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Abstract. We study the scattering theory of fermion systems subject to a smooth local pertur-
bation with a non-vanishing odd part. We introduce a modified free fermion fields which have
an appropriate commutation relations with the free Fock fermion fields. We construct the
wave operators using the modified field and prove asymptotic completeness. Our work extends
former results on Hilbert space asymptotic completeness.

Mathematics Subject Classifications (2000). 81U10, 81T10.

Key words. fermion field, quantum field theory, scattering theory.

1. Introduction

The free and perturbed fermion systems are favorite models in QSM. This is related
to the fact that fermion fields are bounded operators and, hence, perturbation theory
in the spirit of Dyson—Schwinger series is well adapted to the investigation of those
models. For example, the above approach allows the construction of perturbed
C*-dynamical systems. Recall that if I/ is a C*-algebra and o, is a one parameter
group of *-automorphisms on U, then we call the pair (U, ;) a C*-dynamical system.
Let 6 be the infinitesimal generator of o, and P € U such that P = P*. We denote by
(U, o) the perturbed C*-dynamical system satisfying 9o = 6* o of, 6" := 6 +[iP, ]
and can be expressed by means of Dyson—Schwinger expansion.

One of the questions arising in this subject is the unitary equivalence of free and
perturbed dynamics, known as scattering theory in C*-algebras [12, 16]. Results on
the equivalence of dynamics for fermion systems based on a perturbative approach
are obtained in [1, 2, 4, 5], (see also the survey [6]). Under the condition of existence
of a unique physical ground state for the perturbed system, equivalence of dynamics
implies asymptotic completeness.

In this Letter, we present a new result on asymptotic completeness for a fermionic
system describing a zero temperature Fermi ideal gas perturbed by a local interaction
which may have a non vanishing odd part. To simplify the presentation we consider
a simple model. However the result could be extended without much work to more
general situations as spin-fermion models, quantized spin % Dirac particle, see [3].
Our approach is nonperturbative, time depending and uses a similar strategy as in
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[10]. The result we obtain applies for smooth local perturbations and extends those
in [1, 3, 5] and [6, Theorems 2.8, 3.3].

Before making the above condition precise, let us first fix the notation. Let [l be
a Hilbert space, we denote the Banach space of bounded operators on H by B(IH)
and the group of unitary operators on H by U(IH). We consider the one-particle fer-
mion space in the momentum representation to be §) := L,(R", dk) and denote by
x:=0/i. Let H be the anti-symmetric Fock space over [) given by
H =, A8, where A”f:=C and Q= (1,0,...) is the vacuum vector. Let
w e C°(R",Ry) be the dispersion relation of fermion. The free Hamiltonian is
defined by

Hy := dI'(w),

where dI'(w) denotes the second quantization of w. Let b, b* be the usual annihi-
lation-creation operators representing the CAR on §). Let 1 be the C*-algebra gene-
rated by polynomials on b(h), b*(h), h € . If V€ Il such that V* = I, then we can
construct the perturbed Hamiltonian H with respect to the interaction V using the
Kato—Rellich theorem [15]. Namely, we have that H := Hy + V, is a well defined
self-adjoint operator with domain D(H) = D(H,).

Let us collect the needed hypotheses. We assume that w satisfies the following
conditions:

Vo € Lo(RY),
Va(k) £ 0, fork #£0,
(D) |kllirn (k) = 400,

inf w(k) =: 0.
klerlev wk) =:m >

Note that the last condition on o is crucial on the proof of asymptotic completeness.
We consider perturbations ¥ € 11 of the following form:

d
g - ; A‘{“(mﬁn;) Vi(kh Y km” o 7kmi+ni)x
X b*(kl) e b*(km,’) b(km,‘+1) e b(km,’+n,’)dkl e dkm,’+n,~' (1)

We introduce the Banach space S,(R") as the completion of Cj(R") with respect to
the Schwartz norm

If =Y sup [KdLfik)l,

lo-+1Bl <n KER”
where o, f € N and k%9 = St k7o)
DEFINITION 1. Let ¥ € U such that I’* = V. Then V is said to be in the class of
smooth local perturbations A, if V is given by (1) and
Vi€ Sp (R B> dv(my o +2)+2, i=1,...,d
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Let A be an operator on §j, we denote by I'(4) the operator on H given by
F(A)I/\<")b =ARQ---QA.

n

Let N denote the number operator. The Fock CAR representation f) > h+>
d(h) == 1//2(b*(h) + b(h)) is a free fermion field (H,¢,T',Q) (see Definition 4).
We set

a*(h) .= b*(h)(—1)", a(h) == (=D)Vb(h), heb.

