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Introduction

The aim of these lectures is to present geometric small cancellation, also known
as very small cancellation, introduced by Gromov in [Gro01b, Gro01a], and fur-
ther developed by Gromov-Delzant, Arzhantseva-Delzant, Coulon, and Dahmani-
Guirardel-Osin [DG08, AD, Cou11, DGO].

Starting from a group G acting on a hyperbolic space, together with a family
of subgroups satisfying a small cancellation condition, this theory studies the quo-
tient of G by the normal subgroup generated by the given subgroups. Applications
of the theory include the construction of monsters (i.e. groups with pathological
properties), by taking iterated small cancellation quotients. The Dehn filling the-
ory of relatively hyperbolic groups can also be understood from this framework.
Beyond hyperbolic and relatively hyperbolic groups, this small cancellation theory
has applications concerning groups having nice actions on hyperbolic spaces such
as the mapping class group of a surface, the outer automorphism group of a free
group, or the group of birational transformations of the projective plane.

In the first lecture, we start by discussing a classical small cancellation condi-
tion, applications of small cancellation, and then state the geometric small cancel-
lation theorem.

In the second lecture, we discuss weak proper discontinuity as a way to produce
small cancellation subgroups, and in particular, we present an application to SQ-
universality.

The next two lectures are devoted to the proof of the geometric small can-
cellation theorem. In this proof, one produces a suitable hyperbolic space by a
cone-off construction, and one describes the normal subgroup generated by a small
cancellation family via its action on this cone-off space. Lecture three is about this
description of the normal subgroup via the theory of very rotating families on the
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4 VINCENT GUIRARDEL, GEOMETRIC SMALL CANCELLATION

hyperbolic cone-off. Lecture four describes the construction and the properties of
the hyperbolic cone-off.



LECTURE 1

What is small cancellation about?

1. The basic setting

The basic problem tackled by small cancellation theory is the following one.

Problem. Let G be a group, and R1, . . . , Rn some subgroups of G. Give condi-
tions under which you understand the normal subgroup 〈〈R1, . . . , Rn〉〉 ⊳ G and the
quotient G/〈〈R1, . . . , Rn〉〉.

In combinatorial group theory, there are various notions of small cancellation
conditions for a finite presentation 〈S|r1, . . . , rk〉. In this case, G is the free group
〈S〉, and Ri is the cyclic group 〈ri〉. Essentially, these conditions ask that any
common subword between two relators has to be short compared to the length of
the relators.

More precisely, a piece is a word u such that there exist cyclic conjugates r̃1, r̃2
of relators ri1 , ri2 (i1 = i2 is allowed) such that r̃i = ubi (as concatenation of
words) with b1 6= b2. Then the C′(1/6) small cancellation condition asks that in
this situation, |u| < 1

6 |r1| and |u| < 1
6 |r2|. One can replace 1

6 by any λ < 1 to define
the C′(λ) condition.

Then small cancellation theory says, among other things, that the group
〈S|r1, . . . , rk〉 is a hyperbolic group, that it is torsion-free if no relator is a proper
power. Moreover, when G is torsion-free, the 2-complex defined by the presentation
is aspherical (meaning in some sense that there are no relations among relations),
and in particular G is 2-dimensional.

There are many variants and generalizations of this condition. Building on Max
Dehn’s work on surface groups, this started in the 50’s with the work of Tartakovskii,
Greendlinger, and continued with Lyndon, Schupp, Rips, Olshanskii, and many
others [Tar49, Gre60, LS01, Ol’91a, Rip82]. Small cancellation theory was
generalized to hyperbolic and relatively hyperbolic groups by Olshanskii, Delzant,
Champetier, and Osin [Ol’91b, Del96, Cha94, Osi10]. An important variant
is Gromov’s graphical small cancellation condition, where the presentation is given
by killing the loops of a labelled graph, and one asks for pieces in this graph to
be small [Gro03]. This lecture will be about geometric small cancellation (or very
small cancellation) introduced by Gromov in [Gro01a], and further developed
by Gromov-Delzant, Arzhantseva-Delzant, Coulon, and Dahmani-Guirardel-Osin
[DG08, AD, Cou11, DGO].

There are other very interesting small cancellation theories, in particular, Wise’s
small cancellation theory for special cube complex [Wis11].

2. Applications of small cancellation

Small cancellation is a large source of examples of groups (the following list is very
far from being exhaustive !).

