yl,=1

||g = +0,

dim(Ker(w(k) — 4i(k)14)) is k independent,
inf  |4;(k) — 4;(k)|>0,
keR? i)

W 2i(k)ye L™ (RY), || =1.
We set
H = #@A(b), <#1/2 = (%/‘1/2 ®/1(b),

where # denotes the Hilbert space of the joint system spin-fermion. The free
Hamiltonian is defined by

Hy=K®1+1®dlI'(w), acting on .
We mention that Hy is essentially self-adjoint on Z(K)® A™(Cy(RY) ®g).

3.1.2. Perturbation
Let P be an clement in B(AH )2, #) N HB(H, A ;) such that P* = P. Then we

can construct the perturbed Hamiltonian H respectively to the interaction P by
Kato—Rellich theorem [25]. Namely, we have

H = Hy+ P, acting on &,
is a well-defined self-adjoint operator with domain Z(H) = 2(H,). Set
B =BA QR g, A RRIg), B =BARR"s A ®R!g),
and
B =BH @R g, A ®Rg), Bipp=RBH QR g, H,®®g).

Let us consider a perturbation given by an even Wick polynomial having the
following form:

pP= Z Wick(w,4) + Wick(w; ),
PYEE
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where
Ec{(p,9)eN?|p+qe2N}, finite and 1vp7qeL2(Rd<1’+‘1),ﬁl/zmgl/z). (3.1)

One can assume

10) > > lE@hepglenlly,, oz, <o

PAEE [eNU JeN®

where {&/},.n« is the basis of L?(R%) defined in Section 2.2. Hypothesis (I0)

ensures that P is Ki-bounded and therefore the perturbed dynamic is well
defined by the Hamiltonian H which is a bounded below self-adjoint operator
acting on .

In all the following we will assume without loss of generality that
AB(8) =~ M gim(g)(C) such that o is a diagonal matrix-valued function satisfying
hypothesis (H1). Indeed, if it is not the case one could diagonalize w(k) by means of

unitary transforms u(k)e C(RY, #(g)), since it is symmetric. Therefore we could
unitarily transform the Hamiltonian H by I'(u(k)) and obtain

F(u(k)HI (u(k))™ = K®1 +dI (u(k)o(k)u(k)™")

+ Z Wick (I'(u(k))w, I(u(k)) ™).

[Iq ex

Hypothesis (H1)—(10) are stable under this change of representation. This is obvious
for (I0) however some care is needed for (H1), see Lemma A.1.

We will assume a slightly stronger condition for P than (I0) which has the
advantage to be more convenient to check since it involves the kernels of the symbols
wp.q instead of their operator norms. We recall for p,geN and ¢ == Bd(p + q)] + 3,
the definition of the particular classes of symbols

Sl/z~ S (RUPHD) B, , ® B ),

Sl = (Rd(erq %1@@1)

Hence, we will assume

Z [, q||s'/’ < 0.

Py qEH

Proposition 3.1. Let P given by (3.1) and assume that (10') is satisfied. Then
P(Hy + 1) e B(#).

Moreover H .= Hy + P is a bounded below self-adjoint operator with 9(H) = 9(H,).
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Proof. Using Theorem 2.10 with %'\ = 4>, =%, and ¢ =[3/2d(p+q)]+3
we obtain

-1 -1 . -1
1P+ 1)7HI< C 37 g K+ 1) g, + Dy (K + 1) s,
Pges
SC Y wpgllge- O
PgEE

We assume also an hypothesis concerning the Mourre estimate. Let
1
G =dr (—5 Va)(k)Dk + Dcho(k)>,

be the conjugate operator introduced in Section 4.3. The Mourre hypothesis is

(MO) Z H[Gv Wp,q] | ‘S}z/qz < 0.

P4EE

To prove asymptotic completeness we need more restrictive hypothesis on the
interaction. We assume a decay of the perturbation of short range type, similar to the
one appearing in the bosonic case [11].

5 S e () pglly, € ORDB#>1 BR)
Roo[(|Xi]) wogllg €
pges =1 ooel PS04 O(RO) (I1).

We introduce the following notations:

A = R A(),
H = Hy®1+1®dlNw), H™ =H®1+1®dl(0), acting on #,

No=N®71, N, =T®N, acting on #*".

3.2. Result

We formulate the main result in the next theorem. We define the asymptotic
vacua space

HE = {WeH b*(h)¥ =0,heb},
where % are asymptotic annihilation operators defined by

b (h) =s— im eitleitHop(p)eitog=itH ey,
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Their existence will be proved in Section 5.1. Let 4 be an interval of R, we denote by
14(H), 1%P(H) the spectral projection of H, respectively, on 4 and on the pure point
spectrum of H in 4.

We set

HE = AT RAD), Hva(H) = Ranl™(H)#.

Theorem 3.2. Assume hypotheses (HO), (H1), (I0’), (M0) and (SR) are satisfied. Then
asymptotic completeness holds for the fermionic Pauli-Fierz model, i.e:

I+

H ZQ%bd(H), and ffi =x.

The proof is given in Section 5.4.

4. Spectral analysis

In this section we study the spectral properties of the fermionic Pauli-Fierz
Hamiltonian. We prove in Theorem 4.3 the existence of a ground state below the
essential spectrum with a gap equal to m. Such property was extensively studied
especially in the massless case, see [4-6,15,19,27]. In this paper we follow the proof
in [11].

