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Abstract. We study the scattering theory of fermion systems subject to a smooth local pertur-
bation with a non-vanishing odd part. We introduce a modified free fermion fields which have
an appropriate commutation relations with the free Fock fermion fields. We construct the

wave operators using the modified field and prove asymptotic completeness. Our work extends
former results on Hilbert space asymptotic completeness.
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1. Introduction

The free and perturbed fermion systems are favorite models in QSM. This is related

to the fact that fermion fields are bounded operators and, hence, perturbation theory

in the spirit of Dyson–Schwinger series is well adapted to the investigation of those

models. For example, the above approach allows the construction of perturbed

C�-dynamical systems. Recall that if U is a C�-algebra and at is a one parameter

group of *-automorphisms on U, then we call the pair ðU; atÞ a C�-dynamical system.

Let d be the infinitesimal generator of at and P 2 U such that P ¼ P�. We denote by

ðU; aPt Þ the perturbed C�-dynamical system satisfying @taPt ¼ dP � aPt , d
P :¼ dþ ½iP; 	


and can be expressed by means of Dyson–Schwinger expansion.

One of the questions arising in this subject is the unitary equivalence of free and

perturbed dynamics, known as scattering theory in C�-algebras [12, 16]. Results on

the equivalence of dynamics for fermion systems based on a perturbative approach

are obtained in [1, 2, 4, 5], (see also the survey [6]). Under the condition of existence

of a unique physical ground state for the perturbed system, equivalence of dynamics

implies asymptotic completeness.

In this Letter, we present a new result on asymptotic completeness for a fermionic

system describing a zero temperature Fermi ideal gas perturbed by a local interaction

which may have a non vanishing odd part. To simplify the presentation we consider

a simple model. However the result could be extended without much work to more

general situations as spin-fermion models, quantized spin 1
2 Dirac particle, see [3].

Our approach is nonperturbative, time depending and uses a similar strategy as in
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[10]. The result we obtain applies for smooth local perturbations and extends those

in [1, 3, 5] and [6, Theorems 2.8, 3.3].

Before making the above condition precise, let us first fix the notation. Let H be

a Hilbert space, we denote the Banach space of bounded operators on H by BðHÞ

and the group of unitary operators on H by UðHÞ. We consider the one-particle fer-

mion space in the momentum representation to be h :¼ L2ðR
n; dkÞ and denote by

x :¼ @k=i. Let H be the anti-symmetric Fock space over h given by

H :¼
L1

n¼0

VðnÞ h, where
Vð0Þ h :¼ C and O ¼ ð1; 0; . . .Þ is the vacuum vector. Let

o 2 C0ðRn;RþÞ be the dispersion relation of fermion. The free Hamiltonian is

defined by

H0 :¼ dGðoÞ;

where dGðoÞ denotes the second quantization of o. Let b, b� be the usual annihi-

lation-creation operators representing the CAR on h. Let U be the C�-algebra gene-

rated by polynomials on bðhÞ, b�ðhÞ, h 2 h. If V 2 U such that V� ¼ V, then we can

construct the perturbed Hamiltonian H with respect to the interaction V using the

Kato–Rellich theorem [15]. Namely, we have that H :¼ H0 þ V, is a well defined

self-adjoint operator with domain DðH Þ ¼ DðH0Þ.

Let us collect the needed hypotheses. We assume that o satisfies the following

conditions:

ðDÞ

Ho 2 L1ðR
n
Þ;

HoðkÞ 6¼ 0; for k 6¼ 0;
lim

jkj!1
oðkÞ ¼ þ1;

inf
k2Rn

oðkÞ ¼: m > 0:

8>>><
>>>:

Note that the last condition on o is crucial on the proof of asymptotic completeness.

We consider perturbations V 2 U of the following form:

V :¼
Xd
i¼1

Z
RnðmiþniÞ

V iðk1; . . . ; kmi
; . . . ; kmiþni

Þ�

� b�ðk1Þ 	 	 	 b
�ðkmi

Þ bðkmiþ1Þ 	 	 	 bðkmiþni
Þdk1 	 	 	 dkmiþni : ð1Þ

We introduce the Banach space SnðR
m
Þ as the completion of Cn

0ðR
m
Þ with respect to

the Schwartz norm

k f kn :¼
X

jajþjbj4n

sup
k2Rm

jka@b
k fðkÞj;

where a; b 2 Nm and ka@b
k ¼

Pm
i¼1 k

ai
i @

bi

ki
.

