IRMAR Université de Rennes 1 — France

Documentation of the

Fig{/TgX macro package

(version 1.9.2)

Yvon Lafranche

Contents

1. Introduction
2. A first look

3. Definition of points
1. Unit and scale
2. The basic macro
3. Text argument
4. Symbolic constants
5. Geometry: macros for vector and point generation

4. Drawing the figure
1. Principle
2. Basic drawing macros
3. Example

5. Writing text on the figure
6. Graphical files handling

7. Annotating a pre-existing figure
1. Introduction
2. Text annotation
3. Graphical annotation

8. Setting graphical attributes
1. Introduction
2. Line attributes

3. Using color

9. Drawing macros
1. Preliminary remarks
Arc
Example
Curve
Filled area, transparency
Arrow
Axes
Triangle related macros
. Grid
10. Flow chart
11. Signs or symbols

10. Helpers

CPEPADIA RN

11. Three-dimensional macros

W=

4.

Introduction
Projection

Macro specifications
3D examples

12. Using this macro package

13. List of user macros

14. Index

Documentation of the Fig{TEX macro package
(version 1.9.2)

Web site: https://perso.univ-rennesl.fr/yvon.lafranche/figdtex/

Abstract. This document describes a set of TEX macros designed to create a figure at compilation
time of the document, and to write text on it in a straightforward way, using the TEX fonts, under
total control of the user. These macros can also be used to write a legend on an existing figure,
given as a file created by any other software. Fig{IEX can be used with the traditionnal plain TEX
environment as well as with IXTEX, in both DVI and PDF modes. They have been designed from
the user’s point of view and can be helpful to design a figurative drawing as well as to build an
accurate geometric construction based on points in 2D or in 3D, so that we can even think of this
macro package as a kind of geometric modeller.

§1. Introduction

Inserting a figure in a TEX document has become very common. There exist several sets of macros allowing
to do this rather easily. With some other packages, it is also possible to create directly a PostScript file. In
that case, the TEX macros are more or less a translation of PostScript commands.

But, as far as we know, with these kinds of tools, there is no real link between the figure and the TEX
document, essentially because generally two softwares are needed: one for the TEX document, one for the
figure. In particular, a question that arises very often is: can I write some text or caption using TEX'’s
facilities (font, boxes, maths formulee,...) at a precise point on the figure 7 An even worse case: if I have
to modify my geometry for any good reason or change the observation angles in 3D, shall I have to make
plenty of modifications to make everything fit together again ?

The set of macros described below gives an answer to these questions, respectively yes and no. Indeed,
it is possible to write anything anywhere on a figure, and provided that we have followed some elementary
recommendations, any modification made at the top level of the construction automatically propagates to
lower levels, allowing to change nearly anything at any time.

The macros have been designed from a geometrical point of view, i.e. so that geometric constructions
can be designed in a symbolic way since the points involved are the result of mathematical transformations or
geometrical definitions. Moreover, since the result of the process is a TEX box, every usual TEX commands
can be applied to give the figure the right position inside the document.

The principle is the following. With the help of adequate macros, the user defines some characteristic
points. These points are used to build the figure which is generated as a so-called graphical file. Each of
them can also be used as an attach point of a text printed on the figure. Thus, an interesting fact is to have
the same geometric description both to draw the figure and to locate the text.

In the general case, three steps are needed:
1) definition of characteristic points necessary to build the geometrical skeleton of the figure,
2) creation of the graphical file corresponding to the geometry,
3) if needed, writing text on the figure, generally using the characteristic points, or other ones.

It must be emphasized that a figure already existing as an “external” file, i.e. a file created by any
software in a compatible format (EPS, JBIG2, JPEG, PDF, PNG) can be handled as well; step 2 has then
to be skipped. A tool macro (\figscan) has been designed to facilitate the positionning of text: see the
section Text annotation for further information on this topic.

The set of macros consists of internal macros and user macros. Internal macros deal with technical
issues like arithmetic and vectorial computation. They are not intended to be used directly from the TEX
document. On the contrary, the so-called user macros are higher level macros designed in such a way that
most of the technical part of the work is hidden to the user. In order to make them as easy to use as possible,
general syntactic rules have been settled:

https://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/

a. Except in text arguments, spaces are not significant.

b. Whenever it is possible, the arguments are separated with commas (e.g. [3,5,71, (1.33, 0.57)).
Colon (:), semi-colon (;) and equal sign (=) are also used as separators.

c. Brakets ([1), parentheses (()) and slashes (//) are used to surround groups of arguments that are
logically linked together. In most of the cases, brakets are devoted to point numbers, parentheses are
devoted to numerical values and slashes are used to set parameters in the transformation macros. TEX’s
braces ({}) are obviously always available.

d. Numerical values are intended to be given without any unit specification, except for the definition of
some default dimensions (see \figsetdefault). However, specifying a unit is also allowed for dimensions
that are logically independant of the scale of the figure, e.g. a writing distance (see argument Distance
of \figwritex in the section Writing text on the figure).

The name of the user macros all begin with \fig. They are divided in three groups:
e Macros beginning with \figdraw are commands used to create the graphical file. These macros are
intended to be called during step 2, they have no effect otherwise.
e Macros beginning with \figwrite, so-called non-mute macros, are the only ones that write something
on the figure. Logically, they have to be called during step 3.
e The remaining macros are mute. They are related to the definition of the geometry or parameter
settings. They can be used at any step.

In the following sections, we describe the user macros. Then comes a list recalling the syntax of each of
them and at last an index, which can be helpful to find examples where a given macro is used.

To catch the essential, the reader is advised to read this documentation at least up to the section
Writing text on the figure, and then jump to any other specific topic. Moreover, some elementary but
fundamental informations about TEX are given in the section Using this macro package. IATEX users will
also find there some practical hints.

§2. A first look

Here is a short example to show how it works. Consider the following file (with ITEX, simply put the
following lines, except the last one, between \begin{document} and \end{document}):

\input figdtex.tex
% 1. Definition of characteristic points
\figinit{pt}
\figpt 1:(80.5, 120)
\figpt 2:(-10, -10)
\figpt 3:(130, 20)
\figptbary 5:c.g.[1,2,3 ; 1,1,1]
% 2. Creation of the graphical file
\figdrawbegin{}
\figdrawline[1,2,3,1]
\figdrawend
% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 1}{
\figwriten 1:(4)
\figwritew 2:(2)
\figwritee 3:(2)
\figset write(mark=\bullet)\figwrites 5:G(4)
}
\centerline{\box\figBoxA}
\bye
If we compile this file with TEX or IATEX, then we obtain the figure 1 . Now, let us comment these statements.
0. The first line loads the macro package.

1. Definition of the three vertices of a triangle. The system is first initialized and the unit to be used for
the coordinates is set to pt. Each point is associated to a number whose value is chosen by the user.

2

Ay

As

Ao

Figure 1

The text A; is implicitly joined to point i. At last, the isobarycenter is defined as point 5, with c.g.
as joined text.

Creation of the graphical file that will contain the figure, here the three edges of the triangle, drawn as
a single closed broken line.

Writing text or comments on the figure. The macro \figvisu builds a box whose name (here \figBoxA)
is given as an argument, as well as the figure caption. The last argument consists of a set of commands
that deal with the appearance of the figure. The graphical file created just before is automatically
included and “put” into the box.

The text associated to each point is printed at the place chosen by the user, i.e. at 4pt towards the
north for point #1, at 2 pt towards the west for point #2, at 2 pt towards the east for point #3, at 4 pt
towards the south for point #5. Note that the text associated to point #5 is modified at this level. By
default, the attach point of the text is not marked. However, for the point #5, it is necessary and the
symbol e (\bullet) is used.

Remarks:

All the specifications, graphical and textual ones, are gathered into one TEX file.

Textual specifications refer to attach points that have been previously defined. It must be emphasized
that the definition of a point can take place anywhere in the process, which means even during step
2 or 3. For example, the point #5 could have been defined just before \figwrites 5:G(4). Each
attach point is referred to by its number.

A point can be redefined at any time, the new coordinates are then valid until another redefinition
occurs. This means that, except for the points defined during step 1 which are usually kept unmodified
until the completion of the figure, many temporary points referring to the same number can be “defined-
and-used” as many times as needed.

In the above example, the graphical information is stored in a temporary file included just after its
creation. If the drawing is to be referred later in the document, it must be stored in a permanent file
whose name, chosen by the user, is passed as argument firstly to \figdrawbegin for the creation and
secondly to \figinsert for the inclusion (see the section Graphical files handling).

The box \figBoxA is preallocated in Fig{IEX and is available to the user, along with two other ones,
\figBoxB and \figBoxC. It must be emphasized that the same box (e.g. \figBoxA) can be used for
several figures. For example, this documentation uses no more than these three boxes (see the section
Writing text on the figure).

e Use of symbolic constants is possible and can be quite helpful (see the Symbolic constants subsection).
e If used, the \magnification command would apply to the whole document including the figure and its

legends.

e Except for points numbers, very few control is made on the validity of the arguments of the macros.
e In addition to the graphical files explicitly wanted by the user and the classical files produced by TEX,

this package creates temporary files whose names have the form \jobnamex.anx. They can be safely
removed.

Fig{TEX macro package

instructions diagram

\input figdtex.tex
\figsetdefault...

Step 1. Definition of \figinit{...}

characteristic points. \figpt... ﬂ

\figdrawbegin{...}

Step 2. Creation of a
graphical file.

\figdrawend

Another
graphical file ? yes

A
\figvisu...{
Step 3. Assembling the \figinsert...
figure and writing text. \figwrite...

}

Display the figure.
Continuation of the document.

Another figure 7

Figure 2

yes

This figure shows the general usage of Fig{lTEX. The internal loop is seldom used. The text of the
program that produces this figure is given in the subsection Flow chart.

§3. Definition of points
1. Unit and scale

First of all, the user has to choose the unit to be used for the figure among those defined in The TEXbook:
pt TEX point,
pc pica (1pc = 12pt),
in inch (1in = 72.27pt),
bp big point, PostScript unit (
cm centimeter (2.54cm = 1in)
mm millimeter (10mm = 1cm),
dd didot point (1157 dd = 1238 pt),
cc cicero (1cc = 12dd),
sp scaled point (65536sp = 1pt).

72bp = lin),

)

The unit is given as an argument to the macro \figinit whose purpose is double: 1) set the unit and
the scale factor, 2) initialize everything to the default state. If \figinit is not called, the default unit is pt.
Because of 2), it must be called if several figures are defined in the same document.

Moreover, it is also possible to specify a scale factor before the unit. It may be useful for example when
the user wants to give the coordinates, say in cm, but wants the figure to appear twice bigger on the paper.
In this case, he has to set a scale factor of 2 with cm as unit by saying \figinit{2cm}. The default scale
factor is 1, so for example \figinit{in} is equivalent to \figinit{2.54cm}.

Notice that although 1pt is nearly equal to 1bp, it is not a good idea to use one unit instead of the
other because the difference is most of the time visible on the figure.

2. The basic macro

The following action is the definition of points. The basic macro is \figpt whose prototype is
\figpt NewPt :Text(X,Y)

The first argument NewPt is a positive integer chosen by the user. The theoretical limit to this value is
231 — 1 and is imposed by TEX. This is not a problem since, in practice, huge numbers are useless.

The second argument Text is the so-called “joined text” to this point (see below). The last arguments
are the coordinates (X,Y) of the point with respect to the user Cartesian axes. Let’s recall that the unit
(see above) must be omitted.

3. Text argument

To each point the user defines, a text is implicitly joined, namely A; for point 7. This default behaviour
can be changed by saying for instance, \figset write(ptname={$X~{(#1)}$}) which will now display X ®
instead of A;. In the argument field, #1 stands for the point number. The default setting is thus equivalent
to \figset write(ptname={$A_{#1}$}).

To remove the automatic association of text, just say \figset write(ptname={}). Since the effect of
this macro is dynamic, from a logical point of view, this macro has to be called during step 3. This allows
for example to write the names of some points, then call \figset write(ptname={}) which from now on
hides the implicit name of every point.

If the text argument is not empty, it overrides the implicit text. More generally, the last text associ-
ated with the point will be printed. This is often done by the non-mute macros (whose name begin with
\figwrite). A text argument can be any valid TEX material, that is to say in practice:

- nothing. Implicit text is then used.
- free text where spaces are significant. To print one delimiter, like : or (, just enclose the whole text

into braces {}, for example \figpt 1 :{The coordinates of this point are:(1,2)}(1,2) .

- a box. Inside a \vbox, think to set \parindent=0pt if needed and use \hfill\break instead of \par.

5

By default, the position of the point is not displayed. However, it is sometimes needed and the user
can choose anything he wants among TEX’s possibilities to highlight the point location. For this purpose,
markers like o, o, ., X, 4+ are most commonly chosen. For example, saying \figset write(mark=\times)
will select the symbol x. To get back to the default state, just say \figset write(mark={}).

In fact, the following marks are not quite vertically centered: * (\ast), e (\bullet), o (\circ) and
¢ (\diamond). Thus, corrected versions have been created, to be used instead if a very accurate result is
needed. Their names are \figAst, \figBullet, \figCirc, \figDiamond. We can observe the difference on
this figure:

\ast \bullet \circ \diamond

sk e
==

@

\figAst \figBullet \figCirc \figDiamond

Remark: By the way, for the same reason, do not use the macro \cdot: just say \figset write(mark={.}).

It is possible to print the coordinates of the point on the figure in the unit chosen for the \figinit call.
To do that, just call the macro \figcoord{Ndec} in the definition of the text argument. In the example
shown on figure 1, one could have written during step 1:

\figpt 3:$A_3\scriptstyle\figcoord{2}$(130, 20)
or during step 3:
\figwritee 3:$A_3\scriptstyle\figcoord{2}$(2)

which would have printed A3(130.00,20.00) on the graph.

The argument Ndec of \figcoord is a positive integer setting the number of decimals to be printed. TEX
provides at most 5 decimals. Missing decimals, for integer values for example, are printed as 0. By default,
the printed values are rounded to the integer part (Ndec = 0), or up to the first Ndec decimals, according
to the value of the argument Ndec. To disable this rounding, one can say \figset write(rounding = no),
and then \figset write(rounding = yes) to enable it again for subsequent printed values. Notice that if
Ndec > 5, the values are not rounded: we obtain the internal raw value.

Moreover, besides the values yes and no, this form of the \figset macro also accepts a number Ndec
(\figset write(rounding = Ndec)) allowing to specify the number of decimals to be printed. The yes
and no values are respectively equivalent to 2 (the default value) and 5.

If the argument Ndec of \figcoord is omitted, then the number of decimals to print is the one set by the last
call to \figset write(rounding = ...) ;if the argument Ndec of \figcoord is present, this specification
is obeyed.

Remarks:

e \figcoord can be used in a ptname context in order to print together the point name and its coordinates,
for example, by saying \figset write(ptname={$A_{#1}$ \figcoord{1}}). This will automatically
apply for any point, except for those bearing a specific joined text, as just said.

e We used here the general macro \figset with the keyword write. This macro is used to set many
other parameters and is fully described in the section Setting graphical attributes.

At last, let us mention that the text argument described in this section may contain a real number. When
this value is not under the control of the user, e.g. if it is the result of a computation (see next section),
it may be useful to print a rounded value. This can be achieved with the macro \figround{RealNumber},
to be called in the definition of the text argument in the same way as \figcoord. As presented above, the
number of decimals to print is set by saying \figset write(rounding = Ndec).

4. Symbolic constants

As already mentionned in the remarks following the first example, a symbolic constant can be used to store

a string or a numerical value. This is done by defining a TEX macro, using the syntax:
\def\MyMacro{definition}

Take note that the macro \MyMacro is created or overwritten if it already existed (see details about macros
in the section Using this macro package).

Thus, the name of the graphical file to be created (see the section Graphical files handling) can be
put in a macro definition. The reference to the file is then done via this macro, \MyGrFile in the following
example:

% 2. Creation of the graphical file
\def\MyGrFile{Figure.gra} % Definition of the macro
\figdrawbegin{\MyGrFile} % First reference

% 3. Writing text on the figure
\figvisu{\figBoxA}{Caption}{
\figinsert{\MyGrFile} % Second reference

Going to the numerical side, this feature can also be quite useful for example when a dimension has to
be passed as an argument to several macros. This is shown in the following lines:

\def\Abscissa{12.3456}
\figpt 10:(\Abscissa, 120)
\figpt 11:(\Abscissa, -10)

The points #10 and #11 have the same abscissa which is defined just before as a TEX macro.

Moreover, the statement
\figget distance = \Result[Pt1,Pt2]

computes the euclidian distance between the two points Pt1 and Pt2 (in user unit), and stores it in the
macro \Result whose name is chosen by the user. The macro can then be used as a symbolic numerical
constant. A typical example is the computation of the radius of a circle (see the section Example). This
feature allows us to build geometrical constructions depending on the coordinates of only a few characteristic
points.

Let C, P, and P, stand for Center, Pt1 and Pt2. In the same idea as the previous one, the macro
\figget angle = \Result[Center,Ptl,Pt2]

computes the value (in degrees) of the oriented angle (CPy, CPy).

The two previous commands also come with a more general syntax allowing enhanced possibilities:

\figget distance OP value = \Result[Ptl,Pt2]
\figget angle 0P value = \Result[Center,Ptl,Pt2]

where OP is an arithmetical operator to be chosen among *, / or +, and value is a symbolic numerical
constant (as defined above), or can simply be a number. The result stored in the macro \Result is the
distance or the angle, modified by the specified operation whose second operand is value. For example,

\figget distance * 3.45 = \Coef[1,2]
\figget distance + -\D12 = \Zero[1,2]

stores in \Coef the distance between the points #1 and #2, multiplied by 3.45, and, assuming \D12 holds
the distance between the points #1 and #2, stores 0 in \Zero, result of the substraction of the two same
quantities. Thus, if e denotes the neutral element of the operator OP, the simplified syntax first given above
is equivalent to:

\figget distance OP e = \Result[Pt1,Pt2]

\figget angle 0P e = \Result[Center,Pt1,Pt2]

Remarks:
e If the operand value is missing, then the operation is ignored.
e The \Result macro can be used as a text to write on a figure. The printed value can be rounded by
saying \figround{\Result} (see details in the previous section).

7

5. Geometry: macros for vector and point generation

The name given to each of the macros described below is governed by the following rule:
. a macro whose name begin with \figvect produces a vector,
. a macro whose name begin with \figpt produces one point,
. a macro whose name begin with \figpts produces at least one point.

Vector creation
The definition of a vector can be done with one of the two macros:
\figvectC NewVect (X,Y)
\figvectP NewVect [Pt1,Pt2]

The first macro defines the vector by its components (X,Y) and the second one by the origin Pt1 and
the end point Pt2. The word NewVect stands for a number chosen by the user in the same set as the one
used for the definition of a point. Indeed, vectors and points are internally stored in the same way. The
user must remember if, say #10, is a point or a vector; no check is performed if a point is used instead of a
vector or vice-versa.

The macro

\figvectN NewVect [Pt1,Pt2]
defines a vector normal to the line (Pt1, Pt2). Precisely, the vector is the image of P; P> by a 7/2 rotation,
where P; stands for Pt1 and P stands for Pt2.

The macro

\figvectNV NewVect [Vector]
defines a vector normal to the vector Vector. Precisely, NewVect is the image of Vector by a 7/2 rotation.
The macro
\figvectU NewVect [Vector]
defines a unitary vector in the direction given by Vector, taking into account the unit and the scale factor
chosen by the user. Thus, after \figinit{2cm}, the length of NewVect is 2cm. This macro is helpful when
scaling is important; it can be used together with \figget distance.

The macro \figvectDBezier computes the derivative vector at a point lying on a Bézier curve. It is
described at the end of this section.

Point transformation

We describe here macros that transform one point into another. The simplest one corresponds to the
identity transformation. It may happen that it is convenient to copy points, for example to save the result
of a geometric transformation to be used later. The macro

\figptcopy NewPt :Text/Pt/
has been built for this purpose. It makes NewPt be a copy of Pt, changing the joined text to Text.
Now here is a set of macros corresponding to classical geometrical transformations, namely homothety,
rotation, symmetry and translation. Roughly speaking, these macros use the following syntactic scheme:
\macroname Result := Data /transformation definition/

Their prototypes along with their definition are given below. They compute the image called NewPt of a
given point called Pt. A text can be joined to each NewPt.
\figpthom NewPt :Text= Pt /Center, Ratio/
refers to the homothety of center Center and of ratio Ratio,
\figptrot NewPt :Text= Pt /Center, Angle/
refers to the rotation defined by the center Center and the angle Angle given in degrees,
\figptsym NewPt :Text= Pt /LinePtl, LinePt2/
refers to the orthogonal symmetry with respect to the line defined by the points LinePt1 and LinePt2,

\figpttra NewPt :Text= Pt /Lambda, Vector/
refers to the translation of vector Lambda * Vector, where Lambda is any real value.

8

A “light” version of the translation macro exists. It is especially useful to build a path joining several
points whose relative distances are known. The components (X,Y) of the vector are directly given as
arguments. Its prototype is:

\figpttraC NewPt :Text= Pt /X,Y/

The figure 4 shows the image M’ of a point M computed by these macros. It is followed by the text of
the program that produces it.
Py

M M

Py M
O O

Figure 4. Rotation (7/4), homothety (ratio 1.5), symmetry / [Py, P»] and translation of vector @

% 1. Definition of characteristic points

\figinit{cm}

\figvectC 5(3,0)

\figpt 0:0(0,0)\figpt 1:M(2,2)\figptrot2:$M’$=1/0,45/ % rotation
\figptstral10=0,1/1,5/\figpthom12:$M’$=11/10,1.5/ % homothety

\figpttra21l:M=1/2,5/
\figpttraC23:P_1=21/0.5,1.7/\figpttraC24:P_2=21/1.5,-1.7/

\figptsym22:$M’$=21/23,24/ % symmetry
\figpttra31:M=0/4,5/\figvectC 30(2,2)\figpttra32:$M’$=31/1,30/ % translation
\figpttraC34:=31/0,2/\figpttra35:=34/1,30/ % vector u
% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawline[1,0,2] % rotation

\figdrawline[10,11,12] % homothety

\figdrawline[21,22]\figdrawline[23,24] 7 symmetry
\figdrawline[31,32]\figdrawarrow[34,35] 7 translation

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure 4.}\\Rotation ($\pi/4$), homothety (ratio 1.5),
symmetry / $[P_1, P_2]$ and translation of vector \vec{u}}{

\figset write(mark={\times})

\figwrites 0:(0.15)\figwritee 1:(0.1)\figwritew 2:(0.1) % rotation
\figwrites 10:0(0.15)\figuritee 11:M(0.1)\figwritew 12:(0.1) % homothety
\figwritew 21:(0.1) \figwritee 22:(0.1) % symmetry
\figwriten 23:(0.15)\figwrites 24:(0.15) % symmetry
\figwritew 31:(0.1) \figwritee 32:(0.1) % translation
\figset write(mark=)\figptbary36:\vec{u}[34,35;1,1]\figwritenw 36:(0.1) % translation
}

\centerline{\box\figBoxA}

The inversion is a transformation also available with the macro
\figptinv NewPt :Text= Pt /Center, Ratio/

which computes the image NewPt of Pt by the inversion of center Center and of ratio Ratio. Center and
ratio are also called pole and power. Its use is illustrated on the figure 5.

9

X
M
pemmmIe XL
,’/ 0 (07 0) N
II X N
/! \ +— Invariant circle
p/><
' 0 (-0.8,-1.2)

Figure 5. Inversion of center {2 and ratio 7.

Here the ratio is positive; if it was equal to -7, the points O’, P (since it is computed starting from O’)
and M’ would have been their symmetric with respect to 2. The program that produces this figure is the
following:

\figinit{cm}

% 1. Definition of characteristic points

\figpt 0:Ω \figcoord{1}(-0.8,-1.2) % Inversion center
\def\Rinv{7}\def\sRinv{2.64575} % Inversion ratio and sqrt(ratio)
\figpt 1:0 \figcoord{0}(0,0) % Origin O

\figptinv 11 :$0°$= 1 /0,\Rinv/ % Its image 0’ by the inversion

\figptrot 2 := 11 /0,90/\figpthom 2:P=2 /0,1.3/ % Compute another point P...

\figptinv 12 :$P’$= 2 /0,\Rinv/ % ... and its image P’ by the inversion
\figptcirc 3 :M: O0;\sRinv (80) % Point M lying on the invariant circle...
\figptinv 13 :$M’$= 3 /0,\Rinv/ % ... and its image M’ by the inversion

YA

% 2. Creation of the graphical file

\figdrawbegin{}

% Draw (half of) the invariant circle

\figset (dash=4)

\figdrawarccirc 0;\sRinv(0,180)

\figdrawend

b

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure 5.} Inversion of center Ω and ratio \Rinv.}{
% Show the invariant circle

\figptcirc 5 :: 0;\sRinv (20)

\figwritee 5:\leftarrow Invariant circle(4pt)

% Show the involved points

\figset write(mark=\figBullet)\figwritee 0:(4pt) 7’ Inversion center

\figset write(mark=\times)\figwritene 1,2,3:(4pt) % Points 0, P, M,...
\figwritesw 11,12,13: (4pt) % ...and their images 0’, P’, M’ by the inversion

}

\centerline{\box\figBoxA}

The transformations shown on figure 4 are sufficient in most cases. However, one may want to use
another transformation that cannot be written as a combination of them. For this purpose, the more general
macro

\figptmap NewPt :Text= Pt /InvPt/A11,A12 ; A21,A22/
allows to define any linear affine mapping. More precisely, if I and A respectively stand for an invariant
point InvPt and the matrix whose coefficients are Aij, 1 < i <2, 1 < j <2, the image M’ of the point M
is given byf]\‘/ﬁ — A IM.

10

Thanks to the translation, this macro allows to defined any affine transformation.

Some examples are given on figure 6: F; defines an elongation along the x axis, leaving every point lying
on the line (I;¢) invariant, Fy defines an elongation along the y axis, leaving every point lying on the line
(I; Z) invariant, as well as F3 which defines a “shearing” mapping. The text of the program that produces
this figure is given further, after the “set” versions of the macros have been described.

Indeed, to make some geometrical constructions easier, a “set” or “multiple points” version of each of
these macros has been written. They compute the image of a set of N data points called Pt1, Pt2, ..., PtN
which can be given in any order. The numbers associated with the result points are successive. Only the
first number NewPt1, chosen by the user, is given as argument. So, if NewPt1 is equal to k, then the points
created have numbers k, k4 1,...,k 4+ N — 1. Text eventually previously associated with the result points
is lost and moreover no text can be joined to the result points.

L L

o <
=
Fy
u i u
Figure 6

Due to the fact that the result points have successive numbers, the choice of the first number must
be done carefully. Let I, (resp. I;) the set of the result points numbers (resp. the set of the data points
numbers). Let J = I, N I,.

- If I, = I4, or J is empty, or NewPt1 does not belong to J (which is generally the case in practice), then
there is no problem.
- Otherwise, the result given by the macro may be wrong, at least partially: this is because, in this case,

NewPt1 belongs to J, and since the data points are taken into account sequentially, starting from the

first element in the list, some of them may be overwritten before they are used as data.

However, we can take advantage of this last situation to compute, in a quite simple way, a sequence of points
Poi1=f(P,),n=1,... N, starting from the only data point P;, by just saying:
\macroname P2 = P1,P2,... PN /transformation definition/

since Py, once computed, is used immediately after as data to compute Ps, and so on.

11

The case I,. = I is very useful ; it corresponds to the “in place” computation of P, = f(P,),n=1,...N:

\macroname P1 = P1,P2,... PN /transformation definition/

Since these macros are extensions of the previous ones \figptzzz and can produce more than one result, their
names are \figptszzz. The arguments defining the transformation are the same as for the corresponding
“unary” version. Here are their prototypes:

\figptsrot NewPtl = Pt1, Pt2, ..., PtN /Center, Angle/
\figptshom NewPtl = Ptl1, Pt2, ..., PtN /Center, Ratio/
\figptssym NewPtl = Ptl1, Pt2, ..., PtN /LinePtl, LinePt2/
\figptstra NewPtl = Ptl, Pt2, ..., PtN /Lambda, Vector/
\figptsinv NewPtl = Ptl, Pt2, ..., PtN /Center, Ratio/

Pt1, Pt2, ..., PtN /InvPt/A11,A12 ; A21,A22/

\figptsmap NewPtl

The text of the program that produces the figure 6 is the following:

% 1. Definition of characteristic points

\figinit{cm}

\figpt 0:(0,0) % Initial origin

\def\SQEL{1.5} % Square edge length

% Vertices of the initial square

\figpt 1:(1,1)

\figpttraC 2:=1/\SQEL,0/\figpttraC 3:=2/0,\SQEL/\figpttraC 4:=3/-\SQEL,0/
\def\dist{7}\def\TV{50} % Translation distance and name of the vector

%

% For each case, the initial figure is translated. Then the transformation
% is applied.

% 1st transformation

\figvectC \TV(\dist,0)\figptstra 10=0,1,2,3,4/1,\TV/

\figptsmap 11=11,12,13,14/11/1.5,0; 0,1/ % Check point 11 is invariant !
\figptbary 15:[1,11;4,2]\figptbary 16:[1,11;2,4] I Arrow end points

% 2nd transformation

\figvectC \TV(0,\dist)\figptstra 20=0,1,2,3,4/1,\TV/

\figptsmap 21=21,22,23,24/21/1,0; 0,1.5/

\figptbary 25:[1,21;4,2]\figptbary 26:[1,21;2,4]

% 3rd transformation

\figvectC \TV(\dist,\dist)\figptstra 30=0,1,2,3,4/1,\TV/

\figptsmap 31=31,32,33,34/31/1,0.5; 0,1/

\figptbary 35:[1,31;4,2]\figptbary 36:[1,31;2,4]

)
% 2. Creation of the graphical file
\figdrawbegin{}

\figset arrowhead(length=0.2)

\figdrawaxes 0(1)\figdrawaxes 10(1)\figdrawaxes 20(1)\figdrawaxes 30(1)
\figset(width=1)

\figdrawline[1,2,3,4,1]\figdrawline[11,12,13,14,11]
\figdrawline[21,22,23,24,21]\figdrawline[31,32,33,34,31]

\figset (width=1.5)\figset arrowhead(fill=yes,length=0.4)
\figdrawarrow[15,16]\figdrawarrow[25,26]\figdrawarrow[35,36]
\figdrawend

A

12

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 6}{

% Name of each transformation

\figwriteln 15,16:\bf F$_{\hbox{$\bf\scriptstyle 1$}}$(0.2)
\figwriteln 25,26:\bf F$_{\hbox{$\bf\scriptstyle 2$}}$(0.2)
\figwriteln 35,36:\bf F$_{\hbox{$\bf\scriptstyle 3$}}$(0.2)

% Mark each invariant point

\figset write(mark=\figBullet)\figwritesw 1,11,21,31:$I1$(0.1)

}

\centerline{\box\figBoxA}

The last macro is
\figptorthoprojline NewPt :Text= Pt /LinePtl, LinePt2/
that computes the orthogonal projection NewPt of Pt onto the line defined by the points LinePt1 and
LinePt2. Its corresponding “set” version is then:

\figptsorthoprojline NewPtl = Ptl, Pt2, ..., PtN /LinePtl, LinePt2/

Remark: Although the work done by this macro can be obtained using \figptmap, this form is interesting
because it is more practical. This remark also apply to the macros \figpthom, \figptrot and
\figptsym.