We establish in Section 4.3 a Mourre estimate which has as consequence the local
finiteness of point spectrum outside thresholds. This is an important step in the
proof of asymptotic completeness as it is known for the N-body Schrédinger
operators [10].

We start by collecting some commutator estimates which will be often useful in the
sequel.

4.1. Commutator estimates

In this subsection, we will often use the following functional calculus formula
for a self-adjoint operator 4 and a function ye Cy° (R).

7(A4) =i /«: g%(z)(z—A)*leAdz, (4.1)

where e C;° (C) is an almost analytic extension of y satisfying
Ar =12 0=x(2)[<callm(z)[", neN.

Let g€ COW(R"), satisfying 0<¢g<1, ¢ = 1 near 0, in particular ge #™,VseN and
llg(%)||,~ are uniformly bounded for R>1. We set ¢® == q(%) ®1,.
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Lemma 4.1. Let ye C;° (R). We have for R large

O(R™") under (SR),

[(H),I'(¢")]e { o(R")  under (11).

Proof. We first compute [H, I'(¢®)] as a quadratic form on Z(H).

[HO’F(qR)] = dr(qR’ [w>qR])7

[P, T(g")] = " T(g")Wick(wy (1 = I'(g"))) + Wick((I'(¢") = 1)wp)T'(¢") + he.

PYEE

We notice that [H, I'(¢®)] extends to a bounded operator on Z(Hj).
Applying formula (4.1), we obtain

i @Z( )z —H) '[H,T(¢®)](z— H) 'dz ndz.

(). = 5 | GG

Then, it is enough to estimate (i + Ho) '[H,T'(¢®)](i+ Ho)'. We have the matrix
[0, ¢"] = ([wi(k),qR]),;€ O(R™) since [wi(k),q®]e O(R™!). Using Theorem 2.15 (i)
in the two cases (SR), (I1), we obtain the claimed estimate. [

Let joe C° (R?),j,, € C* (RY), such that 0<jp, /. <1, jo = | near 0, j,, constant
near o, j3 +j2 <1. Hence jo,j €%, VseN and || j(%)[|,~,&¢ =0, c0, are uni-
formly bounded for R>1. We set j& = jo(%),/% =j» (%) and j& = (& j®).

Lemma 4.2. Let ye C;° (R). We have for R large

O(R™Y) under (SR),

P(HSHI () I*(jR)X(H)e{O(RO) under (11).

Proof. The proofis similar to the above one and it is based on commutation relation
on Proposition 2.11 and estimate in Theorem 2.15. We have

K(HEO(5) = I (j*)2(H)
i [%
2n C 82

(2)(z — H*Y Y HS (R = I (IYH) (z — H) 'dzndz. (4.2)
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Theorem 2.15 gives us

G+ HEY ™ (H T (GR) — I (GRYH) G+ Ho)'||< C

(I(i + HY) T AE(R [ o]) (i + Ho) |

rtq

+ Z Z [Myeen ®(1 —j§)®ﬂb®<p+q—z)wp,q||slyqz

PgeE i=1

rtyq

+ Z Z ||1]h®(f—1> ®j§o ®1][)®(P+t/f)wp,q|sl/z>
Pges =l e
The fact that [j® w]e O(R™") and hypothesis (SR) and (I1) imply the following:

16+ ) () - 1R+ Ho) e { OUR ) under (88

4.3
o(R%)  under (I1). (43)
Now, combining (4.2) and (4.3) we prove the lemma. [

4.2. The essential spectrum

Next, we prove a HVZ-like theorem describing the essential spectrum of H.

Theorem 4.3. Assume (H0), (H1), (10") and (11) satisfied, then

Oess(H) = [infa(H) +m,+o0].

Consequently, inf o(H) is a discrete eigenvalue.

Proof. Let ye Cy°(] — o, inf o(H) + m]). Since H*'1}; ; o, [(Ny ) >inf 6(H) 4 m, we
conclude that we have

2 (H™) = 7 (H*)0y(Nos ).
We use Lemma 4.2 to write

(H) = 2 (H)I(j)T ()

=1(7*) 10y (N oo )2 (H™)I* (%) + o(R")
=1(7*) 10y (Noo)I* () 2(H) + o(R)

=T ((j3)*)2(H) + o(R).
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We claim that I'(( j§)2)x(H) is a compact operator. In fact, we first see that
[T 3G (K + X0, o(Dy,) +1)"" is compact for every ne N. Next since m>0

Vo0 (V) (Ho +i)"'>0 when n— oo in norm,

and using the fact that y(H)(H, +1) is bounded we obtain the compactness of
I((j&)*)z(H) and hence of y(H). This shows

oess(H) < [inf 6(H) + m,+ 0.

To prove the converse inclusion, it is enough to find a Weyl sequence for every
energy level 2€]inf o(H) +m,+o[. Let ¥ be a ground state. The existence of ¥ is

ensured by the first step of the proof. Let ie Ci° (R?) with ||h]| = 1 and ko such that
(ko) +inf o(H) = A. Let R;eR? be a sequence satisfying lim;_, ., j~!|R;| = oo.
We set

(k) = J*h(j(k = ko))e!*.

Then w—lim;, A =0, ||[i|=1 and Ilim;,, (w(k)— w(ko))h; =0. Let
¥y = b (h)¥.