By Proposition 5, we see that (a, a*) define a free fermion field. Let 11 be the C*-alge-
bra generated by polynomials on a(h), a*(h),h € §). Let 1,,7) denote the one-para-
meter groups of x-automorphisms given by the Heisenberg evolutions associated
respectively to Hy, and H.

PROPOSITION 2. Assume (D) holds and V € A. The strong limits

7y i=s— lim ¥, 01,
t—=+o00

exist on 11.
Proof. The proof follows by Proposition 9. O

Let Hpq(H ) be the space of bound states of H and set a.(h) := y, (a(h)),h € . We
define the asymptotic vacua space and the free space, respectively, by

Ki={¥eH|ax()¥ =0,hel),  Hy:=Hpa(H)QH.

The wave operators are given by

WeiHo—H, y@[[a(hHQ = []athw, fieh.
i=1 i=1

THEOREM 3. Assume that (D) holds and V € A. Then W, is unitary and the
asymptotic completeness holds, i.e.

Ki=Hoa(H) and Hi:=Ran(Wi)=MH.

2. CAR Representation

Let (L,S) be an orthogonal space (i.e: a real topological vector space L endowed
with a continuous symmetric bilinear form S). A CAR representation over (L, S)
is a pair (D,®) consisting on a Hilbert space D and a linear map L > h+—
®(h) € B(D) into self-adjoint bounded operators and satisfying

{®(h), D(g)} = S(h,g)1 (Clifford relation).

Assume that (L, S) is equipped with a complex structure consisting on a conjugation
T: L — L,7?> = —1 compatible with the symmetric bilinear form S in the following
sense:
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(1) S(h,Zg)+ S(Zh,g) =0,
) S(h,h) > 0, for all h = 0.

This allows to have a complex structure ih:=Zh,h e L and an inner product
(hlg) := S(h,g) —iS(h,ig). Thus, we can construct the creation-annihilation opera-
tors:

B*(h) := \%((D(h) —1®(ih)), B(h) := %(d)(h) + 1D(ih)).
Furthermore, B(h), B*(h) satisfy the canonical anti-commutation relations:
(B(h), B9} =0,  {B(h).B"(g)} = (hlg)L, (2)

where B stands for B or B*. Note that a Hilbert space endowed with the bilinear
form Re(.|.) and the conjugation i = +/—1 is an orthogonal space with a compatible
complex structure. For more details, see [7, 9].

DEFINITION 4. Let $ be a Hilbert space and (D, ®) a CAR representation over 9.
(D, @) is said to be a free fermion field if it is endowed with a continuous repre-
sentation I' of the unitary group U(9) and a cyclic vector Q such that

(1) U®) > U T(U) e U(D),

) T(W)BIWI(U)™" = B(Uh), U € U(D),
3) re=.,

@) 19T (@), > 0,Y4 € B($),4 > 0.

We denote a free fermion field by the quadruple (D, ®,T", Q).

Let (D,®,T",Q) be a free fermion field over a Hilbert space £. Consider 1 to be
the C*-algebra generated by ®(h), s € ) and let 1. denote the even CAR algebra
(i.e: the C*-algebra generated by even polynomials on B(h), B*(h),h € ). We define
the involution J by

J:D— D, J:=T(=1p).

Clearly, we have J* = J,J? = 1p. We define an even/odd projection
Pyo: I — 1,
P.A =14+ JA4J), P, :=34-J4)), Aell

Hence the algebra 1l decomposes to a direct sum of vector spaces 1l = Ul ® U,,
where lI, = P.II and U, := Ul o1, = P,1l.

PROPOSITION 5. Let (D, ®, T, Q) be a free fermion field and J an involution on D
such that
[J,4] =0, VA el,, (T, A} =0, VAel,,

3
[7, D] =0, YUeU®D). 3)



ON ODD PERTURBATIONS OF FREE FERMION FIELDS 245
Set
1
V2
Then (D, ®7,1",Q) defines a free fermion field satisfying
[@7(h), D(g)] = TRe(h, g).

g (h) :=—7= (B (WT) + T B(h)).

Proof. An elementary computation using the fact that 7 commutes with 4 € 1,
and anti-commutes with 4 € 11, shows that (D,®7) is a CAR representation.
Moreover, the representation I' preserves the relation

T(O)®s (ML)~ = @7 (UR), U eU(b).
Hence, (D, ® 7,1, Q) defines a free fermion field. O

We call the above free fermion field (D, ® 7, ", Q) a J-free fermion field associated
to (D,®,I",Q). Note that J satisfies the hypotheses (3) of Proposition 5.