Point computation

Once points and vectors are defined, we would like to make some elementary geometrical computation.
First of all, it is very convenient to define a point as the barycenter of other ones. The macro \figptbary
allows us to do that. Its prototype is

\figptbary NewPt :Text[Ptl,... ,PtN ; Coefl,... ,CoefN]

The resulting point is the barycenter of a set of N points whose numbers are given as a comma separated
list, Pt1,... ,PtN. Each point bears an integer coefficient. The coefficients are given in the corresponding
order, also as a comma separated list of N elements, Coef1,... ,CoefN. The user has to choose the number
NewPt and can associate a text with it.

Another version of this macro, \figptbaryR, exists. In this case, the coefficients assigned to each
point are real. Both versions are useful, depending on the context. \figptbaryR is slightly slower than
\figptbary, so the latter is preferable if there is no particular reason to use \figptbaryR.

As we will see in following sections, it is possible to draw circles and more generally ellipses. So we need
a macro to create points lying on an ellipse. The macro

\figptell NewPt :Text: Center;XRad,YRad (Angle,Inclination)

creates the point NewPt, with an associated Text, lying on the ellipse defined by its Center, its radius XRad
in the X direction, its radius YRad in the Y direction (in local axes) and its Inclination, which is the angle
between the local axes of the ellipse and the absolute axes corresponding to the paper sheet. The position
of the point is set by the parametrization Angle measured with respect to the local axes. The coordinates
of the point are then classically computed as (X pgqq cos @, Yraqsin @) where o stands for Angle. The two
angles, Angle and Inclination, are to be given in degrees.

Another version of this macro, \figptellP, exists. The difference comes from the definition of the
ellipse with three points. Its prototype is

\figptellP NewPt :Text: Center,PtAxisl,PtAxis2 (Angle)

Let C, Ay, A5 stand for Center, PtAxis1 and PtAxis2. The ellipse is defined by its center C' and the end

points of its two axes A; and As. Thus, the local axes are defined by the orthogonal basis (CAy, C'As).

The macro creates the point NewPt, with an associated Text, lying on the ellipse at the position set by the

parametrization Angle given in degrees, starting from the half-line (C, A1) and measured counterclockwise
=

around the vector CA; x CA,.

13

Since we handle circles more often than ellipses, the macro
\figptcirc NewPt :Text: Center;Radius (Angle)

has been written to obtain the result in a more straightforward way (see figure 5 for a first example). This
calling sequence is equivalent to

\figptell NewPt :Text: Center;Radius,Radius (Angle,0)

Then, we often need to compute the intersection of two lines. This can be done with the macro
\figptinterlines NewPt :Text[LinePtl,Vectorl; LinePt2,Vector2]

It computes the intersection NewPt of the line defined by the point LinePt1 and the vector Vectorl, and
the line defined by the point LinePt2 and the vector Vector2. As usual now, the user has to choose the
number of the result point and can associate a text with it.

In the same idea, the macro
\figptsintercirc NewPtl [Centerl,Radiusl ; Center2,Radius2]

computes the intersection of two circles. More precisely, we consider the two circles defined by their center
and radius, here respectively (Centerl, Radiusl) and (Center2, Radius2). Ounly one result point number
is to be given as argument; if NewPt1 is equal to k, then the second point NewPt2 is equal to & + 1. They
must obviously be different from Centerl and Center2. The points NewPt1 and NewPt2 are ordered so that
the angle (NewPt1, Centerl, NewPt2) is positive. If the two circles do not intersect, then on return NewPt1
is set to Centerl and NewPt2 is set to Center2.

The macro
\figptsinterlinell NewPtl [Center,XRad,YRad,Inclination ; LinePtl,LinePt2]

computes the intersections of the line defined by the two points LinePt1 and LinePt2, and the ellipse defined
by Center, XRad, YRad and Inclination in the same way as previously for the macro \figptell. Also, as
explained jut above, if NewPt1 is equal to k, then the second point NewPt2 is equal to k 4+ 1. Let Aj, A
stand for LinePt1, LinePt2 and P;, P, stand for NewPt1, NewPt2. P; and P, must be different from A;. On
output, P; and P; are ordered so that the vector]ﬁ has the same direction as m . If the line does not
intersect the ellipse, then on return NewPt1 is set to LinePt1 and NewPt2 is set to LinePt2.
A “point” version of this macro exists. Its prototype is:
\figptsinterlinellP NewPtl [Center,PtAxisl,PtAxis2 ; LinePtl1,LinePt2]

The only difference from the previous one consists in the definition of the ellipse by the three points Center,
PtAxisl and PtAxis2, which are explained above, where the macro \figptellP is presented.

Macros related to Bézier curves

Now, here are some more specific macros related to a cubic Bézier arc. Although some of them do not
seem quite necessary at first glance, they are used internally especially for 3D computations. Consequently,
they have been made public.

Let us briefly recall that a cubic Bézier arc is a parametric curve B whose parameter value ¢ is taken
in [0,1] in order to benefit from some mathematical properties. Each point B(t) can then be defined as
the barycenter of four points, called control points, the corresponding weigths being the Bernstein cubic
polynomials evaluated at ¢.

For each of the three following macros, we consider a cubic Bézier curve B defined by the four control
points Pt1, Pt2, Pt3 and Pt4.

The first macro
\figptBezier NewPt :Text: t [Ptl1,Pt2,Pt3,Pt4]

computes the point B(t), namely NewPt, lying on B for the parameter value t. We recall that, as a conse-
quence of the definition, for t = 0, NewPt = Ptl, and for t = 1, NewPt = Pt4.

The next step is to compute the derivatives B’(t) and B”(t). The macro
\figvectDBezier NewVect : n, t [Pt1,Pt2,Pt3,Pt4]

computes the vector NewVect corresponding to the derivative of order n of B for the parameter value t. The
order n must be equal to 1 or 2.

14

We are thus ready to introduce the macro
\figptcurvcenter NewPt :Text: t [Ptl,Pt2,Pt3,Pt4]
which computes the curvature center NewPt at the point lying on B for the parameter value t.
The macro
\figptscontrol NewPtl [Pt1,Pt2,Pt3,Pt4]

computes the two control points NewPt1 and NewPt2 so that the cubic Bézier curve defined by the control
points Pt1, NewPt1, NewPt2 and Pt4 interpolates the four points Pt1, Pt2, Pt3 and Pt4 with respective
parameter values of 0, 1/3, 2/3 and 1. Applying the rule setting the point numbers already seen, if NewPt1
is equal to k, then the second point NewPt2 is equal to k + 1.

The macro
\figptscontrolcurve NewPtl, \NbArcs [PtO,Ptl,... ,PtN,PtN+1]

computes the control points used by the macro \figdrawcurve when it is invoqued by the corresponding
calling sequence \figdrawcurve [PtO,Ptl,... ,PtN,PtN+1] whose effect is to draw a curve that consists
in N —1 cubic Bézier arcs (see section Curve). If NewPt1 is equal to k, then the points created have numbers
k,k+1,...k+ M with M = 3(N —1). \NbArcs denotes a TEX macro whose name is chosen by the user. It
can be considered as an output variable whose value is set to N — 1 by \figptscontrolcurve so that the
calling sequence \figdrawBezier \NbArcs [NewPtl, NewPtl+l,..., NewPt1+M] draws exactly the same
curve, provided that the value of the curve roundness has not been changed. As a consequence, the data
points Pti,i = 1,... N are duplicated on output: indeed, the point number k 4 j is equal to the point
number Pti where j = 3(i — 1),i =1,... N. The numbers assigned to the points created must be different
from any of the data points Pt0, Pt1,....PtN, PtN+1.

Remarks:
e this macro uses the current value of the curve roundness, which must logically be the same used by
\figdrawcurve,
e since the value of \NbArcs can be known in advance, specifying this macro could have been avoided,
but it helps to check the number of points created and manage them,
e this macro is mainly intended to help to compute a point lying on the curve drawn by \figdrawcurve,
using \figptBezier in a second step.

Special cases

We mention here some macros that compute points linked to a particular context and are useful to
write something at these points. The macro \figptendnormal computes the end point of a vector and is
described in the section Triangle related macros. The macro \figptsaxes computes the end points of
axes and is described in the section Axes.

15

84. Drawing the figure
1. Principle

The first macro to call is \figdrawbegin. It initializes all the settings related to the drawing macros. Its
only argument is the name of the graphical file to be created. If this argument is empty, a default file is
used, which is updated at each compilation (see section Graphical files handling for more information,
in particular about the typesetting mode and the update process).

To command the end of the graphical file being created, just say \figdrawend. Between these two
statements, macros that generate the figure are called. Their name begin with \figdraw.

Between \figdrawbegin and \figdrawend, all the points created up to now can be used, but they
can be redefined, as well as new points can be created. Notice that drawing macros and computing macros
are executed whenever the graphical file is created or updated. This is the default behavior. On the
contrary, every drawing or computing macro called between \figdrawbegin and \figdrawend is ignored if
the graphical file exists and no update is wanted. This can be useful to ensure future compilations to run
faster.

A variety of attributes can be tuned in order to obtain the expected graphical result. They include
general settings, for example color, line with and style, but also attributes related to a specific graphic
object, like the opening angle of an arrowhead. They are all set by the macro \figset.

Each of these attributes have a default value, corresponding to what is generally expected by most
people. It may happen however that some of these choices do not meet the user’s agreement: for example,
one may prefer to use a particular color, line width or arrowhead opening angle by default. For this reason,
the macro \figsetdefault has been created in order to customize the way this macro package is used.
These macros are described in the section Setting graphical attributes.

2. Basic drawing macros

Then, the first thing we need to draw is a line. The macro

\figdrawline[Pt1,Pt2,... ,PtN]

draws a broken line joining every point from Pt1 to PtN in this order. To close the path, just let the last
point number PtN be equal to the first one Pt1. In this case, the meeting of the two segments at Pt1 is
properly handled, according to the line join attribute (see section Line attributes).

Two other versions of this macro exist. Their prototypes are

\figdrawlineC(X1 Y1, X2 Y2,..., XN YN)
\figdrawlineF{FileName}

For the first macro, the coordinates of the points defining the line are given as argument in a comma
separated list. The coordinates of each point are separated from each other by at least one blank space. The
coordinates may appear on several lines ; generally, each group of coordinates (defining one point) appear
on one line.

For the second macro, the coordinates of the points are read from a text file whose name FileName is passed
as argument to the macro. Each line of the file must contain the coordinates of one point according to the
format x y in 2D, or x y z in 3D. Notice that two coordinates are separated by a blank space.

In both cases, the line is closed if the group of coordinates of the last point is exactly identical to that of the
first point.

Circles are also among the geometrical entities which are the most often drawn. This is the reason why
a specific macro has been built. It draws a circle defined by its center and its radius, and its prototype is

\figdrawcirc Center (Radius)

16

3. Example

Now, let us examine an example to illustrate some of the macros presented so far. First, we draw a circle
centered on the origin O and passing through a given point M. Note the use of the macro \figget distance
to compute the radius r (macro \Dist0OM in the program below). Then, we create the point P, intersection
of the circle and the X axis (computed as the result of the translation of O by the vector (r,0)), and the
point @ such that]Tj —1.50P. At last, we draw the circle with center) and radius PQ.

We can see the result on the figure 7. The text of the program that produces it follows. Notice the
scale and the unit. Moreover, since M is the only true data, if we modify its coordinates, we just have to
recompile this program to get the corresponding new result.

Figure 7

% 1. Definition of characteristic points
\figinit{0.5in}

\figpt 1:0(0,0)\figpt 2:M(-0.9354, 0.45467)
\figget distance=\DistOM[1,2] \figvectC 10(\Dist0OM,0)
\figpttra 3:P= 1 /1,10/ \figpttra 4:Q= 3 /1.5,10/
% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawcirc 1(\DistOM)

\figget distance=\DistPQ[3,4] \figdrawcirc 4(\DistPQ)
\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 7}{

\figset write(mark=\times)\figwritenw 2:(2pt)\figwritee 3:(2pt)
\figset write(mark=.)\figwriten 1,4:(3pt)}
\centerline{\box\figBoxA}

Notice that instead of \figget distance=\DistPQ[3,4]

we could have written \figget distancex1.5=\DistPQ[1,2]

although the first command is more suitable, since we just inquire information once all geometric computa-
tions have been made. Indeed, the factor 1.5 should be the same in this context and in the translation used
to compute the point). However, if we persist in doing that, in order to achieve it in a more clean and
robust way, one solution is to define a symbolic constant used in the two contexts:

\def\Factor{1.5}
\figpttra 4:Q= 3 /\Factor,10/

\figget distancex\Factor = \DistPQ[1,2]

17

85. Writing text on the figure

Since the graphical file is now prepared, it remains to make it appear at the right place on the page along
with the appropriate legend. To do that, the rigth macro to use is \figvisu. Its prototype is:

\figvisu{Vbox}{Caption}{Commands}

As we have already seen in the previous examples, the first argument is the name of a box register. This

box is filled according to the third argument and is the result of the macro \figvisu. Note that the box
produced is a wvertical box (\vbox).
Remark: The three boxes \figBoxA, \figBoxB and \figBoxC have already been reserved in Fig{TgX and
are available to the user. Most of the time, one box is sufficient in a whole document, except when fig-
ures must be displayed side by side. For example, two figures can be displayed side by side by saying:
\centerline{\box\figBoxA\hfil\box\figBoxB}. If a fourth box is necessary, the best is to make it pri-
vate: first choose a name, e.g. \figBoxD (logical choice !), and add the statement \newbox\figBoxD near
\input figdtex.tex or \usepackage{figdtex} in the document header.

The second argument is the figure caption. It can be void, but can also be, for example, a box containing
several lines. The current figure number is available to the user in the document with the help of the
expandable macro \figforTeXFigno. Moreover, in order to allow a forward reference before next call to
\figvisu, the macro \figforTeXnextFigno provides the number of the next figure number. They are both
updated by \figvisu. The first one can be used for example in the caption :

\figvisu{\figBoxA}{\bf Figure \figforTeXFigno}{ ...

The third argument is a list of commands that makes the legend and the drawing fit together. In
this part, extra blank lines or \par, are forbidden. Moreover, any user provided macro should end with
\ignorespaces in order to prevent unexpected white spaces to disturb the placement of the legend.

To show the drawing, one has to insert it in the box. The most common situation is to call \figdraw-
begin without any argument; in this case, the drawing is automatically taken into account by the following
call to \figvisu. On the contrary, if \figdrawbegin has been given a file name, the corresponding drawing
must be inserted manually into the final box with the help the macro \figinsert whose first argument is
the name of the graphical file containing the drawing description. This is done by a separate macro rather
than a fourth argument to \figvisu because it allows to insert several drawings in the same box, each of
them created by a separate call to \figdrawbegin with a specific file name. The drawings will then overlap
since the origin is common. The second argument of \figinsert is a scale factor. This argument is also
optional; it is described in the section Text annotation.

— If no argument is given to \figinsert, it is equivalent to use the automatic behavior which consists, as
explained just above, in inserting the default file created by the previous call to \figdrawbegin{} (see the
section Graphical files handling).

Once this has been done, the last thing to do, before showing the contents of the box, is to write text
on the figure. Several macros have been designed for that. We recall that a text is written on the figure
by specifying its position with respect to an attach point. The location of the attach point can be made
visible by a marker by saying \figset write(mark=marker) as already seen in section Text argument.
By default, the point marker is empty which makes the attach point invisible.

The simplest macro is \figwritep[Ptl, Pt2, ..., PtN] which writes the point marker at the
locations defined by the points Pt1, Pt2, ..., PtN.

Then come the macros:
\figwrite [Ptl1, Pt2, ..., PtN]{Text}
\figwritec[Ptl, Pt2, ..., PtN]{Text}

The first one writes a Text after the points Pt1, Pt2, ..., PtN according to TEX’s alignment, while the
second one writes the text centered on these positions. These two macros do not print the point marker.

At first glance, it may look strange that the same text is written at each point. This is the case if the
argument Text is present and this may actually be useful. However, if an empty text is given, recalling the
definition of this argument (given in the Text argument subsection), the macro writes the text given when
the point was defined, or the implicit text which can be modified by \figset write(ptname=new name).

18

This rule also applies to the following macros which are the most useful because they allow to put a text
at a prescribed position with respect to the attach points. We refer to a compass card notation to specify
the position of the text. To write Text at a given Distance to the west, the east, the north or the south of
the point Pti, we can use the macros:

\figwritew Ptl, Pt2, ..., PtN :Text(Distance)
\figwritee Pt1l, Pt2, ..., PtN :Text(Distance)
\figwriten Ptl, Pt2, ..., PtN :Text(Distance)
\figwrites Ptl, Pt2, ..., PtN :Text(Distance)

To write to the north-west, the south-west, the north-east or the south-east of the point Pti, we can
use the macros:

\figwritenw Pt1, Pt2, ..., PtN :Text(Distance)
\figwritesw Ptl, Pt2, ..., PtN :Text(Distance)
\figwritene Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritese Pt1l, Pt2, ..., PtN :Text(Distance)

For the different cases, the figure 8 shows the position of the corresponding text with respect to the
attach point marked with the 4 sign. To avoid hiding the + sign, the text in central position is represented
by an empty rectangle. The figure is followed by the text of the program that produces it.

~North
North-west.~ - North-east

West, Fast

South-west . . __,.""South-east

Figure 8

% 1. Definition of characteristic points

\figinit{cm}

\def\Dist{1.5}\figpt 0:(0, 0)

% 2. Creation of the graphical file

\figdrawbegin{}

\figset(dash=5)\figdrawcirc 0(\Dist)

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 8}{

\figset write(mark=+)

\figwritew O:West(\Dist)\figwritee O:East(\Dist)

\figwriten O:North(\Dist)\figwrites 0:South(\Dist)

\figwritenw O:North-west(\Dist)\figwritesw O:South-west(\Dist)
\figwritene O:North-east(\Dist)\figwritese 0:South-east(\Dist)
\figwritec[0]{\boxit{1pt}{}}

% or equivalently:

\figset write(mark=\boxit{1lpt}{})\figuritep [0]
} \centerline{\box\figBoxA}

Remarks:
e Here, the 8 first calls to \figwrite* write the + sign 8 times at the same place. Similarly, the calls to
\figwritec and \figwritep both write the same rectangle.
e The dashed circle shows the distance between the text and the attach point. For the show, we have
chosen a “large” distance, but in practice of course the text is much closer to the attach point.

19

e Generally, we want the distance between the point and the text to be independent of the scale chosen
by the \figinit call. Thus, the dimension of the figure can be tuned without acting on this distance.
To obtain this result, just specify a unit after the numerical value (see figure 7). This is one exceptional
case where a dimension can be given with a unit specification. (This works in the same way as the TEX
\magnification command: to get a true unit, we give a dimension specifying a unit, like truept).

Another set of macros have been designed in order to take into account the depth of the box containing
the Text argument. In particular, this feature allows to control the vertical position of the baseline of the
text to be written. The prototypes of theses macros are :

\figwritebw Pt1, Pt2, ..., PtN :Text(Distance)
\figwritebe Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritebn Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritebs Ptl, Pt2, ..., PtN :Text(Distance)

For the “west” and “east” macro, Distance measures the length between Pti and the end (resp. the
beginning) of the Text argument, while the baseline of the Text is set to Pti’s ordinate.

For the “north” and “south” macro, the Text argument is horizontally centered and Distance measures
the length between Pti and the baseline of the Text.

Theses macros have to be compared with the macros \figwriteX. We can see the difference on figure 9
which is followed by the program that produces it.

\figwritebX \figwriteX
Wbb I EDD. A I B
P S bp
Figure 9

% 1. Definition of characteristic points
\figinit{cm}

\def\Dist{1.5}\def\DDist{2}

\figpt 0:(0,0)\figpt 1:(-2.5,0)\figpt 2:(2.5,0)
\figvectC 20(6,0)\figptstra 10=0,1,2/1,20/

% 2. Creation of the graphical file
\figdrawbegin{}

\figset (dash=5)

\figdrawcirc 0(\Dist)\figdrawline[1,2]
\figdrawcirc 10(\Dist)\figdrawline[11,12]
\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 9}{

\figset write(mark=+)

\figwritebw 0:W bb(\Dist)\figwritebe 0:E pp(\Dist)
\figwritebn 0:N bp(\Dist)\figwritebs 0:S bp(\Dist)
\figwriten 0:\CtrlSq{figwritebX}(\DDist)
\figwritew 10:W bb(\Dist)\figwritee 10:E pp(\Dist)
\figwriten 10:N bp(\Dist)\figwrites 10:S bp(\Dist)
\figwriten 10:\CtrlSq{figwriteX}(\DDist)

} \centerline{\box\figBoxA}

20

These “baseline” macros are useful in particular when the alignment of the text is important. This is
the case for example when we have to write close to a horizontal line. On figure 10, we can observe that the
\figwritebX macros lead to the best result. On the contrary, the right hand side of the figure does not look
so nice since the different texts are not horizontally aligned.

\figwritebX \figwriteX

bb pp mm bb PP mm

bb pp mm m
Figure 10

All the previous macros are sufficient most of the time, but for particular cases, they are not. This is
why two general macros have been designed. Their prototypes are:

\figwritegw Ptl, Pt2, ..., PtN :Text(DistanceX,DistanceY)
\figwritege Ptl, Pt2, ..., PtN :Text(DistanceX,DistanceY)

They write a Text placed, with respect to the point Pti, at a horizontal distance DistanceX (respectively
west or east) and a vertical distance DistanceY from the bottom of the bounding box of the Text argument if
DistanceY > 0, from the top if DistanceY < 0. If DistanceY = 0, the Text argument is vertically centered
with respect to Pti.

The last two macros are internally used by some of the previous ones. They allow a very fine tuning
that cannot be achieved otherwise. Their prototypes are:

\figwritegcw Pt1, Pt2, ..., PtN :Text(DistanceX,DistanceY)
\figwritegce Pt1l, Pt2, ..., PtN :Text(DistanceX,DistanceY)

They do the same job as the two previous ones except that DistanceY measures the vertical distance
between the point and the mid-height of the text. This is shown on the figure 11 where the vectors (Dis-
tanceX,DistanceY) are drawn from the attach point.

|General Centered East
General West|

|General East
General Centered West|

Figure 11

The attach point is the origin (point #0), marked with the + sign. The unit is cm. Notice that in the
first call the unit is specified. The corresponding calls are:

\figset write(mark=+)

\figwritegw 0:General West$|$(2,10mm)
\figwritegcw O:General Centered West$|$(1.5,-1.5)
\figwritegce 0:$|$General Centered East(1.5,1.5)
\figwritege 0:$|$General East(2,-1)

The following macros are intended to write some text with respect to a broken line (the “I” in their
name stands for “line”):

\figwritelw Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritele Pt1, Pt2, ..., PtN :Text(Distance)
\figwriteln Pt1, Pt2, ..., PtN :Text(Distance)
\figwritels Pt1, Pt2, ..., PtN :Text(Distance)
\figwriteln Pt1, Pt2, ..., PtN :Text(Distance,lambda)
\figwritels Pt1l, Pt2, ..., PtN :Text(Distance,lambda)

21

Each part of the line is an oriented segment [P;, P; 1] whose end points are two consecutive points in the
given list. Such a segment plays the same role as the attach point for the writing macros presented above.
Indeed, the text is placed at the west, east, north or south of the segment, considered as the reference object
and the writing direction is defined by the vector P;P; ;1. The text is written at the given distance from
the segment. More precisely, the shortest distance between the bounding box of the text and the segment
is considered. For the west and east position, the center of the text bounding box is aligned with the
segment. Without unit specification, the current unit (chosen by \figinit call) is assumed. This principle
is illustrated on the following figure where self explained words are written with respect to a first horizontal
segment and with respect to a second one rotated by 45°.

By default, for north or south position, the text is centered with respect to the middle of the segment.
By adding an optional real parameter (lambda) after the mandatory writing distance, the position of the
text can be shifted along the segment: the value 0 corresponds to the first end point P; and 1 to the second
end point P, of the segment ; thus by default, this parameter is set to 0.5. The third segment on the figure
shows the text “North” (resp. “South”) positionned at 80% (resp. 10%) of the length of the segment.

&
o
North e North
West o East %O \g& o
South P South

&

Figure 12. Position of a text with respect to a line.

The text of the program that produces this figure is the following:

% 1. Definition of characteristic points

\figinit{cm}

\figpt 1:(0,1)

\figpt 2:(3,1)

\figpt 3:(6,0)

\figpt 4:(8.121,2.121)

\figvectC 10(10,0)\figptstra 5=1,2/1,10/

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawline[1,2]\figdrawline[3,4]\figdrawline[5,6]

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure 12.} Position of a text with respect to a line.}
{

% First segment

\figwritelw 1,2:West(4pt) \figwritele 1,2:East(4pt)

\figwriteln 1,2:North(4pt)\figwritels 1,2:South(4pt)

% Second segment

\figwritelw 3,4:West(4pt) \figwritele 3,
\figwriteln 3,4:North(4pt)\figwritels 3,
% Third segment

\figwriteln 5,6:North(4pt,0.8)\figwritels 5,6:South(4pt,0.1)

}

\centerline{\box\figBoxA}

:East (4pt)
:South (4pt)

NS

22

When no text is specified, the text written by default depends on the position. The text is:

e the text joined to the first end point of each segment (P;) for west position,

e the text joined to the second end point of each segment (P;;) for east position,

e the length of the segment (in user unit) for north or south position. The number of decimals
printed is 2 by default and can be changed by the rounding parameter of the \figset write
macro.

This is shown on the following figures:

o~
% N ¥

4

P 4

Figure 13. West Figure 14. East

Figure 15. North Figure 16. South

The text of the program that produces these figures is the following:

% 1. Definition of characteristic points

\figinit{cm}

\figpt 1:(1,1)

\figpt 2:(1.5,3)

\figpt 3:(4,0.5)

\figpt 4:(6,3)

% 2. Creation of the graphical file

\def\MyGrFile{brokenline.gra}

\figdrawbegin{\MyGrFile}

\figdrawline[1,2,3,4]

\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{{\bf Figure 13.} West}
{\figinsert{\MyGrFile}\figwritelw 1,2,3,4:(4pt)}
\figvisu{\figBoxB}{{\bf Figure 14.} East}
{\figinsert{\MyGrFile}\figwritele 1,2,3,4:(4pt)}
\centerline{\box\figBoxA\hfil\box\figBoxB}

b

\figvisu{\figBoxA}{{\bf Figure 15.} North}
{\figinsert{\MyGrFile}\figwriteln 1,2,3,4: (4pt)}
\figvisu{\figBoxB}{{\bf Figure 16.} South}
{\figinsert{\MyGrFile}\figwritels 1,2,3,4:(4pt)}
\bigskip
\centerline{\box\figBoxA\hfil\box\figBoxB}

23

The typical use of this macro is to write a legend along an axis or an arrow ; see figure 6 for an example.
Here with the same line, a more realistic use would probably be:

Figure 17.

which is obtained by the following code:
% 3. Writing text on the figure
\figvisu{\figBoxA}{{\bf Figure 17.}}{\figinsert{\MyGrFile}
\figwriteln 1,2 :L_1(4pt)
\figwriteln 2,3 :L_2(4pt)
\figwriteln 3,4 :L_3(4pt)

}

\centerline{\box\figBoxA}

We finally mention the specific macro
\figwritedim Pt1, Pt2 :Text(Distance)

whose purpose is to write a dimension over a figure, generally a plan. Its use is similar to the macros just
described that write on lines. Given a segment [Pt1, Pt2], this macro writes the text Text above or under
the segment at the specified distance Distance. The text is centered with respect to the segment and is
written under the segment if Distance < 0, above the segment otherwise. We could also say that if Pt1
and Pt2 represent west and east, the text is written at the south of the segment if Distance < 0, at the
north otherwise. If Text is empty, the value of the distance between Pt1 and Pt2 is written. In this case,
the written value can be rounded with the help of the macro \figset write(rounding=NDec) by setting
the number of decimals to be printed. This feature was introduced in the Text argument subsection. The
following figure and the associated program shows a typical use of this macro, along with its companion
macro \figdrawdim which is described in the section Arrow.

5.10 :
*AQ
%41
Figure 18.

% 1. Definition of characteristic points
\figinit{cm}
\figpt 1:(0,0)\figpt 2:(5,1)
% 2. Creation of the graphical file
\figdrawbegin{}
\figdrawdim 1,2(0.5) % Draw a double arrow at 0.5cm above the segment
\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 18.}{J

\figset write(mark=\times)\figwritese 1,2:(2pt) % Show the two points
\figwritedim 1,2:(0.5)} % Write the length of the segment over the double arrow
\centerline{\box\figBoxA}

24

§6. Graphical files handling

Preliminary advice:
The simplest way to use this macro package is to call the macro \figdrawbegin without any argument,
as shown in most of the examples in this documentation. The figure will then be automatically inserted
by the following call to the macro \figvisu and any modification will be taken into account on next
compilation of the document, as expected.

This situation corresponds to what the user needs most of the time. In the following, we find a more detailed
description of some particular features that are sometimes useful.

The way the graphical files to be included into the document are handled by Fig{TEX depends on:
- the origin of the file: internal (created by FigdTEX itself) or external (created by any other software),
- the typesetting mode: DVI or PDF mode.

Definition:

If the document is typeset with the command tex or latex, the output file is a DVI file.
This is called the DVI mode.

If the document is typeset with the command pdftex or pdflatex, the output file is a PDF file.
This is called the PDF mode.

1. Internal file
The macro to use to include the file in the document is \figinsert.

The file name given as argument to \figdrawbegin is mandatory only if there are several references
to the same figure in the document. For example, if the file is referenced twice, we’ll get the following
statements :

\figdrawbegin{MyGrFile}
\figvisu ... {\figinsert{MyGrFile}

.

\figvisu ... {\figinsert{MyGrFile}

-

When a file name is specified, the file is subject to the update process (see below). We recall that its
name must not begin with a digit (see section Writing text on the figure).

WARNING ! We must be aware of what we do : clearly, the contents of the file are destroyed. So, if for
some reason the file name given as argument to \figdrawbegin is the one of a precious file while the
update process is active, the file will be destroyed as well. . .

2. External file
The macro to use to include the file in the document is \figinsertE (see section Text annotation).

DVI mode PDF mode

Kind of file that can be

ncluded by FigflpX PostScript | JBIG2, JPEG, PDF, PNG

In PDF mode, PostScript files cannot be included, because they are ignored by the pdftex engine
(except those created by MetaPost). Therefore, to be used in this mode, a PostScript file must be
converted into one of the other formats. There are valuable hints about this on the pdfTEX home page
(http://www.pdftex.org).