5



6 VINCENT GUIRARDEL, GEOMETRIC SMALL CANCELLATION

Interesting hyperbolic groups

The Rips construction allows us to produce hyperbolic groups (in fact small can-
cellation groups) that map onto any given finitely presented group with finitely
generated kernel. This allows us to encode many pathologies of finitely presented
groups into hyperbolic groups. For instance, there are hyperbolic groups having
a finitely generated subgroup whose membership problem is not solvable [Rip82].
There are many useful variants of this elegant construction, see for instance [BO08,

BW05, OW07, Wis03].

Dehn fillings

Given a relatively hyperbolic group with respect to P , and N ⊳ P a normal sub-
group, then if N is deep enough (i.e. avoids a finite subset F ⊂ P \ {1} given in
advance), then P/N embeds in G/〈〈N〉〉, and G/〈〈N〉〉 is relatively hyperbolic with
respect to P/N [GM08, Osi07].

Normal subgroups

Small cancellation allows us to understand the structure of the corresponding nor-
mal subgroup. For instance, Delzant shows that for any hyperbolic group G there
exists n such that for any hyperbolic element h ∈ G, the normal subgroup gen-
erated by 〈hn〉 is free [Del96]. This is because 〈hn〉 is a subgroup satisfying a
small cancellation condition (see below). The same idea shows that if h ∈ MCG
is a pseudo-Anosov element of the mapping class group (or a fully irreducible au-
tomorphism of a free group), then for some n ≥ 1, the normal subgroup generated
by 〈hn〉 is free and purely pseudo-Anosov [DGO]. This uses the fact that MCG
acts on the curve complex, which is a hyperbolic space [MM99], and that 〈hn〉
is a small cancellation subgroup when acting on the curve complex. Similar ar-
guments work in the outer automorphism group of a free group Out(Fr) and in
the Cremona group Bir(P2C) because they have a nice action on hyperbolic space
[BF10, Can11, CL].

Many quotients

Small cancellation theory allows us to produce many quotients of any non-elemen-
tary hyperbolic group G: it is SQ-universal [Del96, Ol′95]. This means that for
any countable group A there exists a quotient G ։ Q in which A embeds (in
particular, G has uncountably many non-isomorphic quotients). Small cancellation
theory also allows us to prove SQ universality of Mapping Class Groups, Out(Fn),
and the Cremona group Bir(P2) [DGO]. More generally, this applies to groups
with hyperbolically embedded subgroups [DGO] (we will not discuss this notion in
this lecture, only the existence of hyperbolic elements with the WPD property, see
Section 2). Abundance of quotients makes it difficult for a group with few quotients
to embed in such a group. This idea can be used to prove that lattices in higher
rank Lie groups don’t embed in mapping class groups, or Out(Fn) [DGO, BW11],
the original proof for mapping class group is due to Kaimanovich-Masur [KM96].

Monsters

The following monsters are (or can be) produced as limits of infinite chains of small
cancellation quotients:

(1) Infinite Burnside groups. For n large enough, r ≥ 2, the free Burnside
group B(r, n) = 〈s1, . . . , sr|∀w,wn = 1〉 is infinite [NA68, Iva94, Lys96,

Ol′82, DG08], see also the notes by Rémi Coulon [Cou].
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(2) Tarski monster. For each prime p large enough, there is an infinite, finitely
generated group all whose proper subgroups are cyclic of order p [Ol′80].

(3) Osin’s monster. There is a finitely generated group not isomorphic to
Z/2Z, such that all its non-trivial elements are conjugate [Osi10].

(4) Gromov’s monster. This is a finitely generated group that contains a
uniformly embedded expander, and which therefore does not uniformly
embed in a Hilbert space [Gro03, AD]. This gives a counterexample to
the strong form of the Baum-Connes conjecture [HLS02].

3. Geometric small cancellation

The goal of this lecture is to describe geometric small cancellation, introduced by
Gromov in [Gro01b, Gro01a]. We give some preliminary definitions before stating
the results.

3.1. Preliminaries and notations

A metric space X is δ-hyperbolic if it is geodesic, and if it satisfies the δ-hyperbolic
4-point inequality: for all x, y, z, t ∈ X ,

d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(x, t) + d(y, z)}+ 2δ.

This implies that for any geodesic triangle, any side is contained in the 4δ-neigh-
bourhood of the two other sides. We denote by [x, y] a geodesic between x and y;
although there is no uniqueness of geodesics, this usually does not lead to confusion.
An R-tree is a 0-hyperbolic space.

We denote by δH2 the hyperbolicity constant of the hyperbolic plane H
2. A

geodesic metric space is CAT (−1) if its triangles are thinner than comparison
triangles in H2 (see [BH99] for details). Such a space is δH2 -hyperbolic.

