
TA for dynamics & inverse problem, some
solutions

1 dynamics

Exercise 1. Prove Hennion’s theorem, which says the following: Let L : B →
B be bounded on a Banach space (B, ‖ · ‖), and let (B′, ‖ · ‖′) be a Banach so
that the inclusion B ⊂ B′ is compact. Assume that there exist rn ∈ R and
Rn ∈ R so that

‖Lnϕ‖ ≤ rn‖ϕ‖+Rn‖ϕ‖′ , ∀n ≥ 1 , ∀ϕ ∈ B .

Then the essential spectral radius of L on B is not larger than
lim infn→∞(rn)1/n.

The solution given during the TA was not complete. Beforehand, let us
observe that the original proof does not go through the same argument. It is
based on a characterization due to Nussbaum [Nus70], and is due to Hennion
[Hen93]. Now then.

First, we claim the following. Assume that |λ| > r1. Then, if for some
bounded sequence (φn) of elements of B, (L−λ)φn converges to some ψ ∈ B,
then we can extract a converging subsequence of (φn).

Indeed, we can compute

|λ|‖φn − φm‖ ≤ ‖(L − λ)(φn − φm)‖+ rn‖φn − φm‖+Rn‖φn − φm‖′.

Since (φn) is bounded, we can extract to make it converge in B′, whence we
deduce that it is a Cauchy sequence in B also.

The next step is to prove that L− λ is then semi-Fredholm. This means
that the range is closed and the kernel is finite dimensional. From the claim
above, we deduce that sequences in the unit ball of the kernel have converging
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subsequences so Riesz’s criterion implies it is finite dimensional. In particu-
lar, it is closed and we can consider the vector space Bλ := B\ ker(L − λ).
The image of L − λ as an operator on B and on Bλ is the same. The claim
above also applies to Bλ.

Now, take a sequence (φn) in Bλ such that (L − λ)φn → ψ. If (φn) is
bounded, we deduce that ψ ∈ =(L − λ). Now, if ‖φn‖ → +∞, consider
un = φn/‖φn‖. We see that un → 0 which is impossible.

The index of a semi-Fredholm operator A is defined as

Ind(A) = dim kerA− codim=A.

This is a number in Z∪{−∞}. Now we conclude using the following theorem:

Theorem. The set of semi-Fredholm operators is open is L(B), and the index
is locally constant on this set.

We deduce that ρess(L) ≤ r1. Since ρess(Ln) = ρess(L)n, we can conclude.
The take home lesson of this is that while there are several definitions of

the essential spectrum, the resulting essential spectral radius does not depend
on the particular definition.

Exercise 2. For an integer m ≥ 2, let fm : S1 → S1 be the multiplication by
m (mod 1) on the circle and let gm : I → I be the multiplication by m (mod
1) on I = [0, 1].

(a) Compute the zeroes of the dynamical determinants of F = fm and F =
gm, weighted with 1/|F ′|,

dF,1/|F ′|(z) = exp−
∞∑
n=1

zn

n

∑
x∈FixFn

1

|(F n)(x)′ − 1|

where FixF n = {x | F n(x) = x}.

(b) For α > 0, compute the essential spectral radius ρα of the transfer oper-
ator

LF,1/|F ′|ϕ(x) =
∑

F (y)=x

ϕ(y)

|F ′(y)|

acting on Cα functions, for F = fm and F = gm. (Hint: for the lower
bound, find an open disc in which every point is an eigenvalue of infinite
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multiplicity.) Find the eigenvalues of modulus > 1/ρα of LF,1/|F ′| on
Cα. Describe the corresponding eigenfunctions. Check that the dual of
LF,1/|F ′| preserves Lebesgue measure. Prove that fm and gm each has
an invariant absolutely continuous probability measure, denoted µfm and
µgm, respectively. What can we say about the rate of decay of correlations∫

ϕ ◦ F nψdµF −
∫
ϕdµF

∫
ψdµF

for Cα functions ϕ and ψ and F = fm or F = gm?

(c) Compute the zeroes and poles of the dynamical zeta functions of F = fm
and F = gm, weighted with 1/|F ′|,

ζF,1/|F ′|(z) = exp
∞∑
n=1

zn

n

∑
x∈FixFn

1

|(F n)′(x)|
.

This exercise deals with the most basic example of uniformly expanding
dynamics on a compact manifold. In some sense, it corresponds to a sim-
plified system where we have forgotten the stable manifold of the problem.
As such, the definition of the transfert operator is slightly different from the
invertible case. However, we expect similar phenomena to happen.

In this case, we are considering a smooth map (or a smooth by parts map
in the case of gm, but we will concentrate on the case of fm). Its derivative
being constant equal to m, it is the most simple example one can think of.
As we will see, its spectrum is trivial reduced to 1. This is suiting as the
dynamics is in some sense empty. It would suffice to take a generic C2 small
perturbation to create spectrum, but that is a story for another day.