We have

(H—=A)Y;=b"(hj)(H—A)Y +b"(wh))¥ + [P,b"(h))]|¥
=b*((w(k) — w(ko)) ) ¥ + [P, b* ()]

Since lim;_, o, [P,b*(h;)]¥ = 0, we conclude that lim;_, o, (H — 1)¥; = 0. Clearly
¥; is a Weyl sequence for the energy level 1. [
4.3. Mourre theory

Let Gy be the operator acting on [) defined by
1
Go = —5 (Vo (k).Dg + Dy Vo (k)), on Cy (RY).

The closure of Gy is a self-adjoint operator with C(‘)°°(Rd) as a core [3, Proposition
4.2.3]. Tt is also the infinitesimal generator of the strong continuous group @,
associated to the vector field Vo, given by

@ F (k) = [det Vo_ (k)] F(¢_ (k). for Fe LA(R?),
where ¢, is the flow of the vector field Vw. We denote the threshold set by

7= 0opp(H) + mN*,
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where N* is the set of positive integers. We define the conjugate operator
G = dF(G())

It is essentially self-adjoint on A™(C¢* (R?) ®7g).
Before considering the Mourre estimate we prove the following preliminary
lemma.

Lemma 4.4. Assume that (HO)-(H1), (10") and (MO0) hold. Then

(i) €Y preserves Z(H),
(i) (¥, G¥) — (G¥. HW)|<c(|[Ho¥ | + ||¥|"). ¥ e 2(Ho) 0 9(G).

Proof. Let check Mourre hypothesis (i)—(ii). Let Hy, == e’ Hye 9. It suffices to
show that 2(Hy) < Z(H,,) to prove (i). We have

Ho, =K®1+1®dI (e "Ppe)
=K®1+1®@dI (w(¢_,(k))).

Using the fact that |Zf\i1 o(p_,(ki)) — (k)| <N supy ||Vo(k)
We have as quadratic form on 2(Hy) n2(G),

|l we obtain ().

[H,iG] = dI'([Vo|) + > Wick([wp.4,idI'(Go)]) + he.
PYEE

Assuming hypothesis (M0) and using Theorem 2.10, we see that [H,1G] extends as a
bounded operator on 2(H,). This proves (ii)). O

Theorem 4.5. Assume that (HO), (H1), (10), (I1) and (MO0) hold. The following three
assertions hold:

(1) Let LeR\t. Then there exist ¢>0,Cy>0 and a compact operator Ky such that

Ve (H)[H,iG) g 1 (H) = Coll p—g 146 (H) + Ko

(i) For all [Ay, 2] such that [y, 2]t = 0, one has

dim1PP , (H)# < 0.

2]

Consequently o, (H) can accumulate only at t, which is a closed countable set.
(iii) Let 2eR\(tuapp(H)). Then there exists ¢>0,Co>0 such that

Ve (H) [H iGN sy (H) = Colpy—g ) (H).
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Proof. We will follow the proof of the Mourre estimate in the case of a Pauli—Fierz
Hamiltonian for bosons [11].
We set

d(2) = inf{z IVor(k; z+Z 1,2...,reapp(H)},

i=1

:inf{z |V (ki) T+Z )=24n=01,. .,reapp(H)}.
i=1

:[)"_:u>/l+ﬂ]7 ,u>0a

d"(A) = inf d(v),

ved!

g"(i) = inf d(v),

veA!
A

Ey =info(H).
We give statements, implying Theorem 4.5, that we will prove by induction in

n:Hi(n): Let ¢>0 and A€[Ey, Ey + nm[. There exists a compact operator Ky, an
interval 45 4 such that

14(H)[H,iG)4(H)>(d(A) — e)14(H) + Ko.
H,(n): Let ¢>0 and A€[Ey, Ey + nm][. There exists an interval 4> 4 such that
14 (H)[H, GG a(H) > (d(2) — e)4(H).

Hi;(n): Let p>0,¢0>0 and &>0. There exists 6>0 such that for all Ae[Ey, Ey +
nm — &), one has

10 (H)[H,iG]1 5 (H) > (d"(2) — &)1 s (H).

A

Si(n): 7 is closed countable set in [Ey, Ey + nm].S>(n): For all 41 <Ay <Ey + nm with
[41,42] "t = 0, one has

dim1 Fp
A1,22]

(H)H < 0.
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The sketch of the proof is given by
Sy(n—1) = Si(n),
(S1(n), Hy(n — 1)) = Hi(n),
H\(n) = H,(n),
H,(n) = Hj(n),

H, (I’Z) = Sz(l’l).

We notice that H(1) and S(1) are immediate because the spectrum of H is discrete in
[Eo, Eo + m]. Sa(n — 1) = S)(n) is obvious. Recall that the hypotheses of Mourre (part
(i)—(ii) of Lemma 4.4) implies the weaker condition H e C'(A) introduced in [3] (i.e.: the
map Rasi—»e(z — H) 'e 4, zeC\o(H) is strongly C' (R, Z(#))). Under the later
condition proved by Lemma 4.4, the fact that H,(n) = H»(n), H»(n) = Hs(n) follow
from standard arguments in [3,9,24]. The implication H,(n) = S»(n) is based in the
Virial theorem (see e.g. [10]), which holds also under the hypotheses of Mourre shown in
Lemma 4.4. Then, we have only to prove the implication (S;(n), H3(n — 1) = H,(n)).

Let ye Cy° (R).