DEFINITION 1. Let V 2 U such that V� ¼ V. Then V is said to be in the class of

smooth local perturbations A, if V is given by ð1Þ and

V i 2 Sbi
ðRnðmiþniÞÞ; bi 5 2nðmi þ ni þ 2Þ þ 2; i ¼ 1; . . . ; d:
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Let A be an operator on h, we denote by G(A) the operator on H given by

GðAÞj^ðnÞh :¼ A� 	 	 	 � A|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} :
n

Let N denote the number operator. The Fock CAR representation h 3 h 7!

fðhÞ :¼ 1=
ffiffiffi
2

p
ðb�ðhÞ þ bðhÞÞ is a free fermion field ðH;f;G;OÞ (see Definition 4).

We set

a�ðhÞ :¼ b�ðhÞð�1Þ
N; aðhÞ :¼ ð�1Þ

NbðhÞ; h 2 h:

By Proposition 5, we see that ða; a�Þ define a free fermion field. Let ~U be the C�-alge-
bra generated by polynomials on aðhÞ, a�ðhÞ; h 2 h. Let tt; tVt denote the one-para-

meter groups of �-automorphisms given by the Heisenberg evolutions associated

respectively to H0, and H.

PROPOSITION 2. Assume ðDÞ holds and V 2 A. The strong limits

g� :¼ s� lim
t!�1

tV�t � tt;

exist on ~U.

Proof. The proof follows by Proposition 9. &

Let HbdðH Þ be the space of bound states of H and set a�ðhÞ :¼ g�ðaðhÞÞ; h 2 h. We

define the asymptotic vacua space and the free space, respectively, by

K� :¼ fC 2 H j a�ðhÞC ¼ 0; h 2 hg; H0 :¼ HbdðH Þ �H:

The wave operators are given by

W�: H0 ! H; c�
Yn
i¼1

a�ð fiÞO 7!
Yn
i¼1

a��ð fiÞc; fi 2 h:

THEOREM 3. Assume that ðDÞ holds and V 2 A. Then W� is unitary and the

asymptotic completeness holds, i.e.

K� ¼ HbdðH Þ and H� :¼ Ran ðW�Þ ¼ H:

2. CAR Representation

Let ðL;SÞ be an orthogonal space (i.e: a real topological vector space L endowed

with a continuous symmetric bilinear form S). A CAR representation over ðL;SÞ

is a pair ðD;FÞ consisting on a Hilbert space D and a linear map L 3 h 7!

FðhÞ 2 BðDÞ into self-adjoint bounded operators and satisfying

fFðhÞ;FðgÞg ¼ Sðh; gÞ1 ðClifford relationÞ:

Assume that ðL;SÞ is equipped with a complex structure consisting on a conjugation

I : L ! L; I 2 ¼ �1 compatible with the symmetric bilinear form S in the following

sense:
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(1) Sðh; IgÞ þ SðIh; gÞ ¼ 0;

(2) Sðh; hÞ > 0; for all h ¼ 0:

This allows to have a complex structure ih :¼ Ih; h 2 L and an inner product

ðhjgÞ :¼ Sðh; gÞ � iSðh; igÞ. Thus, we can construct the creation-annihilation opera-

tors:

B�ðhÞ :¼
1ffiffiffi
2

p ðFðhÞ � iFðihÞÞ; BðhÞ :¼
1ffiffiffi
2

p ðFðhÞ þ iFðihÞÞ:

Furthermore, BðhÞ;B�ðhÞ satisfy the canonical anti-commutation relations:

fB]ðhÞ;B]ðgÞg ¼ 0; fBðhÞ;B�ðgÞg ¼ ðhjgÞ1; ð2Þ

where B] stands for B or B*. Note that a Hilbert space endowed with the bilinear

form Reð:j:Þ and the conjugation i ¼
ffiffiffiffiffiffiffi
�1

p
is an orthogonal space with a compatible

complex structure. For more details, see [7, 9].

DEFINITION 4. Let H be a Hilbert space and ðD;FÞ a CAR representation over H.