Question (a). This is an explicit computation. We can see the map
realized on the circle {x ∈ C | |x| = 1}, as fm(x) = xm. The fix points of
fnm are the points such that xm

n
= x, i.e, there mn − 1 such points. The

derivative of fnm being constant equal to mn, we find directly that

dfm,1/|f ′m|(z) = exp−
∑
n≥1

zn

n
= 1− z.

The determinant only has 1 zero, so we do not expect to find resonances
when doing the spectral analysis of the operator.
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Question (b). Having just done the exercise above, we’re expecting to
have to use Hennion’s theorem. Let ε > 0 be small enough (less that 0, 001),
and for 0 < α ≤ 1, let

‖φ‖Lip(α) := sup
|x−x′|<ε

|φ(x)− φ(x′)|
|x− x′|α

.

Given two points x, x′ such that |x−x′| < ε, the sets f−1
m (x) and f−1

m (x′) can
be decomposed into pairs of points y, y′ such that |y − y′| = |x− x′|/m. We
deduce that

‖Lφ‖Lip(α) ≤ sup
|y−y′|<ε/m

|φ(y)− φ(y′)|
mα|y − y′|α

≤ 1

mα
‖φ‖Lip(α).

We deduce that

‖Lφ‖Cα ≤
1

mα
‖φ‖Cα + (1−m−α)‖φ‖L∞ .

(nothing depending on ε, after all). Whence we see that nothing is gained
by taking iterates, and whenever 0 < α ≤ 1,

ρess(L) ≤ 1

mα
.

Since L(φ)′ = m−1L(φ′) we deduce that the same estimate holds for all α > 0.
Now, for the lower bound, we try to find eigenfunctions. Working with

periodic functions on the circle, we can abstractly decompose them as sums

φ(x) =
∑
k∈Z

akx
k.

Now, assume Lφ = λφ, we see that

Lφ(x) =
∑
k∈Z

akx
km,

hence whenever m|k, ak = λak/m, and there is no condition on ak when m - k.
The eigenfunctions decompose as:∑

m-k

ak
∑
`≥0

λ`zkm
`

.
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If these sums converge and exist as functions, we conclude that the eigenspace
for λ is infinite dimensional, and ρess(L) ≥ |λ|.

Whenever |λ| < 1, the sums converge, so these functions are well defined
in C0(S1). However, they are not in all the Hölder spaces. Observe that

‖zk‖Lip(α) = sup
|x−x′|<ε

|eikx − eikx′|
|x− x′|α

= kα sup
|x|<kε

|eix − 1|
|x|α

≤ Ckα.

In particular, for 0 < α ≤ 1,

‖
∑
`≥0

λ`zkm
`‖Lip(α) ≤ kα

∑
`≥0

(|λ|mα)`.

Hence, the whole of {z | |z| < m−α} is in the spectrum of L. We leave the
case α > 1 to the reader.

Actually, the discrete spectrum will not depend on the space, which im-
plies that discrete eigenfunctions are necessarily C∞. In particular, their
Fourier series converge in Ck for all k, and tracing back the argument above,
we deduce that the only discrete eigenfunction is the constant function.

The action of the dual of L on the Lebesgue measure µ is given by∫
fL∗µ =

∫
Lfµ =

∫
fµ.

(basic change of variable.) The invariant absolutely continuous measure is
just the Lebesgue measure. Since there is no discrete spectrum apart from
1, we deduce that when φ, ψ ∈ Cα,∫

φψ ◦ fnmdµ =

∫
φ

∫
ψ +O(m−αn).

Question (c).

ζ(z) = exp
∑
n≥1

zn

n

mn − 1

mn
=

1− z/m
1− z

.

Exercise 3. Let Q : B → B′ be a bounded linear operator between Banach
spaces. For k ∈ Z∗+, the k-th approximation number of Q is

ak(Q) = inf{‖Q −R‖B→B′ | rank(R) < k} .
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(a) Check that limk→∞ |ak(Q)| = 0 implies that Q is compact. (The inverse
implication is not true in general!) (Hint: A finite rank operator is
compact.)

(b) Pietsch proved (see e.g. the book “Eigenvalues and s-numbers,” Cam-
bridge University Press, 1987) that for any bounded operator Q : B → B,
if ak(Q) ∈ `1(Z∗+), then Q is nuclear, and, if ak(Q) ∈ `q(Z∗+) for some
q ∈ (0, 1], then Q is q-nuclear.

Using Pietsch’s result, show that if ak(Q) ∈ `p(Z∗+) for 0 < p <∞ then
for any q ∈ (0, 1] there exists N = N (p, q) <∞ so that QN is q-nuclear.

Question (a). The condition ak(Q) → 0 implies that we can build a
sequence of finite rank operators that converges in norm to Q. Hence Q is
compact.