25

http://www.pdftex.org

Automatic file name supply

When no file name is given as argument to \figdrawbegin, a default file name is supplied by Fig{TEX.
The corresponding graphical instructions are then automatically included by the next call to \figvisu,
without even calling \figinsert{}. This automatic inclusion refer to the last call to \figdrawbegin{},
which is the most common situation. Inside the group of commands of \figvisu, a call to \figinsert
is taken into account only if it has an argument, since without argument the graphical file just created is
automatically included.

It must be noticed that this graphical file is not subject to the update process: it will be overwritten on
next compilation of the document, and even on next call to \figdrawbegin{} in PDF mode.

In PDF mode, the file used to hold the graphical information is a scratch file whose name is \job-
nameGI.anx. One file is sufficient, even if there are several figures, because the graphical instructions are put
on the fly into the final PDF output file, at compilation time. At the end of the compilation, this scratch
file contains the graphical information related to the last figure created.

In DVI mode, a new file is used for each occurrence of \figdrawbegin{}. Indeed, since the DVI output
file stores only the name of the graphical file, each of them must be kept until the DVT file is converted into
PostScript or PDF. The name of the file is \ jobnameGIk.anx for the k' figure in the document.

In addition to these files, another temporary file whose name is \ jobname.anx is created (in fact, this
is true only if at least one graphical file is created). This file is empty at the end of the compilation. All
these .anx files can be removed safely since they are automatically recreated on next compilation.

Update process
By default, every graphical file is updated or recreated at each compilation of the document.

Remark: This behavior is opposite to the choice made in the previous versions of Fig{TEX, which was
mainly motivated to make compilations fast. Nowadays, computers are very powerful so that extra work is
acceptable. Moreover, most users expect this behavior.

However, it is sometimes desirable to avoid the re-computation of the macros between \figdrawbegin
and \figdrawend and thus make the compilation of the document run faster, which may be sensible with
complicated figures involving a lot of geometric constructions.

To achieve this, there are two conditions: the update process must be disabled before step 2 and a
filename must be provided as an argument to \figdrawbegin. Thus, the typical statements are:

\figset (update=no)
\figdrawbegin{MyGrFile}

In this situation, the graphical file MyGrFile is never updated by subsequent compilations of the document.
However, if the file happen to be removed, it is automatically recreated.

The update mode can also be disabled at the document level by writing the command \figsetde-
fault (update=no) after the loading command of Fig{TEX. Every graphical file in the document will then be
preserved by the compilations, except those eventually forced locally by \figset (update=yes).

This “no update” mode is obviously to be used when the figures need no more modifications. It may be
useful for complicated figures that require many computations. It must be noticed that, in this case, since
the points defined between \figdrawbegin and \figdrawend are not computed, they should not be used as
attach points for text during step 3 (macro \figvisu).

Remark: The macros \figset and \figsetdefault are used to set other graphical attributes; they are
described in the section Setting graphical attributes.

26

§7. Annotating a pre-existing figure
1. Introduction

Given a pre-existing figure, such as an image, it may be useful to write some text at a precise place upon it,
or superpose some drawing, or even an another image. These actions can be done rather easily with FigdTpX.
The graphical file containing the figure must first be included in the document, with the help of one of the
macros \figinsert or \figinsertE:
- if the graphical file was created by Fig{IEX, then the macro \figinsert must be used ;
- if the graphical file was created by any other software, which is mainly the case we are dealing with in
this section, then the macro \figinsertE must be used (the last letter E stands for External). This
macro also allows to scale the image so that it is displayed at the appropriate dimension.

We recall that the kind of file that can be included depends on the typeset mode (see the previous section
Graphical files handling).

2. Text annotation

Here, we answer the question: ”How to write some text on an existing figure 7”

Any unit can be chosen. For the demonstration, we consider the triangle drawn on figure 1. We assume
that the corresponding graphical information has been stored in the file Figl.gra (we intentionally use this
generic filename extension), as if we had written \figdrawbegin{Figl.gra}. If we want to write something
at the right of the triangle, we can choose cm as unit and write the following commands:

\figinit{cm}

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 19}{

\figinsertE{Figl.gra}

\figpt 1:(4.5,3)

\figwrite [1]{\vbox{\hbox{Something at the right}\hbox{of the triangle}}}

}

\centerline{\box\figBoxA}
Thus, we get the result shown on the figure 19:

Something at the right
of the triangle

Figure 19

Notice that if the file to be included in the document is a PostScript file, it must be in fact an encapsulated
PostScript file because the macro \figinsertE needs the bounding box of the figure to work correctly. If the
file does not contain this information, a message is printed on the screen and in the log file at compilation
time, and a small default bounding box is used. In this case, the best thing to do is to provide one by editing
the file and adding such a line in the header (after the first line which is a control line):

%/%BoundingBox: Xmin Ymin Xmax Ymax

where Xmin and Xmax generally range between 0 and 450, and Ymin and Ymax range between 0 and 700 (which
corresponds roughly to maximum values for a A4 page). It must be noticed that some graphical softwares

27

40 Triangle

10 1

0 e
//
'10 A A A A A A

A N
-10 10 30 50 70 90 110 130

Figure 20 Figure 21

do not set a correct bounding box. Obviously, the position of the figure on the page depends on these values,
so it is recommended to set a bounding box as close as possible to the real figure.

This problem is the same as finding the coordinates of a particular point on the figure. In the previous
example, the coordinates of the attach point of the text need not to be set very accurately. However, it
sometimes happens that one wants to refer to a particular point on the figure. Except in the rare case
where the user explicitly knows the coordinates of the point, the problem is precisely to obtain easily these
coordinates.

Some previewers may help, if they show the coordinates of the cursor. This is the case for example with
ghostview, a PostScript viewer available on some operating systems. The position of the cursor is given in
PostScript unit, so the argument to use for \figinit must be bp.

Another solution, provided by Fig/IEX, which works with any graphical file and not only with a
PostScript file, is to use the macro \figscan FileName (HX,HY) which draws a rectangular grid with hori-
zontal step HX and vertical step HY. Numerical values corresponding to the size of the figure described in the
file FileName are printed, at least every 20 bp horizontally and every 10 bp vertically to avoid overprinting.
The values of the steps are given in PostScript unit (bp) and must be integers, because the first value is
rounded and no decimals are printed. This macro is intended to be used temporarily, together with the
macro \figinsertE, for example to set the coordinates of the attach point or adjust the bounding box of a
PostScript file.

For example, if we want to write the word “Triangle” inside the triangle, we need to determine the
coordinates of the attach point. For that, we can do the following.

e First, we compile a file containing the commands (\MyImage is defined because it is referenced twice):
\def\MyImage{Figl.gra}
\figvisu{\figBoxA}{\bf Figure 20}{
\figinsertE{\MyImage}
\figscan \MyImage (10,10) }
\centerline{\box\figBoxA}

e Then, we use a previewer to look at the result shown on the figure 20: the grid and the drawing are
printed together. We are now able to fix the coordinates of the point: we choose (70,50).
e At last, we slightly modify the previous file: set the unit to bp, remove the call to \figscan, create the
point and center the text on it, which leads to the following commands:
\figinit{bp}
\def\MyImage{Figl.gra}
\figvisu{\figBoxA}{\bf Figure 21}{
\figinsertE{\MyImage}
\figpt 1:(70,50) \figwritec[1]{Triangle} }
\centerline{\box\figBoxA}

The result is shown on the figure 21.

28

Scaling factor
The figure to be inserted in the above example has a dimension that makes it directly useable in the
document. But, in particular when an image is inserted, it should generally be scaled to fit inside the page.
In order to control the scale of the figure to be inserted in the page, the macro \figinsertE has a second
argument ; its full prototype is:
\figinsertE{FileName, ScaleFactor}

Thus, the user can provide the extra argument ScaleFactor which is a positive real number whose default
value is 1, so that \figinsertE{FileName, 1} is equivalent to \figinsertE{FileName}.

Remarks:

e The macro \figinsert has the same arguments and the same behaviour. But although this macro
works with graphical files created by Fig{IEX, it is better to control the scale with the macro \figinit
because the scale factor set by \figinsert apply to each component of the figure, e.g. the line width,
which may lead to a disgracious appearance.

e When several scale factors are specified, the macro \figscan works properly only if it appears immedi-
ately after the corresponding call to \figinsertE.

An example of this feature is given on figure 22 (and in next section).

Figure 22

The same graphical file, Figl.gra, is used twice. We obtain two nested triangles and we observe that they
are drawn with respect to the same origin. We choose 0.5 as scale factor and we write the letter T on the
big triangle, the letter t at the same relative position on the smaller one. The program that produces it is :

\figinit{bp}
\def\ScFactor{0.5}
\def\MyImage{Figl.gra}
\figvisu{\figBoxA}{\bf Figure 22}{

\figinsertE{\MyImage}

\figpt 1:(90,60) \figwritec[1]{\bf T}

% Idem after scaling:

\figinsertE{\MyImage, \ScFactor}

\figpt 0:(0,0) \figpthom 1:=1/0,\ScFactor/ \figwritec[1]{\bf t}

}

\centerline{\box\figBoxA}

3. Graphical annotation

Drawing on a pre-existing figure or an image requires to create a graphical file that will be manually inserted
after the image. The procedure is similar to what has been explained in the previous section (see figures 20
and 21). As an example, we propose to highlight the slopes in a mountain landscape with two straight lines.
The image is supposed to be stored in a file called mountain. jpg.

29

e First step: chose a scale factor so that the image is displayed at the wanted size and display a grid over
it with the help of \figscan. This is achieved by the small following program, where 0.8 is chosen as
scale factor. The result is shown on the figure 23.

220

200

180

16005

140

% Display a grid over the image
\def\MyImage{mountain. jpg} 120
\figvisu{\figBoxA}{\bf Figure 23}{

10008

\figinsertE{\MyImage,0.8} 5

\figscan{\MyImage}(20,20) 80—
} *
\centerline{\box\figBoxA} 600

0
0 20 40 60 80 100 120 140 160 180
Figure 23

e Second step: chose the coordinates of the points defining the segments (or more generally any suitable
drawing).

e Last step (modify the previous program): set the unit to bp, create the points and the graphical file
(slopes.gra), replace the call to \figscan by the insertion of this file after the image using the macro
\figinsert ; this leads to the following program whose result is shown on the figure 24:

% 1. Definition of characteristic points
\figinit{bp}
\figpt 1:(32,80) \figpt 2:(168,160) % red line
\figpt 3:(24,192) \figpt 4:(104,128) % blue line
% 2. Creation of the graphical file
\def\MyGrFile{slopes.gra}
\figdrawbegin{\MyGrFile}
\figset (color=\Redrgb, width=2) \figdrawline[1,2]
\figset (color=\Bluergb, dash=2) \figdrawline[3,4]
\figdrawend
% 3. Display annotated image
\def\MyImage{mountain.jpg}
\figvisu{\figBoxA}{\bf Figure 24}{
\figinsertE{\MyImage,0.8}
\figinsert{\MyGrFile}
}

\centerline{\box\figBoxA}

Figure 24

30

Remarks:
e Note that the graphical file created by Fig{TEX should be named (by giving an argument to \figdraw-
begin) since it must be included after the image. Otherwise, the file would be automatically inserted
before the image and covered with it (and thus invisible !).

e The lower left corner of the image is the origin of the axes. Thus, we could as well determine the
coordinates of the points by measuring distances with a graduated ruler, without forgetting to set the
appropriate unit which would probably be mm, cm or in, instead of bp (in this case, the scaling factor of
the image would also probably be equal to 1).

o If after valuable efforts to draw something over the image, the dimension of the image must be modified,
the points would not be anymore at correct locations. Redefining them would be tedious, but above all
unuseful since there is a quick solution: apply new scaling factors to both files.

For example, if we want to diplay the image at scale 0.7 instead of 0.8 as done above, we have to apply
a new scaling factor equal to 0.875 since 0.7 = 0.8 x 0.875, recalling that by default this factor is equal
to 1. Thus, by modifying accordingly the last part of the program above:

\figvisu{\figBoxA}{\bf Figure 25}{
\figinsertE{\MyImage,0.7} % 0.7 = 0.8 x 0.875
\figinsert{\MyGrFile,0.875} % 0.875 instead of 1 (default value)

}

\centerline{\box\figBoxA}

we get the following figure:

Figure 25

Interestingly, we can notice that the width of the lines is scaled, which is suitable in this case. In-
deed, alternatively, we could have used the factor to modify the unit (\figinit{0.875bp}), which
would have changed the graphical file, that should then have to be inserted without scaling (by saying
\figinsert{\MyGrFile}) leaving the lines width unchanged and leading to a worse aspect.

31

As mentionned in the introduction of this chapter, displaying an image over another one used as back-
ground is a feature that is rather easy to achieve. To illustrate that, we propose to brighten this gloomy
mountain lanscape by adding a yellow ink spot supposed to represent the sun. We thus prepare an small
image stored in the file sun.png. The lower left corner of the image is the handle which will be used to
locate the image over the background. On the following figure, the dashed line corresponds to the border of
the image.

handle point

In order to display it on the background image, the procedure makes use of tools that have already been
encountered: choose the coordinates of the point on the background image that will coincide with this handle
point and use the \figwrite macro whose text argument is repaced by the call to \figinsertE. This leads
to the following program whose result is shown on the figure 27:

\figinit{bp}
% Display an image over an image
\def\MyImage{mountain. jpg}
\def\MySun{sun.png}
\figvisu{\figBoxA}{{\bf Figure 27.}
Superposition of two images (PDF mode) }{

\figinsertE{\MyImage,0.8}

\figpt 0:(100,170)

\figwrite [0]{\figinsertE{\MySun,0.5}}

}

\centerline{\box\figBoxA}

Figure 27. Superposition of two images (PDF mode)

In DVI mode, only PostScript files can be inserted, so in the previous example the yellow spot would appear
inside a white square. Thus, except in the case where the two images have the same color background,
this feature is most useful in PDF mode, since the transparency background of the last image allow a nice
superposition. Here, in PDF mode, we use a PNG file with a transparent background.

Serious people may find this example futile. Putting a signature over an existing document would have
admittedly been a more worthy example. It should be noted that this particular action can be done in a
more straightforward way using the Fill & Sign tool of Adobe Acrobat Reader.

32

68. Setting graphical attributes
1. Introduction

Three macros are involved to set the graphical attributes. The first two ones have both the same prototype.
At least one space is necessary before the keyword argument:

\figset keyword (attributel=valuel, attribute2=value2,...)
\figsetdefault keyword (attributel=valuel, attribute2=value2,...)
\figreset{keywordl, keyword2,...}

The keyword argument refers to attributes that are logically grouped together. There are two kinds of
attributes: general attributes that may concern every drawing macro (like the color), and specific attributes
that concern only a particular drawing macro (like the roundness of a curve).

Every attribute has a current value which is first initialized to its corresponding default value. The
macro \figset can temporarily set another current value, which is used until next change. For example,
one can change the line width by saying: \figset (width=1) .

To get back to the default value, one can use \figset, called with the generic value default, for example
\figset (width=default), or \figreset which resets to their default value all the attributes related to a
particular keyword, for example \figreset{general} .

Some specific attributes have the same nature as general attributes (line attributes and color). Their
default value is the current value of the corresponding general attribute. For this reason, they are called
Dynamic Default Value attributes (DDV): the default value varies according to the changes made to the
general attribute. Indeed, this “follow context” feature is most often convenient in practice ; however, any
specific attribute can be assigned a particular value with the macro \figset, which “locks” this attribute
and suspends the dynamic behavior.

Moreover, the macro \figsetdefault allows the user to change the default values (of every non DDV
attribute of course). Indeed, the “factory” choice may not fit the needs of the user and this macro provides
a way to customize the way the package is used without having to modify the macro file. This macro is
intended to be called at the beginning of the document, after the macro package has been imported. The
default values are changed up to the end of the document or up to next call to \figsetdefault, and are
taken into account by every macro that refers to the default values, which are \figinit, \figdrawbegin
and \figreset. For example, the following lines:

\input figdtex.tex
\figsetdefault (width=1)
\figsetdefault arrowhead(angle=10)

now impose that, by default, the line width is 1 bp and the arrowhead half-angle is 10 degrees.

The list of available keywords is the following:
- no keyword or keyword = general which deals with the so-called general attributes, i.e. applicable
unless otherwise stated in a specific context with one of the following keywords,
- altitude which deals with the altitude attributes (see \figdrawaltitude),
- arrowhead which deals with the arrowhead attributes (see the \figdrawarrowx family),
- curve which deals with the attributes of a curve (see \figdrawcurve),
- general which deals with the general attributes,
- flowchart which deals with the flow chart attributes (see the \figdrawfc* family),
- mesh which deals with the attributes of a mesh (see \figdrawmesh),
- sign which deals with the attributes of a sign or symbol (see the \figdrawsign* family),
- trimesh which deals with the attributes of a mesh (see \figdrawtrimesh).

Then, here follow the lists of the attributes relative to each keyword. Each attribute is followed by
the possible values it can take. DDV indicates that its default value is dynamic, i.e. follows the last
value given by the general keyword ; due to the DDV definition, such attributes should be used inside a
\figdrawbegin-\figdrawend group to be effective:

33

- no keyword or keyword = general
. alpha = transparency level
. cap = butt, round or square
. color = color definition
. dash = index or dash pattern
. fillmode = yes/no
. join = miter (V), round (~—) or bevel (_/)
. update = yes/no
. width = dimension in PostScript unit
- keyword = altitude
. blcolor = color definition (DDV)
. bldash = index or dash pattern (DDV)
. blwidth = dimension in PostScript units (DDV)
. sqcolor = color definition (DDV)
. sqdash = index or dash pattern (DDV)
. sqwidth = dimension in PostScript units (DDV)
- keyword = arrowhead
. angle = real in degrees
. fillmode = yes/no
. length = real in user unit
. out = yes/no
ratio = real in [0, 1]
- keyword = curve
. roundness = real usually in [0, 0.5]
- keyword = flowchart
. arrowposition = real in [0, 1]
. arrowrefpt = start/end
. bgcolor = color definition (frame background)
. line = polygon/curve
. padding = real in user unit (set both xpadding and ypadding)
. radius = positive real in user unit
. shape = circle, ellipse, lozenge or rectangle
. thickcolor = color definition (of the thickness of the frame)
. thickness = real in user unit
. xpadding = real in user unit
. ypadding = real in user unit
- keyword = mesh
. diag = integer in {-1, 0, 1}
. color = color definition (DDV)
. dash = index or dash pattern (DDV)
. width = dimension in PostScript units (DDV)
- keyword = sign
. color = color definition (DDV)
. dash = index or dash pattern
. dimension = positive real in user unit
. fillmode = yes/no
. join = miter (V), round (U) or bevel (\-/)
. shape = circle, diamond, nabla, square, star or triangle
. width = dimension in PostScript units
- keyword = trimesh
. color = color definition (DDV)
. dash = index or dash pattern (DDV)
. width = dimension in PostScript units (DDV)

34

Remark: The current values of the attributes can be obtained at compilation time with the help of the
macro \figshowsettings (see sections Helpers and 3D examples). In this documentation file,
the macro \figsetdefault is not called, so the default values used for the attributes in all the
examples are the “factory” default values.

The update attribute has been described in the Graphical files handling section (Update process
subsection). Except this one, the general attributes have an action on the way a line or a patch is drawn.
They are described in the next subsections. However, the fillmode attribute is presented later in the Filled
area, transparency subsection, after some graphical macros have been introduced, in order to show its
effect in a more demonstrative way. The same apply for the alpha attribute which is generally used when
patches are drawn.

The other keywords correspond to particular graphical objects ; the associated macros and attributes
are described in further sections devoted to those particular cases.

2. Line attributes

e Line width

By default, the line width is set to 0.4 bp. The macro \figset (width=New Width) modifies the line
width by using the new value New Width. The unit used here is always the PostScript point and the argument
must be given without any unit specification.

For example, we get

with \figset (width=default)
with \figset (width=1)

with \figset (width=1.5)
with \figset (width=2)

Remark: If the filling mode is on (see Filled area, transparency subsection), the width of a line cannot
be changed and the line may even be invisible ; think to check this in case of trouble.

Remark: The transparency attribute also apply for lines and is particularly relevant when the lines are thick
(see Filled area, transparency subsection).

e Line style

The default line style is solid. The macro \figset(dash=...) modifies the line style. Two calling

sequences are available:
\figset (dash=Index)

\figset (dash=Pattern)

The first form refers to the Index value which is an integer taking its value between 1 to 10. The solid
line corresponds to the value 1, which can also be set by saying \figset(dash=default) . The different
line styles available are shown below, using the default line width.

with \figset (dash=default)
777777777777777 with \figset (dash=2)
7777777777777777777 with \figset (dash=3)
————————————————————————————— with \figset (dash=4)
—————————————————————————————————————— with \figset (dash=5)
——————————————————— with \figset (dash=6)
——————————————— with \figset (dash=7)
——————————————————— with \figset (dash=8)

s s oo with \figset (dash=9)

— e — = with \figset (dash=10)

35

The second form refers to a pattern which is a sequence of integers separated with white spaces. The
general form is Dashy Space; ... Dash, Space, Offset where each value is a dimension given in PostScript
points (bp), Dash; corresponding to the length of a dash, Space; to the length between two dashes. The
last value Offset is optional. It corresponds to the length by which the whole pattern is shifted towards the
beginning of the line. Its default value is 0. It allows to adjust the position of the pattern. For example, on
the previous figure, we may want to “center” the pattern over the second segment. Since \figset (dash=2)
is equivalent to \figset (dash=6 2), we obtain a better look using the pattern form of the macro as shown
below:

777777777777777 with \figset (dash=2)

777777777777777 with \figset(dash=6 2) (same as previous)
777777777777777 with \figset (dash=6 2 2)
e Line join
This attribute establishes the shape to be put at the corners of a polygonal line. Its effect is particularly

visible with wide lines or when several lines meet at a point. In this case, best rendering is often obtained
with join=round. The three possible values are shown on the following figure. The default value is miter.

VvV V V

join=miter join=round join=bevel

e Line cap

This attribute establishes the shape to be put at the ends of a straight line. Rarely used, its effect
is mainly visible with wide lines. The three possible values are shown on the following figure, where the
theoretical end points are those of the thin white line in the middle of the black wide one. The default value
is butt, meaning that the line stops at the true location. The two other possibilities allow to add a circular
or squared cap. The circular cap is especially useful to smooth the rendering when several segments meet
at the same point.

cap=butt cap=round cap=square

3. Using color

Highlighting some part of a figure can be achieved by changing the line style, but also, often more efficiently,
by adding color. This can be done while creating the figure with the instruction:

\figset (color=Color Definition)
Once a color is set, every subsequent graphic will be drawn in this color, until another color setting occurs.
This apply to lines as well as to filled areas. The default color is black.

The argument Color Definition of this macro can be a gray shade or a color definition according to the
cmyk or the rgb color model. The gray shade intensity is controlled by a real number taking its value between
0 and 1, with 0 corresponding to black, 1 corresponding to white and intermediate values corresponding to
intermediate shades of gray. To specify a color, one can give:

- either numerical values (or coordinates) corresponding to the color definition in the color model (note
there are 4 coordinates for emyk and 3 for rgb),
- or a color name, which is a macro containing the color definition.

36

For example, one obtains the same result by saying \figset (color=\Redrgb) or \figset(color=1 0 0),
provided the macro \Redrgb has been defined. Note that the coordinates are separated with blank spaces
and range between 0 and 1. The basic colors have been predefined in each color model, along with some
other ones :

-in emyk :
. \Blackcmyk, D \Whitecmyk, . \Graycmyk,
\Cyancmyk, . \Magentacmyk, D \Yellowcmyk,
\Redcmyk, . \Greencmyk, . \Bluecmyk,
\Browncmyk, . \BrickRedcmyk, . \ForestGreencmyk,
\Marooncmyk, . \Orangecmyk, . \RoyalBluecmyk,
D \Goldenrodcmyk, . \Purplecmyk, D \Pinkcmyk, . \Violetcmyk,
-in rgb :
. \Blackrgb, D \Whitergb, . \Grayrgb,
\Cyanrgb, . \Magentargb, D \Yellowrgb,

. \Redrgb, . \Greenrgb, . \Bluergb,
\Chocolatergb, . \Firebrickrgb, . \ForestGreenrgb,
. \Maroonrgb, . \DarkOrangergb, . \RoyalBluergb,
D \Goldrgb, . \HotPinkrgb, D \Pinkrgb, . \DarkGoldenrodrgb.

Remark: The color coordinates are taken from different sources and the associated names have been pre-
served. A color may render differently in the two color models: this is the case for Cyan for
example.

It is easy to enrich this small list. To define a color name, one has to associate its coordinates with the name
of a macro. The color model is automatically deduced from the coordinates. For example, orange is defined
in ¢emyk model by saying \def\Orangecmyk{0 0.61 0.87 0} . The suffix cmyk, or rgb, is not mandatory ;
one could have chosen to call it simply \Orange.

Finally, as already mentionned in the previous Introduction subsection, some high level macros
use specific attributes, among which can be found the color. For example, setting the background color
of the frames in a flowchart in gray tone, cmyk or rgb color code can be achieved by saying \figset
flowchart (bgcolor=Color Definition) which works the same way as \figset (color=Color Definition).

37

89. Drawing macros
1. Preliminary remarks

We now present some macros we think useful in a variety of situations listed in the following sections.
However, when we want to design a new figure, the available macros may not solve directly the problem and
it may be necessary to write a new macro. In this case, we advise you to build it, as far as possible, using
user macros. But sometimes, this will imply to use internal macros: the best is to start from the structure
of an existing macro that looks similar to the new one.

Every system has limits of use and we must be aware of what can be expected from this macro package.
We recall that its main purpose is to give the ability to write some text on a figure, easily and under total
control of the user. Whenever very complicated computations are necessary, they must be done elsewhere
and used here, or the figure must be entirely created by another software and then imported; the macro
\figscan has been created for this purpose (see the section Text annotation).

2. Arc

We already saw the macro \figdrawcirc which draws an entire circle. Here are macros that deal with a
portion of arc. There are several versions of them so that one can choose the simplest solution depending
on the available data.

If data consists mainly in angles, one can use the macros whose prototypes are:
\figdrawarccirc Center ; Radius (Angl,Ang?2)
\figdrawarcell Center ; XRad,YRad (Angl,Ang2, Inclination)

The first one draws a circular arc, the second one draws an arc of ellipse. Although a circle is a particular
case of ellipse, the macro \figdrawarccirc has been built because a circular arc is needed more often than
an arc of ellipse, so a shorter list of arguments makes its use more straightforward.

Let us detail the arguments of the macros. Angl, Ang2 and Inclination are angles to be given in
degrees. Angl and Ang?2 are measured counterclockwise from the local X axis, also called major axis.

The circular arc is the part of the circle of center Center and radius Radius delimited by the angles
Angl and Ang2.

Except the limiting angles, the arguments of \figdrawarcell have the same definitions as those of the
macro \figptell. The arc of ellipse is the part of the ellipse defined by the center Center, the two radii XRad
and YRad, delimited by the parametrization angles Angl and Ang2. The ellipse is rotated by Inclination
on the paper sheet.

If data consists mainly in points, these macros are not very handy. This is the case for example when
the arc we would like to draw is limited by two crossing lines. We know the intersecting point (that can be
computed by \figptinterlines) and one other point on each line. So “point versions” have been created
whose prototypes are:

\figdrawarccircP Center ; Radius [Pt1,Pt2]

\figdrawarcellPP Center,PtAxisl,PtAxis2 [Pt1,Pt2]
The first macro draws a circular arc of center Center and of radius Radius limited by the two half-lines
(Center, Pt1) and (Center, Pt2). The arc is drawn from Pt1 towards Pt2 turning counterclockwise around
Center.

Let C, Ay, As stand for Center, PtAxisl and PtAxis2. These arguments have the same definition as
those of the macro \figptellP: C is the center of the ellipse, A; is the end point of the major axis and As
is the end point of the minor axis. The macro \figdrawarcellPP draws an arc of ellipse of center C' limited

by the two half-lines (Center, Pt1) and (Center, Pt2). The arc is drawn counterclockwise around the vector
CAl X CAQ

Another version of the latter one exists. Its prototype is:

\figdrawarcellPA Center,PtAxisl,PtAxis2 (Angl, Ang?2)

It behaves exactly like \figdrawarcellPP except that it allows to specify the portion of the arc using the
parametrization angles Angl and Ang?2.

38

Figure 33

Figure 33 shows an example of their use. The text of the program that produces it follows. Notice that the
points #4 and #5 are created only to have the opportunity to call the “point” versions of \figdrawarcell.

% 1. Definition of characteristic points

\figinit{pt}

\def\haxis{100}\def\vaxis{40}
\def\startangle{-20}\def\stopangle{90}\def\inclin{45}

\figpt 1:(-10,10)\figpttraC 2:=1/0,-80/\figpttraC 3:=1/200,0/

\figptell 4:: 3 ; \haxis,\vaxis(0, \inclin) % End point of major axis
\figptell 5:: 3 ; \haxis,\vaxis(90, \inclin) % End point of minor axis
% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawarccirc 1;\vaxis(\startangle,\stopangle)\figdrawarccircP 2;\vaxis[1,3]
\figset (dash=3)\figdrawarcell 3 ; \haxis,\vaxis(0,360, \inclin)
\figset(dash=default,width=1)

\figdrawarcell 3 ; \haxis,\vaxis(\startangle,\stopangle, \inclin)
\figdrawarcellPP 3,4,5[1,2]\figdrawarcellPA 3,4,5(-180,-90)

\figset (width=default,dash=5)\figdrawline[1,2,3,1]

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 33}{

\figset write(mark=.)\figwriten 1,3:(2)\figuritesw 2:(2)

}

\centerline{\box\figBoxA}

3. Example

Here is a more elaborated example involving a small geometric construction. The data consist of an ellipse
of center C' and a point O lying on its major axis. The aim is to draw the tangent lines to the ellipse passing
through O.

Thus, we have to compute the two points I and J lying on the ellipse such that (O,I) and (O, J) are
tangent to the ellipse.

The two radii of the ellipse are denoted R, and R,, and are such that R, > R,. Let A be the middle
point of [OC] and p = Hﬁ“ The two circles (A4;p) and (C; R,) intersect at points I’ and J’. The lines

39

(O, I') and (O, J") are the tangent lines to the circle (C; R,) passing through O. Moreover, if B denotes a
point lying on (O, C) with 5 > x¢, the angles §; = (C@,CT) and 0; = (C?,CT) are the parametrization
angles of the points I and J which solves the problem.

The corresponding figure is given below, along with the program that produces it. Some additional
points are computed in order to draw the lines.

