% Decoupage d'un tetraedre
% 1. Definition des points caracteristiques de la geometrie
\figinit{4cm,ortho}
% Sommets
\figpt 1:$D$(0.4,0.7,0.9)
\figpt 2:$A$(0,0)
\figpt 3:$B$(1,0.5)
\figpt 4:$C$(0,1.4)
% Plan de base (11,12,13,14)
\figpt 11:(-0.3,-1)\figpttraC 12:$F_D$=11/2.2,0,0/
\figvectC 0(0,3)\figptstra 13=12,11/1,0/
% Points dans le plan de base
\figvectC 10(0,0,1)% Vecteur orthogonal au plan de base
\figptorthoprojplane 5:$E$=1/2,10/
\figptorthoprojline 6:$\gamma$=5/2,3/\figgetdist\Rcg[1,6]
\figvectP 0[5,6]\figvectU 0[0]\figpttra 16:$R$=6/\Rcg,0/
\figptorthoprojline 7:$\alpha$=5/3,4/\figgetdist\Rca[1,7]
\figvectP 0[5,7]\figvectU 0[0]\figpttra 17:$P$=7/\Rca,0/
%
\figset proj(psi=-5,theta=20)
% 2. Creation du fichier graphique
\psbeginfig{}
% Plan de base
\psline[11,12,13,14]
\psarccircP 12 ; 0.3 [13,11,11]
%
\def\DIM{0.06}
\psline[1,5]\psline[1,6]\psline[1,7]
\psaltitude \DIM[5,2,3]\psaltitude \DIM[5,4,3]
\psline[6,16]\psline[2,16,3]
\psline[7,17]\psline[3,17,4]
\psarccircP 6;\Rcg[1,16,16]
\psset arrow(fill=yes)\psarrowcircP 7;\Rca[1,17,17]
% Aretes externes du tetraedre
\psset(join=round,width=0.8)\psline[1,2,3,1,4,3]
\psset(dash=4)\psline[2,4]
\psendfig
% 3. Inscription du texte sur le dessin
\def\dist{2pt}
\figvisu{\figBoxA}{\it D\'ecoupage d'un t\'etra\`edre \rm(p. 131)}{%
\figwriten 1:(\dist)\figwritenw 2,5:(\dist)
\figwrites 6:(3pt)\figwritene 4:(\dist)
\figwrites 3,7:(\dist)
\figwritew 16:(\dist)\figwritee 17:(\dist)
\figwritege 12:(6pt,2pt)
}
\centerline{\box\figBoxA}