Question (b). We consider that when R has finite rank k,

(Q−R)N = QN +R′

where R′ has finite rank less or equal to kN — finite rank operators are a
bilateral ideal. Hence

akN(QN) ≤ ak(Q)N .

Since (ak(Q))k is decreasing, we conclude that∑
k≥1

ak(Q
N)q ≤

∑
k≥1

abk/Nc(Q)qN = N
∑
k≥0

ak(Q)qN .

Exercise 4. Consider the matrix F =
(

2 1
1 1

)
acting on the two-torus.

(a) Prove that F is an area-preserving Anosov diffeomorphism.

(b) Give a complete proof of the bound on the essential spectral radius of
Lϕ(x) = (ϕ/| detDF |)◦F−1(x) acting on the Banach spaces Bt,s defined
in the course for real numbers s < 0 < t (or in Chapter 5.1 of the book).

(c) Compute the dynamical determinant

dF−1,g(z) = exp−
∞∑
m=1

zm

m

∑
x:Fm(x)=x

∏−(m−1)
k=0 g(F k(x))

| det(1−DF−m(x))|
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and the dynamical zeta function

ζF−1,g(z) = exp
∞∑
m=1

zm

m

∑
Fm(x)=x

−(m−1)∏
k=0

g(F k(x))

of F−1 for the weight g = 1/| detDF | ◦ F−1. Deduce from this and the
results of the course that∫

ϕ ◦ F nψdx−
∫
ϕdx

∫
ψdx

decays exponentially for Cα functions ϕ and ψ, with α > 0. Give an
upper bound on the rate of mixing.

Question (a). Since F is just a matrix, it is equal to its differential. It
preserves the volume because its determinant is 1. For it to be Anosov, it
suffices to check that the eigenvalues have modulus not equal to 1. Then,
the eigenspaces will be the stable/unstable directions. Since the trace is 3,
the eigenvalues cannot have modulus 1. Actually, they are

λ± =
3±
√

5

2
.

Question (b). The space Bt,s is just W t,s,p=2. Since here the dynamics is
conservative, the formula is quite simpler, since the weight g = 1/| detDF | =
1. The theorem states that

ρess(L) ≤ lim
m→∞

(
max(λmt− , λ

ms
+

)1/m
= λ

max(t,−s)
− .

In our case, since the manifold is just the simple torus T2, and since the
stable/unstable manifolds are constant, we can build the spaces Bt,s more
easily. We pick a [0, 1]-valued function ψ+ on the circle, so that ψ+(ξ/|ξ|) = 1
around {ξF−1 = λ−ξ}, and 0 around {ξF−1 = λ+ξ}. Let ψ− = 1− ψ+. For
ϕ ∈ C∞(T2), we define

‖ϕ‖2
Bt,s := |ϕ̂(0)|2 +

∑
k 6=0

[
(k2)t/2ψ+(k/|k|) + (k2)s/2ψ−(k/|k|)

]
|ϕ̂(k)|2.

Then

‖Lnϕ‖Bt,s = |ϕ̂(0)|2

+
∑
k 6=0

[
‖kF−n‖tψ+(kF−n/|kF−n|) + ‖kF−n‖sψ−(kF−n/|kF−n|)

]
|ϕ̂(k)|2
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Writing k = α+k+ +α−k−, where k± are normalized orthogonal eigenvectors
for F−1 — it is symmetric — ψ+ writes as a smooth function ψ̃+ of α−/α+.
We can rewrite the coefficients of |ϕ̂(k)|2 — k 6= 0 — as

ψ+

(
α−
α+

)
(α2

+ + α2
−)t/2 + ψ−

(
α−
α+

)
(α2

+ + α2
−)s/2

ψ+

(
λn−α−
λn+α+

)
(λ2n

+ α
2
+ + λ2n

− α
2
−)t/2 + ψ−

(
λn−α−
λn+α+

)
(λ2n

+ α
2
+ + λ2n

− α
2
−)s/2

Consider the first term in the second line:

λnt− |α−|t
(

1 +

[
λn+
λn−

α+

α−

]2
)t/2

ψ+

(
λn−α−
λn+α+

)
.

Since ψ+ vanishes at 0, this can only be non zero when δα+ < α− for some
δ > 0. We deduce that the first term of the second line is lesser or equal to
the first term of the first line times Cλnt− for some C > 0.

As to the second term of the second line, when separate two cases. First,
assume that ψ−(α−/α+) > ε. Then ψ−(λn−α−/(λ

n
+α+)) = 1 — assuming n is

large, independently of ε — and δα− < α+ for some δ > 0. As a consequence,
the second term of the second line is lesser or equal to the second term of
the first line times Cλs+ for some C > 0.