Figure 34

% 1. Definition of characteristic points

\figinit{in}

% Data

\figpt 0:0(-0.5,0)\figpt 1:C(2,0)
\def\Rx{1}\def\Ry{0.7}

% Computations

\figptbary2:A[0,1;1,1]\figget distance=\RHO[2,1]
\figptsintercirc 3[1,\Rx;2,\RHO] % Computes points 3 (I’) and 4 (J’)
\figptbary 10:[0,1;6,-1]\figptbaryR 11:B[0,1;-1,2.5]
\figget angle=\ThetaI[1,11,3]

\figget angle=\ThetaJ[1,11,4]

\figptell 3:I: 1;\Rx,\Ry (\ThetaI,0)

\figptell 4:J: 1;\Rx,\Ry (\ThetaJ,0)

\figptbary 13:[0,3;-1,3]

\figptbary 14:[0,4;-1,3]

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawarcell 1;\Rx,\Ry (0,360,0)
\figdrawline[10,11]\figdrawline[0,13]\figdrawline[0,14]
\figdrawend

% 3. Writing text on the figure

\def\dist{4pt}

\figvisu{\figBoxA}{\bf Figure 34}{

\figwriten O0:(\dist)\figwriten 11:(\dist)

\figset write(mark=+)\figwriten 2:(\dist)

\figset write(mark=\figBullet)\figwriten 1:(\dist)
\figset write(mark=\times)\figwriten 3,4:(\dist)

}

\centerline{\box\figBoxA}

40

4. Curve

From the PostScript and PDF capabilities, we derived a basic macro to draw a portion of curve. Its prototype
is

\figdrawBezier N [Pt_1, ..., Pt_{3N+1}]
It allows to draw polynomial curves of any shape using the Bézier representation, that is to say by giving a
set of control points. Since the PostScript language and the PDF format only provide cubic Bézier curves,
this macro draws a curve formed by a succession of cubic arcs, each of them defined by four control points.
The fourth control point of an arc is the first of the following arc. Thus, if the curve is composed of N arcs,
the user must provide 3N + 1 control points. This is not checked.

As a consequence of the Bézier representation, the points Py, Py,...,Ps3k11,...,P3n41 lie on the curve.
Moreover, the segment [Psy, Psr41] (respectively [Psgy1, Psgt2]) is tangent to the arc number k (respectively
k+ 1) at point Psp1.

Remarks:
e Two successive points may coincide.
e We recall that the coordinates of a point lying on a cubic Bézier arc can be computed by the macro
\figptBezier and the derivatives by the macro \figvectDBezier.

Here follows an example showing a curve consisting of three cubic arcs. The dashed polygon shows the
control points. The curve is C? except at point P; where it is only C° and at point P; where it is C'' since
Pg is the symmetric of P with respect to P;.

Figure 35

The text of the program that produces it is:
% 1. Definition of characteristic points
\figinit{pt}
\figpt 1:(-30,-10)\figpt 2:(0,-70)\figpt 3:(60,-60)\figpt 4:(80,10)
\figpt 0:(80,100) % Only used to define the line (0,4) for the symmetry
\figptssym 5=3,2,1/0,4/\figptsrot 8=6,5,4/7,180/
% 2. Creation of the graphical file
\figdrawbegin{}
\figdrawBezier 3[1,2,3,4,5,6,7,8,9,10]
\figset(dash=8)\figdrawline[1,2,3,4,5,6,7,8,9,10]
\figdrawend
% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 35}{
\figset write(ptname=$P_{#1}$)
\figwritew 1:(2)\figwritesw 2,5:(1)\figwritese 3,6:(1)\figwriten 4:(2)
\figwritee 7,10:(2)\figwritenw 8:(1)\figwritene 9:(1)

}

\centerline{\box\figBoxA}

41

It turns out that the macro \figdrawBezier is not very handy when one wants to draw a smooth curve.
So, a new macro has been designed for that purpose whose prototype is

\figdrawcurve [PtO, Ptl,... ,PtN, PtN+1]

It draws a C' curve that interpolates the points P;, Ps, ..., Py. The curve consists of N — 1 Bézier
cubic arcs. The direction of the tangent at P; is given by the vector Pi_1P;4 1, i =1,...,N. To get a C*
closed curve, just let the last three points be the same as the first three ones.

The shape of the curve can be modified by a “roundness” parameter whose value is set by the macro
\figset curve(roundness=value) where value is a real number to be chosen between 0.15 and 0.3 in order
to obtain the best results. Its default value is 0.2, which can be set by saying \figreset{curve} or \figset
curve (roundness=default). The aim is to influence the roundness of the curve, and even its smoothness,
since setting this value to 0 produces the polygonal line defined by the given points. Other values greater
than 0.5 (or negative values) lead to (generally unwanted) strange shapes.

Remarks:

e Wittingly, no check is performed on the “roundness” parameter, so a large value may produce an
arithmetic error.

e The macro \figdrawcurve must obviously be called with at least 4 points. This is not checked.

e Two successive points may coincide: this feature may probably only be useful at the end points of the
line by setting, for example, Py = P; so that the line starts at P; with the tangent Jﬁ .

e The macro \figptscontrolcurve makes available to the user the control points used internally by
\figdrawcurve to draw the smooth curve.

The two following figures show what can be done with this macro.

Figure 36 Figure 37

The text of the program that produces the left-hand side figure is:

% Left-hand side figure

% 1. Definition of characteristic points (Interpolation points)
\figinit{pt}

\figpt 1:(-100, 20)\figpt 2:(-30, 70)

\figpt 3:(50, 50)\figpt 4:(80,0)

\figpt 5:(30, -40)\figpt 6:(-30, 0)\figpt 7:(-80, -20)
% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawcurvel[1,2,3,4,5,6,7,1,2,3]

\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 36}{

\figset write(mark=\figBullet)
\figwritep[1,2,3,4,5,6,7]

}

42

The text of the program that produces the right-hand side figure is given below. Here, we are anticipating
on some features described in the Filled area, transparency section.

% Right-hand side figure

% 1. Definition of characteristic points (Interpolation points)
\figinit{pt}

\figpt 1:(0, 30)\figpt 2:(0, -30)

\figpt 10:(-50, 50)\figpt 11:(-50,-50)\figpt 12:(-90,0)

\figpt 20:(50, 60)\figpt 21:(50,-60)\figpt 22:(90,0)

% 2. Creation of the graphical file

\figdrawbegin{}

\figset curve(roundness=0.23) % More roundness

\figset (fillmode=yes,color=0.5)
\figdrawcurve[11,2,1,10]\figdrawcurve[20,1,2,21] % Better to do this first
\figset (fillmode=no,color=0)
\figdrawcurve[11,2,1,10,12,11,2,1]\figdrawcurve[20,1,2,21,22,20,1,2]
\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxB}{\bf Figure 37}{}

A parabola is a particular case of curve that is often needed. The macro \figdrawarcparab whose full
prototype is

\figdrawarcparab [Pt1,Pt2,Pt3]

allows to draw an arc of parabola, defined as a quadratic Bézier curve from P; to P3 whose tangent at P; is
the line (Py, P;) and its tangent at Ps is the line (P, Ps).

To give a short example, by adding the lines

\figdrawarcparab[1,2,3]
\figdrawarcparab[2,3,1]
\figdrawarcparab[3,1,2]

between \figdrawbegin and \figdrawend on the first example (figure 1), we get the three arcs of parabola
inscribed in the triangle, as shown on the following figure.

Aq

As

Ao

Figure 38

43

5. Filled area, transparency

Except arrow drawing macros, every drawing macro dealing with lines, arcs and curves presented so far can
fill the area delimited by the line, the arc or the curve with colored ink, according to the current setting
made with \figset (color=Color Definition). The filling algorithm is governed by PostScript and PDF own
rules. This feature is relevant in particular for non convex polygons. Also, for circular or elliptic arcs, the
area is limited by the arc and the corresponding chord.

The macro \figset (fillmode=switch) allows to activate the filling algorithm if switch equals yes or
not if switch equals no. The default is no.

To show how it works, we start from the two figures 33 and 35 and we replace the graphical file definition
by

\figdrawbegin{}

\figset (fillmode=yes)

\figdrawarccirc 1;\vaxis(\startangle,\stopangle) % Use default color
\figset(color=\Redrgb)\figdrawarcell 3; \haxis,\vaxis(\startangle,\stopangle,\inclin)
\figset(color=\Bluergb) \figdrawarcellPA 3,4,5(-180,-90)

\figdrawend

in the first one and by

\figdrawbegin{}

\figset (fillmode=yes,color=0.7)
\figdrawBezier 3[1,2,3,4,5,6,7,8,9,10]
\figdrawend

in the second one. We then get the two new figures:

A4 A

Py
Py

Figure 39 Figure 40

Note that to shorten the presentation some modifications have been made: 1) the dashed lines have
been removed, 2) the point Ay has been removed along with one of the arcs on the ellipse, 3) the dimensions
of the figures have been shrinked to 90% and 50% respectively.

To put the two figures on the same line, we just filled the box \figBoxB for the curve by giving it as
first argument to \figvisu, and made the classical assembly:

\centerline{\box\figBoxA\hfil\box\figBoxB}
Remarks:
e When the filling mode is active, the macro \figdrawline gives the same result whether the path is
closed or not.
e Filling an area with white ink can be used to erase some existing drawing and then write some text at
this “cleaned” place. Note that this feature may not be handled properly by some dvi screen previewers
although the result on the paper is correct.

44

Figure 41

The following example is a reproduction of the well known RGB color disks shown on figure 41. The

data are the centers (A, B, C) of the three disks and the radius. The points (A, B, C) are the vertices of an
equilateral triangle, A and B lying on the X-axis. In order to fill the different areas, we need to compute
their limits given by the intersections of two circles, which is required by the macro \figdrawarccircP.

The program that produces the figure 41 is given below. Note that the intersections of two disks are

filled with two symmetric areas. It may also be useful to specify that, since PostScript and PDF images are
opaque (by default), the order in which the different areas are painted is essential to get the expected result.

% 1. Definition of characteristic points

\figinit{0.6cm}

\def\xB{2} % Abscissa of B

\def\R{3} % Radius of the 3 circles, r < R < r*sqrt(3),

% r radius of the circumscribed circle (r=2*\xB/sqrt(3)=2.3094)
\figpt 1:A(-\xB, 0) \figpt 2:B(\xB, 0) \figptrot 3:C=2/1,-60/

\figptsintercirc 4[1,\R;2,\R] \figptsintercirc 14[3,\R;1,\R]

\figptsintercirc 24[2,\R;3,\R]

% 2. Creation of the graphical file

\figdrawbegin{}

\figset (fillmode=yes)

\figset(color=\Redrgb) \figdrawcirc 1(\R)

\figset (color=\Greenrgb)\figdrawcirc 2(\R)

\figset(color=\Bluergb) \figdrawcirc 3(\R)

\figset(color=\Yellowrgb) \figdrawarccircP1;\R[4,5] \figdrawarccircP2;\R[5,4]
\figset (color=\Magentargb)\figdrawarccircP1;\R[15,14]\figdrawarccircP3;\R[14,15]
\figset(color=\Cyanrgb) \figdrawarccircP3;\R[25,24]\figdrawarccircP2;\R[24,25]
\figset(color=\Whitergb)
\figdrawarccircP2;\R[24,4]\figdrawarccircP1;\R[4,14]\figdrawarccircP3;\R[14,24]
\figdrawline[4,14,24]

\figdrawend

% 3. Inserting the figure

\figvisu{\figBoxA}{\bf Figure 41}{}

\centerline{\box\figBoxA}

In PDF mode, the aspect of the painted areas can be modified by the transparency attribute. In the coloring
models descriptions, this attribute is generally called alpha. It is a real number lying between 0 and 1,
specifying the transparency level from totally transparent or invisible (0) to opaque (1). This attribute can
be set by saying \figset (alpha=value) . The default value is 1.

45

The following figure shows the effect of the transparency attribute on a triangle:

Ay

Figure 42. Effect of transparency (in PDF mode only).

Again, we start from the first example (figure 1) and change the lines between \figdrawbegin and

\figdrawend by:
% 1st triangle

\figset (color=\Redrgb, fill=yes)
\figdrawline[1,2,3,1]

% 2nd triangle

\figvectC 10(80,0)

\figptstra 11=1,2,3/1,10/

\figset (color=\Bluergb, alpha=0.7)
\figdrawline[11,12,13,11]

% 3rd triangle

\figvectC 10(-40,-30)

\figptstra 11=11,12,13/1,10/
\figset (color=\ForestGreenrgb, alpha=0.5)
\figdrawline[11,12,13,11]

The original triangle (1,2,3) is first drawn and painted in red (opaque by default). Then, the three
points 1, 2, 3 are horizontally translated as points 11, 12, 13 and the second triangle (11, 12, 13) is drawn
and filled in blue color with a transparency level of 0.7. At last, the three points 11, 12, 13 are translated
and the third triangle (11, 12, 13) is drawn and filled in green color with a transparency level of 0.5.

The legend written of the figure is linked to the first three points and is thus unchanged if we compare
with the figure 1. The legend written on the figure is always visible (and opaque). On the contrary, we can
observe the effect of the variation of the transparency level on the triangles, leaving the overlapping areas
still visible.

The transparency attribute has also an effect on lines (remember to inactivate the filling mode to draw
lines only). This is usefull if the lines are thick enough (see line width in section Line attributes).

46

6. Arrow

Straight arrow

Narrow Wide

Figure 43

Corresponding program :

% 1. Definition of characteristic points

\figinit{cm}

\figpt 0:(-1,0)\figpt 1:(1,0)\figpt 2:(1,1)\figpt 3:(1,-1)
\def\VTrans{20}\figvectC \VTrans(0.5,0)

\figptstra 4=1,2,3/1,\VTrans/

\figptcopy10:/0/

\def\LTrans{10}\figpttra 11:=0/\LTrans,\VTrans/

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawline[2,3]\figdrawline[5,6]

\figset arrowhead(ratio=0.3)\figdrawarrow [0,1]

\figset arrowhead(out=yes)\figdrawarrowhead [1,4]
\figptstra 0=0,1,2,3,4,5,6/\LTrans, \VIrans/\figptstra 4=4,5,6/1,\VIrans/
\figdrawline[2,3]\figdrawline[5,6]

\figreset{arrowhead}

\figset arrowhead(fillmode=yes,length=0.3)\figdrawarrow[0,1]
\figset arrowhead(out=yes)\figdrawarrowhead[1,4]
\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 43}{

\figwriten 10:Narrow(0.2)\figwriten 11:Wide(0.2)

}

\centerline{\box\figBoxA}

The two main macros are:
\figdrawarrow [Pt1,Pt2]

\figdrawarrowhead [Pt1,Pt2]

The first one draws a straight arrow from Pt1 to Pt2. The arrowhead is drawn according to its current
attributes (see below). The second macro can be used whenever it is needed to draw an arrowhead alone
(the body of the arrow is then not drawn).

The appearance of the arrowhead depends on four attributes: the opening angle, the length, the drawing
mode and the position. Each of them can be modified using the macro \figset (see below). To reset at
once all the attributes to their default values, the simplest is just to say \figreset{arrowhead}.

e opening angle: \figset arrowhead(angle=value)

sets the arrowhead half-angle to value (in degrees). The default value is 20 degrees, that can be set by

saying \figset arrowhead(angle=default).

e length: Precisely, we speak of the length of each of the two edges of the arrowhead. This attribute can be
set by one of the two following sequences which are mutually exclusive; the default is to use the length.

\figset arrowhead(length=value)

sets the arrowhead length to wvalue (in user unit). The default value is equivalent to a 8.0 pt length,

that can be set by saying \figset arrowhead(length=default).

47

\figset arrowhead(ratio=value)

sets the arrowhead ratio to value, real number usually in (0,1). The default value is 0.1, that can be set
by saying \figset arrowhead(ratio=default). The arrowhead length is then equal to value times
the length of the body of the arrow.

e drawing mode: \figset arrowhead(fillmode=switch)
sets the arrowhead filling switch to yes or no. The default value is no. If yes is chosen, the effect is to
fill the triangle with the current color.

e position: \figset arrowhead (out=switch)
sets the arrowhead ”outside” switch to yes or no. The default value is no. If yes is chosen, the effect
is to draw the arrowhead outside the segment [Pt1, Pt2].

Remark: As already said in section Setting graphical attributes, the default values of these attributes
can be changed by the macro \figsetdefault. However, the length attribute is a particular case
because when \figsetdefault is called, the unit is generally not yet defined. For this reason, in
this case, the unit can be specified after the numerical value. If the unit is not specified, pt is
assumed. Example: \figsetdefault arrowhead(length=4mm)

The figure 43 shows how to use these macros. The text of the program that produces it is given below it.

Non straight arrow
Ay

A1 A2

As
Figure 44

Corresponding program :

% 1. Definition of characteristic points

\figinit{cm}

\def\rotangle{38}

\figpt 1:(-3,0)\figpt 2:(3,0)\figpt 0:(0,0)

\figptsrot 3=1,2/0,\rotangle/\figpt 5:(-3,1)

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawline[1,2]\figdrawline[3,4]

\figdrawarrowcirc 0;1.7(0,\rotangle)\figset arrowhead(angle=30)
\figdrawarrowcircP 0;-1[2,3]

\figset arrowhead(angle=default,fillmode=yes)\figset(width=2)
\figdrawarrowcircP 0;1[4,1]\figdrawarrowcircP 0;-2[3,1]
\figset(width=default)\figset arrowhead(length=0.3)
\figdrawarrowcircP 0;-1.4[2,3]\figdrawarrowBezier[4,5,1,3]
\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 44}{

\figwritew 1:(0.2)\figwritee 2:(0.2)\figwritesw 3:(0.2)\figuritene 4:(0.2)}
\centerline{\box\figBoxA}

48

It is also very convenient to draw circular arrows. Two macros are available for that:

\figdrawarrowcirc Center ; Radius (Angl,Ang2)
\figdrawarrowcircP Center ; Radius [Pt1,Pt2]

The macro \figdrawarrowcirc draws a circular arrow such that the circular arc is centered at Center,
has the radius Radius and is limited by the angles Angl and Ang2 given in degrees. If Ang2 > Angl, the
arrow is drawn counterclockwise, else it is drawn clockwise. The arrowhead is drawn according to the
\figdrawarrowhead macro settings.

The macro \figdrawarrowcircP is the “point version” of the previous one. It draws a circular arrow
such that the circular arc is centered at Center, has the radius |Radius| and is limited by the two half-
lines (Center, Pt1) and (Center, Pt2). By default, the arrow is drawn from Pt1 towards Pt2 turning
counterclockwise around Center. Inserting a minus sign before the radius reverts the turning direction. In
other words, the arrow is drawn counterclockwise if Radius > 0, clockwise if Radius < 0.

A free form arrow can be drawn with the help of the macro

\figdrawarrowBezier [Pt1,Pt2,Pt3,Pt4]

It draws the arrow that consists of the cubic Bézier curve defined by the four control points Pt1, Pt2, Pt3
and Pt4, and the arrowhead at point Pt4 (see the section Curve for more information on Bézier curves).

The figure 44 shows how to use these macros. The text of the program that produces it is given below it.

Double arrow
We finally mention the specific macro

\figdrawdim Pt1, Pt2 (Distance)

which draws a double arrow at the distance Distance from the segment [Pt1, Pt2]. This macro is intended
to show the dimension between the points Pt1 and Pt2. If we consider that Pt1 represents the west position
and Pt2 the east position, this sets an orientation for the segment. In these conditions, the double arrow
is drawn at the south of the segment if Distance < 0, and drawn at the north otherwise. To highlight the
distance between the two points, the endpoints of the arrows are connected to Pt1 and Pt2 with a dashed
line. The appearance of the two arrow-heads can be modified with the help of attributes set by the macro
\figset arrowhead(...). The distance between the points Pt1 and Pt2 can be printed by the companion
macro \figwritedim with the same arguments. This writing macro has an additionnal text argument and
is described at the end of the section Writing text on the figure.

The figure 45 shows how to use these macros. The text of the program that produces it is given below it.

Wo'e

(l
SN

Figure 45

49

% 1. Definition of characteristic points
\figinit{cm}

\figpt 0:(0,0)

\figpt 1:(-0.5, -2.46)

\figpt 2:(-2.8952, 0.786)

\figptrot 3:=2/0,-120/

\figpttraC 4:= 3 /0.5,-3/

% 2. Creation of the graphical file
\figdrawbegin{}

\figset (width=0.8)

% Polygonal part of the figure
\figdrawline[3,4,1,2]

% Circular arc

\figget distance=\Radius[0,2]
\figdrawarccircP 0 ; \Radius [3,2]

b

\figset (width=default)

% Double arrows to show the dimensions
\figdrawdim 2,1(-0.5)

\figdrawdim 1,4(-0.5)

\figset arrowhead(fill=yes)
\figdrawdim 3,4(0.5)

% Dashed line to show the radius of the arc
\figset (dash=4)

\figptcirc 5 :: 0 ; \Radius (140)
\figdrawline[0,5]

\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 45}{%
\figset write (rounding=3)

% Dimensions of the edges of the polygon
\figwritedim 2,1:(-0.5)

\figwritedim 1,4:(-0.5)

\figwritedim 3,4:(0.5)

% Center of the arc and its radius
\figwritec[0]{+}

\figwritedim 5,0:\figround{\Radius}(0)

}

\centerline{\box\figBoxA}

7. Axes

In this paragraph, we present a macro designed to draw axes quickly. It is mainly for user convenience since
it is a short-cut to avoid drawing arrows “manually”. The prototype of the macro has two forms:
\figdrawaxes Origin(X1,X2, Y1,Y2)
\figdrawaxes Origin(L)

It draws axes crossing at the point denoted Origin. Each axis is parallel to the corresponding absolute
axis and is drawn as an oriented arrow between two values given in user unit: from X1 to X2 for the X-axis,
from Y1 to Y2 for the Y-axis.

The second form of the macro is equivalent to \figdrawaxes Origin(0,L, 0,L) and is intended to draw
equal axes in a straightforward way, with two orthogonal arrows starting from the point Origin.

50

Remark: The graphical attributes of the arrows can be modified by the macro \figset as explained in the
previous section.

Since we may want to write a legend at the end points of the axes, we need to compute these points.
This is the aim of the macro \figptsaxes whose prototype is nearly a copy of the one of \figdrawaxes in
order to simplify its use:

\figptsaxes NewPtl : Origin(X1,X2, Y1,Y2)
\figptsaxes NewPtl : Origin(L)

If NewPt1 is equal to k, then this macro computes the end point of the X-axis bearing number k and
the end point of the Y-axis bearing number k + 1. As for \figdrawaxes, the second form of the prototype
is equivalent to \figptsaxes NewPtl : Origin(O0,L, O,L) .

Moreover, the text x and y is automatically joined to the points, so that writing the legend with the
\figwrite* macros is more straightforward. For example, one can write something like:
\figwrites k:(3pt) \figwritew k4 1:(3pt)

However, as explained in the section Writing text on the figure, the text can be modified at this level.

The following figure shows how these macros can be used. It shows also some other macros related to
curves. In this example, the curve interpolates four data points Ay, Ao, A3, A4. It is made of three Bézier
arcs, each of them being a parametric curve with the parameter value ranging in [0, 1]. The tangent at Ay
has the direction of m ; the tangent at A4 has the direction of M .

Let us notice that some points are computed during step 2 and are still needed during step 3. If a
file name was given as argument to \figdrawbegin, it would be necessary to enforce the update mode just

before by saying \figset (update=yes).

The text of the program that produces this figure is given below it.

St
bt

Az
Ay

As

Figure 46 Frenet basis at point P

o1

Corresponding program :

% 1. Definition of characteristic points
\figinit{cm}
\def\ORIG{0} \figpt \ORIG:0(0, 0)
\figpt 1:(0.7,0.5) \figpt 2:(1.5,-1)
\figpt 3:(3.4,2.6) \figpt 4:(5.8,1.5)
\def\Xone{0}\def\Xtwo{7}\def\Yone{-1.5}\def\Ytwo{3.5}
% 2. Creation of the graphical file
\figdrawbegin{}
% Draw the axes and the curve that interpolates the data points
\figdrawaxes \ORIG(\Xone,\Xtwo, \Yone,\Ytwo)
\figset (width=0.6)\figdrawcurve [1,1,2,3,4,4]\figset (width=default)
% Compute the control points of the smooth curve
\figptscontrolcurve 11, \NbArcs [1,1,2,3,4,4]
% Compute a point lying on the second arc of the curve (between A2 and A3)
\def\PointName{P}
\def\Valt{0.8}\figptBezier 25 :\PointName: \Valt [14,15,16,17]
% Compute and normalize the tangent vector at this point
\figvectDBezier 21 : 1, \Valt [14,15,16,17]\figvectU 21[21]
% Draw the tangent and normal vectors
\figset arrowhead(length=0.2,fillmode=yes)
\def\LAMBDA{1.2}
\figpttra 26:\vec{t}=25/\LAMBDA,21/\figdrawarrow [25,26]
\figvectNV 22[21]\figpttra 27:\vec{n}=25/\LAMBDA,22/\figdrawarrow [25,27]
\figdrawend
% 3. Writing text on the figure
\figvisu{\figBoxA}{{\bf Figure 46}\\Frenet basis at point \PointName}{
% Write the name of the points
\figset write(mark=$+$)\figwriten 1:(2pt)\figwritese 2,3:(2pt)\figwritene 4:(2pt)
\figset write(mark=)\figwritew \ORIG:(2pt)\figwritese 25:(2pt)
% Write the name of the 2 vectors
\figwriten 26,27:(2pt)
% Compute the end points of the axes and write the associated text
\figptsaxes 1:\0RIG(\Xone,\Xtwo, \Yone,\Ytwo)
\figwrites 1:(3pt) \figwritew 2:(3pt)

}

\centerline{\box\figBoxA}

8. Triangle related macros

We now present a set of macros related to the geometry of the triangle.

The macro, whose prototype is
\figdrawaltitude Dim [Pt1,Pt2,Pt3]

builds the altitude drawn from Pt1 in the triangle (Pt1, Pt2, Pt3). Dim is the dimension (in user unit) of
the square at the foot H of the altitude on the segment [Pt2, Pt3]. The square is drawn on either side
of this point according to the order of the two points Pt2 and Pt3. If the point H is outside the segment
[Pt2, Pt3], a so-called “base line” is drawn to support the square. The attributes of this line are controlled
by the settings described in the Setting graphical attributes section: the line width, the line style and its
color can be modified with the macro \figset with altitude as keyword and respectively blwidth, bldash
and blcolor as attributes. In the same way, the line settings of the square can be modified by the sqwidth,
sqdash and sqcolor attributes. These attributes are all DDV attributes and thus should be used inside a

\figdrawbegin-\figdrawend group to be effective.

52

On Figure 47, we can see the two altitudes drawn from P, and P3, with respective end points Hy and Hs.
If the base line style had not been changed, the default line style would have been used and thus a solid line
would have been drawn between P3 and Ho.

The macro, whose prototype is

\figdrawnormal Length,Lambda [Pt1,Pt2]

draws the so-called exterior normal, i.e. the vector of length Length which is normal to the oriented segment
[Pt1,Pt2] = [Py, P2]. The direction of the vector is defined by saying that if one goes along the segment
from P; towards P,, then the normal vector is directed towards the righthand side. The word “exterior”
implicitly means exterior to a domain: if the segment is part of the boundary of a polygonal domain, the
domain is on the left when one goes along the boundary from P; towards P». The origin of the vector is
the barycenter of {(P1;1 — \), (P2; A\)} where X is a real number whose value is given by Lambda. Thus, the
values 0, 1 and 0.5 correspond respectively to Py, P, and the midpoint of [Py, Py]. Since this macro draws
an arrow, we have to use the attributes presented in the section Arrow if we want to modify the appearance
of the arrowhead.

Generally used in connection with \figdrawnormal, the macro

\figptendnormal NewPt :Text: Length,Lambda [Pt1,Pt2]

computes the end point NewPt of the “exterior normal” to the oriented segment [Pt1,Pt2]. The last four
arguments have the same meaning as those of the macro \figdrawnormal described just above. This NewPt
can then be used as an attach point of a text to be written on the figure. On Figure 47, we can see the
normal vector 7y to the segment [Py, Ps).

Figure 47

53

The text of the program that produces the figure 47 is:

% 1. Definition of characteristic points
\figinit{1l.3pt}

\figpt 1:(-30,0)

\figpt 2:(170,60)

\figpt 3:(60,-40)

\figptorthoprojline 12:H_3=3/1,2/

\figptorthoprojline 13:$H 2$=2/1,3/

% 2. Creation of the graphical file

\figdrawbegin{}

\figset (join=round)\figdrawline[1,2,3,1]\figset(join=default)
\figdrawaltitude 5[3,1,2]

\figset altitude(bldash=8)\figdrawaltitude 5[2,3,1]
\figset arrowhead(ratio=0.2)\figdrawnormal 20,0.5 [1,3]
\figdrawarrowcircP 1;20 [3,2]

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 47}{

\figset write(ptname=$P_{#1}$)

\figwriten 1,2,12: (4pt)

\figwrites 3,13: (4pt)

\figptendnormal 4 :: 20,0.5 [1,3]\figwritew 4:$\vec{n} 2$(4pt)

}

\centerline{\box\figBoxA}

We may be interested in locating the following characteristic points of a triangle (Py, P, Ps):

the intersection of the medians, which is the center of gravity, also called isobarycenter,

the intersection of the interior angle bisectors, which is the center of the inscribed circle or incenter,
the intersection of one interior and two exterior angle bisectors, which is the center of one escribed circle
or excenter,

the intersection of the mid-perpendiculars, which is the center of the circumscribed circle,

the intersection of the altitudes, which is the orthocenter.

The computation of the gravity center is straigthforward since it is the barycenter of (Py, Ps, P3) bearing

each the coefficient 1/3. The incenter and excenters are also computed as barycenters of (Py, P2, P3) (the
weights are the length of the edges with the correct sign) and the last two points are obtained by lines
intersection. This lead to the following macros:

\figptexcenter NewPt :Text[Pt1,Pt2,Pt3] (excenter opposite to Pt1)
\figptincenter NewPt :Text[Ptl1l,Pt2,Pt3]

\figptcircumcenter NewPt :Text[Ptl,Pt2,Pt3]

\figptorthocenter NewPt :Text[Ptl,Pt2,Pt3]

The figure 48 shows these four points along with Euler’s line. The text of the program that produces it is:

% 1. Definition of characteristic points

\figinit{0.85pt}

\figpt 1:(80, 120)

\figpt 2:(-10, -10)

\figpt 3:(250, 50)

\figptbary 5:G[1,2,3 ; 1,1,1]

\figptincenter 6:Ω_i[1,2,3]

\figptcircumcenter 7:Ω_c[1,2,3]

\figptorthocenter 8:0[1,2,3]
\figptbary10:[7,8;-11,1]\figptbary11:[7,8;1,-11] I Euler’s line

o4

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawline[1,2,3,1]\figdrawline[10,11]

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure 47.}\ Euler’s line in a triangle}{
\figwritenw 1:(2)\figwritew 2:(2)\figwritee 3:(2)

\figset write(mark=\times)

\figwritee 5,8:(4)\figwritew 6,7:(4)

}

\centerline{\box\figBoxA}

Figure 48. Euler’s line in a triangle

9. Grid

The following macro comes from the approximation theory. Its prototype is

\figdrawtrimesh Type [Pt1,Pt2,Pt3]

It draws a triangle of type Type, according to finite element terminology, which is related to the degree of
approximation, represented by the so-called Bézier mesh inside the triangle. The attributes of the line used
to draw this internal mesh are controlled by the settings described in the Setting graphical attributes
section: the line width, the line style and its color can be modified with the macro \figset with trimesh
as keyword and respectively width, dash and color as attributes. Figure 49 shows some examples.