ðD;FÞ is said to be a free fermion field if it is endowed with a continuous repre-

sentation G of the unitary group UðHÞ and a cyclic vector O such that

(1) UðHÞ 3 U 7!GðUÞ 2 UðDÞ,
(2) GðUÞBðhÞGðUÞ�1

¼ BðUhÞ;U 2 UðHÞ,
(3) GðUÞO ¼ O;
(4) 1

i@tGðeitAÞjt¼0 5 0; 8A 2 BðHÞ;A5 0:

We denote a free fermion field by the quadruple ðD;F;G;OÞ.
Let ðD;F;G;OÞ be a free fermion field over a Hilbert space H. Consider U to be

the C�-algebra generated by FðhÞ; h 2 h and let Ue denote the even CAR algebra

(i.e: the C�-algebra generated by even polynomials on BðhÞ;B�ðhÞ; h 2 H). We define

the involution J by

J:D ! D; J :¼ Gð�1HÞ:

Clearly, we have J� ¼ J; J2 ¼ 1D. We define an even/odd projection

Pe=o:U ! U;

PeA :¼ 1
2ðAþ JAJÞ; Po :¼

1
2ðA� JAJÞ; A 2 U:

Hence the algebra U decomposes to a direct sum of vector spaces U ¼ Ue � Uo,

where Ue ¼ PeU and Uo :¼ U� Ue ¼ PoU.

PROPOSITION 5. Let ðD;F;G;OÞ be a free fermion field and J an involution on D
such that

½J ;A
 ¼ 0; 8A 2 Ue; fJ ;Ag ¼ 0; 8A 2 Uo;

½J ;GðUÞ
 ¼ 0; 8U 2 UðHÞ:
ð3Þ
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Set

FJ ðhÞ :¼
1ffiffiffi
2

p ðB�ðhÞJ Þ þ JBðhÞÞ:

Then ðD;FJ ;G;OÞ defines a free fermion field satisfying

½FJ ðhÞ;FðgÞ
 ¼ JReðh; gÞ:

Proof. An elementary computation using the fact that J commutes with A 2 Ue

and anti-commutes with A 2 Uo shows that ðD;FJ Þ is a CAR representation.

Moreover, the representation G preserves the relation

GðUÞFJ ðhÞGðUÞ
�1

¼ FJ ðUhÞ; U 2 UðhÞ:

Hence, ðD;FJ ;G;OÞ defines a free fermion field. &

We call the above free fermion field ðD;FJ ;G;OÞ a J -free fermion field associated

to ðD;F;G;OÞ. Note that J satisfies the hypotheses (3) of Proposition 5.

LEMMA 6. Let J be a self-adjoint involution satisfying ð3Þ for the Fock fermion field

ðH;f;G;OÞ. Then J ¼ �ð�1hÞ
N.

Proof. Using the fact that fJ ; bð f Þg ¼ 0, we obtain that JO 2 CO. Since J 2 ¼ 1,

it follows that JO ¼ �O. Furthermore, we have

J
Yn
i¼1

b�ð fiÞO ¼ ð�1Þ
n
Yn
i¼1

b�ð fiÞJO:

Hence J ¼ �ð�1Þ
N. &

The above lemma and Proposition 5 provide us exactly with �J-Fock fermion

field associated to ðH;f;G;OÞ.
We recall a known theorem, see [7, Thm. 2.1].

THEOREM 7. Let ðDi;Fi;Gi;OiÞ; i ¼ 1; 2 be two free fermion fields over a Hilbert

space h. The map:

U: D1 ! D2; U
Yn
j¼1

F1ðhjÞO1 ¼
Yn
j¼1

F2ðhjÞO2

extends to an unitary map from D1 to D2.

Note that Theorem 7 yields that if ðD;F;G;OÞ is a free fermion field over h then

it is unitarily equivalent to ðD;F�J;G;OÞ.

3. Scattering Theory

3.1. ASYMPTOTIC FIELDS

Let tt; tVt denote the two one parameter group of �-automorphisms on U defined by
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ttðAÞ :¼ eitH0Ae�itH0 ; tVt ðAÞ :¼ eitHAe�itH; A 2 BðHÞ:

Clearly, the free dynamic tt preserves U. To see that the perturbed dynamic tVt
preserves U it suffices to express tVt by means of Dyson expansion, see [9, Prop.