It remains to deal with the case ψ−(α−/α+) ≤ ε, i.e δα− > α+. Then,
ψ+(α−/α+) 6= 0, and

ψ−

(
λn−α−
λn+α+

)
(λ2n

+ α
2
+ + λ2n

− α
2
−)s/2 ≤ Cλns+ ψ+

(
α−
α+

)
(α2

+ + α2
−)t/4

In particular, we conclude that for any s′ < s, there are constants C,Cn
such that

‖Lnϕ‖Bt,s ≤ C max(λnt− , λ
ns
+ )‖ϕ‖Bt,s + Cn‖ϕ‖Bt/2,s′

We conclude the proof using Hennion’s theorem.
Question (c). The only thing that we have to do is to compute the number

of fixed points of Fm. This is the number of points z ∈ C := {0 ≤ x < 1, 0 ≤
y < 1} such that (Fm − 1)z ∈ Z2. In other words, the number of points
z′ ∈ Z2 so that (Fm − 1)−1z′ ∈ C. This number is | det(Fm − 1)|. One way
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to prove it is to consider

#{z ∈ Z2 | (Fm − 1)−1z ∈ C} =
#{z ∈ Z2 | (Fm − 1)−1z ∈ nC}

n2

∼
n→+∞

vol((Fm − 1)C).

To finish the computation, observe that we also have | det 1−Fm| = | det 1−
F−m|. Hence

dF−1,1(z) = 1− z.

and

ζF−1,1(z) = exp
∑
m≥1

zm

m
(λm+ + λm− − 2)

=
(1− z)2

(λ+ − z)(λ− − z)
.

Since there is only 1 resonance, we deduce that when φ, ψ ∈ Bt,−t,

Cov(φ, ψ, n) = O(λnt− ).

It remains to determine which space Bt,s contains Cα. Since we are on a
compact manifold, certainly, Cα ↪→ Hα with α integer, and by interpolation,
we deduce the same holds when α ∈ R. Since Hs ⊂ Bs,−s, the rate of decay
is at least λαn− .

2 Inverse problems

Exercise 5 (Computing symbols I). Consider the case of R2, recall

I0f(θ, s) =

∫
x·θ=s

f.

We take the adjoint with respect to the usual measure dθds on S1×R. Prove

1

2
∆1/2I∗0I0 = 1.

(think of Fourier transforms).
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This is a big change of variables. First, we compute the kernel of I∗0I0,
and then we check that this is indeed the kernel of 2∆−1/2. Take f ∈ C∞c (R2),
and consider

‖I0f‖2 =

∫
dθds

∫
f(sθ + iλθ)f(sθ + iλ′θ)dλdλ′

=

∫
dθ

∫
dzf(z)

∫
dλ′′f(z + iλ′θ).

Hence I∗0I0f(z) is

2

∫
f(z + u)

du

|u|
.

Since this a convolution kernel, I∗0I0 is a Fourier multiplier, and the multiplier
is the distribution

K(ξ) = F(1/|z|)(ξ).

We see that K(ξ) is invariant under rotations and that |ξ|K(ξ) = C by a
change of variable. In particular, K(ξ) = C/|ξ| + A, where A has to be a
distribution supported at 0, and invariant by rotations. The only possible
case is A = 0. To find the constant, we consider that

F2(1/|z|) = C2/|z|,

so C = 1 (I∗0I0 is positive).
For the rest of the exercises, we take some Riemannian surface with

boundary (M, g).

Exercise 6. Verify that strict infinitesimal convexity implies the convexity
of the interior of M . In other words, assuming that the boundary is strictly
convex — II > 0 — show that there are no geodesics of M tangent to its
boundary, and not reduced to a point.

The proof is not very hard, but some concepts have to be clearly defined.
Let N be an immersed submanifold in M . I.e, N is a manifold, and we have
a submersion i : N → M . Take a vector field X on N , a connection ∇ on
M , and Y a section of TM|N . We can see N locally as a submanifold and
extend X, Y to a neighbourhood. Then we set

i∗∇XY = ∇XY|N .
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This is a well defined connection on TM|N — it suffices to take charts, and
check that the value of i∗∇XY (n) only depends on the value of X at n and
the 1-jet of Y in the direction tangent to N . For details: locally, ∇XY writes
as dY (X) + A(Y,X) where A is a linear expression of the 0-jet of X, Y .

Now, given X, Y two vector fields on N , we can see TN as a subbundle
of TM|N , so the following makes sense:

II(X, Y ) := (i∗∇XY )⊥.

We have to check that if Z ⊥ TN , 〈II(X, Y ), Z〉, so that II is a bilinear form
on TN . In local charts, this is straightforward. When N is an hypersurface,
we also denote by II the scalar product of II with a normal vector — a
trivialization of the normal bundle.

In particular, if γ(t) is a non-stationary curve on M , seeing the map γ as
a submersion, γ is a geodesic if and only if

γ∗∇ d
dt
γ̇ = 0.