Type 1 Type 2 Type 3
Figure 49

95

The text of the program that produces the figure 49 is:

% 1. Definition of characteristic points
\figinit{pt}

\figpt 1:(-10, 10)

\figpt 2:(110, 40)

\figpt 3:(50, -40)

\figptbary 11:[1,2,3 ; 1,1,1]\figpttraC 11:=11/0,40/
\figvectC 10(150,0)\figptstra 12=11,12/1,10/

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawtrimesh 1 [1,2,3]

\figptstra 1=1,2,3/1,10/\figdrawtrimesh 2 [1,2,3]
\figset trimesh(dash=5)

\figptstra 1=1,2,3/1,10/\figdrawtrimesh 3 [1,2,3]
\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 49}{
\figwritec[11]{Type 1}\figuwritec[12]{Type 2}\figwritec[13]1{Type 3}

}

\centerline{\box\figBoxA}

Drawing grids is also often necessary. The macro
\figdrawmesh N1,N2 [Pt1,Pt2,Pt3,Pt4]

draws a mesh of N1xN2 intervals in the quadrangle (Pt1, Pt2, Pt3, Pt4). More precisely, the two segments
[Pt1, Pt2] and [Pt3, Pt4] are divided into N1 equal parts, while the two other segments are divided into
N2 equal parts. The four points, in the order they are given, are logically assumed to define a convex polygon
(although the macro works as well if this condition is not satisfied). As for the previous macro, the attributes
of the line (width, style, color) used to draw the internal mesh, are controlled by the settings described in
the Setting graphical attributes section.

Moreover, with the help of the macro

\figset mesh(diag=Indez)

it is possible to draw a triangulation. This macro sets a flag that controls the drawing of a grid mesh:
. if Index = 1, the SW-NE diagonal is drawn inside each cell,
. if Index = -1, the NW-SE diagonal is drawn inside each cell,
. otherwise, each cell is empty; this is the default, which can be set by saying:
\figset mesh(diag=default)

Notice that the orientation of the diagonal depends on the order of the four given points. Figure 50
shows an example where the four points are the vertices of a rectangle and of a general quadrangle.

Py Py

P Py Py

Figure 50

56

The text of the program that produces this figure is:

% 1. Definition of characteristic points

\figinit{pt}

\figpt 1:(0,0)

\figpttraC 2:=1/130,0/\figpttraC 3:=2/0,80/\figpttraC 4:=3/-130,0/
\figvectC 0(250,0)

\figptstra 11=2,3,4,1/1,0/\figpttraC 14:=14/30,15/\figpttraC 12:=12/-20,25/
% 2. Creation of the graphical file

\figdrawbegin{}

\figset mesh(dash=4)\figdrawmesh 10,5 [1,2,3,4]

\figset mesh(dash=default, diag=1)\figdrawmesh 10,5 [11,12,13,14]
\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 50}{

\figwritesw 1:P_1(2)\figwritese 2:P_2(2)

\figwritene 3:P_3(2)\figwritenw 4:P_4(2)

\figwritese 11:P_1(2)\figwritene 12:P_2(2)

\figwritenw 13:$P_38(2)\figwritesw 14:$P_4$(2)

}

\centerline{\box\figBoxA}

10. Flow chart

A flow chart is a set of nodes connected to each other by arrows or lines. Each node can bear a text written
into a frame, centered at the node. To create such a flow chart, one has to do the following actions:

1. Define points that are the locations of the nodes (the centers of the frames). It is advised to associate
the text of the nodes at this level. The macro to use is \figpt, or any macro that create a point
(\figptbary, etc).

2. Create the graphical file containing the frames and the connections using the macros \f igdrawf cconnect
and \figdrawfcnode, in this order. Their prototypes are:

\figdrawfcconnect [Pt1,Pt2,... ,PtN]
\figdrawfcnode [Pt1,Pt2,... ,PtN]{Text}

3. Write the text corresponding to each node using the macro \figwritec, whose prototype is, as already
seen in the section Writing text on the figure:

\figwritec[Ptl, Pt2, ..., PtN]{Text}

The appearance of the flow chart can be tuned by the macro \figset with the keyword made equal to
flowchart. Moreover, the keywords general, arrowhead and curve may also be used.

Remarks:

e Some of the points defined during the action 1 above may be additional points which are not nodes, but
which are used to define paths when non straight lines are needed to connect nodes.

e FEach node appears as a frame whose dimensions depend on the text associated with the node. We recall
that this text can be any TEX material including boxes. From a practical point of view, it is better to
specify the text associated with a node when the corresponding point is defined, because in this case
the text will be automatically taken into account in the following steps by the macros \figdrawfcnode
and \figwritec, which can thus be called without any text argument.

e We stress the fact that, for a given node, if the text argument of the macro \figwritec is present,
it must be the same as the one specified when the macro \figdrawfcnode was called, otherwise the
dimensions of the frame may be incorrect. However, this text argument can be useful if one wants to
write the same text on several nodes.

The macro \figdrawfcconnect draws a line between two nodes, passing through the points given as argu-
ments. The line can be polygonal or can be a smooth curve (C! Bézier curve). This attribute is set by saying

o7

\figset flowchart(line = type)
where type can take the value polygon or curve. The default value is polygon. When the line is polygonal,
the corners can be rounded: they are replaced with circular arcs whose radius is chosen by the user by saying
\figset flowchart(radius = wvalue)
where value is a dimension to be given in user unit. The default value is 0.0 . A 0 value indicates no rounding.

An arrowhead is drawn along the path, oriented from the node lying at Pt1 towards the node lying at
PtN. The attributes of the arrowhead are specified by the macro \figset with arrowhead as keyword (see
section Arrow). Moreover, the position of the arrowhead along the path can be modified by saying

\figset flowchart(arrowposition = wvalue)
where value is a real number ranging in [0, 1], 0 corresponding to Pt1 and 1 corresponding to PtN. The
default value is 0.5, and makes the arrowhead to be drawn half way along the path. To be more precise, the
position of the arrowhead is defined with respect to its start point or its end point. This reference point is
chosen by saying

\figset flowchart(arrowrefpt = switch)
where switch can take the value start or end. The default value is start.

Remarks:
e If no arrowheads are wanted, the best is to set the arrowhead length to 0 by saying:
\figset arrowhead(length=0) . An alternative solution is to use directly \figdrawline or \fig-
drawcurve instead of \figdrawfcconnect.
e The arrowposition attribute is especially useful when the line path is polygonal because an arrowhead
may appear too close to a corner, or even worse, outside the path if the corners are rounded. This
situation must be handled manually by modifying the arrowhead position along the path.

Once the connections are settled, the frames can be drawn using the macro \figdrawfcnode. Several shapes
are available. This attribute can be specified by saying

\figset flowchart(shape = wvalue)
where value can be one out of circle, ellipse, lozenge or rectangle. The default value is rectangle.
The dimensions of the frame are determinated by the text associated with the node. If the text argument of
\figdrawfcnode is empty, the text joined to the corresponding point is taken into account. Starting from
this initial proposal, the dimensions of the frame can be reduced or enlarged by specifying padding values,
horizontally or vertically. This can be achieved by saying

\figset flowchart(xpadding = waluel, ypadding = wvalue2)
where valuel and value2 are positive or negative dimensions to be given in user unit. One can also simply
say

\figset flowchart(padding = wvalue)
which gives the same padding value horizontally and vertically. This last key should logically be used when
the shape is a circle (otherwise, the maximum of the two values is used). The default values are 0.0 and 0.0

The last attribute of a frame is its “thickness” which makes it look as if it was enlightened from the top
left corner of the page. The dimension of this thickness is to be given in user unit by saying
\figset flowchart(thickness = value)
The default value is 0.0 .

Remarks:
e The color, the line width or style of a frame border can be modified by the general attributes. The color
of the thickness is governed by the thickcolor attribute by saying
\figset flowchart(thickcolor = New Color) .
The color of the background of the frame is the bgcolor color attribute, which can be set by saying
\figset flowchart(bgcolor = New Color) .
e If no border is wanted, one has to make it invisible (white) by saying \figset(color=1) for example
before calling \figdrawfcnode, and reset the general color to its previous value afterwards if needed.

o8

Figure 51
On figure 51, we can see a simple network showing what can be obtained with the help of the previous
macros. The text of the program that produces it is:

% 1. Definition of characteristic points
\figinit{cm}

% Nodes locations

\figpt 1:A(0,0)\figpt 2:B(-2,2)\figpt 3:C(3,2)
\figpt 4:D(-1.5,-2)\figpt 5:E(1.1,-1.5)

% Additional point to define the curved path

\figpt 0:(2,-2)

YA
% 2. Creation of the graphical file

\figdrawbegin{}

% Draw the connections between nodes
\figdrawfcconnect[1,2]\figdrawfcconnect[1,3]\figdrawfcconnect[1,4]
\figdrawfcconnect[2,3]\figdrawfcconnect[2,4]
\figdrawfcconnect[3,5]

\figset flowchart(line=curve)\figdrawfcconnect[4,0,3]

% Draw the frames at each node, without border

\figset (color=1)\figset flowchart(shape=ellipse)
\figdrawfcnodel[1,2,3,4,51{}

\figdrawend

YA

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure 51}}{

\figwritec[1,2,3,4,5]{}

}

\centerline{\box\figBoxA}

Another example can be found on figure 2. It shows a diagram where the principle of the Fi macro
package is summarized. It has been produced by the following program:

% 1. Definition of characteristic points

\figinit{cm}

% Two vectors to translate points horizontally and vertically:

\figvectC 1(1,0)\figvectC 2(0,-1)

\def\FrameWidth{3.4cm}

\figpt 10:\centertext{4.lcm}{\bf\FigforTeX\macro package\break
instructions diagram}(0,0)

\figpttra 20:\lefttext{\FrameWidth}{\tt\char‘\\input \figforTeXfile\break
\char‘\\figsetdefault...}=10/3,2/

59

\figpttra 30:\lefttext{\FrameWidth}{\tt\char‘\\figinit$\{$...$\}$\break
\char ‘\\figpt...\break

...}=20/2.2,2/
\figpttra 40:\lefttext{\FrameWidth}{\tt\char‘\\figdrawbegin$\{$...$\}$\break
... \break

\char ‘\\figdrawend}=30/2.5,2/

\figpttra 50:\centertext{3.2cm}{Another\break
graphical file 7}=40/2.5,2/

\figpttra 51:yes=50/3,1/

\figpttra 60:\lefttext{\FrameWidth}{\tt\char‘\\figvisu...$\{$\break
\char‘\\figinsert...\break
\char‘\\figwrite...\break
$\}$}=50/3,2/

\figpttra 70:\lefttext{4.7cm}{Display the figure.\break
Continuation of the document.}=60/2.5,2/

\figpttra 80:Another figure 7=70/2,2/

\figpttra 81:yes=80/5,1/

b
% 2. Creation of the graphical file
\figdrawbegin{}

% Draw the connections between nodes

\figdrawfcconnect[20,30]\figdrawfcconnect [30,40]

\figset flowchart(arrowpos=0.4)\figdrawfcconnect[40,50]\figreset{flowchart}

\figdrawfcconnect [60,60]\figdrawfcconnect[60,70]\figdrawfcconnect[70,80]

\figset arrowhead(fillmode = yes)\figset flowchart(radius=0.5)

\figpttra 41:=40/3,1/\figdrawfcconnect[50,51,41,40]

\figset flowchart(radius=1)

\figpttra 31:=30/5,1/\figdrawfcconnect[80,81,31,30]

% Draw the frames at each node

\figdrawfcnode[20,30,40,60]{}

\figset flowchart(bgcolor=0.9)

\figdrawfcnode [70]{}

\figset flowchart(shape=lozenge,xpadding=-0.6)

\figdrawfcnode [50]{}

\figset flowchart(xpadding=default)

\figdrawfcnode [80]{}

\figset flowchart(shape=ellipse, thickness=0.1, thickcolor=0.4)

\figset flowchart(bgcolor=default)\figdrawfcnode[10]{}

\figdrawend

b

% 3. Writing text on the figure

\def\Xoffset{7}\def\CommentWidth{4cm}

\figvisu{\figBoxA}{{\bf Figure 51}}{

\figwritec[10,20,30,40,50,60,70,80]1{}

\figwrites 51,81:(0.1)

\figwritee 30:\lefttext{\CommentWidth}{{\bf Step 1.} Definition of\break
characteristic points.}(-\Xoffset)

\figwritee 40:\lefttext{\CommentWidth}{{\bf Step 2.} Creation of a\break
graphical file.}(-\Xoffset)

\figwritee 60:\lefttext{\CommentWidth}{{\bf Step 3.} Assembling the\break
figure and writing text.}(-\Xoffset)

\figpttra 0:=30/\Xoffset,1/\figwritep[0]% For the symmetry of the figure

}

\centerline{\box\figBoxA}

60

Remarks:

e In order to display the text associated with the nodes more easily, the two macros \centertext and
\lefttext have been used. Their aim is to display several lines of text, centered or left justified into a
rectangular box whose width is given as first argument. The second argument is a text whose lines are
separated by the control sequence \break. These macros are included in the figdtex.tex file and thus
can be used in any other context.

e The locations of the nodes are deduced from each other by applying translations. This facilitates the
modification of the diagram when it is being built.

e At the end of step 3, the point #0 is created only to “enlarge” the figure towards the rigth in order to
make the legend be centered under the diagram. The point #30 is translated to create the point #0,
which is then “written” by a call to \figwritep (and thus taken into account to center the figure), but
since by default the point marker is unspecified, the point is invisible (as wanted here).

11. Signs or symbols

In the section Writing text on the figure, we learn how to write TEX material over the figure using the
location of attach points defined for this purpose. We also learn that those points can be made visible by
writing a so-called point marker (section Text argument). In practice, this often reduces to write some
particular characters (e.g. +, * or .) or special symbols (e.g. e or o) available through TEX’s own capabilities.
But since these characters depend on fonts, we cannot easily change their attributes, in particular their
dimension.

Dealing with these signs graphically allow more flexibility. For this purpose, the following set of macros
have been designed:
\figdrawsign[Pt1,Pt2,... ,PtN]
\figdrawsignC(X1 Y1, X2 Y2,..., XN YN)
\figdrawsignF{FileName}

Their behavior is analogous to the \figdrawline* set of macros, but instead of drawing lines, they draw
a sign (or symbol) at each point given by their number or their coordinates, explicitely provided (\fig-
drawsignC) or read into a file (\figdrawsignF). The syntax is the same as for the \figdrawline* macros ;
it is explained in section Basic drawing macros where these macros are introduced.

Several predefined symbols are available, the default being a circle. This choice can be changed by saying
\figset sign(shape = name). The following figure shows the different kinds of symbols available along
with their names:

‘ ‘ . * A v Fill mode on (default)

circle diamond square star triangle nabla
O O [] T VAN \/ Fill mode off
Figure 52

The shapes are designed so that they are inscribed in the circle of the same characteristic dimension. This
parameter can be changed by saying \figset sign(dim = walue), where value is a dimension to be given
in user unit. Here, the characteristic dimension is set to 3mm to show the shapes clearly.

The attributes of the line used to draw the sign are controlled by the settings described in the Setting
graphical attributes section: the line width, the line style, the line join and its color can be modified with
the macro \figset with sign as keyword and respectively width, dash, join and color as attributes. The
color is a DDV attribute, which means that the default color is dynamic, i.e. it follows the current general
color, as in this example where the blue color is set as a general setting ; it can be “locked” to a specific
value by saying \figset sign(color = walue).

At last, by saying \figset sign(fillmode = yes), the interior of the sign is painted with the chosen
color ; this is the default, as shown on the upper line on figure 52, and in this case, the other line attributes
have no effect. Chosing fillmode = no draws only the contour of the sign and in this case, the other line
attributes are relevant.

61

The text of the program that produces the figure 52 is the following:

% 1. Definition of characteristic points
\figinit{cm}

\figpt 1:(1,0)

\figptstraC 2=1,2,3,4,5/2,0/ % upper line: points 1 to 6
\figptstraC 11=1,2,3,4,5,6/0,-1.5/ % lower line: points 11 to 16
% 2. Creation of the graphical file
\figdrawbegin{}

\figset (color=\Bluergb)

\figset sign(dim=0.3)

\figdrawsign[1] 7% Default shape

\figset sign(shape=diamond) \figdrawsign[2]
\figset sign(shape=square) \figdrawsign[3]
\figset sign(shape=star) \figdrawsign[4]
\figset sign(shape=triangle)\figdrawsign[5]
\figset sign(shape=nabla) \figdrawsign[6]
b

\figset sign(fill=no)

\figset sign(shape=circle) \figdrawsign[11]
\figset sign(shape=diamond) \figdrawsign[12]
\figset sign(shape=square) \figdrawsign[13]
\figset sign(shape=star) \figdrawsign[14]
\figset sign(shape=triangle)\figdrawsign[15]
\figset sign(shape=nabla) \figdrawsign[16]
\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{{\bf Figure 52}}{%
\def\Dist{0.8}

\figwritebs 1:{\tt circle}(\Dist)
\figwritebs 2:{\tt diamond}(\Dist)
\figwritebs 3:{\tt square}(\Dist)
\figwritebs 4:{\tt star}(\Dist)
\figwritebs 5:{\tt triangle}(\Dist)
\figwritebs 6:{\tt nabla}(\Dist)

\figwritee 6:{Fill mode on (default)}(lcm)
\figwritee 16:Fill mode off(1lcm)

}

\centerline{\box\figBoxA}

On the following figure, we show a typical use of this feature:

% oo 00 04 oy Aa Ap
[} < * A
LY (2 *, Ap
[] ¢ * A
L] o * A

* A

.o 00 * A
AO ® ¢ * A
® ° o * a
Figure 53

The data points are first drawn with circles. For the show, they are then drawn with diamonds, stars
and triangles after having been translated 3 times by the same amount towards the right. The signs are
drawn with their default dimension. By looking at the program that produces this figure (see below), we

62

can notice that the general color setting (blue) is only used at the end (when the sign color is set back to
its default value) since the specific setting (red) takes priority. The lower left point Ag is apart from the
other points and is first drawn as a “big” thick blue circle using the graphical tool \figdrawsign, and a
second time as a TEX asterisk using \figwritene, after this character has been made the point marker. As
expected, the two symbols show the same geometric location.

The text of the program that produces the figure 53 is the following;:

% 1. Definition of characteristic points
\figinit{2pt}
\figpt 0:(20,45) % Lower left point

\figpt 1:(42.9815, 66.6578)
\figpt 2:(50.5119, 60.0045)
\figpt 3:(66.852, 42.7482)
\figpt 4:(16.3086, 77.7367)
\figpt 5:(62.8328, 48.7145)
\figpt 6:(28.1114, 73.6432)
\figpt 7:(58.7876, 53.9602)
\figpt 8:(22.7012, 76.4839)
\figpt 9:(38.6159, 69.8438)

\figpt 10:(36.628, 70.9847)

\figpt 11:(56.7705, 56.2551)

\figpt 12:(14.369, 78.623)

\figpt 13:(20.4024, 77.2818)

% 2. Creation of the graphical file
\figdrawbegin{}

\figset (color=\Bluergb)

\figset sign(color=\Redrgb)
\figdrawsign[1,2,3,4,5,6,7,8,9,10,11,12,13]

h

\figvectC 100(30,0) % Translation vector
\figptstra 1=1,2,3,4,5,6,7,8,9,10,11,12,13/1,100/
\figset sign(shape=diamond, fillmode=no)
\figdrawsign[1,2,3,4,5,6,7,8,9,10,11,12,13]

h

\figptstra 1=1,2,3,4,5,6,7,8,9,10,11,12,13/1,100/
\figset sign(shape=star, fillmode=default)
\figdrawsign[1,2,3,4,5,6,7,8,9,10,11,12,13]

/)

\figptstra 1=1,2,3,4,5,6,7,8,9,10,11,12,13/1,100/
\figset sign(shape=triangle, fillmode=no)
\figdrawsign[1,2,3,4,5,6,7,8,9,10,11,12,13]

h

\figset sign(dim=1.5, width=1, color=default, shape=default)
\figdrawsign[0]

\figdrawend

% 3. Writing text on the figure
\figvisu{\figBoxA}{\bf Figure 53}{%

\figset write(mark=\figAst)

\figwritene 0:(2)

}

\centerline{\box\figBoxA}

63

§10. Helpers

This section gathers some tools designed to help the user during the design phase of a figure.

\figshowpts

It often happens that points are defined, but will never be displayed on the figure because they are only
used for the geometric construction. However, it is also often useful to show these points temporarily
on the figure. For example, when defining a curve, this helps to adjust the position of the interpolating
points. The macro \figshowpts[Nmin, Nmax] does this job: it displays on the figure every point defined
since the the beginning of the session, whose number lies in the interval [Nmin, Nmax| (which must not
be too large, otherwise, an error message 7! TeX capacity exceeded” may occur). To avoid this,
simply call this macro several times with shorter intervals. The location of each point is marked by a
bullet along with its joined text or, by default, its number. Obviously, this macro must be called during
step 3 (see section A first look).

\figshowsettings
We have seen that the user can modify some parameters such as those concerning the arrowhead, the
line style, the color, etc. The macro \figshowsettings prints on the terminal the current value of each
of these parameters, ordered by subject. This macro can be called at any place in the process. An
output example is shown in 3D examples.

\figscan
We also recall that one can easily insert an existing graphical file with the macro \figinsertE. It is
then possible to add any text on it: the macro \figscan is specially helpful to locate the position of
the attach point. Refer to the section Text annotation for more information.

64

§11. Three-dimensional macros
1. Introduction

The explanations given so far concerned two-dimensional geometry. It so happens that, in their major part,
they also hold for three-dimensional geometry. We can switch the 3D-mode on with the help of the macro
\figinit. In the following sections, we describe how to use the macros in this mode. There are three sets
of macros:

e macros that work only in the plane z = 0, which are: \figptell, \figptendnormal, \figptsinter-
linell, \figdrawarcell, \figdrawdim, \figdrawnormal, \figdrawfcconnect, \figdrawfcnode.
They exist because either the list of arguments is specific to the 2D (which is the case for example for
\figptell), or they are not relevant in a 3D context. For some of them, other versions fully compatible
with 3D-mode are available. They can however be used in 3D-mode: they simply do not take the third
component z into account during the computation.

e macros that are specific to 3D, which are: \figptinterlineplane, \figptorthoprojplane, \figpt-
sorthoprojplane, \figptvisilimXX.
Their existence is simply due to the fact that they have no equivalent in 2D. Thus, any attempt to use
them in 2D-mode brings on the message
**x* The macro macro name is not available in the current context.
to be printed on the terminal.

e macros that can be used in both dimensions, which are all the other ones. These macros have the same
name in 2D and in 3D, although one additional argument may be needed in 3D. Thus, a macro can
have a slightly different calling sequence in 2D and in 3D. This is detailed in a further section.

The macros are still used in the same three steps scheme: 1) definition of characteristic points, 2) creation
of the graphical file, 3) writing on the figure if needed. However, we need here one more tool, a projection,
which is used during steps 2) and 3).

2. Projection

Three projections are available : cavalier, orthogonal and realistic. The latter is a perspective (or conical)
projection, the first two are parallel (or cylindrical) projections.

The choice is made with the help of the macro \figinit (see next section).

Then, we can modify the parameters governing the projection with the macro \figset with projection
as keyword.

The cavalier projection is the default one. It provides a false perspective view and is generally used
to show objects with parallel faces. Its characteristics are (see figure 54):

- the plane (z, z) always corresponds to the paper sheet plane,

- the three-dimensional effect can be tuned by the angle ¢ = (Oz, Oy) and a real number A usually chosen
between 0 and 1, which is the depth reduction coefficient of the perspective.

The angle ¢ can be changed by saying \figset projection(psi=wvalue). The default value is 40
degrees. Values of 1 such that 0 < 1 < 180 correspond to a view from above and to a view from beneath if
—180 < <0.

In fact, the genuine cavalier projection is obtained with A = 1. In this projection, all edges of a cube
have the same length. This property may be interesting since measurements can be made directly on the
figure. However, we may find that the objects seem too elongated. This is why the default value is A = 0.5,
which corresponds to the so-called cabinet projection and leads to a more realistic result. The coefficient A
can be changed by saying \figset projection(lambda=value).

65

X

0

Figure 54. Definition of the cavalier projection

The text of the program that produces this figure is given below, although we are anticipating on the
description of some of the macros used there. Just notice that the default settings of the projection are used.

% 1. Definition of characteristic points

\figinit{5cm, 3D}

\figpt 0:0(0,0)

\figptsaxes 1:0(1)

\def\Rpsi{0.3}\figptcirc 4:ψ:0,1,3;\Rpsi(20)

% 2. Creation of the graphical file

\figdrawbegin{}

\figdrawaxes 0(1)

\figset arrowhead(length=0.05,fillmode=yes)

\figdrawarrowcirc 0,1,3;\Rpsi(0,40)

\figdrawend

% 3. Writing text on the figure

\def\dist{3pt}

\figvisu{\figBoxA}{{\bf Figure 54.}\ \ Definition of the cavalier projection}{
\figwritesw O0:(\dist)\figwritee 1,2,4:(\dist)\figwriten 3:(\dist)}
\centerline{\box\figBoxA}

The realistic projection is defined by a target point 7" and an observation point E, also called eye
point (see figure 55). The coordinates of the target point are those of a point Pt already defined or computed.
They are set with the help of the macro \figset projection by saying \figset projection(targetpt =
point number)

Once the position of the target point is set, Pt can be modified. By default, the target point is the center of
the bounding box of the points defined so far. Then, the eye point position is defined by:
- the observation distance T'E, which can be set by saying \figset projection(distance = value)

By default, this distance is equal to 5 times the largest dimension of the bounding box of the points

defined so far ;

- the longitude ¢ = (Z, ﬁ) and the latitude 6 = (ﬁ, ﬁ), angles to be given in degrees, that can be
set by saying \figset projection(psi=valuel, theta=value?2) . The default values are 1) = 40° and

0 = 25°.

H is the orthogonal projection of E onto the plane (T, x,y).

The text of the program that produces the figure 55 is given below it.

66

T
Figure 55. Definition of the perspective projection

Corresponding program :

% 1. Definition of characteristic points

\figinit{5cm, realistic}

\figpt 0:T(0,0)

\figptsaxes 1:0(1)

\figpt 4:E(0.4,0.7,0.9)

\figvectP10[0,3]\figptorthoprojplane 5:H=4/0,10/

\def\Rpsi{0.3} \figptcirc 6:ψ:0,1,2;\Rpsi(30)
\def\Rtheta{0.4}\figptcirc 7:θ:0,5,3;\Rtheta(25)

% 2. Creation of the graphical file

\figset projection(psi=30,theta=30)

\figdrawbegin{}

\figdrawaxes 0(1)

\figdrawline[0,4]

\figset arrowhead(length=0.05,fillmode=yes)

\figdrawarrowcircP 0;\Rpsi[1,5,2]\figdrawarrowcircP O;\Rthetal5,4,3]
\figset (dash=5)\figdrawline[0,5,4]

\figdrawend

% 3. Writing text on the figure

\def\dist{3pt}

\figvisu{\figBoxA}{{\bf Figure 55.}\ \ Definition of the perspective projection}{
\figwritenw 0:(\dist)\figwritew 1:(\dist)\figwritee 2:(\dist)\figwriten 3:(\dist)
\figwrites 6:(\dist)\figwritene 7:(\dist)

\figset write(mark=\bullet)\figwritene 4:(\dist)\figwritee 5:(\dist)}
\centerline{\box\figBoxA}

Notice that if the distance T'E tends to infinity, the projection tends to be the orthogonal projection
onto the plane, i.e. the paper sheet. No control is made on the value given as argument; a too big one may
bring on TEX to print the error message “! Dimension too large.” and stop the compilation process.

The orthogonal projection is a simplified version of the previous one since the eye point E is placed
at infinity. It is an orthogonal projection onto a plane which is itself orthogonal to the observation direction.
As a consequence, this projection is only defined by the observation direction, i.e. by the two angles v and
0 (see figure 55), which are set with the macro \figset projection().

67

3. Macro specifications

In this section, we focus on macros that are specific to the 3D and macros that do not have the same calling
sequence in both dimensions. Notice that for those last macros, an error occur if we attempt to use them
with the 2D calling sequence. The other macros are not mentionned here since their description, which is
valid in 3D, can be found in the previous sections.

Control
The full prototype of \figinit is:
\figinit {ScaleFactorUnit, Dim/Proj}

The first argument ScaleFactorUnit has been described in the Unit and scale subsection. The second
argument Dim/Proj is optional. It sets the dimension of the space to be used until next call to \figinit.
In 3D, it also sets the projection type. If this argument is absent or is given the value “2D”, then geometry
in the plane is assumed, otherwise geometry in three dimensions is performed. Moreover, if this argument is
equal to:

. orthogonal, then the orthogonal projection is used,

. realistic, then the realistic projection is used,

. 3D or cavalier (or anything else), then the cavalier projection is used.

Vector creation

The definition of a vector by its components (X,Y,Z) can be done with the help of the macro whose
prototype is:
\figvectC NewVect (X,Y,Z)

Notice that the 2D calling sequence \figvectC NewVect (X,Y) is still allowed, implying Z to be 0.
The macro
\figvectN NewVect [Pt1,Pt2,Pt3]

defines a vector normal to the plane defined by the 3 points Pt1, Pt2 and Pt3.
More precisely, let Py, P>, P3 and 7 stand for Pt1, Pt2, Pt3 and NewVect.

PP PP -
This macro computes V= 2 T8 Thus, (P Py, P Ps, 7) is a positively oriented basis.
|P P2 [P Ps]|

The macro
\figvectNV NewVect [Vectorl, Vector2]

defines a vector norglal_t)o the two vectors Vectorl and Vector2.
More precisely, let V7, V5 and 7 stand for Vectorl, Vector2 and NewVect.

= =
\% \%

This macro computes 7 = ﬁ X ij2|| Thus, (‘7;, ‘7;, 7) is a positively oriented basis.
1 2

Basic macros

The macro
\figpt NewPt :Text(X,Y,Z)

creates a point with coordinates (X,Y,Z). The third coordinate Z can be omitted, in which case the value
Z = 0 is assumed. In other words, the 2D calling sequence \figpt NewPt :Text(X,Y) is valid in 3D-mode
as well.
Let C, Py, P, and Ps stand for Center, Pt1, Pt2 and Pt3. The macro
\figget angle OP value = \Result[Center,Ptl,Pt2,Pt3]

computes the value (in degrees) of the oriented angle (C Py, C'Py) and stores it in the macro \Result whose
name is chosen by the user. The angle is measured counterclockwise around the vector CP; x CPs;. The
points C, Py, P, and Ps; must be coplanar, but P; must not lie on the line (C, P1). Provided this is verified,

68

P53 may be equal to P,. If “OP value” is present, then the angle is modified by the specified arithmetical
operation (see the Symbolic constants subsection).