LEMMA 6. Let J be a self-adjoint involution satisfying (3) for the Fock fermion field
(H, ¢, T, Q). Then J = +(—1y)".

Proof. Using the fact that {7, b(f)} = 0, we obtain that 7Q € CQ. Since J° = 1,
it follows that JQ = £+Q. Furthermore, we have

I e = Truae.
i=1 i=1

Hence J = j:(—l)N. O

The above lemma and Proposition 5 provide us exactly with +J-Fock fermion
field associated to (H, ¢, I, Q).
We recall a known theorem, see [7, Thm. 2.1].

THEOREM 7. Let (D;, ®;,T;,Q)),i=1,2 be two free fermion fields over a Hilbert
space §). The map:
U:Dy - Dy, UJ[0ipQi =] [ @2,
Jj=1 J=1

extends to an unitary map from Dy to D;.

Note that Theorem 7 yields that if (D, ®,T",Q) is a free fermion field over §j then
it is unitarily equivalent to (D, @4y, I", Q).
3. Scattering Theory
3.1. ASYMPTOTIC FIELDS

Let 7,7} denote the two one parameter group of x-automorphisms on 1l defined by
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7/(A) := el ge~itHo, 1/(A) =M ae ™ A e B(H).
Clearly, the free dynamic t, preserves 1. To see that the perturbed dynamic 1/
preserves 11 it suffices to express t;” by means of Dyson expansion, see [9, Prop.
5.4.1] and [8, Thm. 3.1.33], i.e:

n—1

V . S i ' 3
)=+ Y /0 dr, /O e [ dn e, 00,1 (. A

4
The Moller morphisms are defined by

£ (A) = lim t”, 01,(4), Aell.
t—=+o0
The following definition has been introduced in [16].

DEFINITION 8. A C*-dynamical system (U, o,) is said to be L;(Uy)-asymptotically
Abelian relatively to a perturbation P € U iff

+00
[ [P, (Al < oo,

for all A in a norm dense *x-subalgebra .

If one assumes that (U4, o,) satisfies the above condition, then using Cook’s argument
we can prove the existence of the Moller morphisms, see [9, Prop. 5.4.10].

In the sequel, we use the above argument with the dynamics (ﬁ,,r,),(B(H),rtV .
Note that 11 is only preserved by ) if V € ll..

PROPOSITION 9. (i) The norm limits
di(h) == lim ¥, o1,d'(h), heb, 5)
t—+o00

exist and are called asymptotic annihilation-creation operators.
(i) Let Uy be the C*-algebra generated by ai(h). The maps

pe U= e, Eh) (@ h) = di(h).

extend to x-morphisms on 1.
(iii) The dynamic t)" preserves the asymptotic algebra .

iV d(h) = d.(e"h), heb.

Proof. We use a Cook argument to prove (5). Let f,:= C?(R"\{0}) and
h; :=€"h, h € ). For h € fj,, we have that

1)@ (h) = a(h) +1i / VIV, d*(hy))ds. (6)

t
0
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Using commutation relations in Proposition 5 and that fact that V" € A, one can
prove by stationary phase argument that we have

[V,d*(hy)] € O(r™2), forh € b,.

We extend the existence of the limit to / € ), using density argument and the fact
that the norm of aﬂ[(h) is preserved, i.e: ||aui(h)|| = ||A]|. (i1)—(iii) are obvious. O

PROPOSITION 10. We have for h € §,
a:l:(h)ﬂ]foo,/l](H)H C ]]700,/17;71](1_1)7—(-
Proof. The proof follows using a standard argument due to Heegh-Krohn
[14]. O]
3.2. WAVE OPERATORS

PROPOSITION 11. The following assertions hold:

(1) K4 is closed H-invariant space.
(i1) One has Hpa(H) C K.

Proof. The fact that K is H-invariant follows from Proposition 9. Let us prove
(ii). Let u € H such that Hu = Eu. One has s — lim,_, 1o, a(h;) = 0, h € b,. Hence

tl}iriloo r,Va(h,)u =0,
since t)a(h)u = e =Ea(h,yu. O

Let H*' := H ® H. Set
Hag = H‘Hbd([-])®1+1®H[]7 on Hy,
HM =Hy® 1+ 1®H), H:=H"+V®1l, onH*

THEOREM 12. (i) W4 are isometric.
(1) Wy are unitary iff K+ = Hpa(H).
(ii1) We have

d(WWs =Wl @d(h), forhelb,
HWy = WiHp.