1(H) = Iy (Noo )T ()2 (H) + 1)V, (Noo ) () 2(H) - (4.4)

= T(US))2H) + TG o0 (N )2 (HE (G5) + 0(RO). (4.5)

Eq. (4.4) follows from the fact that 7(jR)I*(j®) =1 and I(j®) is bounded. Eq. (4.5)
follows from the fact that one has

(G = 1G™ 0y (No) I (), 1GR) =T (MU,

and application of Lemma 4.2. We recall that the term I'(( j§)2)x(H ) is compact

since the operator I'((j&)*)(Ho + 1)7% is compact.
Let A€ [Ey, Ey + nm]|. Since Sa(n — 1) = S| (n), the set 7 is closed in [Ey, Ey + nm],
which gives d(1) = sup,.d"(4). So we can choose u such that d(1)>d(4) —3.
Hs(n— 1) gives for 4 <Ey+ (n— 1)m
&

10 (H)[H,iG 5 (H)>(d"(%1) P (H).

Replacing 4; with 1 — dI'(w(k)), we obtain
1,5(H +1@dI (k) ([H,iG] + 1®dI([Vol))

%1 5(H + 1@ AT (@(k)) 11 o (N=0)
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>1,(H + 1©dr (k)
x (d"(2 —1@dI (w(k))) + 1®dI(|Vl*) — g)ﬂ[l,oc[(Noc)
> (d"(2) = 3)lLg (H +1@dI (k) (H + 1@ AT (0))1)1..(N-:)
> (d"(4) _%)ﬂA‘E(HjLﬂ®dr(w(k)))(H+ﬂ®dr(w))ﬂ[17w[(NOO)
Let ye C5° (R), 71 € C5° (R) such that y;y = y. One has
x(H)[H iG]y (H)
= T ((j§"))2(H)[H,iGly(H)

+ () V10 (N o )2 (HEO) ()20 (H)[HL iG] (H) + 0(R) - (4.6)

=T ((j&))x(H)[H,iGy(H)

+ ()10 (N )2 (HEO () [H iG] (H) + 0(R") (4.7)

=T ((j§)*)2(H)[H,iGlx(H)
+ TG oo (N )2 (HE) [HE GG g (HOO(5) + o(R%). (4.8)

Eq. (4.6) follows by (4.5). Lemma 4.2 gives (4.7). Since [H,iG] is similar to the
Hamiltonian H, one can easily derive an equivalent estimate for [H,i4] as in Lemma
4.2. This will imply (4.8) with G**' = G®1 +1® G.

Since the operator KX = I'((jR)*)y(H)[H,iG]y(H) is compact, this gives for
such that supp y<[A — 0,4+ 9|

KV Gy (d(0) = 5 ) 2(H) + K (R) + o( ).

Choosing R large enough, we obtain H;(n). Properties (ii), (iii) are standard
consequences of (i). [

5. Asymptotic completeness

In this section we prove asymptotic completeness for the fermionic Pauli-Fierz
Hamiltonian H. We first study the asymptotic limits of Wick polynomials, then we
construct the wave operator and we show that it is an unitary map. In Section 5.2, we
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prove a minimal velocity estimate using the Mourre estimate and some other
propagation estimates. We construct the asymptotic velocity projection in
Section 5.3 and then we finish the proof of asymptotic completeness.

5.1. The wave operator

We prove existence of asymptotic limits of Wick polynomials, using a Cook
method [21]. We are interested in both limits in time F oo, but since they are
equivalent we will consider only the limit 4 oo.

Theorem 5.1. (i) The following strong limits

bPE(h) =s— lim ee iy (p)eithe it e, (5.1)

t—>+w

exist and are called asymptotic creation—annihilation operators.
(i1) The map

hshsb*#(h) are norm continuous.

(iii) The CAR relations hold:

{b*(g),6* ()} =0, h,geb.
(iv) The Hamiltonian preserves the asymptotic creation-annihilation operators:

epEF (e ™ = b F (7" h),  for heb.

Proof. We use a Cook argument to prove the existence of limit (5.1). Let b, denotes
the subspace Cg°(R/\{0}) and h, := e "h, hel. We have for hel,,

t
b (h)e (H 1) = b*(h) +i / P b (h)|(H +1) e ™ ds.  (5.2)
0

Now, using commutation relation in Proposition 2.11 and the short range condition
(SR), we see that for hel, we have

> ZPWM Wh(k)(K +1) " e0(r™), p>1.

PYEE i=

This yields the strong limit (5.1) for helb,. We extend it to hel using density
argument and the fact that ||6%%(h)||<||h||,heb,. The case of b(h) is similar
and follows by taking the adjoint. The continuity of the map in (ii) is a consequ-
ence of ||p*% (h)||<||h||. The anti-commutation relations and the action of ¢ on
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the asymptotic creation annihilation operators are elementary. Note that (iii) yields
that |[b%*(h)[| = ||a]l. O

Proposition 5.2. We have for hel,

bE(h)1)_ o ) (H) A Sy (H) .

Proof. The proof follows using a standard argument due to Heegh—Krohn [22]. O

We define the space of asymptotic vacua associated to the CAR representation
given by the asymptotic creation-annihilation operators

AT ={Penx|b*(h)¥ =0,hehl.
We denote by #* the space #'= ® A(b).
Proposition 5.3. The following assertions hold:

() A% is closed H-invariant space.
(i1) One has

Ran1P?(H)c . *.

Proof. The fact that »#'* is H-invariant follows from Theorem 5.1. Let us prove
now (ii). Let ue # such that Hu = Eu, one has

lim e h(e ™ h)e "y =0,
-+

since s — lim,_, + ,, b(e "h) =0 and e#h(e " h)e "y = "H-E)p(e~*h)y. This
gives bt (Mu=0. O

We define
H* =H - ®1+1®dl (o),
and the wave operator
Qr .t s,

(hiyp, for yex*, hieb.