Point transformation

Some transformation macros have been adapted for the 3D-mode. Each of them computes the image
NewPt of the point Pt. Let P, P’, C' and 7 stand for Pt, NewPt, Center and Vector.

The macro
\figptrot NewPt :Text= Pt /Center, Angle, Vector/

refers to the rotation of angle Angle (given in degrees) around the axis (C, 7) The sense of rotation is such
that (C?, cr, 7) is a positively oriented basis.

The macro
\figptsym NewPt :Text= Pt /PlanePt, NormalVector/

refers to the orthogonal symmetry with respect to the plane defined by the point PlanePt and the vector
NormalVector which is normal to the plane. This vector may be computed with the help of \figvectN or
\figvectNV.

The macro
\figpttraC NewPt :Text= Pt /X,Y,Z/

refers to the translation of vector (X,Y,Z).

The macro
\figptmap NewPt :Text= Pt /InvPt/A11,A12,A13 ; A21,A22,A23 ; A31,A32,A33/

refers to the linear affine mapping such that I? — A TP , where A is the matrix whose coefficients are Aij,

1<i<3,1<j<3and I stands for InvPt.

The macro
\figptorthoprojplane NewPt :Text= Pt /PlanePt, NormalVector/

refers to the orthogonal projection onto the plane defined by the point PlanePt and the vector NormalVector
which is normal to the plane.

The corresponding available “set” versions have then the following prototypes:

\figptsrot NewPtl = Ptl, Pt2, ..., PtN /Center, Angle, Vector/

\figptssym NewPtl = Ptl, Pt2, ..., PtN /PlanePt, NormalVector/

\figptsmap NewPtl = Pt1, Pt2, ..., PtN /InvPt/A11,A12,A13; A21,A22,A23; A31,A32,A33/
\figptsorthoprojplane NewPtl = Ptl, Pt2, ..., PtN /PlanePt, NormalVector/

Point computation
The macro
\figptcirc NewPt :Text: Center,Ptl,Pt2;Radius (Angle)

computes the coordinates of a point lying on a circle. Let C', P, and P, stand for Center, Pt1 and Pt2.
The circle, of center C' and radius Radius, is lying in the plane (C, Py, P»). The two points P; and P, do
not need to belong to the circle. The position of the point is defined by the angle Angle (given in degrees),
measured counterclockwise around the vector CP; x CP;, starting from the half-line (C, Py).
The macro
\figptinterlineplane NewPt :Text [LinePt,Vector; PlanePt,NormalVector]
computes the intersection of the line defined by the point LinePt and the vector Vector, and the plane
defined by the point PlanePt and the vector NormalVector which is normal to the plane.
The macro
\figptvisilimSL NewPt :Text[SegPtl,SegPt2 ; LinePtl,LinePt2]

computes the apparent intersection of the segment [SegPt1, SegPt2] and the line defined by the two points
LinePt1 and LinePt2. This macro is useful to compute the visible limit of the segment hidden by an object

69

whose boundary is delimited by the given line. If the projection of the line intersects the segment, the
solution NewPt lies between SegPt1 and SegPt2, otherwise SegPt1 is the result point.

The macro
\figptsintercirc NewPtl [Centerl,Radiusl ; Center2,Radius2 ; PlanePt]

computes the intersections of the two circles defined by their center and radius. The plane containing the
two circles is defined by the three points Centerl, Center2 and PlanePt. They must not lie on the same
line; this is not checked. Let Cy, C5 and P stand for Centerl, Center2 and PlanePt, and S, Sy stand for
the two solutions. The points S; and Sy are ordered so that the vectors C;Cy xC1 P and C157 x (1S5 have
the same direction.

The macro
\figptsaxes NewPtl : Origin(X1,X2, Y1,Y2, Z1,Z2)

computes the end points of the axes corresponding to the arrows drawn by the calling statement:
\figdrawaxes Origin(X1,X2, Y1,Y2, Z1,Z2).

If NewPt1 is equal to k, then the three resulting points bear the numbers k, k + 1 and k + 2, and the default

text x, y and z is joined to them. A short form exists: \figptsaxes NewPtl : Origin(L) . It is equivalent

to \figptsaxes NewPtl : Origin(O,L, 0,L, O,L).

Drawing macros

The “coordinate” version of \figdrawline and \figdrawsign have their 3D equivalent, whose prototype

are the following:
\figdrawlineC(X1 Y1 Z1, X2 Y2 Z2,..., XN YN ZN)

\figdrawsignC(X1 Y1 Z1, X2 Y2 Z2,..., XN YN ZN)

which corresponds to the 2D one with the third coordinate of each point added within each group of data.
The same applies for the “file” version of these macros (\figdrawlineF and \figdrawsignF), which expect
every group of data read in the file, made of three numbers.

Let C, P, and P, stand for Center, Pt1 and Pt2. In the three following macros, we consider a circle
(or circular arc) of center C' and radius Radius, lying in the plane (C, Py, P»). The two points P; and Py do
not need to belong to the circle. The point P, must not lie on the line (C, Py).

These macros are:
\figdrawcirc Center,Pt1,Pt2 (Radius)

which draws the entire circle,

\figdrawarccirc Center,Pt1,Pt2 ; Radius (Angl,Ang2)
which draws the circular arc limited by the angles Angl and Ang2 given in degrees and measured counter-
clockwise around the vector CP; x C'Ps, starting from the half-line (C, Py),

\figdrawarrowcirc Center,Pt1,Pt2 ; Radius (Angl,Ang2)

which draws the circular arrow beared by the circular arc defined just before. If Ang2 > Angl, the arrow is
drawn counterclockwise, else it is drawn clockwise. The arrowhead is drawn according to the \figdrawar-
rowhead macro settings.

The last two macros have a so-called “point” version. Let P3 stand for Pt3 and ﬁ = C’—Pl> X C—ij . In
the two following macros, we consider a circular arc of center C, lying in the plane (C, P;, P3) and limited
by the two half-lines (C, P;) and (C, P3). The three points Py, P, and Ps; do not need to belong to the circle.
The points C, P, P, and P3 must be coplanar, but P3 must not lie on the line (C, P1).

These macros are:
\figdrawarccircP Center ; Radius [Pt1,Pt2,Pt3]
which draws the circular arc of radius Radius, from P; towards P turning counterclockwise around the axis

(C.N),
\figdrawarrowcircP Center ; Radius [Pt1,Pt2,Pt3]

70

which draws the circular arrow of radius |Radius|, from P; towards P, turning around the axis (C’,ﬁ):
. counterclockwise if the radius is positive,
. clockwise if the radius is negative.

Remarks:
e An arrow (or an arrowhead) is always two-dimensional because the arrow which is really drawn is the
two-dimensional arrow whose body is the projection of the true 3D arrow body.
e In the same order of idea, non-mute macros (whose name begin with \figwrite) write their text in the
plane of the sheet with respect of the position of the projection of the attach point.

The macro
\figdrawaxes Origin(X1,X2, Y1,Y2, Z1,Z2)

draws axes crossing at the point denoted Origin. Each axis is parallel to the corresponding absolute axis and
is drawn as an oriented arrow between two values given in user unit: from X1 to X2 for the X-axis, from Y1
to Y2 for the Y-axis, from Z1 to Z2 for the Z-axis. A second form of the macro can be used: \figdrawaxes
Origin(L) . It is equivalent to \figdrawaxes Origin(O,L, O,L, O,L) .

71

4. 3D examples

e Cube
We begin with the representation of the unit cube defined by its 8 vertices Py, Ps, ... Pg as follows:

% 1. Definition of characteristic points
\figinit{3cm, 3D}

\figpt 1:(0,0)

\figpttraC 2:=1/1,0,0/

\figpttraC 3:=1/1,1,0/

\figpttraC 4:=1/0,1,0/

\figvectC 10(0,0,1)\figptstra 5=1,2,3,4/1,10/
\figset write(ptname=$P_#1$)

As we will need to draw the cube several times, we define the macro \DrawCube to create the graphical
file. The background lines are dashed; obviously, they depend on the observation direction.

\def\DrawCube{

% 2. Creation of the graphical file
\figdrawbegin{}
\figdrawline[1,2,3]\figdrawline[5,6,7,8,5]
\figdrawline[1,5]\figdrawline[2,6]\figdrawline[3,7]
\figset(dash=4)\figdrawline[1,4,3]\figdrawline[4,8]
\figdrawend}

In the same way, to create the box and write the text on the figure, we define the macro \WriteOnCube
which has the name of the box register as first argument and the legend to be printed under the figure as
second argument. The number of the figure is available in the document with the help of the expandable
macro \figforTeXFigno (see Writing text on the figure).

\def\WriteOnCube#1#2{

% 3. Writing text on the figure

\def\dist{2pt}

\figvisu{#1}{{\bf Figure \figforTeXFigno.}\\#2}{
\figwritesw 1:(\dist)\figwritese 2:(\dist)
\figwritee 3:(\dist)\figwritenw 4:(\dist)
\figwritenw 5:(\dist)\figwritese 6:(\dist)
\figwritene 7:(\dist)\figwritenw 8:(\dist)

H

Pg P7
Py Pr :
P5 i P5 3
| Ps | Ps
1 B
! lz‘ --------------------- P3
Piilr‘ """"""""""" P3 !
Py Py Py Py
Figure 56. Default settings Figure 57. ¢ =60

Thus, the figures 56 and 57 are obtained by simply writing:

72

\DrawCube\WriteOnCube{\figBoxA}{Default settings}
\def\Valpsi{60} \figset projection(psi=\Valpsi)
\DrawCube\WriteOnCube{\figBoxB}{$\psi = \Valpsi$}
\centerline{\box\figBoxA\hfil\box\figBoxB}

These figures are drawn with the cavalier projection; we can observe the influence of the angle 1. The
four following figures use the realistic projection.

P

Py P;
Py By
P, Py
P Py
Figure 58. (¢,60) = (—60,30) Figure 59. (¢,60) = (—90,90)
P
Py ja
Py P
P, P,
Py Py Ps

Figure 60. (1,60) = (—60,30), T = (1,1,1) Figure 61. (¥,60) = (—90,90), T = (1,1,1)

We recall that the observation direction is defined by the angles (1, #). The right-hand side figures corres-
pond to the ordinary 2D view, for which the position of the text has been adapted (macro \WriteOnCubeB).
The program that produces the first two figures is:

\figinit{3cm, realistic}

\figset write(ptname=$P_#1$)

\def\Valpsi{-60}\def\Valtheta{30} \figset projection(psi=\Valpsi, theta=\Valtheta)
\DrawCube\WriteOnCube{\figBoxA}{$(\psi, \theta)=(\Valpsi, \Valtheta)$}
\def\Valpsi{-90}\def\Valtheta{90} \figset projection(psi=\Valpsi, theta=\Valtheta)
\DrawCube\WriteOnCubeB{\figBoxB}{$(\psi, \theta)=(\Valpsi, \Valtheta)$}
\centerline{\box\figBoxA\hfil\box\figBoxB}

After this, if we add the command \figshowsettings, we get the following information to be printed
on the terminal at compilation time:

73

-> DDV means "with dynamic default value" (i.e. following the context),
PS means PostScript.
Current settings are:
--- GENERAL ---
Scale factor and Unit = 3cm (85.35826pt) -> \figinit{ScaleFactorUnit}
Update mode = yes -> \figset(update=yes/no) or \figsetdefault(update=yes/no)

--— WRITING ---
Implicit point name = P_i -> \figset write(ptname = {Name})
Point marker = -> \figset write(mark = Mark)

Number of decimals to print = 2 -> \figset write(rounding = NDec/yes/no)
--— GRAPHICAL (general) ---
Color = 0 -> \figset(color = ColorDefinition)
Filling mode = no -> \figset(fillmode = yes/no)
Line cap = butt -> \figset(cap = butt/round/square)
Line join = miter -> \figset(join = miter/round/bevel)
Line style = 4 -> \figset(dash = Index/Pattern)
Line width = 0.4 -> \figset(width = real in PS unit)
Transparency = 1 -> \figset(alpha = real in [0,1]=[transparent, opaque])
--- GRAPHICAL (specific) ---
Altitude (all the following attributes are DDV):
Base line color = general color -> \figset altitude(blcolor=ColorDefinition)
Base line style = general style -> \figset altitude(bldash=Index/Pattern)
Base line width = general width -> \figset altitude(blwidth=real in PS unit)
Square line color = general color -> \figset altitude(sqcolor=ColorDefinition)
Square line style = general style -> \figset altitude(sqdash=Index/Pattern)
Square line width = general width -> \figset altitude(sqwidth=real in PS unit)
Arrowhead:
(half-)Angle = 20 -> \figset arrowhead(angle = real in degrees)
Filling mode = no -> \figset arrowhead(fillmode = yes/no)
"Outside" = no -> \figset arrowhead(out = yes/no)
Length = 0.09363 (active) -> \figset arrowhead(length = real in user unit)
Ratio = 0.1 (not active) -> \figset arrowhead(ratio = real in [0,1])
Curve:
Roundness = 0.2 -> \figset curve(roundness = real in [0,0.5])
Flow chart:
Arrow position = 0.5 -> \figset flowchart(arrowposition = real in [0,1])
Arrow reference point = start -> \figset flowchart(arrowrefpt = start/end)
Background color = 1 -> \figset flowchart(bgcolor = ColorDefinition)
Line type = polygon -> \figset flowchart(line = polygon/curve)
Padding = (0.0 , 0.0) -> \figset flowchart(padding = real in user unit)
(or \figset flowchart(xpadding = real, ypadding = real))
Radius = 0.0 -> \figset flowchart(radius = positive real in user unit)
Shape = rectangle -> \figset flowchart(shape = circle, ellipse, lozenge or rec
tangle)
Thickness color (DDV) = general color -> \figset flowchart(thickcolor=ColorDef
inition)
Thickness = 0.0 -> \figset flowchart(thickness = real in user unit)
Mesh:
Diagonal = 0 -> \figset mesh(diag = integer in {-1,0,1})
Lines color (DDV) = general color -> \figset mesh(color = ColorDefinition)
Lines style (DDV) = general style -> \figset mesh(dash = Index/Pattern)
Lines width (DDV) = general width -> \figset mesh(width = real in PS unit)

74

Sign:

Sign color (DDV) = general color -> \figset sign(color = ColorDefinition)
Style = 1 -> \figset sign(dash = Index/Pattern)

Dimension = 0.0234 -> \figset sign(dimension = real in user unit)

Filling mode = yes -> \figset sign(fillmode = yes/no)

Join mode = miter -> \figset sign(join = miter/round/bevel)

Shape = circle -> \figset sign(shape = circle, diamond, nabla, square, star or
triangle)
Lines width
Trimesh:
Lines color (DDV) = general color -> \figset trimesh(color = ColorDefinition)
Lines style (DDV) = general style -> \figset trimesh(dash = Index/Pattern)
Lines width (DDV) = general width -> \figset trimesh(width = real in PS unit)
--- 3D to 2D PROJECTION ---
Projection : realistic -> \figinit{ScaleFactorUnit, ProjType}
Longitude (psi) = -90 -> \figset projection(psi = real in degrees)
Latitude (theta) = 90 -> \figset projection(theta = real in degrees)
Observation distance = 4.99493 -> \figset projection(dist = real in user unit)
Target point = CenterBoundBox -> \figset projection(targetpt = point number)
Its coordinates are (0.49948 , 0.49948 , 0.49948)

0.4 -> \figset sign(width = real in PS unit)

Remark: In 2D-mode the last section (3D to 2D PROJECTION) is not printed.

We can see that the target point is the center of the cube as expected (numerical values are not rounded
here). If we change it to the point P; by saying \figset projection(targetpt=7) and then execute the
same program, then we obtain the last two figures 60 and 61

The observation distance can be modified in the same way, for instance by saying
\figset projection(distance=10)
which doubles the current distance.

e Intersecting planes

We now consider two intersecting planes, represented by two rectangles (vertices 1, 2, 3, 4 and 11, 12,
13, 14). The intersection line is defined by the points 5 and 6. All the points are defined only once and the
parameters of the projection are the same for the three figures. The corresponding part of the program is:

% 1. Definition of characteristic points

\figinit{2cm, realistic}

\figpt 1:(0,0)

\figpttraC 2:=1/0,2,0/

\figpttraC 3:=2/1.2,0,0/

\figpttraC 4:=3/0,-2,0/

\figpt 5:(0,0.9)\figpt 6:(1.2,1.3)

\figvectC 10(1,0,0)\figptsrot 11 = 1,2 /5,60,10/

\figvectP 10[5,6]\figpttra 13:=12/1,10/\figpttra 14:=11/1,10/
\def\Valpsi{-30}\def\Valtheta{30}\figset projection(psi=\Valpsi, theta=\Valtheta)

The left-hand side figure 62 is created by the sections 2a and 3a of the program given below. It provides
a straightforward representation, which looks somewhat ambiguous because the hidden parts of the scene
are not handled.

% 2a. Creation of the first graphical file

\figdrawbegin{}
\figdrawline[1,2,3,4,1]\figdrawline[11,12,13,14,11]\figdrawline[5,6]
\figdrawend

% 3a. Writing text on the figure

\figvisu{\figBoxA}{\bf Figure 62}{}

75

/>

Figure 62 Figure 63 Figure 64

A solution to this is proposed on the figure 63 (created by the sections 2b and 3b of the program) where
the planes are shown using three filled areas drawn from the most distant to the nearest. Notice that this
algorithm holds as long as the observation angle 6 is positive. With this kind of representation, we could of
course choose the color of each plane. Here, since they are both white, a black border is necessary, which is
drawn at the same time without forgetting to switch to the correct filling mode.

% 2b. Creation of the second graphical file
\figdrawbegin{}

\def\white{1}\def\black{0}
\figset(fillmode=yes,color=\white)\figdrawline[11,14,6,5,11]
\figset(fillmode=no, color=\black)\figdrawline[11,14,6,5,11]
\figset(fillmode=yes,color=\white)\figdrawline[1,2,3,4,1]
\figset(fillmode=no, color=\black)\figdrawline[1,2,3,4,1]
\figset(fillmode=yes,color=\white)\figdrawline[5,6,13,12,5]
\figset(fillmode=no, color=\black)\figdrawline[5,6,13,12,5]
\figdrawend

% 3b. Writing text on the figure

\figvisu{\figBoxB}{\bf Figure 63}{}

Another solution is to represent the hidden lines as dashed lines. We stress the fact that their limits
depend on the observation direction and may lead to unexpected results if the values of 1) and 6 are far
from the current values used here while keeping the same points to define the crossing segments and lines.
The corresponding drawing is shown on the right-hand side figure, created by the sections 2c and 3c of the
program:

% 2c. Creation of the third graphical file

\figdrawbegin{}

\figptvisilimSL 7:[2,3 ; 6,13]

\figptvisilimSL 15:[5,11 ; 1,4]
\figdrawline[5,1,4,3,7]\figdrawline[5,12,13,14,11,15]\figdrawline[5,6]
\figset (dash=4)\figdrawline[15,5,2,7]

\figdrawend

% 3c. Writing text on the figure

\figvisu{\figBoxC}{\bf Figure 64}{}

The three figures are then displayed by saying:
\centerline{\box\figBoxA\hfil\box\figBoxB\hfil\box\figBoxC}

76

e Fun

Here is a recreative example. It shows a movement, called “jibe”, made by a funboard turning around
a floating mark. This will be the opportunity to illustrate how a jointed object can be handled.

The funboard is made of two main rigid parts: the board, bearing the fin (macro \board) and the
rigging set: sail, mast and wishbone (macro \sail). The bottom point of the mast is attached to the middle
part of the board according to a spherical link, allowing the sail to rotate in any direction over the board.

Three orthogonal axes are linked to the board (macro \axes). Thus, the geometric description is entirely
done with respect to an orthogonal basis (i1, us, @Ws) and the projection P of the prow point of the board
onto the trajectory along the i3 direction. The vector ; is oriented from the front to the rear and the vector
i3 from the bottom to the top, from which is deduced the third vector us. This also gives the sail a neutral
position in the plane (P;y,%s). In the program, the vectors i, @y and i3 bear respectively the numbers
11, 12 and 13, and the prow point P number 0.

In its neutral position, the funboard is symmetric with respect to the plane (P;;,d3). To give the
funboard the right position, we just have to translate the point P and rotate the basis (macro \boardpo-
sition). Then, the position of the sail is tuned by rotating the basis again (macro \sailposition). The
corresponding calls are made in the macro \funboard.

The funboard is shown in three characteristic positions along its trajectory which is represented here
as a Bézier curve lying in the plane z = 0. To obtain this result, the point P occupies three positions on
the trajectory at the abscissae 0.2, 0.55 and 0.95. At each of these positions, u; is made colinear with the
tangent vector to the curve (macro \jibe).

The only data are the four control points of the trajectory (points number 15, 16, 17 and 18). The
floating mark (point 19) is the center of curvature computed at the abscissa t = 0.5. There is no good reason
for that except that this shows how to use the macro \figptcurvcenter. These points are the only ones
that keep their values all along the process. The trajectory and the floating mark are drawn by the macro
\trajectory.

Two angles of observation are chosen; the second one is a view from the top. The numerical values are
given in meters in true dimensions. The scale of the model is ﬁ since the first argument of \figinit is
cm. Notice the use the macro \figvectU that gives the tangent vector the right length. The target point is
set to the floating mark and the observation distance is set to 20 m (from this point). Since the eye point
is rather close to the scenery, we can observe the depth effect on the first figure: the funboard at the first
position is on the foreground and is bigger than the other ones.

Figure 65. (v,0) = (—35,20)

7

Figure 66. (v,0) = (—35,90)

The program that produces the two figures is given below. Each task corresponds to a macro which is
self explanatory; the main program at the end is then very short.

\def\board{, Draws the board

% Main points

\figpttra 1:=0/0.22,13/

\figpttra 2:=0/0.3,11/\figpttra 3:=0/2.7,11/\figpttra 4:=0/2.7,11/
\figpttra 2:=2/0.5,12/\figpttra 3:=3/0.3,12/

\figpttra 5:=0/0.3,11/\figpttra 6:=0/2.5,11/\figpttra 7:=0/2.5,11/
\figpttra 5:=5/0.4,12/\figpttra 6:=6/0.2,12/

\figpttra 5:=5/0.07,13/\figpttra 6:=6/0.06,13/\figpttra 7:=7/0.04,13/
% Bottom point of the mast

\figptBezier 8::0.45[1,5,6,7]\figptorthoprojplane 8:=8/1,12/

% Define the fin and draw it

\figpttra 20:=4/-0.30,11/\figpttra 21:=4/-0.25,11/

\figpttra 22:=4/-0.05,11/\figpttra 23:=4/-0.15,11/

\figpttra 21:=21/-0.15,13/\figpttra 22:=22/-0.5,13/

\figset (fillmode=yes,color=\Blackrgb)\figdrawBezier 1[20,21,22,23]

78

% Compute the symmetric part of the board and draw it

\figptssym 20=2,3/1,12/

\figset (width=default,color=\Redrgb)\figdrawBezier 2[1,2,3,4,21,20,1]
\figset(fillmode=no,color=\Blackrgb) \figdrawBezier 2[1,2,3,4,21,20,1]
\figptssym 20=5,6/1,12/

\figset(fillmode=yes, color=\DarkOrangergb)\figdrawBezier 2[1,5,6,7,21,20,1]
\figset(fillmode=no,color=\Blackrgb) \figdrawBezier 2[1,5,6,7,21,20,1]}

\def\sail{’ Draws the rigging set

% Mast

\figpttra 21:=8/1.5,13/\figpttra 22:=8/3,13/\figpttra 23:=8/4.5,13/
\figpttra 21:=21/-0.6,11/\figpttra 22:=22/-0.6,11/

% Sail
\figptBezier 40::
\figptBezier 31::
\figptBezier 32::
\figptBezier 33::
\figptBezier 34::
\figptBezier 35::
\figptBezier 36::
% Wishbone
\figpttra 37:=32/0.2,11/\figpttra 38:=32/1.6,11/

\figpttra 37:=37/0.5,12/\figpttra 38:=38/0.05,12/

% Draw the sail

\figset(fillmode=yes,color=\Yellowrgb)
\figdrawline[40,31,41]\figdrawline[33,34,44,43]\figdrawline[35,36,46,45]
\figset(fillmode=no,width=1.5,color=\Blackrgb)
\figdrawline[31,41]\figdrawline[33,43]\figdrawline [34,44]
\figdrawline[35,45]\figdrawline [36,46]

\figdrawline[40,41,42,43,44,45,46,23]

% Draw the wishbone

\figdrawBezier 1[32,37,38,42]\figptssym 37=37,38/8,12/\figdrawBezier 1[32,37,38,42]
% Draw the mast

\figset(width=2)\figdrawBezier 1[8,21,22,23]}

.04[8,21,22,23]

.230[8,21,22,23] \figpttra 41:=31/1.56,11/\figptrot41:=41/31,2,12/
.333[8,21,22,23]\figpttra 42:=32/2.08,11/\figptrotd42:=42/32,0,12/
.423[8,21,22,23] \figpttra 43:=33/1.85,11/\figptrot43:=43/33,-10,12/
.576[8,21,22,23] \figpttra 44:=34/1.58,11/\figptrotdd:=44/34,-15,12/
.736[8,21,22,23] \figpttra 45:=35/1.25,11/\figptrotd5:=45/35,-15,12/
.888[8,21,22,23] \figpttra 46:=36/0.85,11/\figptrot46:=46/36,-20,12/

O O O O O O o

\def\funboard{\boardposition\board\sailposition\sail}

A

\def\axes{% Defines the local axes linked to the board

\figptBezier 0:P:\abscissal[15,16,17,18]

\figvectDBezier 21:1,\abscissal15,16,17,18]\figvectU 21[21]\figpttra 1:=0/-1,21/
\figvectP 11[0,1]\figvectC 13(0,0,1)\figptrot 2:=1/0,90,13/\figvectP 12[0,2]1}
.

\def\jibe{% Draws the funboard at 3 successive positions

% First position

\def\boardposition{\def\abscissa{0.2}\axes}

\def\sailposition{\figpt 20:(0,0)\figptrot 11:=11/20,20,12/\figptrot 13:=13/20,20,12/
\figptsrot 12=12,13/20,20,11/}

\funboard

% Second position
\def\boardposition{\def\abscissa{0.55}\axes\figpt20:(0,0)\figptsrot12=12,13/20,-40,11/}
\def\sailposition{\figpt 20:(0,0)\figptsrot 11=11,12/20,70,13/

\figptrot 11:=11/20,-35,12/\figptrot 13:=13/20,-35,12/}

\funboard

79

% Third position

\def\boardposition{\def\abscissa{0.95}\axes}

\def\sailposition{\figpt 20:(0,0)\figptrot 11:=11/20,20,12/\figptrot 13:=13/20,20,12/
\figptsrot 12=12,13/20,-20,11/}

\funboard}

\def\trajectory{’% Draws the trajectory and the floating mark
\figset(width=2)\figset arrowhead(length=0.6)\figdrawarrowBezier [15,16,17,18]
\figpttraC 1:=19/1,0,0/\figpttraC 2:=19/0,1,0/

\figset (fillmode=yes,color=\Blackrgb)\figdrawcirc 19,1,2(0.2)}

\def\newfig{’ Creates a new graphical file and a new figure

% 2. Creation of the graphical file

\figdrawbegin{}

\trajectory\jibe

\figdrawend

% 3. Writing text on the figure

\figvisu{\figBoxA}{{\bf Figure \figforTeXFigno.}\\$(\psi, \theta)=(\Valpsi, \Valtheta)$}{}
\vskip0.8cm

\centerline{\box\figBoxA}}

\figinit{cm, realistic}

% 1. Trajectory control points

\figpt 15:(7,3)\figpt 16:(2,-6)\figpt 17:(-8,-5)\figpt 18:(-2,6)
% Floating mark position

\figptcurvcenter 19::0.5[15,16,17,18]

% First figure

\figset projection(targetpt=19, distance=20)
\def\Valpsi{-35}\def\Valtheta{20}\figset projection(psi=\Valpsi, theta=\Valtheta)
\newfig

% Second figure

\def\Valtheta{90}\figset projection(theta=\Valtheta, distance=50)
\newfig

Remark: In the macros \boardposition and \sailposition, in order to rotate the basis (1, Uz, Us), we
have used the macro \figptrot, which acts on a point, to rotate a vector, after having the rotation axis
through the origin. This has the advantage that the result is obtained in a straightforward way. However,
this is not mathematically consistent since the object created is a point and not a vector. In this macro
package, the only consequence would be on the macro \figshowpts which shows the points but not the
vectors. If we are purist, we can generate vectors by creating intermediate points. For example, in the first
call to \sailposition, we can replace

\figpt 20:(0,0)\figptrot 11:=11/20,20,12/
by
\figpt 20:(0,0)\figpttra 21:=20/1,11/\figptrot 21:=21/20,20,12/\figvectP 11[20,21]

80

§12. Using this macro package

This macro package is ready to be used with plain TEX and I¥TEX under any Unix system (including Linux
and Mac OS X) and Windows.

Remark (probably no longer relevant): With TeXtures on a MacIntosh running MacOS 9 or less, the macro
file figdtex.tex must be modified as explained in its header, in order to handle the PostScript files correctly.

Prerequisite knowledge about TEX

In order to fully benefit from the macros described in this documentation, it may be useful to know of two
fundamental TEX features, namely box and macro definition.

A box is a basic object in TEX; everything is box in TEX, from the character to the page. Thus, Fig{TEX
is designed so that the useful result (produced by \figvisu) is a box. To be very short, a box can be referred
to by a name, e.g. \myBox, and the contents of the box are displayed by saying \box\myBox. Afterwards,
the box is empty and can be reused and filled again with other material.

The second important feature is the so-called macro definition. The simplest syntactic form is similar to
a variable assignment: \def\Macro{definition}, where \Macro is a name chosen by the user and definition is
any text or material allowed by TEX. Any subsequent definition of \Macro will override this one. The macro
is then expanded by just saying \Macro, which means that the definition is displayed in this place.

Arguments can also be given in a macro definition. In the calling sequence, the arguments follow the
macro name and are enclosed with braces {}. In order to make usage of the macros more intuitive, the
arguments can be separated by specific characters, called delimiters, which are mandatory in the calling
sequence. Most of the macros of Fig{IEX are built according this schema. For example, the coordinates of a
point are always given as a comma separated list of numbers surrounded by parentheses: (x, y) in 2D or
(x, y, z) in 3D.

Nota: Instead of \def, IATEX users may prefer to use \newcommand and \renewcommand. The \def
construction has the same effect as \renewcommand in that the macro \Macro is overridden. It can be secure
to use a group to make a definition local (to the group) and thus not affect the entire document. A group
is simply delimited by a couple of braces {}.