This is colloquially written as ∇γ̇ γ̇ = 0.
Now, consider a geodesic γ(t) living in a small neighbourhood of ∂M . Let

r(x) = d(x, ∂M), and r(t) = r(γ(t)). This is locally defined. Then

d2

dt2
r(t) =

d

dt
〈∇r(γ(t)), γ̇(t)〉

= 〈γ∗∇ d
dt
∇r, γ̇(t)〉+ 〈∇r, γ∗∇ d

dt
γ̇〉

= 〈∇γ̇∇r, γ̇〉

Now, consider the bilinear form

A(X, Y ) := 〈∇X∇r, Y 〉.

Since the Levi-Civita connection is torsion-free, this is symmetrical. Addi-
tionnally,

A(X,∇r) = 0.

When X|∂M , Y|∂M are tangent to ∂M , writing

A(X, Y ) = X〈∇r, Y 〉 − 〈∇r,∇XY 〉,

We see that
A(X, Y ) = −〈II(X|∂M , Y|∂M), ν〉+O(r),
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where ν is the inward pointing normal.
Now, we conclude. If γ̇ is close to ∇r, then γ is not tangent to the

boundary. On the other hand, if γ̇ is a open cone around T∂M , r̈ < 0, since
II > 0. In that case, r(t) is locally a strictly concave function of t, and γ
cannot be tangent to the boundary.

Exercise 7 (Integrating the flow). Recall Π = I∗I, and

R±f = ±
∫ ±∞

0

f ◦ ϕtdt.

Assume that f ∈ C∞(SM).

(a) Check that
Πf = (R+ −R−)f.

(b) Deduce that f ∈ ker I if and only if there exists u ∈ C∞(SM \ ∂0SM) ∩
C0(SM), vanishing at the boundary with −Xu = f .

Here, we are assuming that the manifold is non-trapping.
Question (a). The measure on the boundary is (v · ν)dv. Both operators

R± are well defined, and we have

(R+ −R−)f =

∫ +∞

−∞
f ◦ ϕtdt.

On the other hand, we consider:

‖If‖2 =

∫
∂−SM

v · νdv
∫
dtdt′f(ϕt(v))f(ϕt′(v)).

Consider A : t, v 7→ w = ϕt(v). This is a legal change of variables. Since ϕt
preserves the volume of SM , we find that Jac(ϕT ◦A) = JacA. In particular,
the jacobian of A does not depend on t, and we can compute it at t = 0, i.e
on the boundary. There, for small times,

A(t; (x, 0, v)) = (x+ t(v − v · ν)ν, t(v · ν), v).

In particular, Jac(A) = v · ν, and A∗(v · ν)dtdv = dw. Thus, we can rewrite

‖If‖2 =

∫
dwf(w)

∫
f(ϕt′(w))dt′.
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Question (b). First, let us assume such a u exists. Then u(v)−u(ϕt(v)) =∫ t
0
f(ϕs(v))ds. In particular, if v± ∈ ∂±SM are the endpoints of some

geodesic,
If(v−) = −u(v+) + u(v−).

Since u vanishes at the boundary, If = 0.
Now, assume that f is C∞, and f ∈ ker I. Then Πf = (R+ − R−)f = 0.

Set
u = R+f = R−f.

Since geodesic intersect the boundary transversally, we find that in all points
of the interior, u is C∞, and Xu = −f . Since it is equal to R+f , it vanishes
at ∂+SM∪∂0SM , and likewise at ∂−SM using R−f . Actually, taking charts
close to the boundary, we see that it is actually smooth up to the boundary,
except at the glancing set ∂0SM .

Something can probably be said about the behaviour at the glancing set,
but that is beyond the scope of the exercise.

Exercise 8 (Computing some wavefront sets). Recall Jared’s talk and

(a) Prove that if u ∈ D′(X × Y ) and π : X × Y → Y is the right projection,

WF (π∗u) = dπ(WF (u) ∩N∗X).

(b) If ψt is a smooth flow, compute its wavefront set.

(c) Deduce the wavefront set of Π.

Question (a). Obviously, one should prove that the LHS is included in
the RHS. The equality is not true in general. We can cut X, Y into small
pieces, where we have charts to Rn. Taking a decomposition of unity, we
reduce to the case of u ∈ D′(Rk × Rn), ψ ∈ C∞c (Rk) and φ ∈ C∞c (Rn), and
we want to compute the wavefront set of

f ∈ C∞(Rn) 7→
∫
u(x, y)ψ(x)φ(y)f(y)dxdy.

We can directly go to Fourier transforms, because localizing the distribution
will just give another of the same type. Hence we apply this distribution to
f = e−iλy, and obtain

F(uψφ)(0, λ).
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In particular, this is rapidly decreasing if

WF (u) ∩ {(x, y, 0, λ) | x ∈ suppψ, y ∈ suppφ} = ∅.

This is exactly the statement we set out to prove. The notation N∗X is the
conormal bundle to X, i.e linear forms that vanish on TX. More generally,
the same result (with the same proof) holds for general fibrations.