I

>
+
*

oty [ v ()2
i=1
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Theorem 5.4. Q* is a unitary map satisfying

[[6%* )@t =Q* 1, @ [ b*(hi), for hieb,
i=1 i=1

HOQY = QtH*,

Proof. The intertwining relations in Proposition 5.1 gives that Q% is isometric
and satisfies properties stated in the theorem. Let prove that Q% is unitary. Let

¥e(Ran(Q*))"'. Since H preserves the later subspace one may assume that ¥ is
localized in energy ie: ¥ =1_. ;(H)¥. Then, if nm>info(H) and using
Proposition 5.2, we obtain that

I1 2% ) =0, Vh, ...,h,eb. (5.3)
i=1

Let ny be the smallest positive integer such that identity (5.3) is satisfied for
n=mny but do not hold for n=ny—1. Therefore, [, b*(h)Pex*
and T[;,, b°*(h) I/, b* (h;)PeRan(Q*). Using the fact that ¥eRan(Q*)",
we obtain

=

0 1o

b () P||.

0= (lpﬁ b** (hy)

i:n() i=2

b+(hi)‘1”> =

i=2

This is in contradiction with the choice of ny and hence leads to the fact that
Y=0 04O

We define an extended wave operator

QXL X

@y @ [ b7 (hiy2 =[] b* (hi)y.
i=1 i=1
We notice that QT’;E =

isometry. Another construction of the extended wave operator is given by the
following theorem, see [11, Theorem 5.7].

Q= . This suggests to treat sometimes Q*“* as a partial

Theorem 5.5. (i) Let ue 2(Q°"*). Then one has

. 1 1 ext
lim etfre 1™y = Q*tEy
-

+o ’

where I is the scattering identification operator defined in the Section 2.1.
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(i) Let yeCy®(R). Then Rany(H™)<=2(Q™“*) and the operators Iy(H™'),
Q™4E 5 (H™) are bounded. Moreover

lim eitHIe_itHextx(Hext) — QEXt’iX(HCXt).

t—>+

5.2. Minimal velocity estimate
In this subsection we will derive a minimal velocity estimate, following the
approach of Graf [18]. It is based on the Mourre estimate and it does not need a
double commutator estimate. We first prove a maximal velocity propagation
estimate in Proposition 5.7, then we state phase space propagation estimates, which
will be used to show the minimal velocity estimate.
We will use the following notation for Heisenberg derivatives:
dy = 0, +ijw(k), ],
Dy = 0, +1[dI'(w), .],
D = 3, +i[H, .].

We recall a standard argument often used to prove propagation estimates, see e.g.
[10, Lemma B.4.1].

Lemma 5.6. Let ®(t) be a bounded family of self-adjoint operators. Assume that there
exist Co>0 and operator valued function B(t) and B;(t), i =1, ...,n, such that

n
D (1)=> CoB*(1)B(1) = > B; (1)Bi(1),
i=1
© .
/ ||Bi(t)e " ™u|*dt< Cl|ul)?, i=1,...,n.
1
Then there exists Cy such that

)
/ 1B()e " ul Pt < C1ul
1

Proposition 5.7. Let y e Ci* (R). For R'>R>vmax = sup||V(k)|| ), there exists
such that we have:

* X\ )2 = dt
v (v (57) ) ateme v el
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Proof. Let Fe C™(R) be a cutoff function equal to 1 near oo, to 0 near the origin,
with F'(s) > 1z z|(s). We consider the observable

ot g ar (w2 )

D(1)> 1" Coy(H )dF( ('j'))x(H)—FO(z‘“L p>1. (5.4)

We claim that

One has

Do(1) = x(H) dF(d]oF<@>>x(H)+,{( )[P 1dF( <| |))]X(H).

Using the fact that d]OF("—f‘) >"7°F’(‘ ‘) + O(t7?), it is sufficient to show that the
second term in the previous identity is O(zr *), u> 1, to have (5.4).

o) ()
Erabs ) o

Using Proposition 2.11, it is enough to estimate the kernel of the operator

[w,,q,dl"( ( ))] which is equal to -7 | (‘ ‘)wpq(k D 1F<‘x )wl,q(k k).
Now hypothesis (SR) gives us

j+i [paar (e (B Y i eown. e

This proves (5.4). Then using Lemma 5.6 and inequality (5.4), we obtain the claimed
estimate announced in the proposition. [J

Proposition 5.8. Let ye C;°(R),0<co<ci, and

Oty (1) = dr<<§ — Vor(k), Ty ("“) (5 - Vo) >>

One has

1 - 2 di 2
[ 1000 ete ul <l
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Proof. Let Ry(x)e C* be a function such that:

€o
A

Ryo(x) =0, for |x|< 5

1
Ry(x) :Ex2 +¢, for |x|=2¢,

vi’RO?,ﬂ[Co,Cl]HXD'
We choose ¢; >2, ¢;>c¢; + 1 and we define the function
R(x) = F(|x[)Ro(x),

where F(s) =1, if s<cy, F(s) =0, if s=c,.
We set

b = R(Y) ~ 1((VR(Z).2 = Vo)) +he).

t

Pseudo-differential calculus gives
2(H)Do dI'(b(1))1(H)