Proof. The intertwining relations in Proposition 9 give that W is isometric and
satisfies (iii). Let us prove (ii). Let ¥ € (Ran (W4))*. Since H preserves the later
subspace one may assume that W is localized in energy ie.: ¥ = lj_o (H)¥. If
nm > info(H) then using Proposition 10 we obtain that []._, a+(h)¥ = 0. There-
fore, using the orthogonality
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0= (‘P [Tt ]] ai(hi)‘I‘> =]] ai(h,»)‘I" ‘
=2 =2 =2
This yields ¥ = 0. O

We define an extended wave operator

Wixt: Hext N H,
Wy @ [ [a(h)Q = [ [ ai(hi.
i=1 i=1

We notice that Wi"‘%o = W.. We introduce the scattering identification operator
I H™ — H, defined by

I[Taeee [a@e=]]aE]]aune.
i=1 i=1 i=1 i=1
The following theorem follows as in [10, Thm. 5.7].

THEOREM 13. (i) Let u € D(W$*), then one has

. H i pgext
hrﬁ? e H e ™y = Wy,
11— 00

(i) Let y € CP(R). Then Rany(H™') Cc D(WS') and the operators Iy(H™),
WXy (H™) are bounded. Moreover,

lim eitHIefitHc“X(Hext) — WiXtX(HeXt).

t—+o00
3.3. SPECTRAL ANALYSIS

In this subsection we collect some spectral results.

THEOREM 14. Assume (D) holds and V € A, then
ess(H) = [inf a(H) + m, +oo[.

Consequently, info(H) is a discrete eigenvalue.

Let G denote the conjugate operator given by
G = dI'(— $(Vo(k).x + x.Vo(k))), acting on H.
We set 7 := app(H ) +mIN*. We have for V € A,[V,G] € B(H). Let A be an interval
of R. Let 15(H) be the spectral projection of H on A and 13°(H) := 1ang,, ) (H).
THEOREM 15. The following two assertions hold:
(1) For all [Ay, A2] such that [A1, 2] NT = 0, one has
dim 177 , (H)H < oo.
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Consequently, o,p(H) can accumulate only at t, which is a closed countable set.
(i) Let A € R\(t1Uopp(H)). Then there exists ¢ > 0,Co > 0 such that

Lp—esrqH)H, 1G] - jrq(H ) = Colpp—c jyq(H).

3.4. GEOMETRIC ASYMPTOTIC COMPLETENESS

In this subsection we sketch the proof of asymptotic completeness. The reader is
referred to [3] for details.

THEOREM 16. Let ¢ € CP(RY) such that 0 < g <1,q =1 on a neighbourhood of
0 and q' := q(x/1).
(1) The following limits exist:
I'*(g):=s— lim "T(g")e .
t—to00

(i) Let g, € CP(R") be a decreasing sequence such that 0 < g, <1,g, =1 near 0,
and (), supp g, = {0}, then

PoﬁE =5 — lim T'%(q,),
n—00
exists and defines an orthogonal projection.

(iii) We have Ran P C K.

Let jo € C3(R"),0 < o, joorJ +J5% < 1, and jo =1 near 0. Set j:= (jo,joo) and
T 1= Ugedog)s Where jo = jo(x/1), jo := joo(x/1). We denote 1(j) := IT'(j) ® T'(jL,)
THEOREM 17. (i) The following limits exist
s— lim ™Iy e ™M = WE()).
t—=+o0

(i) Let g0, 400 € CF(R"),0 < g0, G0 < 1,90 = 1 near 0. Setf:: (90j0, goojoo), and
g0/ = (90Jo, 90 joo), then

WEHT(g0) = W (qu)),
I (90) ® D(gos (Vo)) W*()) = W*()).

(i) Let j= (jo.jso) be another pair satisfying the conditions stated before the
theorem. Then

WEDWEG) = T(afo +ocfoo)-
In particular if j% +/2 =1, then WE()) is isometric.
@iv) Let jo +joo = 1. If y € CF°(R), then

W HT)WE()) = 1(H).
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) Let ju = (Jonsjoon) be a sequence as above and such that jo, + joon =1 and
Ve > 0,3ny, Yn > ng, supp jon C [—¢,€]. We have
W gm =W — Jim W*(j,) and Ki=Ran PZ.
Proof. To prove (i) it is enough to show the existence of the following limit for
some x € C5°(R).
s— lim ey (HXI (e My (H). (7
— 00
We compute
O™ (H I ()5 (H e ™M)
= & U HT) DI (/) H )+
+ig(H™)V @ LI(j") — F()YV)x(H e,

where D is the asymmetric Heisenberg derivative defined by 0, + iH*". — .iH,. Let
dI'(j, dof") := DoI*(j"), with Ddyjl := 9y, +i[w,j'],e = 0,00. Pseudo-differential
calculus gives