Question (b). We consider an open set U ⊂ Rn, and a flow ϕt on U with
non-vanising vector field X — not necessarily complete. Let Ω ⊂ R × U be
its domain of definition. Ω is open. We want to find the wavefront set of

B : ψ ∈ C∞c (Ω× U) 7→
∫
ψ(t, x, x′)δ(x′ − ϕt(x))dx′dxdt.

We take φ, ψ compactly supported functions in R× Rn × Rn, and compute∫
e−i(λ(t−t′)+µ(x−x′)+µ′(y−y′))/hφ(t, x, y)ψ(λ, µ, µ′)δ(y − ϕt(x))dtdxdydλdµdµ′.

This is∫
e−i(λ(t−t′)+µ(x−x′)+µ′(ϕt(x)−y′))/hφ(t, x, ϕt(x))ψ(λ, µ, µ′)dtdxdλdµdµ′.

We can use stationary phase in the variables t, x, λ, µ, at the point t = t′, x =
x′, λ = −µ′X(ϕt(x)), µ = −µ′dxϕt. We find an expansion in the form∫

hn+1eiΦ(µ′)/h

C(µ′)
φ(t′, x′, ϕt(x

′))ψ(−µ′X(ϕt(x)),−µ′dxϕt, µ′)dµ′

As a consequence,

WF (B) = {(t, x, x′;λ, µ, µ′) | x′ = ϕt(x), λ = −µ′X(x′), µ = −µ′dxϕt} .

Question (c). If π is the projection R×SM ×SM , we see that the kernel
of Π is π∗B. Hence

WF (Π) ⊂ dπ(WF (B) ∩ {λ = 0}),
⊂ {(v, v′;µ, µ′) | ∃t, v′ = ϕt, µ

′(X(v′)) = 0, µ = −µ′dvϕt}.

Exercise 9 (Computing symbols II). If π0 : TM → M is the projection,
I0 = Iπ∗0 and Π0 = I∗0I0.
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(a) Find the wavefront set of Π0.

(b) When there are no conjugate points, check that Π0 is a pseudor, and
compute the principal symbol.(cut the operator into a smoothing part and
another supported close to the diagonal).

(c) More generally, if χ is a cutoff around a transient trajectory, show I∗0χ
2I0

is a pseudor.

Question (a). Again, we use the projection lemma: if π′ : SM × SM →
M × M is the projection in both variables, the kernel of Π0 is π′∗KΠ. If
(x, ξ) ∈ T ∗M and v ∈ SxM , we denote by µ(ξ) ∈ T ∗(x,v)SM the only point in
the conormal to SxM that projects down to ξ. In particular,

WF (Π0) ⊂ {(x, x′; ξ, ξ′) | ∃t, v, v′,
ϕt(x, v) = (x′, v′), µ(ξ′)(X(x′)) = 0, µ(ξ) = −µ(ξ′)d(x,v)ϕt}.

Take a point (x, x′; ξ, ξ′) in the wavefront set, and assume that the corre-
sponding t is not 0. Then we can find µ′ so that µ′(∂v) = 0 — it is conormal
to Sx′M — and also µ′dxϕt∂v = 0. Consider the Jacobi field along the
geodesic between x and x′, J(s) = dπdxϕs∂v. It has to vanish at s = 0, and
the condition above shows that it also vanishes at s = t. In particular, x and
x′ are conjugate points.

Now, if t = 0, then x = x′, and the condition on ξ, ξ′ is just that ξ = ξ′.
We conclude that

WF (Π0) ⊂ {(x, x; ξ, ξ) | (x, ξ) ∈ T ∗M} ∪ {(x, x′, ξ, ξ′) |
x, x′ are conjugate points along ϕt(x, v), ξ · v = 0, ξ′ = dπdx,vϕtdπ

−1ξ}.

Question (b). When there are no conjugate points, The wavefront set of
Π0 is restricted to the diagonal. Recall that

Π0f(x) =

∫
f(ϕt(x, v))dtdv.

Take χ ∈ C∞c (R), equal to 1 in a neighbourhood of 0, and consider the
decomposition:

Π0 =

∫
χ(t)f(ϕt(x, v))dtdv︸ ︷︷ ︸

Π1
0

+

∫
(1− χ(t))f(ϕt(x, v))dtdv︸ ︷︷ ︸

Π2
0

.
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If we are working at a point x not on the boundary, if the support of χ is
small enough, we can study Π1

0 forgetting the boundary. As we have seen
from the arguments above, we also already know that Π2

0 is a smoothing
operator.

We want to show that Π0 acts as a pseudo-differential operator on
C∞c (S̊M), so it suffices to consider Π1

0, and we can forget that there is a
boundary.