5.4.1] and [8, Thm. 3.1.33], i.e:

tVt ðAÞ :¼ ttðAÞ þ
X1
n¼1

in
Z t

0

dt1

Z t1

0

dt2 	 	 	

Z tn�1

0

dtn½ttn ðVÞ; ½	 	 	 ½tt1 ðVÞ; ttðAÞ


:

ð4Þ

The Møller morphisms are defined by

g� ðAÞ :¼ lim
t!�1

tV�t � ttðAÞ; A 2 U:

The following definition has been introduced in [16].

DEFINITION 8. A C�-dynamical system ðU; atÞ is said to be L1ðU0Þ-asymptotically

Abelian relatively to a perturbation P 2 U iffZ þ1

�1

jj½P; atðAÞ
jjdt < 1;

for all A in a norm dense �-subalgebra U0:

If one assumes that ðU; atÞ satisfies the above condition, then using Cook’s argument

we can prove the existence of the Møller morphisms, see [9, Prop. 5.4.10].

In the sequel, we use the above argument with the dynamics ð ~U; ttÞ; ðBðHÞ; tVt Þ.
Note that ~U is only preserved by tVt if V 2 Ue.

PROPOSITION 9. ðiÞ The norm limits

a
]
�ðhÞ :¼ lim

t!�1
tV�t � tta

]ðhÞ; h 2 h; ð5Þ

exist and are called asymptotic annihilation-creation operators.

ðiiÞ Let U� be the C�-algebra generated by a
]
�ðhÞ. The maps

g�: ~U ! U�; a]ðhÞ 7! g�ða
]ðhÞÞ :¼ a

]
�ðhÞ:

extend to �-morphisms on ~U.

ðiiiÞ The dynamic tVt preserves the asymptotic algebra U�:

tVt a
]
�ðhÞ ¼ a

]
�ðe

itohÞ; h 2 h:

Proof. We use a Cook argument to prove (5). Let h0 :¼ C1
0 ðR

n
nf0gÞ and

ht :¼ eitoh; h 2 h. For h 2 h0, we have that

tVt a
]ðhtÞ ¼ a]ðhÞ þ i

Z t

0

tVs ½V; a
]ðhsÞ
ds: ð6Þ

246 ZIED AMMARI



Using commutation relations in Proposition 5 and that fact that V 2 A, one can

prove by stationary phase argument that we have

½V; a]ðhsÞ
 2 Oðt�2Þ; for h 2 h0:

We extend the existence of the limit to h 2 h, using density argument and the fact

that the norm of a
]
�ðhÞ is preserved, i.e: jja

]
�ðhÞjj ¼ jjhjj: ðiiÞ–ðiiiÞ are obvious. &

PROPOSITION 10. We have for h 2 h,

a�ðhÞ1
�1;l
ðH ÞH � 1
�1;l�m
ðH ÞH:

Proof. The proof follows using a standard argument due to Høegh-Krohn

[14]. &

3.2. WAVE OPERATORS

PROPOSITION 11. The following assertions hold:

ðiÞ K� is closed H-invariant space.

ðiiÞ One has HbdðH Þ � K�:

Proof. The fact that K� is H-invariant follows from Proposition 9. Let us prove

ðiiÞ. Let u 2 H such that Hu ¼ Eu. One has s� limt!�1 aðhtÞ ¼ 0; h 2 h0. Hence

lim
t!�1

tVt aðhtÞu ¼ 0;

since tVt aðhtÞu ¼ eitðH�EÞaðhtÞu. &

Let Hext :¼ H�H. Set

HAs :¼ HjHbdðH Þ � 1 þ 1 �H0; on H0;

Hext
0 :¼ H0 � 1 þ 1 �H0; Hext :¼ Hext

0 þ V� 1; on Hext:

THEOREM 12. ðiÞ W� are isometric.

ðiiÞ W� are unitary iff K� ¼ HbdðH Þ:

ðiiiÞ We have

a
]
�ðhÞW� ¼ W�1 � a]ðhÞ; for h 2 h;

HW� ¼ W�HAs:

Proof. The intertwining relations in Proposition 9 give that W� is isometric and

satisfies ðiiiÞ. Let us prove ðiiÞ. Let C 2 ðRan ðW�ÞÞ
?. Since H preserves the later

subspace one may assume that C is localized in energy i.e.: C ¼ 1
�1;l
ðH ÞC. If

nm > inf sðH Þ then using Proposition 10 we obtain that
Qn

i¼1 a�ðhiÞC ¼ 0: There-

fore, using the orthogonality
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0 ¼ C;
Yn
i¼2

a��ðhiÞ
Yn
i¼2

a�ðhiÞC

 !
¼

�����
�����Y

n

i¼2

a�ðhiÞC

�����
�����:

This yields C ¼ 0. &

We define an extended wave operator

W ext
� : Hext ! H;

W ext
� c�

Yn
i¼1

a�ðhiÞO :¼
Yn
i¼1

a��ðhiÞc:

We notice that W ext
�jH0

¼ W�. We introduce the scattering identification operator

I: Hext ! H, defined by

I
Y
i¼1

a�ð fiÞO�
Y
i¼1

a�ðgjÞO ¼
Y
i¼1

a�ðgjÞ
Y
i¼1

a�ð fiÞO:

The following theorem follows as in [10, Thm. 5.7].

THEOREM 13. ðiÞ Let u 2 DðW ext
� Þ, then one has

lim
t!�1

eitHIe�itHext

u ¼ W ext
� u:

ðiiÞ Let w 2 C1
0 ðRÞ: Then Ran wðHextÞ � DðW ext

� Þ and the operators IwðHextÞ;

W ext
� wðHextÞ are bounded. Moreover,

lim
t!�1

eitHIe�itHext

wðHextÞ ¼ W ext
� wðHextÞ:

3.3. SPECTRAL ANALYSIS

In this subsection we collect some spectral results.

THEOREM 14. Assume ðDÞ holds and V 2 A, then

sessðH Þ ¼ ½inf sðH Þ þm;þ1½:

Consequently, inf sðH Þ is a discrete eigenvalue.

Let G denote the conjugate operator given by

G :¼ dG � 1
2 ðHoðkÞ:xþ x:HoðkÞÞ

� �
; acting on H:

We set t :¼ sppðH Þ þmN�: We have for V 2 A; ½V;G
 2 BðHÞ: Let D be an interval

of R. Let 1DðH Þ be the spectral projection of H on D and 1
pp
D ðH Þ :¼ 1D\sppðH ÞðH Þ.

THEOREM 15. The following two assertions hold:

ðiÞ For all ½l1; l2
 such that ½l1; l2
 \ t ¼ ;, one has

dim 1
pp
½l1;l2


ðH ÞH < 1:
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Consequently, sppðH Þ can accumulate only at t, which is a closed countable set.

ðiiÞ Let l 2 Rnðt [ sppðH ÞÞ. Then there exists E > 0;C0 > 0 such that

1½l�E;lþE
ðH Þ½H; iG
1½l�E;lþE
ðH Þ5C01½l�E;lþE
ðH Þ:

3.4. GEOMETRIC ASYMPTOTIC COMPLETENESS

In this subsection we sketch the proof of asymptotic completeness. The reader is

referred to [3] for details.

THEOREM 16. Let q 2 C1
0 ðR

n
Þ such that 04 q4 1; q ¼ 1 on a neighbourhood of

0 and qt :¼ qðx=tÞ.

ðiÞ The following limits exist:

G�ðqÞ :¼ s� lim
t!�1

eitHGðqtÞe�itH:

ðiiÞ Let qn 2 C1
0 ðR

n
Þ be a decreasing sequence such that 04 qn 4 1; qn ¼ 1 near 0,

and
T

n supp qn ¼ f0g, then

P�
0 :¼ s� lim

n!1
G�ðqnÞ;

exists and defines an orthogonal projection.

ðiiiÞ We have RanP�
0 � K�:

Let j0 2 C1
0 ðR

n
Þ; 04 j0; j1; j20 þ j214 1, and j0 ¼ 1 near 0. Set j :¼ ð j0; j1Þ and

jt :¼ ð jt0; j
t
1Þ, where jt0 :¼ j0ðx=tÞ; jt1 :¼ j1ðx=tÞ. We denote Ið jtÞ :¼ IGð jt0Þ � Gð jt1Þ.