1
by =—g'+7', where ' € O(?), g' = (g5, 8%).

and

= () . oo

We obtain using the estimate in [3, Lemma 2.7]:

I (HZYAT (Y, r)(H)I| € O(r72). (8)

Let u! := €y;, one obtains using the estimate (iii) in [3, Lemma 2.7] that

| | (HYAT (S, &) (H Yub)|
< 1AT(1gh1) @ Ly(H™ b || [1dT(|1gh 1) (H ||+
+ 1101 ® dT(Ig" DBz (H Yudb || [1AT (1" | (H et |-

Then the integrability of the term y(H=)DoI*(j")y(H ) follows using Proposition A.1.
Furthermore, one can prove as in [3, Lemma 4.2] that

JHEV @ L) = F()V)u(H) € O ).

This yields the existence of the limit (i).
(i1) follows using the fact that

lim eitdr(w)l—*(qt)efitdl"(w) — F(q(Vw)),
t—+o0
and

T(gh) ® T(gs)I*(j') = I' (/).
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(iii) is a consequence of the fact

IGOT (') = Ty + oolo)-
(iv) One has H*'l i oof(1 ® N) = mk + inf o(H ). Then for y € C°(R), there exists
ny € N such that for n > ny

Z(H™) 1 00(1 ® N) = 0. o
We have
W (HS )W)
= W p.(1 @ N)z(H™)W=()) )
=5 — lim ¢"'Iljp,y(1 ® N H™ I (f)e™" ()
=5— fljt:ﬁ?oo et ] 0.1 ® N)]*(jf)e—itHX(H). 12

The right-hand side of (10) follows by (9). The part (11) follows by (i) and Thm. 13.
Furthermore, by [3, Lemma 4.2] and the boundedness of the operator

Ip(1 ® N)(No + 1)72 we obtain (12). We recall an estimate proved in [11] and
which extends to our case.

1 oof(1 @ NIFGHYN+ D7 < (n+1)7 (13)

Since IT*(j') = 1, letting n — oo we obtain (iv).
(v) Let g € CFP(R),0< ¢ <1 and ¢ =1 in a neighbourhood of zero such that
gjon = jon for n large enough. Using (ii) and Theorem 16 we obtain

I(q) ® IW(j) = WE(in),

w— lim Pf® IWE(j,) — W) =0. (14)
n—-+o0o
Let y € C3°(R). We have
Wk, on2(H)
= W, on WS 2 H™YW* () (15)
=w— lim W, o WS (H Py @ 1W*(jy,) (16)
=w— lim PF @ Ly(H™)W*(j,) (17)
n—oQ
=w— lim y(H™)W*(j,) (18)
n—o0
=w— lim WEG)r(H ). (19)

Formula (15) follows from (iv), (16) follows by (14), and (17) is true since Pg
commutes with A" and that Ran P§ C Ky and

xt* ext _
Wik.onWik.on = k. ® 1

Formula (18) follows from the fact that Pf ® 1 commutes with H*** and (14) and
(19) is in Theorem 17 (ii). We conclude that
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xt* _ . et : + xt* _ xt*
Wft\l@@H =w— lim W¥(j,), P;®l Ko = Wftuci@H-

n—+00

Thus, we obtain (v). O

Proof of Theorem 3. In order to prove Theorem 3 it suffices to show that
K+ C Hpa(H). By Prop. A.2 there exist ¢ > 0 and C > 0 such that

oo 1 itH 2dl 2
: (g7 (H )e" " ul| n < Cllull?,
where
1€ CY(R\(tUaopp(H))) and g e CP([—¢,€]), q=1, for |x| <e¢/2.
Theorem 16 gives that
T (g7 (H e ull — ITH(@)x(H)ul| =0, & — o0,

Therefore, IT*(¢)x(H) = 0 and, hence, Ran P C Ran LeUe,, () (H ). By Theorem 15
we know that 7 is a closed countable set and opp(H ) can accumulate only at 7, so
Lpp(H) = Liug, iry(H ). This proves Hya(H) = K.

Appendix

We state two propagation estimates which are crucial in the proof of Theorem 3.

PROPOSITION A.1. Let y € C§°(R), 0 < ¢y < c1, ¢1 > sup|Vo|, and

O, (1) := dT’ (<§ — Vor(k), Lo (@) (é _ Vw(k))>>.

One has

* 1 i 242 2
[1O1cq.c1 ()27 (H )" ul| " < c|full”.
1

PROPOSITION A.2. Let y € C3°(R) be supported in R\(t U opp(H)). There exist
e >0, C such that we have

[ HF<1M ("ﬂ))x(H)e”Hu\f? < Cllull®
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