In this small neighbourhood of x, exp−1
x is a diffeomorphism, so we take

as a chart, and

Π1
0f(x) = 2

∫
χ(t)f(expx(tv))dtdv = 2

∫
χ(d(x, x′))

d(x, x′)
f(x′)

dx′

Θ(x, x′)
,

where Θ(x, x′) = detTexp−1
x (x′) expx. We have Θ(x, x) = 1, and Θ is C∞ in a

neighbourhood of the diagonal.
To check that Π1

0 is a pseudo-differential operator, we pick a chart x in
which the riemannian measure is mapped to dx. If the kernel is denoted by
K, we compute

a(x, ξ) :=

∫
K
(
x+

u

2
, x− u

2

)
e−iuξdu.

Since d(x+u/2, x−u/2) = |u|xg(x, u) where g(x, u) is a smooth non vanishing
function, equal to 1 at u = 0, this is of the form

a(x, ξ) = 2

∫
e−iu·ξF (x, u)

|u|x
du,

Where F (x, u) is smooth compactly supported in the u variable, and is equal
to 1 at u = 0. We deduce that a(x, ξ) is smooth. To conclude, we need to
obtain symbolic estimates, and an asymptotics as ξ →∞.

Rephrasing the formula, we get

a(x, ξ) = 2F̂x ∗
1

|η|x
(ξ)

Since F̂x is smooth family (depending on x) of Schwartz function, and since
1/|η|x is locally L1, and is a symbol outside of a neighbourhood of 0, we get
directly that a is a symbol, and also that

a(x, ξ) =
1

|ξ|x

∫
F̂x(η)dη︸ ︷︷ ︸

=F (x,0)=1

+O(|ξ|−2)
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Question (c). Now we have removed the non-trapping assumption, put we
have a small cutoff χ, localizing in ∂−SM around a non-trapped trajectory.
We also assume that along that geodesic there are no conjugate points. Since
this is an open condition, shrinking the support of χ, we can assume that
there are no conjugate points along any geodesic starting in the support of
χ.

If for a point (x, v) not trapped in the past, let (x−, v−) be the corre-
sponding point in ∂−SM . We define χ′(x, v) as χ(x−, v−) where (x−, v−)
is the point of intersection of the geodesic through (x, v) with ∂−SM , if it
exists. This is a smooth function on SM . we have

I∗0χI0f(x) =

∫
f(ϕt(x, v))χ′(x, v)dtdv.

Doing the same decomposition as before, and again taking charts, we are led
to considering the operator

Kf(x) =

∫
f(x′)χ′′

(
x,

x− x′

|x− x′|x

)
F (x, x′)dx′

|x− x′|x
,

where χ′′ is smooth, F also, and F (x, x) = 1. Consider∫
eiuξK(x, x+ u)du.

This is a well behaved symbol if and only if∫
eiuξ

g(u/|u|)
|u|

du

behaves as a symbol at ξ →∞, for any g smooth. But this takes the form

g̃(ξ/|ξ|)|ξ|−1.

This ends the proof.

Exercise 10 (Applications in the non-trapping case). When there are neither
conjugate points, nor trapped geodesics,

(a) Show that functions in ker I0 ∩ L1(M) are smooth up to the boundary.
(hint: imagine that you know that they have to vanish to all order at the
boundary)
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(b) Assuming that I0 is injective, show that I∗0 is surjective from
Hs−1/2(∂SM) to Hs(M) (provided s > 1/2).

Question (a). Consider f ∈ ker I0. Then also f ∈ ker Π0, and this makes
sense because f ∈ L1. Now, since Π0 is a pseudo-differential operator with
an elliptic principal symbol, we expect that this will give strong results on
f . However, we have to deal with the fact that there is a boundary.

To overcome this problem, we will extend the surface. For simplicity, let
us assume that there is only one connected component of the boundary. Close
to the boundary, the manifold M is diffeomorphic to some [0, ε)×S1, so that
we can map M to a slightly larger surface Mε, taking the form [−ε, ε) × S1

near the boundary. We can continue the metric g to Mε, so that the boundary
of Mε still is strictly convex. We add an ε exponent to objects defined with
respect to Mε.

In that case, continuing f by 0 to obtain f ε, we find that Πε
0f

ε = 0. If we
were able to show that f ε is smooth on the interior of Mε, using techniques
that apply to f also, we can conclude that f is a actually smooth up to
the boundary. So we forget the ε’s and try to show that f is smooth in the
interior of M . Let δ > 0, and let us concentrate on {x ∈M | d(x, ∂M) > δ}.
Once again, we use the decomposition

Π0 = Π1
0 + Π2

0.

Here Π1
0 is supported in a δ/10 neighbourhood of the diagonal, and Π2

0 is
smoothing — in the sense that Π2

0 : C−∞(M) → C∞(M̊). Since Π1
0 has a

pseudo-differential behaviour, we can pick a quantization Op supported in a
δ/10 neighbourhood of the diagonal, and find a symbol p1 so that at least at
δ/5 from the boundary,

Π1
0 Op(p) = 1 + smoothing.