THEOREM 17. ðiÞ The following limits exist

s� lim
t!�1

eitH
ext

Ið jtÞ�e�itH ¼: W�
ð jÞ:

ðiiÞ Let q0; q1 2 C1
0 ðR

n
Þ; 04 q0; q14 1; q0 ¼ 1 near 0. Set ~j :¼ ðq0j0; q1j1Þ, and

q0j ¼ ðq0 j0; q0 j1Þ, then

W�
ð jÞG�ðq0Þ ¼ W�

ðq0jÞ;

G�ðq0Þ � Gðq1ðHoðkÞÞÞW�ð jÞ ¼ W�ð ~jÞ:

ðiiiÞ Let ~j ¼ ð ~j0; ~j1Þ be another pair satisfying the conditions stated before the

theorem. Then

W�
ð ~jÞ�W�

ð jÞ ¼ Gð ~j0j0 þ ~j1j1Þ:

In particular if j20 þ j21 ¼ 1, then W�
ð jÞ is isometric.

ðivÞ Let j0 þ j1 ¼ 1. If w 2 C1
0 ðRÞ, then

Wext
� wðHextÞW�

ð jÞ ¼ wðH Þ:
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ðvÞ Let jn ¼ ð j0;n; j1;nÞ be a sequence as above and such that j0;n þ j1;n ¼ 1 and

8E > 0; 9n0; 8n > n0; supp j0;n � ½�E; E
. We have

Wext�

�jK��H ¼ w� lim
n!þ1

W�
ð jnÞ and K� ¼ RanP�

0 :

Proof. To prove ðiÞ it is enough to show the existence of the following limit for

some w 2 C1
0 ðRÞ.

s� lim
t!�1

eitH
ext

wðHextÞI�ð jtÞe�itHwðH Þ: ð7Þ

We compute

@tðe
itH ext

wðHextÞI�ð jtÞwðH Þe�itHÞ

¼ eitH
ext

ðwðHextÞD0I
�ð jtÞwðH Þþ

þ iwðHextÞðV� 1I�ð jtÞ � I�ð jtÞVÞwðH ÞÞe�itH;

where D0 is the asymmetric Heisenberg derivative defined by @t þ iHext
0 :� :iH0. Let

d �Gð jt; d0jtÞ :¼ D0I
�ð jtÞ, with d0jte :¼ @tje þ i½o; jte
; e ¼ 0;1. Pseudo-differential

calculus gives

d0j
t ¼

1

t
gt þ rt; where rt 2 Oðt�2Þ; gt ¼ ðgt

0; g
t
1Þ;

and

gt
E ¼ �

1

2

x

t
� @oðkÞ

� �
@jE

x

t

� �
þ hc

� �
; E ¼ 0;1

We obtain using the estimate in [3, Lemma 2.7]:

jjwðHextÞd �Gð jt; rtÞwðH Þjj 2 Oðt�2Þ: ð8Þ

Let ut
i :¼ eitHui, one obtains using the estimate ðiiiÞ in [3, Lemma 2.7] that

jðut
1jwðH

extÞd �Gð jt; gtÞwðH Þut
2Þj

4 jjdGðjgt
0jÞ

1
2 � 1wðHextÞut

2jj jjdGðjg
t
0jÞ

1
2wðH Þut

1jjþ

þ jjð1 � dGðjgt
1jÞ

1
2ÞwðHextÞut

2jj jjdGðjg
t
1jÞ

1
2wðH Þut

1jj:

Then the integrability of the term wðHextÞD0I
�ð jtÞwðH Þ follows using Proposition A.1.

Furthermore, one can prove as in [3, Lemma 4.2] that

wðHextÞðV� 1I�ð jtÞ � I�ð jtÞVÞwðH Þ 2 Oðt�2Þ:

This yields the existence of the limit ðiÞ.

ðiiÞ follows using the fact that

lim
t!�1

eitdGðoÞGðqtÞe�itdGðoÞ ¼ GðqðHoÞÞ;

and

Gðqt
0Þ � Gðqt

1ÞI
�ð jtÞ ¼ I�ð~jtÞ:
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ðiiiÞ is a consequence of the fact

Ið~jtÞI�ð jtÞ ¼ Gð~jt0j
t
0 þ

~jt1jt1Þ:

ðivÞ One has Hext1½k;1½ð1 �NÞ5mkþ inf sðH Þ. Then for w 2 C1
0 ðRÞ, there exists

n0 2 N such that for n5 n0

wðHextÞ1
n;1½ð1 �NÞ ¼ 0: ð9Þ

We have

W ext
� wðHextÞW�

ð jÞ

¼ W ext
� 1½0;n
ð1 �NÞwðHextÞW�

ð jÞ ð10Þ

¼ s� lim
t!�1

eitHI1½0;n
ð1 �NÞwðHextÞI�ð jtÞe�itH ð11Þ

¼ s� lim
t!�1

eitHI1½0;n
ð1 �NÞI�ð jtÞe�itHwðH Þ: ð12Þ

The right-hand side of (10) follows by (9). The part (11) follows by (i) and Thm. 13.