> 1) (1000 = 15 (Vapra (1) ) ) + 00072,

t t

The first term will serves in the application of Lemma 5.6 and the second is integrable
along the evolution using Proposition 5.7. To complete the proof of the proposition,
it suffices to show that:

2(H)[P,idl(b(1))[x(H)e O(™"), p>1. (5.6)

As in the Proposition 5.7, it is enough to see that [P,dI'(b(¢))] has the kernel
Yopges 2omy D(Owp gk, k') =370, b(1),wpq(k, k') which is using (SR) condition is
estimated by O(¢ *), u>1. O

Proposition 5.9. Let O0<co<c),JeCy ({co<|x|<e1}), xeCy° (R). For 1<i<d,

one has
/ o0
1

2 dt

l .
) x| = <elulP.

ar ([ (2) (2 - 0w + he
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Proof. We set

Let Ji e Cy° ({co<|x|<c1}),0<J <1, J = | near the support of J;. We consider the
observable

®(1) = —x(H) AL (b(1))(H).
One has
x(H)Do dI'(b(2))(H) = —y(H) AT (dob(2)) 2 (H),
and we have using [11, Lemma 6.4]

2 (H)Do dI'(b(1)) x(H)

) dr (1 (3) (5= k) + hel ) 1)

_§X(H) d[’(<§ —Vo,J, (i;) (; — Va))>>y(H) + 0(t717”),

\Y

The second term is integrable along the evolution by Proposition 5.8. Then, it is
enough to show that

2(H)[P,idl(b(1))[x(H)e O(™"), p>1.

This follows by using (5.5), the fact that J (%)A% € O(1). The proof ends by application
of Lemma 5.6. [

Proposition 5.10. Let ye C;° (R), supported in R\(tUopy(H)). There exist ¢>0,C

such that we have
0 X 7i
/1 I (1] [0, <l‘|> ) X(H)C tHu

Proof. Let ¢>0. Let ge Cg° (|x|<2¢) such that 0<¢g<1,¢q(x) =1, if |x|<e.
We set

2 dt

- < C|lul).

I'(q")y(H),

~1Q
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where G is the conjugate operator considered in Section 4.3. The Heisenberg
derivative of &(¢) is

D) = (H) dI(q' dog’) * T(q')(H) + e

+ [P S T + he

+ 'y (H)(¢")[H,iGIT (¢')2(H)

=t (H)I(g") - T'(¢)T(¢)(H)
=R+ R+ R3 + Ry.
We claim that
RocO(™"), u>1. (5.7)

To prove (5.7) it suffices to use Lemma 4.1 and the fact that $I'(¢")(N + 1)?e0(1).
We consider now R;. We have

dog’ = _2lt<§_ Vw(k),Vq(§)> +he+ 1" =: %g’ + 7,

where '€ O(¢7?). We have

H) a2 D) (E)] | Ol )

We set

ol—
ol—

~1Q

By = y(H)dI(¢',¢')(N+ 1), By=(N+17—I(¢")x(H).

So we obtain the inequality
Ri> —¢;'t'B 1B} — &t 'ByB;.
Using arguments in [11, Proposition 6.5], we obtain

~B:By> — Ciy(H)I(¢')'(H) - Cr ™,
* i dt
B S< i
1

Using Lemma 4.1 and Theorem 4.5 (iii), we have

Ry> Cot™ ' y(H)T (¢’ x(H) — Cr .
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We have
&
—Ri<Co 2(HNT(¢")*7(H) + Ct 2.

Collecting the four terms, we obtain
Dp()= —eot 'ByBs — ey 't 'BiB] + Ry + Rs + Ry
> (Co— e Cy —eCo)t™ 2 (H)T (¢ '2(H) + R(1)

> Cox(H)t™'T(¢')*7(H) - R(1),

where R(f) is integrable. By Lemma 5.6, we obtain the inequality announced
in the proposition for y supported near a one energy level 4. Then we complete
the proof for an arbitrary y using a standard argument, see e.g. [l0,
Proposition 4.4.7]. O

5.3. Asymptotic velocity
In this subsection we construct asymptotic velocity projection and we give the

proof of asymptotic completeness (Theorem 3.2).

Theorem 5.11. Let g,ge C° (RY) such that 0<q,g<1,q,4 =1 on a neighborhood
of 0 and q' = q(%)

(1) The following limits exist:

r*(q) =s— lim &™r(ge .

t—+ w0

(i1) We have
I*(gq) = '*(q)1* (),
0<I'*(¢)<r*(g)<1, if 0<g<y,

[H,I*(q)] = 0.

Proof. It is sufficient using a density argument and Lemma 4.1 to show for
1€ Cy” (R) the existence of the limit

s— lim ™y (H)I(¢")y(H)e ™. (5.8)

t— + oo
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In general, showing the existence of asymptotic limits amounts to bound Heisenberg
derivatives. We have on ¢

0"y (H) I (¢")7(H)e ™) ="y (H) dT (¢, dog")x(H)e "
+ ey (H)[P,il (¢")]x(H)e . (5.9)
We know from the proof of Lemma 4.1 that
((H)[PAL(q)]z(H)e O ™), u>1. (5.10)

Let now analyze the r.h.s. in (5.9). One can write
1 1 ! t
dog' =g +71',

where

and
reo(t?).
Then we estimate the part of r/; using inequality (ii) in Lemma 2.3, we obtain
l2(H) A (¢, ")z (H)||€ O(1?). (5.11)
The term coming from %g’ , will be estimated as follows:
(&7, 7(H) AT (g, ¢")(H)e )| <AL (lg' o (H)e Ml wesr. (5.12)

We notice that the r.h.s. in (5.12) equals the observable in the propagation estimate
Proposition 5.9. Now, combining (5.10)—(5.12) and Proposition 5.9, we prove the
integrability of the Heisenberg derivative (5.9). Thus we prove the existence of limit
(5.8) using a general argument (see e.g. [11, Lemma A.1]).