We have to assume that p ∈ S1, and the smoothing remainder is properly
supported — in a δ/5 neighbourhood of the diagonal. In particular, since
f ∈ ker I0, we find

f + g = 0,

where g ∈ C∞(M̊).
Question (b). Since we are dealing with elliptic pseudo-differential oper-

ators, and we have an injectivity hypothesis, it is not a stretch to imagine

1since the principal symbol of Π1
0 is |ξ|−1, it is elliptic
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that the answer to this question will rely on proving that an operator some-
where is Fredholm of index 0. What we would like is to show that Π0 itself is
Fredholm of index 0, deduce that it is surjective, and conclude for I∗0 . How-
ever, because of the boundary, we do not have the necessary tools. Instead
of trying to make a refined study at the boundary, we change the point of
view.

Again, let Mε be an extension of the surface. Also let Mc be a manifold
containing Mε, but without boundary — if you will, we are glueing a half-
sphere to each boundary component. We can build a pseudo-differential
operator Π̃0 that coincides with Π0 on functions supported in M . It suffices
to pick a smooth compactly supported function χ ∈ C∞(M̊ε), equal to 1 in
M , a Weyl quantization Opw on Mc, and let

Π̃0 = χΠε
0χ+ (1− χ) Opw((1 + |ξ|2)−1/4)2(1− χ).

We already know that Π̃0 is a elliptic pseudo-differential operator of order
−1 acting on a compact manifold. The parametrix construction

Π̃0 Op(σ) = 1 +K,

with K smoothing and σ some symbol with principal order |ξ|, shows that

Π̃0 is Fredholm of index 0 as an operator Hs(Mc)→ Hs+1(Mc) for all s ∈ R
— smoothing operators on closed manifolds are compact.

Now, we want to show that Π̃0 is injective. Take f in the kernel and
consider

0 = 〈Π̃0f, f〉 = ‖Iε0χf‖2 + ‖Opw((1 + |ξ|2)−1/4)(1− χ)f‖2.

We deduce that Iε0χf = Opw((1 + |ξ|2)−1/4)(1− χ)f = 0.
Actually, adding a C(−∆+1)−1/2 term to Opw((1+ |ξ|2)−1/4), we are not

changing the principal symbol, but when C is sufficiently large, we ensure
that the resulting operator is injective — using the sharp G̊arding inequality.
In particular, we can assume that (1− χ)f = 0.

Looking closer, we could also have assumed that 1−χ is supported exactly
in Mc \M . As a consequence, f has to be supported in M . Then, Iε0χf = 0
implies that I0f|M = 0, and f = 0.

Since Π̃0 is injective, it is surjective, so given f ∈ Hs(M), we can extend

it to Mc as f̃ , supported in Mε, and find h ∈ Hs−1 so that Π̃0h = f . Consider
(Iε)∗Iε0χh = g. This is a Hs function on SMε. We can restrict it to ∂SM , to
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a g′ ∈ Hs−1/2(∂SM), provided s > 1/2 — indeed, ∂SM is a nice embedded
surface in the three-dimensional manifold SMε. We claim that I∗0g

′ = f .
This just means that

I∗(g|∂SM) = (Iε)∗(g|∂SMε)|SM .

This is obviously true for smooth functions, so it also has to be true for Hs.

Exercise 11. Without assumption on conjugate points, show that

I∗0I0 : H−1/2
comp(M)→ H

1/2
loc (M).

Consider u, v ∈ H−1/2
comp(M).

|〈I∗0I0u, v〉|2 = |〈I0u, I0v〉|2 ≤ ‖I0u‖2‖I0v‖2.

In particular, to prove the desired result, it suffices to prove that I∗0I0 is

bounded as a quadratic form on H
−1/2
comp(M), i.e bound

q(u) := 〈I∗0I0u, u〉.

Now, assume that I0 decomposes as A1 + A2 + · · ·+ An. Then

q(u) ≤ n
∑

qi(u),

where qi(u) = 〈A∗iAiu, u〉. This trick enable us to get rid of the non-diagonal
terms 〈Aiu,Aju〉 that we would not know how to deal with.

Now, we choose the decomposition, trying to avoid conjugate points.
Since the manifold is non-trapping, we know that given a point v ∈ S∗M , we
can find a small open set Uv around v, and t0 > 0 so that ϕt(Uv) ∩ Uv = ∅
when |t| > t0. We cover S∗M by a finite number of such open sets, and pick
a corresponding decomposition of unity 1 =

∑
χi. Seeing the χi’s as order 0

symbols, We let
Ai = I0 Opw(χi).

We have taken a partition of unity in the cotangent bundle because there
might be a point x in M that is self-conjugate along a geodesic. Now, from
the wavefront-set result we have on Π, we deduce that A∗iAi is a pseudo-
differential operator of order −1 — and principal symbol |ξ|−1χ2. In partic-

ular, qi is bounded on H
−1/2
comp(M).
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