Fig{TgX and ETEX
To use Fig{IEX with IATEX, there are two ways:
- write \usepackage{figdtex} before \begin{document},
- or write \input figdtex.tex after \begin{document}.
Some users sometimes wonder if the IWTEX environments can be used together with Fig{TFX, especially the
figure environment and the labelling tools.
The answer is: “Yes”. Here follows a template showing a typical usage:

\documentclass[12pt]{article}
\usepackage{figdtex}

\begin{document}
Some text before the figure \ref{ItsOK}.

\figinit{...}

\.f.i.gvisu{\figBoxA}{}{

}

\begin{figure}[h]
\centerline{\box\figBoxA}

\caption{The figure}

\label{ItsOK}

\end{figure}

Some text after the figure.
\end{document}

81

\begin{center}
\begin{tabular}{c}
The command \centerline{\box\figBoxA} can be replaced with: \box\figBoxA
\end{tabular}
\end{center}

To display to figures side by side, we can just say (see Writing text on the figure):

\begin{center}

\begin{tabular}{cc}
\centerline{\box\figBoxA\hfil\box\figBoxB} or equivalently: \box\figBoxA & \box\figBoxB

\end{tabular}

\end{center}

Compatibility with other packages

Problems are to be expected if a macro is defined in two packages with different meanings. In order to avoid
such conflicts, Fig{[EX warns by issuing a message when such redefinitions are detected, in which case it is
wise to change the conflicting macro names in either package or the other.

Fig{TEX proves to be compatible with most common packages. However, some packages change the
behaviour of particular characters (such as colon or semicolon), by changing their category code, to be
precise. This is especially the case with packages dealing with language specificities, namely French. This
may cause trouble to Fig{TEX, but an easy workaround is to load Fig{IEX in last place, which leads to the
following structure:

TEX ETEX
\input frencha4.tex \documentclass[12pt]{article} % for example
\input figdtex.tex % <- LAST \usepackage [french] {babel}

\usepackage{figdtex} % <- LAST

\bye \begin{document}

\end{document}
Bug report

The author would appreciate to receive back any information about trouble in using this macro package.
Please send your message to Yvon.Lafranche@univ-rennesl.fr.

82

§13. List of user macros

An HTML version of this list is available at:
https://perso.univ-rennesl.fr/yvon.lafranche/figd4tex/ReferenceGuide.html

————————— Control macros

\figinit{ScaleFactorUnit} or \figinit{ScaleFactorUnit, 2D}

\figinit{ScaleFactorUnit, X} with X in {3D, cavalier, orthogonal, realistic}
Initialization before the creation of a new figure. It is necessary to call this
macro in case of successive figures. No check is performed on the arguments.
First argument : Choice of the unit and the scale factor.

The unit can be one those defined in the TeX Book, namely: pt (TeX point),
pc (pica, 1pc = 12pt), in (inch, 1in = 72.27pt), bp (big point, 72bp = 1lin),
cm (centimeter, 2.54cm = 1in), mm (millimeter, 10mm = 1icm), dd (point didot,
1157dd = 1238pt), cc (cicero, lcc = 12dd), sp (scaled point, 65536sp = 1pt)
By default, pt is assumed and the scale factor is 1. For example, \figinit{in}
is equivalent to \figinit{2.54cm}.
Second argument (optional) : Choice of the space dimension and, in 3D, the
projection type.
If this argument is equal to 2D or absent, then geometry in the plane is assumed,
otherwise geometry in three dimensions is performed.
Moreover, if this argument is equal to:
orthogonal, then the orthogonal projection is used,
realistic, then the realistic projection is used,
3D or cavalier (or anything else), then the cavalier projection is used.

\figinsert{} or \figinsert{FileName} or \figinsert{FileName, ScaleFactor}
Insertion of the file FileName in the page, scaled by ScaleFactor which by default
equals to 1. This macro must be used to include a graphical file created by FigdTeX.
If the argument is empty or blank, the internal default file name is used, i.e. the
included file is the last file created by the command \figdrawbegin{}. Otherwise,
the first argument is assumed to be the valid file name of an existing file.
If given, the file name must not begin with a digit.
See also \figinsertE.

\figinsertE{FileName} or \figinsertE{FileName, ScaleFactor}
Insertion of the external file FileName in the page, scaled by ScaleFactor
which by default equals to 1. In PDF mode, this macro allows to include
so-called "external" files such as JBIG2, JPEG, PDF or PNG files.
In DVI mode, this macro allows to include PostScript files only.

\figscan FileName (HX,HY)

Draws a rectangular grid with horizontal and vertical steps HX and HY, with
numerical values corresponding to the bounding box read in the file FileName.

\figset projection (attributel=valuel, attribute2=value2,...)

Setting the parameters governing the 3D -> 2D projection.
The general calling sequence is
\figset keyword (attributel=valuel, attribute2=value2,...)

Here, the required keyword is "projection". See the macro \figset in the section
"Macros for graphical generation" for the other keywords. The attributes are
given below, along with the possible values and their definition.
The current values can be obtained with the help of \figshowsettings.
- keyword = projection

depth (or lambda) = real in [0,1] (default = 0.5): depth reduction coefficient

83

https://perso.univ-rennes1.fr/yvon.lafranche/fig4tex/ReferenceGuide.html

(for the cavalier projection).

distance = real in user unit (default = 5 x the largest dimension of
the 3D bounding box): observation distance (for the realistic projection).
latitude (or theta) = angle in degrees (default = 25): latitude of the
observation direction.

longitude (or psi) = angle in degrees (default = 40): longitude of the
observation direction.

targetpt = point number (default = center of the 3D bounding box): target
point (for the realistic projection).

Nota: These attributes must be set before step 2 (\figdrawbegin) and 3 (\figvisu).
The cavalier projection is only defined by depth and psi. In this case,
values of psi lying in [0,180] correspond to a view from above and to
a view from beneath for values lying in [-180,0].

The orthogonal projection is only defined by theta and psi.
The realistic projection is defined by theta, psi, distance and targetpt.
For those two projections, the observation direction is defined by the
longitude psi and the latitude theta, with (psi, theta) = (0, 0)
corresponding to the 0x line.
- other keywords : see "Control macros" in section "Macros for graphical generation".
\figshowsettings
Prints to the terminal the current settings.
\figvisu{Vbox}{Caption}{Commands}
Creation of a Vbox containing the figure and the legends defined by the Commands,
with a Caption centered below. Commands and Caption can be void.
Three boxes are preallocated and are available to the user: \figBoxA, \figBoxB
and \figBoxC (a single one is generally sufficient for a whole document since
it can be reused several times).
The numbers of the current figure and of the next one are also available via
the expandable macros \figforTeXFigno and \figforTeXnextFigno.

————————— Basic macros

\figpt NewPt :Text(X,Y)

\figpt NewPt :Text(X,Y,Z)
Definition of the point NewPt whose coordinates are (X,Y) or (X,Y,Z), with a joined Text.
If Z is missing, then Z=0 is assumed. The default Text is A_i where i is the number of
the point (see \figset write(ptname={...})).

\figptbary NewPt :Text[Ptl,... ,PtN ; Coefl,... ,CoefN]
Barycenter or centroid (with a joined Text) of N points bearing integer coefficients
\figptbaryR NewPt :Text[Ptl,... ,PtN ; Coefl,... ,CoefN]

Barycenter or centroid (with a joined Text) of N points bearing real coefficients
\figptcopy NewPt :Text/Pt/
Definition of NewPt, with an associated Text, with the same coordinates as Pt.
\figget keyword = \Result [Argl,...ArgN]
\figget keyword OP value = \Result [Argl,...ArgN]
Computation of geometrical parameters specified by a keyword.
The simplified calling sequence is
\figget keyword = \Result [Argl,...ArgN]
where \Result is a macro that holds the expected result and Argi are the arguments
needed to compute this value. \Result is a macro whose name is chosen by the user
and can then be used as a symbolic numerical constant.
The computed value can be modified by an arithmetic operation by using the general
calling sequence
\figget keyword OP value = \Result [Argl,...ArgN]
where OP is one of *, / or +, and value is a numerical constant or a symbolic numerical

84

constant (i.e. stored in a macro). Thus, if e denotes the neutral element of 0P, the
simplified calling sequence above is equivalent to
\figget keyword OP e = \Result [Argl,...ArgN]
For each keyword, the definition of the associated parameter is given below along with
the simplified calling sequence:
- keyword = angle
Calling sequence in 2D: \figget angle = \Result [Center,Ptl,Pt2]
Calling sequence in 3D: \figget angle = \Result [Center,Ptl1,Pt2,Pt3]
Computation of the value \Result (in degrees) of the oriented angle (CP1, CP2), where
C=Center, P1=Pt1l, P2=Pt2.
In 3D, the plane is oriented so that the angle is measured counterclockwise around the
vector CP1 x CP3, where P3=Pt3. Notice that C, P1, P2 and P3 must be coplanar, but P3
must not lie on the line (C,P1).
- keyword = distance
Calling sequence: \figget distance = \Result [Pt1,Pt2]
Computation of the euclidian distance \Result between the points Ptl and Pt2.
The distance is expressed in user units.
\figvectC NewVect (X,Y)
\figvectC NewVect (X,Y,Z)
Definition of the vector NewVect with components (X,Y) or (X,Y,Z).
If 7Z is missing, then Z=0 is assumed.
\figvectN NewVect [Pt1l,Pt2]
\figvectN NewVect [Pt1,Pt2,Pt3]
Definition of the vector NewVect which is:
in 2D, the vector with origin point Ptl and end point Pt2 rotated by pi/2
(so normal to [Pt1,Pt2]),
in 3D, the vector product P1P2 / ||P1P2|| x P1P3 / ||P1P3||, ie a vector normal to
the plane defined by the 3 points and so that (P1P2, P1P3, NewVect) is a positively
oriented basis.
\figvectNV NewVect [Vector]
\figvectNV NewVect [Vectorl, Vector2]
Definition of the vector NewVect which is:
in 2D, the vector Vector rotated by pi/2
in 3D, the vector product Vectorl / ||Vectorl|| x Vector2 / ||Vector2|| so that
(Vectorl, Vector2, NewVect) is a positively oriented basis.
\figvectP NewVect [Pt1l,Pt2]
Definition of the vector NewVect with origin point Ptl and end point Pt2.
\figvectU NewVect [Vector]
Definition of the unitary vector NewVect which is Vector normalized according to
the unit and the scale factor chosen by the user (see \figinit).

————————— Macros for elementary geometry

—--- Transformation macros (one result) ---
\figptmap NewPt :Text= Pt /InvPt/A11,A12 ; A21,A22/
\figptmap NewPt :Text= Pt /InvPt/A11,A12,A13 ; A21,A22,A23 ; A31,A32,A33/
Image NewPt (with a joined Text) of point Pt by the mapping defined by:
an invariant point InvPt
the matrix A whose coefficients are Aij, i,j in [1,d], d=2 in 2D or d=3 in 3D.
If I=InvPt, P=Pt, P’=NewPt, P’ is computed as IP’ = A (IP).
\figpthom NewPt :Text= Pt /Center, Ratio/
Image NewPt of point Pt by the homothety of center Center and of ratio Ratio
with a joined Text

85

\figptinv NewPt :Text= Pt /Center, Ratio/
Image NewPt of point Pt by the inversion of center Center and of ratio Ratio
with a joined Text
\figptrot NewPt :Text= Pt /Center, Angle/
\figptrot NewPt :Text= Pt /Center, Angle, Vector/
Image NewPt (with a joined Text) of point Pt by the rotation defined:
in 2D, by the center Center and the angle Angle (in degrees),
in 3D, by the axis (Center, Vector) and the angle Angle (in degrees).
Pt is rotated by Angle around the axis. The sense of rotation is such that
(CP, CP’, Vector) is a positively oriented basis, where C=Center, P=Pt, P’=NewPt.
\figptsym NewPt :Text= Pt /LinePtl, LinePt2/
\figptsym NewPt :Text= Pt /PlanePt, NormalVector/
Image NewPt (with a joined Text) of point Pt by the orthogonal symmetry
with respect to:
in 2D, the line defined by the points LinePtl and LinePt2,
in 3D, the plane defined by the point PlanePt and the vector NormalVector normal
to the plane.
\figpttra NewPt :Text= Pt /Lambda, Vector/
Image NewPt of point Pt by the translation of vector Lambda * Vector
with a joined Text.
\figpttraC NewPt :Text= Pt /X,Y/
\figpttraC NewPt :Text= Pt /X,Y,Z/
Image NewPt of point Pt by the translation of vector (X,Y) in 2D, (X,Y,Z) in 3D
with a joined Text.
\figptorthoprojline NewPt :Text= Pt /LinePtl, LinePt2/
Image NewPt of point Pt by the orthogonal projection onto the line (LinePtl,LinePt2),
with a joined Text.
\figptorthoprojplane NewPt :Text= Pt /PlanePt, NormalVector/
Image NewPt of point Pt by the orthogonal projection onto the plane defined by
the point PlanePt and the normal vector NormalVector, with a joined Text.

--- Transformation macros (multiple result) ---

\figptsmap NewPtl = Ptl, Pt2, ..., PtN /InvPt/A11,A12 ; A21,A22/
\figptsmap NewPtl = Ptl, Pt2, ..., PtN /InvPt/A11,A12,A13; A21,A22,A23; A31,A32,A33/
Images NewPtl, NewPtl+1,..., NewPt1+(N-1) of points Ptl1l, Pt2, ..., PtN

by the mapping defined by:
an invariant point InvPt
the matrix A whose coefficients are Aij, i,j in [1,d], d=2 in 2D or d=3 in 3D.
If I=InvPt, P=Pti, P’=NewPti, P’ is computed as IP’ = A (IP).
See following information at \figptstra.
\figptshom NewPtl = Ptl, Pt2, ..., PtN /Center, Ratio/
Images NewPtl, NewPti+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN
by the homothety of center Center and of ratio Ratio.
See following information at \figptstra.
\figptsinv NewPtl = Pt1, Pt2, ..., PtN /Center, Ratio/
Images NewPtl, NewPti+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN
by the inversion of center Center and of ratio Ratio.
See following information at \figptstra.

\figptsrot NewPtl = Ptl, Pt2, ..., PtN /Center, Angle/
\figptsrot NewPtl = Ptl, Pt2, ..., PtN /Center, Angle, Vector/
Images NewPtl, NewPtil+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN

by the rotation defined:
in 2D, by the center Center and the angle Angle (in degrees),
in 3D, by the axis (Center, Vector) and the angle Angle (in degrees). Each point

86

Pti is rotated by Angle around the axis. The sense of rotation is such that
(CP, CP’, Vector) is a positively oriented basis, where C=Center, P=Pti, P’=NewPti.
See following information at \figptstra.

\figptssym NewPtl = Ptl, Pt2, ..., PtN /LinePtl, LinePt2/
\figptssym NewPtl = Ptl, Pt2, ..., PtN /PlanePt, NormalVector/
Images NewPtl, NewPtil+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN

by the orthogonal symmetry with respect to:
in 2D, the line defined by the points LinePtl and LinePt2,
in 3D, the plane defined by the point PlanePt and the vector NormalVector normal

to the plane. See following information at \figptstra.

\figptstra NewPtl = Ptl, Pt2, ..., PtN /Lambda, Vector/

Images NewPtl, NewPti+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN

by the translation of vector Lambda * Vector

- Common information to all multiple results macros -

Text eventually previously associated with the result points is lost.

The result points NewPti have successive numbers.

The data points Pti can be given in any order.

WARNING : Let Ir (resp. Id) the set of the result points numbers (resp. the set

of the given points numbers). Let J the intersection of Ir and Id.

1) Ir = Id, or J is empty, or NewPtl does not belong to J: no problem.

2) Otherwise, the result given by the macro MAY BE WRONG, at least partially:
this is because, in this case, NewPtl belongs to J, and the given points are
taken into account sequentially, beginning from the first element in the list.
-> Take note that one can take advantage of this feature to create a sequence
of points such that P_{n+1} is the image of P_{n}. For example, given point 1,
the statement \figptsXXX 2=1,2/.../ will create point 2 image of point 1,
and point 3 image of point 2.

\figptstraC NewPtl = Pt1, Pt2, ..., PtN /X,Y/
\figptstraC NewPtl = Pt1, Pt2, ..., PtN /X,Y,Z/
Images NewPtl, NewPtl1+1,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN

by the translation of vector (X,Y) in 2D, (X,Y,Z) in 3D
See following information at \figptstra.

\figptsorthoprojline NewPtl = Ptl, Pt2, ..., PtN /LinePtl, LinePt2/
Images NewPtl, NewPtil+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN
by the orthogonal projection onto the line (LinePtl, LinePt2).

\figptsorthoprojplane NewPtl = Ptl, Pt2, ..., PtN /PlanePt, NormalVector/
Images NewPtl, NewPti+l,..., NewPt1+(N-1) of points Ptl, Pt2, ..., PtN

by the orthogonal projection onto the plane defined by the point PlanePt and the
normal vector NormalVector.

--- Geometrical construction macros ---
\figptinterlines NewPt :Text[LinePtl,Vectorl; LinePt2,Vector2]
Intersection of the line defined by the point LinePtl and the vector Vectorl
and the line defined by the point LinePt2 and the vector Vector2
with a joined Text
\figptinterlineplane NewPt :Text[LinePt,Vector; PlanePt,NormalVector]
Intersection of the line defined by the point LinePt and the vector Vector
and the plane defined by the point PlanePt and the normal vector NormalVector
with a joined Text.
\figptsaxes NewPtl : Origin(X1,X2, Y1,Y2)
\figptsaxes NewPtl : Origin(X1,X2, Y1,Y2, Z1,Z2)
\figptsaxes NewPtl : Origin(L)
End points NewPtl, NewPtl+1 (and NewPt1+2 in 3D) of the arrows corresponding to
the axes, drawn by the macro \figdrawaxes. The text x, y (and z in 3D) is

87

automatically joined to the points, so that writing the legend with the
\figwriteX macros is more straightforward. For example, in 2D, one can write
something like: \figwrites NewPtl:(3pt) \figwritew NewPt1+1:(3pt)
Remember that these macros can override the default text setting.
The short form \figptsaxes NewPtl : Origin(L) is equivalent to
\figptsaxes NewPtl : Origin(0,L, O,L) in 2D and
\figptsaxes NewPtl : Origin(O0,L, 0,L, O,L) in 3D.
NOTA: For simplicity of use, the arguments of this macro are deduced from
those of \figdrawaxes.
\figptendnormal NewPt :Text: Length,Lambda [Pt1,Pt2]
End point (with a joined Text) of the "exterior normal" to the segment [Ptl, Pt2].
The length of the normal vector is Length. Lambda is the abscissa in [0,1] of the
origin of the normal with respect to the segment [Ptl, Pt2], O corresponding to Pt1l
and 1 to Pt2. This sets the position of the normal vector along [Ptl, Pt2].
In 3D-mode, it works only in the plane Z=0.
\figptsintercirc NewPtl [Centerl,Radiusl ; Center2,Radius2]
\figptsintercirc NewPtl [Centerl,Radiusl ; Center2,Radius2 ; PlanePt]
Intersections NewPtl and NewPt2 (=NewPtl1+1) of the two circles defined by their
center and radius, (Centerl,Radiusl) and (Center2,Radius2).
NewPtl and NewPt2 must be different from Centerl and Center2.
NewPtl and NewPt2 are ordered so that the angle (NewPtl, Centerl, NewPt2) is positive.
If the two circles do not intersect, then NewPtl=Centerl and NewPt2=Center2.
In 3D, the plane containing the two circles is defined by the three points Centerl,
Center2 and PlanePt (which must not lie on the same line). The three points
(NewPt1, Centerl, NewPt2) defined the same orientation as (Center2, Centerl, PlanePt).
\figptsinterlinell NewPtl [Center,XRad,YRad,Inclination ; LinePtl,LinePt2]
Intersections NewPtl and NewPt2 (=NewPt1+1) of the line (LinePt1, LinePt2) and
the ellipse defined by Center, XRad, YRad and Inclination (see \figptell).
NewPtl and NewPt2 must be different from LinePtl.
NewPtl and NewPt2 are ordered so that the vectors NewPtlNewPt2 and LinePt1LinePt2
have the same direction.
If the line does not intersect the ellipse, then NewPtl=LinePtl and NewPt2=LinePt2.
In 3D-mode, it works only in the plane Z=0.
\figptsinterlinellP NewPtl [Center,PtAxisl,PtAxis2 ; LinePtl1,LinePt2]
Intersections NewPtl and NewPt2 (=NewPt1+1) of the line (LinePt1, LinePt2) and
the ellipse defined by its Center, and the end points of its axes, Al=PtAxisl and
A2=PtAxis2. The local axes are then defined by the basis (CA1l, CA2).
NewPtl and NewPt2 must be different from LinePtl.
NewPtl and NewPt2 are ordered so that the vectors NewPtlNewPt2 and LinePtlLinePt2
have the same direction.
If the line does not intersect the ellipse, then NewPtl=LinePtl and NewPt2=LinePt2.
In 3D, the 5 data points must lie in the same plane ; this is not checked.
\figptvisilimSL NewPt:Text[SegPtl,SegPt2 ; LinePtl,LinePt2]
Apparent intersection NewPt (with a joined Text) of the segment [SegPtl,SegPt2]
and the line (LinePtl1,LinePt2). NewPt is the visible limit of the segment hidden
by an object an edge of which is lying on the line.
If the projection of the line intersects the segment, the solution NewPt lies
between SegPtl and SegPt2, otherwise NewPt = SegPtl.

--- Macros related to the triangle ---
\figptcircumcenter NewPt :Text[Ptl,Pt2,Pt3]

Center NewPt of the circumscribed circle to the triangle (Pt1,Pt2,Pt3) with a joined Text.
\figptexcenter NewPt :Text[Ptl,Pt2,Pt3]

Center NewPt (with a joined Text) of the escribed circle to the triangle (Pt1,Pt2,Pt3)

88

opposite to Ptl.
\figptincenter NewPt :Text[Ptl,Pt2,Pt3]

Center NewPt (with a joined Text) of the inscribed circle to the triangle (Pt1,Pt2,Pt3).
\figptorthocenter NewPt :Text[Ptl,Pt2,Pt3]

Orthocenter NewPt of the triangle (Pt1,Pt2,Pt3) with a joined Text.

————————— Macros related to arcs and curves

\figptcirc NewPt :Text: Center;Radius (Angle)

\figptcirc NewPt :Text: Center,Ptl,Pt2;Radius (Angle)
Creation of the point NewPt, with an associated Text, on the circle defined by its Center,
and its Radius. The position of the point is set by the Angle given in degrees.
In 3D, the circle is lying in the plane (Center,Pt1,Pt2) = (C,P1,P2) and
the Angle is measured counterclockwise around the vector CP1 x CP2, starting from
the half-line (C,P1).

\figptell NewPt :Text: Center;XRad,YRad (Angle,Inclination)
Creation of the point NewPt, with an associated Text, on the ellipse defined by Center,
XRad, YRad and Inclination. Inclination is the rotation angle of the local axes with
respect to the paper sheet. The position of the point is set by the parametrization
Angle given in local axes. The two angles are given in degrees.
In 3D-mode, it works only in the plane Z=0.

\figptellP NewPt :Text: Center,PtAxisl,PtAxis2 (Angle)
Creation of the point NewPt, with an associated Text, on the ellipse defined by its Center,
and the end points of its axes, Al=PtAxisl and A2=PtAxis2. The local axes are then
defined by the basis (CAl, CA2). The position of the point is set by the parametrization
Angle given in degrees, starting from the half-line (C,Al) and measured counterclockwise
around the vector CA1l x CA2.

\figptBezier NewPt :Text: t [Pt1,Pt2,Pt3,Pt4]
Computes the point NewPt (with a joined Text) lying on the cubic Bezier curve defined
by the four control points Ptl, Pt2, Pt3 and Pt4, for the parameter value t.
We recall that if t=0, NewPt=Ptl and if t=1, NewPt=Pt4.

\figptscontrol NewPtl [Ptl,Pt2,Pt3,Pt4]
Computes the two control points NewPtl and NewPt2 (=NewPtl+1) so that the cubic Bezier
curve defined by the control points Ptl, NewPtl, NewPt2 and Pt4 interpolates the
four points Ptl, Pt2, Pt3 and Pt4 with respective parameter values of 0, 1/3, 2/3 and 1.
The result points numbers can be anyone including Ptl, Pt2, Pt3 and Pt4.

\figptscontrolcurve NewPtl, \NbArcs [PtO,Ptl,... ,PtN,PtN+1]
Computes the control points NewPtl, NewPtl+1l,..., NewPtl+M used by the macro
\figdrawcurve when it is invoqued by \figdrawcurve [PtO,Ptl,... ,PtN,PtN+1]

which draws a curve that consists in N-1 cubic Bezier arcs.
\NbArcs is a TeX macro whose name is chosen by the user. It can be considered
as a variable and on output, its value is N-1 so that the calling sequence

\figdrawBezier \NbArcs [NewPtl, NewPti+l,..., NewPtl1+M] draws exactly the same curve.
As a consequence, the data points Pti are duplicated on output : indeed, we have
NewPti1+J = Pti with J=3*(i-1), i=1,...N.

The result points numbers must be different from any of PtO,Ptl,... ,PtN,PtN+1.

On output, a total of M+l points are created, with M = 3 * \NbArcs.
NOTA : this macro uses the current value of curve roundness.
\figptcurvcenter NewPt :Text: t [Pt1,Pt2,Pt3,Pt4]
Curvature center NewPt (with a joined Text) at the point lying on the cubic Bezier curve
defined by the four control points Ptl, Pt2, Pt3 and Pt4, for the parameter value t.
\figvectDBezier NewVect : n, t [Ptl,Pt2,Pt3,Pt4]
Computes the vector NewVect corresponding to the derivative of order n of the cubic Bezier
curve defined by the four control points Ptl, Pt2, Pt3 and Pt4, for the parameter value t.
The order n must be equal to 1 or 2.

89

————————— Control macros
\figcoord{NDec}
To write the coordinates of a point. To be used in the joined text argument
of the macros that create points or the non-mute macros \figwrit*
Only NDec decimals are printed, after rounding. If NDec is absent, then the number
of decimals to print is obtained from last call to \figset write (rounding=...)).
The default value is 2.
\figround{RealNumber}
Rounds a numerical value. To be used in the joined text argument of the macros
that create points and the non-mute macros \figwrit* . The number of decimals
displayed is set by \figset write (rounding=...). The value to be rounded is
generally a computed value, e.g. by \figget.
\figset write(attributel=valuel, attribute2=value2,...)
Setting the attributes the \figwriteXX macros depend on.
The general calling sequence is
\figset keyword (attributel=valuel, attribute2=value2,...)
Here, the required keyword is "write". See the macro \figset in the section
"Macros for graphical generation" for the other keywords. The attributes are
given below, along with the possible values and their definition.
The current values can be obtained with the help of \figshowsettings.
- keyword = write
mark = symbol : controls how the point position is shown ; the point marker
to be written can be a point (.) or \bullet for example.
By default, nothing is written.
ptname = text : controls the definition of the point name ; the default name
for the point i is A_i: \figset write(ptname={$X~{(#1)}$})
changes it to $X°{(i)}$ for example.

rounding = Nd : sets Nd as the number of decimals printed with \figcoord or
\figround, after rounding.
- other keywords : see "Control macros" in section "Macros for graphical generation".

\figshowpts [Nmin, Nmax]
Shows on the figure the location of every point defined since the beginning
of the session, whose number lies in the interval [Nmin, Nmax].
Writes a bullet at each location point along with the number of the point or
the joined text if any.

CAUTION :
If Nmax-Nmin is too large, an error message "! TeX capacity exceeded" may occur.
————————— Writing macros
\figwrite[Pt1, Pt2, ..., PtN]{Text}
Writing a Text after Ptl, Pt2, ..., PtN according to TeX’s alignment.
\figwritec[Ptl, Pt2, ..., PtN]{Text}
Writing a Text vertically and horizontally centered at Ptl, Pt2, ..., PtN.
\figwritep[Ptl, Pt2, ..., PtN]
Writing the point marker at the locations defined by Ptl, Pt2, ..., PtN.
\figwritew Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritee Pt1, Pt2, ..., PtN :Text(Distance)
\figwriten Ptl, Pt2, ..., PtN :Text(Distance)
\figwrites Ptl, Pt2, ..., PtN :Text(Distance)
Writing the point marker at the locations defined by Ptl, Pt2, ..., PtN, with a Text

90

placed, with respect to each point, at a given Distance from each point towards
the west, the east, the north or the south. Distance measures the shortest path
between each Pti and the bounding box of the Text.

\figwritenw Ptl, Pt2, ..., PtN :Text(Distance)
\figwritesw Ptl1, Pt2, ..., PtN :Text(Distance)
\figwritene Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritese Ptl, Pt2, ..., PtN :Text(Distance)
Writing the point marker at the locations defined by Ptl, Pt2, ..., PtN, with a Text

placed, with respect to each point, at a given Distance from each point towards
the north-west, the south-west, the north-east or the south-east. Distance measures
the shortest path between each Pti and the bounding box of the Text.

\figwritebw Ptl, Pt2, ..., PtN :Text(Distance)
\figwritebe Pt1, Pt2, ..., PtN :Text(Distance)
\figwritebn Ptl, Pt2, ..., PtN :Text(Distance)
\figwritebs Ptl, Pt2, ..., PtN :Text(Distance)
Writing a point marker at the locations defined by Pt1l, Pt2, ..., PtN, with a Text

placed, with respect to each point, at a given Distance from each point towards

the west, the east, the north or the south (BASELINE version).

If X=w or e, Distance measures the length between Pti and the end (resp. the beginning)
of the Text, while the baseline of the Text is set to Pti’s ordinate.

If X=n or s, the Text is horizontally centered and Distance measures the length between
Pti and the baseline of the Text.

\figwritegcw Ptl, Pt2, ..., PtN :Text(DistanceX,DistanceY)
\figwritegce Ptl, Pt2, ..., PtN :Text(DistanceX,DistanceY)
Writing the point marker at the locations defined by Ptl, Pt2, ..., PtN, with a Text

placed, with respect to each point, at a horizontal distance DistanceX (west or east)
and a vertical distance DistanceY between the point and the mid-height of the text.

\figwritegw Pt1, Pt2, ..., PtN :Text(DistanceX,DistanceY)
\figwritege Ptl, Pt2, ..., PtN :Text(DistanceX,DistanceY)
Writing the point marker at the locations defined by Ptl, Pt2, ..., PtN, with a Text

placed, with respect to each point, at a horizontal distance DistanceX (west or east)
and a vertical distance DistanceY from the bottom of the bounding box of the Text if
DistanceY > 0, from its top if DistanceY < 0. If DistanceY = 0, the Text is vertically
centered.

\figwritelw Ptl, Pt2, ..., PtN :Text(Distance)
\figwritele Pt1, Pt2, ..., PtN :Text(Distance)
\figwriteln Pt1l, Pt2, ..., PtN :Text(Distance)
\figwritels Pt1, Pt2, ..., PtN :Text(Distance)
\figwriteln Pt1, Pt2, ..., PtN :Text(Distance,lambda)
\figwritels Pt1, Pt2, ..., PtN :Text(Distance,lambda)

Writing the Text placed at a given Distance from the reference point associated
to each segment, towards the west, the east, the north or the south.