Furthermore, by [3, Lemma 4.2] and the boundedness of the operator

I1½0;n
ð1�NÞðN0 þ 1Þ�
n
2 we obtain (12). We recall an estimate proved in [11] and

which extends to our case.

jjI1
n;1½ð1�NÞI�ð jtÞðNþ 1Þ�1
jj4 ðnþ 1Þ�1: ð13Þ

Since II�ð jtÞ ¼ 1, letting n ! 1 we obtain (iv).

(v) Let q 2 C1
0 ðRÞ; 04 q4 1 and q ¼ 1 in a neighbourhood of zero such that

qj0;n ¼ j0;n for n large enough. Using (ii) and Theorem 16 we obtain

G�ðqÞ � 1W�
ð jnÞ ¼ W�

ð jnÞ;

w� lim
n!þ1

P�
0 � 1W�

ð jnÞ � W�
ð jnÞ ¼ 0:

ð14Þ

Let w 2 C1
0 ðRÞ. We have

W ext�

�jK��HwðH Þ

¼ Wext�

�jK��HW ext
� wðHextÞW

�
ð jnÞ ð15Þ

¼ w� lim
n!1

Wext�

�jK��HW ext
� wðHextÞP�

0 � 1W�
ð jnÞ ð16Þ

¼ w� lim
n!1

P�
0 � 1wðHextÞW�

ð jnÞ ð17Þ

¼ w� lim
n!1

wðHextÞW�
ð jnÞ ð18Þ

¼ w� lim
n!1

W�
ð jnÞwðH Þ: ð19Þ

Formula (15) follows from (iv), (16) follows by (14), and (17) is true since P�
0

commutes with Hext and that RanP�
0 � K� and

Wext�

�jK��HW ext
�jK��H ¼ 1K�

� 1

Formula (18) follows from the fact that P�
0 � 1 commutes with Hext and (14) and

(19) is in Theorem 17 (ii). We conclude that
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Wext�

�jK��H ¼ w� lim
n!þ1

W�
ð jnÞ; P�

0 � 1Wext�

�jK��H ¼ Wext�

�jK��H:

Thus, we obtain (v). &

Proof of Theorem 3. In order to prove Theorem 3 it suffices to show that

K� � HbdðH Þ: By Prop. A.2 there exist E > 0 and C > 0 such thatZ þ1

1

jjGðqtÞwðH ÞeitHujj2
dt

t
4Cjjujj2;

where

w 2 C1
0 ðRnðt [ sppðH ÞÞÞ and q 2 C1

0 ð½�E; E
Þ; q ¼ 1, for jxj < E=2:

Theorem 16 gives that

jjGðqtÞwðH ÞeitHujj ! jjG�ðqÞwðH Þujj ¼ 0; t ! �1:

Therefore, G�ðqÞwðH Þ ¼ 0 and, hence, RanP�
0 � Ran 1t[sppðH ÞðH Þ. By Theorem 15

we know that t is a closed countable set and sppðH Þ can accumulate only at t, so
1ppðH Þ ¼ 1t[sppðH ÞðH Þ. This proves HbdðH Þ ¼ K�.

Appendix

We state two propagation estimates which are crucial in the proof of Theorem 3.

PROPOSITION A.1. Let w 2 C1
0 ðRÞ; 0 < c0 < c1; c1 > supjHoj, and

Y½c0;c1
ðtÞ :¼ dG
x

t
� HoðkÞ; 1½c0;c1


jxj

t

� �
x

t
� HoðkÞ

� �� �� �
:

One hasZ 1

1

jjY½c0;c1
ðtÞ
1
2wðH ÞeitHujj2

dt

t
4 cjjujj2:

PROPOSITION A.2. Let w 2 C1
0 ðRÞ be supported in Rnðt [ sppðH ÞÞ: There exist

E > 0;C such that we haveZ 1

1

������G 1½0;E

jxj

t

� �� �
wðH ÞeitHu

������2 dt
t
4Cjjujj2:
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