Feuille d'exercices

Exercice. 1.

- 1) Montrer qu'une forme linéaire f sur un espace normé E est continue si et seulement si Ker(f) est un fermé de E.
- 2) Soient f, g deux forme linéaires bornées sur un espace normé. Montrer que si Ker(f) = Ker(g) alors $f = \lambda g$ pour un certain $\lambda \in \mathbb{K}$.

Exercice. 2.

Montrer que $L^2(\mathbb{R}, dx)$ est un espace de Hilbert séparable.

Exercice. 3.

Trouver un espace mesuré (M, τ, μ) tel que l'espace $L^2(M, \mu)$ n'est pas séparable.

Exercice. 4.

Montrer que $L^{\infty}(\mathbb{R}, dx)$ est un espace de Banach.

Exercice. 5.

Soient $\ell^{\infty}(\mathbb{N})$ l'espace de Banach des suites réelles bornées et $\ell^{1}(\mathbb{N})$ l'espace de Banach des suites réelles absolument sommables. Montrer que $\ell^{1}(\mathbb{N})^{*} = \ell^{\infty}(\mathbb{N})$ mais que $\ell^{1}(\mathbb{N}) \neq \ell^{\infty}(\mathbb{N})^{*}$.

Exercice. 6.

Soit \mathcal{H} un espace de Hilbert. Montrer que si $A_n \stackrel{s}{\to} A$ et $B_n \stackrel{s}{\to} B$ dans $\mathcal{L}(\mathcal{H})$ alors $A_n B_n \stackrel{s}{\to} AB$. Trouver un exemple tel que $A_n \stackrel{w}{\to} A$ et $B_n \stackrel{w}{\to} B$ mais $A_n B_n \stackrel{w}{\to} AB$.

Exercice. 7.

Soit $(A_n)_n$ une suite d'opérateurs positifs dans $\mathcal{L}(\mathcal{H})$. Montrer que si A_n converge en norme vers $A \in \mathcal{L}(\mathcal{H})$ alors $\sqrt{A_n}$ converge en norme vers \sqrt{A} .

Exercice. 8.

Prouver que si $(A_n)_n$ est une suite de $\mathcal{L}(\mathcal{H})$ qui converge en norme vers $A \in \mathcal{L}(\mathcal{H})$ alors $(|A_n|)_n$ converge en norme vers |A|.

Exercice. 9.

Montrer que si $A_n \xrightarrow{s} A$ et $A_n^* \xrightarrow{s} A^*$ alors $|A_n| \xrightarrow{s} |A|$.

Exercice. 10.

Soit k(.,.) une fonction continue sur $[a,b] \times [a,b]$. On définit

$$(Tf)(x) = \int_a^b k(x, y) f(y) dy.$$

Montrer que T est un opérateur borné sur l'espace de Banach $C([a,b],\mathbb{C})$ et qu'il est limite en norme d'une suite d'opérateurs de rang fini.

Exercice. 11.

Soit (M, μ) un espace mesuré et $k \in L^2(M \times M, \mu \otimes \mu)$. Montrer que

$$(Tf)(x) = \int_{M^2} k(x, y) f(y) \mu(dy)$$

est un opérateur Hilbert-Schmidt.

Exercice. 12.

- (i) Montrer que pour tout $A \in \mathcal{L}_1(\mathcal{H})$ on a $||A|| \le ||A||_2 \le ||A||_1$.
- (ii) Prouver pour tout $A \in \mathcal{L}(H)$ et $B \in \mathcal{L}_1(\mathcal{H})$ que

$$||AB||_1 \le ||A|| ||B||_1$$
 et $||BA||_1 \le ||A|| ||B||_1$.

Exercice. 13.

Monter que pour tout $A, B \in \mathcal{L}_2(\mathcal{H})$

$$||AB||_1 \le ||A||_2 ||B||_2$$
 (l'inégalité de Hölder).

Exercice. 14.

Soient P, Q deux projections orthogonales respectivement sur les sous-espaces M et N. Monter que la suite $(PQ)^n$ converge fortement vers la projection orthogonale sur $M \cap N$.

Exercice. 15.

Montrer que pour $A \in \mathcal{L}(\mathcal{H})$, si $A \geq 0$ alors $(A - \lambda)^{-1}$ existe pour tout $\lambda < 0$.

Exercice. 16.

Soit A un opérateur auto-adjoint (non-borné) sur \mathcal{H} . Montrer que $\lambda \in \sigma(A)$ si et seulement pour tout $\varepsilon > 0$ on a $\mathbb{1}_{[\lambda - \varepsilon, \lambda + \varepsilon]}(A) \neq 0$.

Exercice. 17.

Pour $A \in \mathcal{L}(\mathcal{H})$ la décomposition polaire s'écrit A = U|A|. Soit f_n une suite de fonctions sur \mathbb{R}_+ telle que $f_n(x) = \frac{1}{x}$ si $x \ge n$ et $f_n(x) = \frac{1}{n}$ si $0 \le x \le n$. Montrer que

$$Af_n(|A|) \stackrel{s}{\longrightarrow} U$$
.

Exercice. 18.

Montrer que $P = \sum_{|\alpha| \le n} a_{\alpha}(x) \partial_x^{\alpha}$ avec $a_{\alpha} \in C^{\infty}(\mathbb{R}^d)$ et

$$D(P) = \{ u \in L^2(\mathbb{R}^d) : Pu \in L^2(\mathbb{R}^d) \}$$

est un opérateur fermé à domaine dense.

Exercice. 19.

L'opérateur $T=-\frac{d^2}{dx^2}, D(T)=C_0^\infty(\mathbb{R})$ sur $L^2(\mathbb{R},dx)$ est-il essentiellement auto-adjoint?

Exercice. 20.

Soit AC[0,1] l'espace des fonctions absolument continues sur [0,1] ayant une dérivée dans $L^2[0,1]$. On considère $T=i\frac{d}{dx}$ comme opérateur sur $L^2[0,1]$ ayant pour domaine

$$D(T) = \{ \varphi \in AC[0, 1], \varphi(0) = 0 \}.$$

- (i) Montrer que T est un opérateur fermé à domaine dense.
- (ii) Déterminer le spectre de T.