A segment [Pti, Pt{i+1}] is defined by two consecutive points in the list.

The reference point used to write the text is defined as follows:

- when writing towards the west (resp. the east), the reference point is Pti
(resp. Pt{i+1}),

- when writing towards the north or the south, the reference point is Qi, the
barycenter of (Pti, 1-lambda) and (Pt{i+1}, lambda). Thus, lambda = O
corresponds to Pti and lambda = 1 to Pt{i+1}. By default, lambda = 1/2.

The writing direction is parallel to each segment.
The argument Distance measures the shortest path between each reference point

(Qi, Pti or Pt{i+1}) and the bounding box of the Text.

By default, the text written is:
- the text associated to point Pti (resp. Pt{i+1}), if X=w (resp. X=e),

91

- the length (in user unit) of the segment, if X=n or X=s.

\figwritedim Ptl, Pt2 :Text(Distance)
Write a Text (assumed to denote a dimension) at the distance Distance of the
midpoint of the segment [Ptl, Pt2], oriented from west to east. If Distance<O,
the text is written at the south of the segment, at the north otherwise.
If Text is empty, the value of the distance between Ptl and Pt2 is written.
In this case, the written value can be rounded with the help of the macro
\figset write(rounding=...).
This macro is the companion macro of \figdrawdim so that the arguments Ptl, Pt2
and Distance are generally the same.

————————— Control macros
\figdrawbegin{} or \figdrawbegin{FileName}
Starting the creation of a graphical file whose name is FileName.
If the argument FileName is empty or blank, an internal default file name is used,
which is always updated, regardless the update mode.
See \figinsert for details.
\figdrawend
End of the current graphical file.
\figreset{keywordl, keyword2,...}
To reset one or several groups of graphical attributes to their default values.
The groups of attributes are denoted with keywords which are:
- NO keyword or keyword = general to reset the general (or top-level) attributes,
- altitude to reset the altitude attributes,
- arrowhead to reset the arrowhead attributes,
- curve to reset the (\figdraw)curve attributes,
- general to reset the general (or top-level) attributes,
- flowchart to reset the flow chart attributes,
- mesh to reset the (\figdraw)mesh attributes,
- sign to reset the (\figdraw)sign attributes,
- trimesh to reset the (\figdraw)trimesh attributes.
\figset keyword (attributel=valuel, attribute2=value2,...)
Setting graphical attributes or parameters acting on the appearance of the figure,
which are to be given as pairs of the form attribute = value.
The general calling sequence is
\figset keyword (attributel=valuel, attribute2=value2,...)
For each keyword, the attributes are given below, along with the possible values
and their definition.
The current values can be obtained with the help of \figshowsettings.
- NO keyword or keyword = general
alpha = transparency level : makes lines and filled areas more or less transparent
(real number between O (transparent, invisible) and 1 (opaque).
cap = butt, round or square : 1line cap parameter that establishes the shape to be
put at the ends of a straight line. It may be usefull when wide lines are used.
color = color definition : 1line or area color in cmyk or rgb color code,
or in gray tone (real number between O (black) and 1 (white).
dash = index or dash pattern : line style given by Index (Index = 1 to 10,
1 meaning "solid line") or by Pattern.
fillmode = yes/no : setting the filling mode to "no" tells the drawing macros
to draw lines ; setting the filling mode to "yes" tells the macros to fill
the appropriate area using the current color or gray shade.

92

join = miter (V), round (U) or bevel (_/) : 1line join parameter that establishes

the shape to be put at the corners of a polygonal line. Best rendering is
obtained with join=round when more than 2 segments meet at a cornmer.
update = yes/no : setting the update mode to "yes" (resp. to "no") before
\figdrawbegin enforces (resp. avoids) the graphical file to be recreated at
each compilation.
width = dimension in PostScript unit : 1line width.
Note : has no effect on a straight line after \figset (fillmode=yes).
- keyword = altitude
A1l attributes are DDV (they have a dynamic default value).
The following attributes affect the aspect of the extension of the base line drawn
when the foot of the altitude lies outside the triangle:

blcolor = color definition : controls the color of the base line,

bldash = index or dash pattern : controls the style of the base line,

blwidth = dimension in PostScript unit : controls the width of the base line.
The following attributes affect the aspect of the square of the altitude:

sqcolor = color definition : controls the color of the square,

sqdash = index or dash pattern : controls the style of the square,

sqwidth = dimension in PostScript unit : controls the width of the square.
- keyword = arrowhead

angle = real in degrees : arrowhead opening half-angle.

fillmode = yes/no : arrowhead filling switch, which tells whether the interior

of the arrowhead must be filled or not.

length = real in user unit : 1length of each edge of the arrowhead.

out = yes/no : arrowhead "outside" switch, which tells whether the arrowhead

must be drawn outside the body of the arrow (as if it was rotated by 180 degrees
around the end point) or not.

ratio = real in [0,1] : arrowhead ratio defining the arrowhead length so that
it is equal to ratio * (body length).

Nota : The two attributes length and ratio are mutually exclusive ; the default is

to use the length.
- keyword = curve
roundness = real usually in [0,0.5] : roundness of a Cl curve.
- keyword = flowchart
arrowposition = real in [0,1] : arrowhead position along the path,
0 corresponding to the beginning and 1 to the end of the path.
arrowrefpt = start/end : reference point of the arrowhead to its start point or
to its end point ; the arrowhead position is computed with respect to this point.
bgcolor = color definition : controls the color of the frame background.

line = polygon/curve : tells \figdrawfcconnect to draw the path between two nodes

using polygonal lines or smooth curved lines.

padding = real in user unit (see xpadding and ypadding): space surrounding
the text inside a frame. Both horizontal and vertical padding are set to the
same value. This attribute allows to reduce or enlarge the frames drawn at the
nodes of the flow chart, starting from the internal default dimensions.

radius = positive real in user unit : radius of the circular arcs to be
drawn at the corners of the path when the line is polygonal.

shape = circle, ellipse, lozenge or rectangle : shape of the frames.

thickcolor = color definition : controls the color of the thickness of the frames.
thickness = real in user unit : thickness of the frames.

xpadding = real in user unit : horizontal space around the text inside a frame.
ypadding = real in user unit : vertical space around the text inside a frame.

Notice that the frame border color is the general color.
- keyword = mesh

93

diag = integer in {-1,0,1} : controls the drawing of a grid mesh.
If diag=0, each cell is empty ; if diag=1 (resp. diag=-1), the SW-NE diagonal (resp.
the NW-SE diagonal) is drawn inside each cell.
The following DDV attributes affect the aspect of the lines used to draw the mesh
inside the quadrangle:

color = color definition : controls the color of the lines,
dash = index or dash pattern : controls the style of the linmes,
width = dimension in PostScript unit : controls the width of the lines.
- keyword = projection : see "Control macros" in section "Geometrical macros - Mute macros".
- keyword = sign
dimension = positive real in user unit : characteristic dimension of the sign,
shape = circle, diamond, square, star, triangle : shape of the sign.
The following attributes affect the aspect of the lines used to draw the sign:
color = color definition (DDV attribute) : controls the color of the contour lines
or their interior,
dash = index or dash pattern : controls the style of the contour lines,

fillmode = yes/mo : sign filling switch, which tells whether the interior
of the sign must be filled or not.
join = miter (V), round (U) or bevel (_/) : 1line join parameter of the contour lines
width = dimension in PostScript unit (DDV attribute) : width of the contour lines.
- keyword = trimesh
The following DDV attributes affect the aspect of the lines used to draw the mesh
inside the triangle:

color = color definition : controls the color of the lines,
dash = index or dash pattern : controls the style of the lines,
width = dimension in PostScript unit : controls the width of the lines.
- keyword = write : see "Control macros" in section "Writing macros - Non-mute macros".

\figsetdefault keyword (attributel=valuel, attribute2=value2,...)
Global setting of the default values of graphical attributes, which are to be given
as pairs of the form attribute=NewDefaultValue. This is not applicable to DDV attributes.
The attributes are set up to the end of the document or up to next call to this macro.
For each keyword, the attributes are listed below ; see \figset for their definition.
For dimension attributes, a unit should be specified, e.g.
\figsetdefault arrowhead(length=10pt).
- NO keyword or
keyword = general: transparency, cap, color, dash, fillmode, join, update, width,
- keyword = arrowhead: angle, fillmode, length, out, ratio,
- keyword = curve: roundness,
- keyword = flowchart: arrowposition, arrowrefpt, bgcolor, line, padding, radius,
shape, thickness, xpadding, ypadding,
- keyword = mesh: diag,
- keyword = sign: dimension, shape.

————————— Basic drawing macros
\figdrawcirc Center (Radius)
\figdrawcirc Center,Ptl1,Pt2 (Radius)
Circle of center Center and of radius Radius.
In 3D, the circle is in the plane defined the 3 points Center, Ptl and Pt2 ;
Ptl and Pt2 do not need to lie on the circle.
\figdrawline[Pt1,Pt2,... ,PtN]
Line defined by N points, closed if the last point number equals the first one.
\figdrawlineC(X1 Y1, X2 Y2,..., XN YN)
\figdrawlineC(X1 Y1 Z1, X2 Y2 Z2,..., XN YN ZN)
Line defined by N points, closed if the last point number equals the first ome.

94

The points are given by their coordinates, each of them separated by a white space.
\figdrawlineF{FileName}

Line defined by points read from the text file FileName, which contains the

coordinates of the points, one point per line, given as X Y in 2D and as

XY Z in 3D (the values must be separated by a white space and nothing else).

The line is closed if the last point equals the first one.

————————— Other drawing macros

-—— Arc ---
\figdrawarccirc Center ; Radius (Angl,Ang?2)
\figdrawarccirc Center,Pt1,Pt2 ; Radius (Angl,Ang2)
Circular arc of center Center and radius Radius limited by the angles
Angl and Ang2 given in degrees.
In 2D, the angles are measured counterclockwise.
In 3D, the arc lies in the plane defined by the 3 points Center, Ptl and Pt2.
The angles are measured counterclockwise around the vector CP1 x CP2, starting
from the half-line (C, P1), where C=Center, P1=Ptl, P2=Pt2.
\figdrawarccircP Center ; Radius [Pt1,Pt2]
\figdrawarccircP Center ; Radius [Pt1,Pt2,Pt3]
Point version of \figdrawarccirc
Circular arc of center Center and of radius Radius limited by the two half-lines
(Center, Ptl) and (Center, Pt2).
Let N be the normal vector that orients the plane in which lies the arc.
In 2D, N is defined as usual by N =Z =X x Y.
In 3D, N = CP1 x CP3, where C=Center, P1=Ptl, P3=Pt3.
The arc is drawn from Ptl towards Pt2 turning counterclockwise around the axis (C; N).
Notice that C, P1, P2 and P3 must be coplanar, but P3 must not lie on the line (C,P1).
\figdrawarcell Center ; XRad,YRad (Angl,Ang2, Inclination)
Arc of ellipse of center Center, of axes XRad and YRad, limited by the parametrization
angles Angl and Ang2. The major axis is turned by an angle Inclination from the
horizontal line. The angles are given in degrees and measured counterclockwise.
In 3D-mode, it works only in the plane Z=0.
\figdrawarcellPA Center,PtAxisl,PtAxis2 (Angl, Ang2)
Arc of ellipse of center Center limited by the parametrization angles Angl and Ang2.
The end point of the major axis is PtAxisl and the end point of the minor axis is PtAxis2.
The angles are given in degrees and measured counterclockwise around the vector CA1l x CA2.
\figdrawarcellPP Center,PtAxisl,PtAxis2 [Pt1,Pt2]
Arc of ellipse of center Center limited by the two half-lines (Center,Ptl)
and (Center,Pt2). The end point of the major axis is PtAxisl and the end point
of the minor axis is PtAxis2. The arc is drawn counterclockwise around the vector
CA1 x CA2, where C=Center, Al1=PtAxisl, A2=PtAxis2.
\figdrawarcparab [Pt1,Pt2,Pt3]
Arc of parabola between Ptl and Pt3.
The point Pt2 defines the tangents (Pt2,Ptl) at Ptl and (Pt2,Pt3) at Pt3.

--- Arrow ---
\figdrawarrow [Pt1,Pt2]
Arrow from Ptl to Pt2.
The arrowhead is drawn according to the \figdrawarrowhead macro settings.
\figdrawarrowBezier [Pt1,Pt2,Pt3,Pt4]
Arrow that consists of the cubic Bezier curve defined by the four control points
Pt1l, Pt2, Pt3 and Pt4, and the arrowhead at point Pt4.

95

\figdrawarrowcirc Center ; Radius (Angl,Ang2)
\figdrawarrowcirc Center,Pt1,Pt2 ; Radius (Angl,Ang2)
Circular arrow such that the circular arc is centered at Center, has the radius Radius
and is limited by the angles Angl and Ang2 given in degrees.
If Ang2 > Angl, the arrow is drawn counterclockwise, else it is drawn clockwise.
The arrowhead is drawn according to the \figdrawarrowhead macro settings.
In 3D, the arc lies in the plane defined the 3 points Center, Ptl and Pt2.
The angles are measured counterclockwise around the vector CP1 x CP2, starting
from the half-line (C, P1), where C=Center, P1=Ptl, P2=Pt2.
\figdrawarrowcircP Center ; Radius [Pt1,Pt2]
\figdrawarrowcircP Center ; Radius [Pt1,Pt2,Pt3]
Point version of \figdrawarrowcirc
Circular arrow such that the circular arc is centered at Center, has the radius
|Radius| and is limited by the two half-lines (Center, Ptl) and (Center, Pt2).
Let N be the normal vector that orients the plane in which lies the arc.
In 2D, N is defined as usual by N = Z = X x V.
In 3D, N = CP1 x CP3, where C=Center, P1=Ptl, P3=Pt3.
The arrow is drawn from Ptl towards Pt2 turning around the axis (Center; N):
counterclockwise if Radius > O,
clockwise if Radius < 0.
Notice that C, P1, P2 and P3 must be coplanar, but P3 must not lie on the line (C,P1).
\figdrawarrowhead [Pt1,Pt2]
Arrowhead of the arrow from Ptl to Pt2. The segment [Ptl, Pt2] (body) is not drawn.
The appearance of the arrowhead can be modified with the help of attributes set by
the macro \figset arrowhead(...).
\figdrawaxes Origin(X1,X2, Y1,Y2)
\figdrawaxes Origin(X1,X2, Y1,Y2, Z1,Z2)
\figdrawaxes Origin(L)
Axes defined by their Origin and coordinate ranges. Each axis is parallel to the
corresponding absolute axis and is drawn as an oriented arrow from start value
to stop value.
The short form \figdrawaxes Origin(L) is equivalent to \figdrawaxes Origin(O,L, O,L)
in 2D and \figdrawaxes Origin(0,L, O,L, O,L) in 3D.
The end points of the axes are given by \figptsaxes.
\figdrawdim Pt1, Pt2 (Distance)
Double arrow intended to show the dimension between the points Ptl and Pt2.
Assuming the segment [Ptl, Pt2] is oriented from west to east, the arrow is
drawn at the distance Distance at the south of the segment if Distance<O,
at the north otherwise.
The endpoints of the arrows are connected to Ptl and Pt2 with a dashed line.
The appearance of the two arrow-heads can be modified with the help of
attributes set by the macro \figset arrowhead(...).
The distance between the points Ptl and Pt2 can be printed by the companion
macro \figwritedim.

--- Curve ---

\figdrawBezier N [Pt_1, ..., Pt_{3N+1}]
Bezier curve defined by N cubic arcs. The arc number i is defined by the four
control points P_{j}, P_{j+1}, P_{j+2}, P_{j+3} with j=3i-2.
The curve interpolates each 3 points beginning with the first, i.e. at P_{3i-2},
i=1,...N+1. At these points, the curve is only CO. To obtain Gl continuity at P_j,
the points P_{j-1}, P_j and P_{j+1} must be aligned.
The total number of points must be 3N+1 and is not checked.

96

\figdrawcurve [PtO,Ptl,... ,PtN,PtN+1]

Cl curve that interpolates the points P1, P2,... ,Pn. The curve consists of
n-1 Bezier cubic arcs. The direction of the tangent at Pi is given by Pi-1Pi+1,
i=1,... ,n. To get a Cl closed curve, the last three points must be the same

as the first three ones.

The shape of the curve can be modified by a roundness coefficient to be

set by the macro \figset curve(...). The best values for this coefficient are
in the interval [0.15, 0.3] (0 gives a polygonal line).

-—— Flow chart --—-

\figdrawfcconnect [Pt1,Pt2,... ,PtN]
Connections between nodes in a flow chart. Each connection path can be a polygonal
line or a curved line. An arrowhead is drawn by default at the middle point of the
path joining the points Pt1,Pt2,... ,PtN.
The attributes of the path are set by the macro \figset flowchart(...).
The frames at the nodes are drawn with the help of the macro \figdrawfcnode.

\figdrawfcnode [Pt1,Pt2,... ,PtN]{Text}
Frames containing Text at each node centered on points Pt1,Pt2,... ,PtN in a flow chart.
If the Text argument is empty, the text joined to the points when they are defined
is used ; otherwise, this Text is used for every point Pt1,Pt2,... ,PtN. The frame

surrounding the text is reduced or enlarged according to the padding dimensions.
This attribute along with the other ones is set by the macro \figset flowchart(...).
The connections between the nodes are usually drawn by the macro \figdrawfcconnect.
If no arrows are wanted, the best is to say \figset arrowhead(length=0) ; the macro
\figdrawline or \figdrawcurve can also be used.

--- Grid ---

\figdrawmesh N1,N2 [Pt1,Pt2,Pt3,Pt4]
Mesh of N1 x N2 intervals on the quadrangle (Ptl, Pt2, Pt3, Pt4), N1 along
[Pt1, Pt2] and [Pt3, Pt4], N2 along the 2 other segments. A flag set by
\figset mesh(diag=...) allows to draw a diagonal line inside each cell. Other
graphical settings govern the appearance of the internal mesh (see \figset mesh).
The border line attributes are the general ones.

\figdrawtrimesh Type [Pt1l,Pt2,Pt3]
Mesh of the type Type triangle in the triangle (Ptl, Pt2, Pt3). The internal
mesh is drawn according to specific graphical settings (see \figset trimesh).
The border line attributes are the general ones.

--- Sign or symbol --—-

\figdrawsign[Pt1,Pt2,... ,PtN]
Draw the N points given by their numbers.
The position of a point is displayed by the mean of a marker ; a characteristic
dimension is associated to this marker. By default, the marker is a circle and
its characteristic dimension is its radius. Other possible markers are diamond,
square, star and triangle. The marker and its dimension can be set or changed
by the macro \figset sign(...). Other attributes (color, fillmode...) can be
modified by the macro \figset (...).

\figdrawsignC(X1 Y1, X2 Y2,..., XN YN)

\figdrawsignC(X1 Y1 Z1, X2 Y2 Z2,..., XN YN ZN)
Draw the N points given by their coordinates, each of them separated by a white
space, each group of coordinates separated by a comma. They are assumed
to be given as decimal integers or fixed floating point numbers ; scientific
notation (e.g. 1.23e+2) is not allowed.
See \figdrawsign for more information about signs.

97

\figdrawsignF{FileName}
Draw the points read from the text file FileName, which contains the coordinates
of the points, one point per line, given as X Y in 2D and as X Y Z in 3D.
The values must be separated by a white space and nothing else. They are assumed
to be given as decimal integers or fixed floating point numbers ; scientific
notation (e.g. 1.23e+2) is not allowed.
See \figdrawsign for more information about signs.

--- Triangle related macros ---
\figdrawaltitude Dim [Pt1,Pt2,Pt3]
Altitude from Ptl in the triangle (Ptl, Pt2, Pt3).
Dim is the dimension of the square at the foot H of the altitude which is drawn on
either side of the altitude according to the order of the 2 points Pt2 and Pt3.
If H is outside the segment [Pt2, Pt3], a line is drawn to support the square.
The graphical attributes of this line and the square are set by \figset altitude(...).
\figdrawnormal Length,Lambda [Pt1,Pt2]
Exterior normal of length Length to the segment [Ptl, Pt2]. Lambda is the abscissa
in [0,1] of the origin of the normal with respect to the segment [Ptl, Pt2],
0 corresponding to Ptl and 1 to Pt2. This sets the position of the normal vector
along [Pt1, Pt2]. 1In 3D-mode, it works only in the plane Z=0.

98

INDEX

To help the user to locate the information, page numbers are printed according to the context in which
each word of the index appears. When a word appears in the text, the corresponding page numbers are
printed in roman font. When a word appears in an example, the corresponding page numbers are printed
in bold face font. When a word appears in the previous list, the corresponding page numbers are printed

in italic font.

\figcoord
\figdrawaltitude
\figdrawarccirc
\figdrawarccircP
\figdrawarcell
\figdrawarcellPA
\figdrawarcellPP
\figdrawarcparab
\figdrawarrow

\figdrawarrowBezier

\figdrawarrowcirc ...

\figdrawarrowcircP

\figdrawarrowhead ...
\figdrawaxes
\figdrawbegin

\figdrawBezier
\figdrawcirc
\figdrawcurve
\figdrawdim
\figdrawend

\figdrawfcconnect ...
\figdrawfcnode
\figdrawline

\figdrawlineC
\figdrawlineF
\figdrawmesh
\figdrawnormal
\figdrawsign
\figdrawsignC
\figdrawsignF
\figdrawtrimesh
\figget
\figget angle
\figget distance
\figinit

\figinsert

33, 52, 54, 98

10, 38, 39, 44, 70, 95

38, 39, 45, 45, 50, 70, 95
38, 39, 39, 40, 44, 65, 95
38, 39, 44, 95

38, 39, 95

9, 12, 47, 47, 52, 95

. 48, 49, 80, 95

48, 49, 66, 70, 96

. 48, 49, 54, 67, 70, 96

47, 47, 49, 70, 95, 96

12, 50, 51, 52, 66, 67, 70, 71, 87, 88, 96

2,3, 7,9, 10, 12, 16, 17, 18, 19, 20, 22, 23, 24, 25, 25, 26, 26
27, 30, 31, 33, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 50, 51,
52, 52, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 72, 75, 76, 80, 85,
84, 92, 93

15, 41, 41, 42, 44, 78, 79, 89, 96

16, 17, 19, 20, 38, 45, 70, 80, 9/

15, 33, 42, 42, 43, 52, 58, 89, 97

24, 24, 49, 50, 65, 92, 96

2, 9, 10, 12, 16, 17, 19, 20, 22, 23, 24, 26, 30, 33, 39, 40, 41
42, 43, 43, 44, 45, 46, 47, 48, 50, 52, 52, 54, 55, 56, 57, 59, 60
62, 63, 66, 67, T2, 75, 76, 80, 92

57, 58, 59, 60, 65, 93, 97

57, 58, 59, 60, 65, 97

2, 9, 12, 16, 20, 22, 23, 30, 39, 40, 41, 44, 45, 46, 47, 48, 50,
54, 55, 58, 67, 70, 72, 75, 76, 79, 9, 97

16, 70, 94

16, 70, 95

33, 56, 57, 97

53, 54, 65, 98

61, 62, 63, 63, 70, 97, 98

61, 70, 97

61, 70, 98

33, 55, 56, 97

84, 85, 90

7, 40, 68, 85

7, 8, 17, 17, 40, 50, 85

2, 5 6, 8, 9, 10, 12, 17, 19, 20, 20, 22, 22, 23, 24, 27, 28, 28
29, 29, 30, 31, 32, 33, 39, 40, 41, 42, 43, 45, 47, 48, 50, 52, 54,
56, 57, 59, 60, 62, 63, 65, 66, 67, 68, 72, 73, 74, 75, 77, 80, 81,
83, 85

3, 7, 18, 23, 24, 25, 25, 26, 27, 29, 30, 30, 31, 31, 60, 83, 92

)

99

\figinsertE
\figpt

\figptbary
\figptbaryR
\figptBezier
\figptcirc
\figptcircumcenter .
\figptcopy
\figptcurvcenter
\figptell
\figptellP
\figptendnormal
\figptexcenter
\figpthom
\figptincenter
\figptinterlineplane
\figptinterlines
\figptinv
\figptmap
\figptorthocenter
\figptorthoprojline
\figptorthoprojplane .
\figptrot
\figptsaxes
\figptscontrol
\figptscontrolcurve ..
\figptshom
\figptsintercirc
\figptsinterlinell
\figptsinterlinellP ..
\figptsinv
\figptsmap
\figptsorthoprojline .
\figptsorthoprojplane ..
\figptsrot
\figptssym
\figptstra
\figptstraC
\figptsym
\figpttra
\figpttraC
\figptvisilimSL
\figreset
\figround
\figscan
\figset

\figset altitude
\figset arrowhead
\figset curve

25, 27, 27, 28, 28, 29, 29, 30, 31, 32, 32, 64, 83

2,5 6,7 8 9,10, 12, 17, 19, 20, 22, 23, 24, 27, 28, 29, 30,
32, 39, 40, 41, 42, 43, 45, 47, 48, 50, 52, 54, 56, 57, 57, 59, 60,
62, 63, 66, 67, 68, 72, 75, 79, 80, 8/, 87

2, 9, 12, 13, 40, 54, 56, 57, 8/
13, 40, 8/

14, 15, 41, 52, 78, 79, 89

10, 14, 50, 66, 67, 69, 89

. 54, 54, 88

8, 47, 84
15, 77, 80, 89

13, 14, 38, 39, 40, 65, 88, 89
13, 14, 38, 89

15, 53, 54, 65, 88

54, 88

8, 9, 10, 13, 29, 85

54, 54, 89

. 65, 69, 87

14, 38, 87
9, 10, 86
10, 13, 69, 85
54, 54, 89

.. 13, 54, 86
. 65, 67, 69, 78, 86

8, 9, 10, 13, 45, 50, 69, 79, 80, 80, 86

15, 51, 52, 66, 67, 70, 87, 88, 96

15, 89

. 15, 42, 52, 89

12, 86
14, 40, 45, 70, 88

.. 14, 65, 88
. 14, 88

12, 86
12, 12, 69, 86

.13, 87

65, 69, 87
12, 41, 48, 69, 75, 79, 80, 86
12, 41, 69, 79, 87

9, 12, 12, 20, 22, 46, 47, 56, 57, 63, 72, 86, 87

62, 87
8, 9, 13, 69, 86

8, 9, 17, 47, 52, 59, 60, 75, 78, 79, 80, 86
9, 9, 12, 39, 50, 56, 57, 69, 72, 75, 80, 86

69, 76, 88
33, 42, 47, 47, 60, 92

6, 7, 50, 90

1, 28, 28, 29, 30, 30, 38, 64, 83

6, 10, 12, 16, 19, 20, 26, 26, 30, 33
44, 45, 45, 46, 47, 48, 50, 51, 52, 52,
63, 65, 67, 72, T4, 76, 78, 79, 80, 83

54, 74, 98

12, 47, 47, 48, 48, 49, 50, 52, 54, 58

42, 43, 74, 97

100

35, 36, 37, 39, 41, 43, 44,
54, 55, 57, 58, 59, 61, 62,
90, 92, 93, 94, 97

60, 66, 67, 74, 80, 96, 97

\figset flowchart 37, 58, 59, 60, 74, 97

\figset mesh 56, 57, 74, 97

\figset projection 65, 66, 67, 67, 73, 75, 75, 80, 83

\figset sign 61, 62, 63, 75, 97

\figset trimesh 56, 75, 97

\figset write 2, 5, 6,9, 10, 13, 17, 19, 20, 21, 23, 24, 39, 40, 41, 42, 50, 52,
54, 55, 63, 67, 72, 73, 74, 84, 90, 92

\figsetdefault 2, 16, 26, 33, 33, 35, 48, 59, 74, 94

\figshowpts 64, 80, 90

\figshowsettings 35, 64, 73, 83, 84, 90, 92

\figvectC 8, 9, 12, 17, 20, 22, 46, 47, 56, 57, 59, 63, 68, 72, 75, 79, 85

\figvectDBezier 8, 14, 41, 52, 79, 89

\figvectN 8, 68, 69, 85

\figvectNV 8, 52, 68, 69, 85

\figvectP 8, 67, 75, 79, 80, 85

\figvectU 8, 52, 77, 79, 85

\figvisu 2,3, 7,9, 10, 13, 17, 18, 19, 20, 22, 23, 24, 25, 25, 26, 27, 28,

29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 54, 55,
56, 57, 59, 60, 62, 63, 66, 67, 72, 75, 76, 80, 81, 81, 8/

\figwrite 2, 5, 18, 27, 32, 32, 60, 71, 88, 90

\figwritebe 20, 20, 91

\figwritebn 20, 20, 91

\figwritebs 20, 20, 62, 91

\figwritebw 20, 20, 91

\figwritec 18, 19, 19, 28, 29, 50, 56, 57, 59, 60, 90
\figwritedim 24, 24, 49, 50, 92, 96

\figwritee 2, 6, 9, 10, 17, 19, 19, 20, 41, 48, 55, 60, 62, 66, 67, 72, 90
\figwritegce 21, 21, 91

\figwritegcw 21, 21, 91

\figwritege 21, 21, 91

\figwritegw 21, 21, 91

\figwritele 21, 22, 23, 91

\figwriteln 13, 21, 22, 23, 24, 91

\figwritels 21, 22, 23, 91

\figwritelw 21, 22, 23, 91

\figwriten 2, 9, 17, 19, 19, 20, 39, 40, 41, 47, 52, 54, 66, 67, 90
\figwritene 10, 19, 19, 41, 48, 52, 57, 63, 63, 67, 72, 91
\figwritenw 9, 17, 19, 19, 41, 55, 57, 67, 72, 91

\figwritep 18, 19, 19, 42, 60, 61, 90

\figwrites 2, 3,9, 19, 19, 20, 51, 52, 54, 60, 67, 88, 90
\figwritese 19, 19, 24, 41, 52, 57, 72, 91

\figwritesw 10, 13, 19, 19, 39, 41, 48, 57, 66, 72, 91
\figwritew 2, 9, 19, 19, 20, 41, 48, 51, 52, 54, 55, 67, 88, 90

101

	Introduction
	A first look
	Definition of points
	Unit and scale
	The basic macro
	Text argument
	Symbolic constants
	Geometry: macros for vector and point generation

	Drawing the figure
	Principle
	Basic drawing macros
	Example

	Writing text on the figure
	Graphical files handling
	Annotating a pre-existing figure
	Introduction
	Text annotation
	Graphical annotation

	Setting graphical attributes
	Introduction
	Line attributes
	Using color

	Drawing macros
	Preliminary remarks
	Arc
	Example
	Curve
	Filled area, transparency
	Arrow
	Axes
	Triangle related macros
	Grid
	Flow chart
	Signs or symbols

	Helpers
	Three-dimensional macros
	Introduction
	Projection
	Macro specifications
	3D examples

	Using this macro package
	List of user macros
	Index