The first statement in (ii) follows from the fact that

I'(q'q)=TI(qT(q)
The second statement follows by
0<I'(¢")<I(g)<1 if 0<¢<q.
The last statement is a consequence of (i) and Lemma 4.1. [

Let us state a corollary of the above theorem, giving the construction of the
asymptotic velocity projection P(;—r.
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Corollary 5.12. Let {q,} € Cy (RY) be a decreasing sequence of functions such that
0<¢,<1, g, = 1 on a neighborhood of 0 and (-, supp q, = {0}. Then the following
limit exist and it does not depend in the choice of the sequence

(@) PE = limy o I (gn),
(i) Ran Py c'*.

Moreover POi is an orthogonal projection.

Proof. The existence of the limit (i) follows from Theorem 5.11 (ii)) and the
argument that the limit of a decreasing sequence of self-adjoint operators
satisfying I'*(¢,1)I*(gn) = T*(¢u+1) exist in the strong limit, see [l0,
Lemma A.3]. The independence from the choice of the sequence follows from
the fact that there exists an index m, such that g, =g, , §n = qm,; lim, -, o M, = + o0
and Theorem 5.11 (ii).

Let us prove statement (ii). Let ue #, hely, we have

bE(WI* (q)u = lim e h(h)e ™M (q)u

= lim " p(h)r(g")e ™ u

t— + oo

= lim "I (¢"b(qg'h;)e " u. (5.13)
t—>+ 0

In order to show (ii) it suffices to prove that b*(h)u =0 for ueRan(Py) and
he C (R"\{0})®g. This is due to the fact that for /el there exists a sequence
hye C (RN\{0})®g, such that lim,_, ,, 4, = h and kb= (h) is norm continuous.
Now let he Cg° (R!\{0}), one can choose ge C., (R), 0<g<1, ¢(0) = 1 supported in
a small enough neighborhood of 0 such that by a stationary phase argument
q'hyeo(l), t—-+ 0. Hence by (5.13) and the fact that the map hr—b(h,) is
continuous, we obtain that b* (h)I'* (qJu=0. O

5.4. Proof of Theorem 3.2

Let joe Ci (RY), joo € C* (R?),0<)0,0< )00, J3 +/% <1, jo =1 near 0 and j, is
constant near co. Set j = (jo,j) and j' = (j§, /', ), where ji = jo(5),/, =jx (5).
Theorem 5.13. (i) The following limits exist:

s— lim ™ V(e = wE()),

t—>+ w0

s— lim &r(j)e ™ = wE ().

-+
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(i1) For a bounded Borel function F, we have
W= (J)F(H) = F(H™)W* ().

(iii) Let qoe Cy® (R?), o € C*(R?), Vqo, € C° (RY),0< g0, 4o <1,90 = 1 near 0.
Set j = (q0jo,q0joo ). Then

I'*(q0) ®'(qo (Vo (Kk))WE(j) = W*()).
(iv) Let ge C@C(Rd),ogqg 1,qg =1 near 0. Then
W) (q) = WH(qj),  where qj = (qjo,qjw)-

v) Letfz (]~0,]~7) be another pair satisfying the conditions stated in the theorem.
Then

w= (] )* w* (]) = F(fojo +700joo)a

in particular if j3 +j*, = 1, then W*(j) is isometric.
(vi) Let jo+jo = 1. If xe C;° (R), then

QNE Y (H™ YW () = 1(H).
Proof. To prove (i) we use the same arguments as in Theorem 5.11. It is enough to
prove the existence of the following limit for some ye Cy° (R),

s— lim ey (HEYI (e ™ y(H), (5.14)

We compute
O L(HVE ()2 (H)e™) = &7 (1 (H) Dol (1)2(H)
(PO () — 1 () P H))e ™,
where D is the asymmetric Heisenberg derivative defined by 0, + iH§*. — .iH,. We

have DoI*(j') = I'(j*, 0 j').
Pseudo-differential calculus gives

1
bOj[ :?gl_"_rf’

9" = (90,9 ), g£=—%((§—Vw(k))Vj£G)+hc), e=0, 0
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with '€ O(17?). We obtain using estimate (iv) Lemma 2.7:
2 (H) AL () 2(H)|| € O ). (5.15)

Now with u! = € y;, one obtain using estimate (iii) Lemma 2.7:

[ | 2 (H™) AT, 9") 2 (H)uy)|

! ex !
<|1 I (lg0])* @ 1z (H™ Yy || || AT (g )*x (H )y

+ (11 @AL(Ig%, )2 (H™ | | AT (Ig", [} (H)u ||

Then the integrability of the term y(H®™)Dol*(;)x(H) follows using
Proposition 5.7.
Using Lemma 4.2 we obtain

HHS (P (') — I'(J)P)(H) e O(™"),  p>1.

Then, the existence of the limit in (i) follows.
(i1) Follows by spectral theorem and point (i). Point (iii) follows using the fact that

lim eit dF((/J)I-v(ql)efitdF(w) _ F(q(Vco)),

t—>+w

L) @I () (J) =1(j").
(iv) Is true since
r(jOrq) =1(ja".
(v) Is a consequence of the fact
1GOI(') = TG Jy +7 575 ):
(vi) One has

H™ . (No.) =mk + inf o (H).

