Un peu d'histoire :

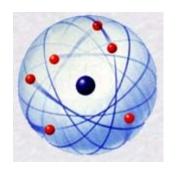
origine du mot « atome » : philosophes grecs (400 av J.C.)

Atome = a-tomos = insécable

XVII eme et XVIII eme siècles : premières théories atomiques, les atomes s'associent en molécules (Lavoisier, Dalton, ...)

1869 : Mendeleïev introduit le tableau périodique des éléments (classement en fonction de la masse atomique).

<u>1897</u>: découverte de l'électron premier modèle subatomique (Thomson).



<u>1912</u>: découverte du noyau Modèle de Rutherford (modèle planétaire).

Chap. I : Structure de l'atome

modèle de l'atome : 1 noyau 1 cortège électronique

Noyau:

N neutrons

A nucléons

neutre diamètre ~ 10⁻¹⁴ m $m_n = 1,6750 \times 10^{-27} \text{ kg}$

La cohésion du noyau ⇔ forces nucléaires fortes (très courte portée) beaucoup plus fortes que les interactions électrostatiques et gravitationnelles

Cortège électronique : Z électrons

chargé -e
(-e = -1,60219
$$\times$$
10⁻¹⁹ C)
diamètre ~ 10⁻¹⁸ m
 m_e = 9,1091 \times 10⁻³¹ kg

 $(-e = -1,60219 \times 10^{-19} \text{ C})$ | Gravitent à environ 1 Å (10⁻¹⁰ m) du noyau

1 atome $X \Leftrightarrow_{Z}^{A} X$

A = Z + N A: nombre de masse

Z : numéro atomique

Exemple : ${}_{17}^{35}CI$ ou ${}_{17}^{37}CI$

- * L'atome est électriquement neutre
- * Quasiment toute la masse est concentrée dans le noyau
- * La matière c'est beaucoup de vide

¡¡¡ atome ≠ élément chimique !!!

- 1 atome est caractérisé par 1 couple {Z,A}
- 1 élément chimique est caractérisé par Z uniquement
 - Son symbole est $_{\mathbb{Z}}X$ ou X (ex : $_{6}C$ ou C)

Chap. I : Structure de l'atome

Atomes isobares: deux atomes de même A, mais avec un nombre de protons et de neutrons différents $\Rightarrow Z$ différents. Ces atomes correspondent à 2 éléments différents.

Atomes isotopes: deux atomes de même Z mais un nombre de neutrons différents $\Rightarrow A$ différents.

Ils correspondent au même élément chimique.

<u>Rem</u>: 118 éléments chimiques connus (90 naturels). A chaque élément peut être associé un grand nombre d'atomes isotopes: 1500 nucléides (300 naturels).

¡¡¡ La masse d'un atome est trop faible et son diamètre trop petit pour que l'on puisse les comptabiliser un à un !!!

Unité de quantité de matière : la mole

(Symbole : mol)

Chap. I : Structure de l'atome

<u>La mole</u>: quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 12 g de carbone ${}^{12}_{6}C$, c'est à dire $6,02205\times10^{23}$ atomes. \mathcal{N}_{A} (nombre d'Avogadro) = $6,02205\times10^{23}$ mol⁻¹.

Unité de masse atomique (u.m.a.) :

1/12 de la masse d'un atome de carbone. 1 u.m.a. = $1,66057 \times 10^{-27}$ kg.

Élément : mélange d'isotopes (i) dont les proportions (abondances naturelles isotopiques) restent constantes

abondance naturelle isotopique (x_i) = pourcentage massique de l'isotope (i) dans l'élément naturel, avec $\sum x_i = 1$

Masse molaire de l'élément M

$$M = \sum_{i} x_{i} M_{i}$$

M_i : masse molaire de l'isotope *i*

$$x_{\frac{35}{17}CI} + x_{\frac{37}{17}CI} = 1$$
 et $M_{\frac{17}{17}CI} = M_{CI} = x_{\frac{35}{17}CI} \times M_{\frac{35}{17}CI} + x_{\frac{37}{17}CI} \times M_{\frac{37}{17}CI}$