Then for ye Ci° (R), there exists npe N such that for n>ny

2(H ), 0 (Noe) = 0. (5.16)
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We have
Qext =+, (Hext) W (])

= Q% E 10, (N oo ) (H™) W= () (5.17)
=s— lim_ Mg (Noo )7 (HE) I (e (5.18)
:s—thr+n o (NI (j)e ™ y(H). (5.19)

Eq. (5.16) follows from (5.16). Eq. (5.18) follows from limit (i) and Theorem 5.5.
Lemma 4.2 and the boundedness of the operator 1}y, (N )(No + 1)72 gives (5.19).
We use now an estimate proved in [12] and which extends also to our case.

183 (N ) (YN + 1) <4 1) (5.20)

Since II*(j') =1, letting n— oo we obtain Q™“Fy(H*)YW*(j) = y(H). This
completes the proof. [

Theorem 5.14. Let j, = (jou.jo n) be a sequence satisfying the hypothesis stated in the
beginning of Theorem 5.13 such that jo+j, =1 and for any ¢>0 there exists
m,¥n>m,supp jo, < |[—¢,¢]. Then

QF =w— lim W*(j,),

n—+o

A'* = Ran Pf.

Proof. Let qeCi°(R),0<¢<1 and ¢g=1 in a neighborhood of zero such that
qjon = jon for nlarge enough. Using Theorem 5.13 (iii) and Corollary 5.12 we obtain

()@MW (ju) = W* (i),

w— lim Pf@IW=*(j,)— W*(j,)=0. (5.21)

n—+o0

Let ye Cy° (R). We have

QFy(H) = Q¥ Q% y(H™YW=(j,) (5.22)
=w— lim QT QN y(H™)PF QTWE () (5.23)
=w— lim Py @1y(H*)W*(j,) (5.24)

n— oo
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=w— lim y(H™)W=*(j,) (5.25)
=w— lim W*(j,)x(H). (5.26)

Eq. (5.22) follows from Theorem 5.13 (iv). Eq. (5.23) follows by (5.21). Eq. (5.24)
is true since Py commutes with H™' and that Ran Py <4+, Q%41 .. @1 = QF
and Q0% =1, ®1. (5.25) follows from the fact that Pf ®1 commutes with
H*' and (5.21). Eq. (5.26) is Theorem 5.13 (ii). So we conclude by a density
argument that

QF =w— lim W*(j,),

n—+o

PE@1Q* = Q**
So, we obtain
Ran Q** = ¥ * ®I'(h)=Ran P @ I'(h) =4+ @I (b).
Thus, we conclude that
A* =RanPf. O
Proof of Theorem 3.2. It suffices to show that # ' cRan1,,(H), to prove

Theorem 3.2.
Proposition 5.10 gives the existence of ¢>0 and C >0 such that

A t —itH 2dt 2
1 11(q")x(H)e™ ul|” —< Cllull%,

where ye Ci° (R\(tuap,(H))) and ge Cy° ([—¢,¢]),q = 1 for |x|<5. Theorem 5.11
gives that

17 (") (H)e™ " ul | = |IT* (@) x(H)ull = 0, 1+ c0.
Hence I'*(q)y(H) = 0. Therefore, we have RanP(;—LcRanﬂw,rpp(H)(H). Now,
Theorem 4.3 gives that 7 is a closed countable set and op,(H) can accumulate

only at 7, s0 1p,(H) = 1,04, () (H). This proves

Hoa(H) = H*.
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Appendix A

Let RYs 1+ A(A) €.#,(C) be a symmetric matrices-valued function. Assume that
A(%) has Ei(2), ..., E;(1) eigenvalues with constant uniform multiplicity for ieR?
and satisfying:

inf  |Ei(2) — Ej(2)]>0.
keR? i)

We diagonalize 4 (1) by means of an unitary matrix u(2) such that u(2)4(2)u(2)~" =
D(2).

Lemma A.1. The three following assertions hold:

() If Ae C*(R?, .4,(C)) then u(2), D(%)e C(RY, .i,(C)).
(i) 1f VA2 e L™ (R, .4,(C))! then VD(i)e L™ (R?, .#,(C))".
(iii) If VA(2)#0 then VD(1)#0.

Proof. The map T, : Rs & (A(4) — &)~" is analytic on & except for some finite
simple poles which depend from A. Let (Ao, &), ¢ a(A(4)) be fixed. The map
A—-T) is in C°(0O,,, . #,(C)) for O, a small neighborhood of Zy. Let E;(4), ®;(1),

i=1,...,n be, respectively, the eigenvalues and the normalized eigenvectors of
A(A). Hence
P2 =5 [ () - &
nee 21w r ’

is in C%(0,,,.#,(C)), where I is oriented closed contour containing only the eigen-
value E;(/). Therefore, that eigenvectors and eigenvalues of 4(2) are in C*(R?). This
proves (i).

We have the following estimate:

}II@/A(A)IIS sup (9 A(4)Pi(4), Pi(4)| <10, A(A)]-
n i=1...n



358 Z. Ammari | Journal of Functional Analysis 208 (2004) 302-359

Moreover,

16;D(4)

| = sup [E(D)] = sup [(GA()i(2), Pi(2))]

l...n

Thus we obtain (ii) and (ii1). O
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