Given a subset Q of a hyperbolic space X and r ≥ 0, we denote by Q+r its
r-neighbourhood. We say that Q is almost convex if for all x, y ∈ Q, there exist
x′, y′ ∈ Q and geodesics [x, x′], [x′, y′], [y′, y] such that d(x, x′) ≤ 8δ, d(y, y′) ≤ 8δ,
and [x, x′] ∪ [x′, y′] ∪ [y′, y] ⊂ Q. It follows that the path metric dQ on Q induced
by the metric dX of X is close to dX : for all x, y ∈ Q, dX(x, y) ≤ dQ(x, y) ≤
dX(x, y) + 32δ.

Recall that Q ⊂ X is K-quasiconvex if for all x, y ∈ Q, any geodesic [x, y] is
contained in Q+K . This notion is weaker as it does not say anything about dQ (Q
might even be disconnected). However, if Q is K-quasiconvex, then for all r ≥ K,
Q+r is almost convex. Also note that δ-hyperbolicity implies that an almost convex
subset is 8δ-quasiconvex.

3.2. Moving families and the geometric small cancellation

Let X be a δ-hyperbolic space, and G be a group acting on X by isometries.
Consider Q = (Qi)i∈I a family of almost convex subspaces of X , and R = (Ri)i∈I

a corresponding family of subgroups such that Ri is a normal subgroup of the
stabilizer of Qi. This data should be G-invariant: G acts on I so that Qgi = gQi,
and Rgi = gRig

−1. Let us call such data a moving family F .
We now define the injectivity radius and the fellow traveling constant of a

moving family. The small cancellation hypothesis defined below will ask for a large
injectivity radius and a small fellow traveling constant.
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The injectivity radius measures the minimal displacement of all non-trivial
elements of all Ri’s:

inj(F) = inf{d(x, gx)|i ∈ I, x ∈ Qi, g ∈ Ri \ {1}}.

Here the infimum is taken only over x ∈ Qi, but since Qi is almost convex and
Ri-invariant, the definition would not change much if we took the infimum over all
x ∈ X .

The fellow traveling constant between two subspaces Qi, Qj measures how long
they remain at a bounded distance from each other. Technically,

∆(Qi, Qj) = diam
(

Q+20δ
i ∩Q+20δ

j

)

.

Because Qi, Qj are almost convex in a hyperbolic space, any point of Qi that is

far from Q+20δ
i ∩Q+20δ

j is far from Qj, so this really measures what we want. The
fellow traveling constant of F is defined by

∆(F) = sup
i6=j

∆(Qi, Qj).

Definition 1.1. Assume that X is δ-hyperbolic, with δ > 0. The moving family F
satisfies the (A, λ)-small cancellation condition if it satisfies

(1) large injectivity radius: inj(F) ≥ Aδ, and
(2) small fellow traveling compared to injectivity radius: ∆(F) ≤ λ inj(F).

Remark 1.2.

• It is convenient to say that some subgroup R < G satisfies the (A, λ)-small
cancellation condition if the family R of all conjugates of R together with
a suitable family of subspaces of X , makes a small cancellation moving
family.

• The (A, λ)-small cancellation hypothesis (for A large enough) implies that
each Ri is torsion-free, because every element of Ri \ {1} is hyperbolic.

• It is often convenient to take I = Q, and to view R as a group attached
to each subspace in Q: R = (RQ)Q∈Q, or conversely, to take I = R and
to view Q as a space attached to each group in R: Q = (QH)H∈R.

• We don’t assume any properness on X , and no finiteness on I/G.

Relation with classical small cancellation

The small cancellation hypothesis (almost) covers the classical small cancellation
condition C′(λ) in the following way. The group G is the free group, acting on its
Cayley graph X , (Ri)i∈I is the family of cyclic groups generated by the conjugates
of the relators, and (Qi)i∈I is the family of their axes. In this context, the injectivity
radius is the length of the smallest relation, and the fellow traveling constant is the
length of the largest piece between relators. The large injectivity radius assumption
is empty because the Cayley graph of the free group is δ-hyperbolic for any δ > 0.
The small fellow traveling constant assumption is (a strengthening of) the C′(λ)
small cancellation assumption. However, contrary to classical small cancellation,
the constants A0, λ0 in the small cancellation theorem below are not explicit and
far from optimal.

Graphical small cancellation also fits in this context. In this case, the groups
Ri’s need not be cyclic any more, they are conjugates of the subgroups of G defined
by some labelled subgraphs.
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The small cancellation theorem

Theorem 1.3 (Small cancellation theorem). There exist A0, λ0 such that if F
satisfies the (A0,λ0)-small cancellation hypothesis then

(1) 〈〈Ri|i ∈ I〉〉 is a free product of a subfamily of the Ri’s,
(2) Stab(Qi)/Ri embeds in G/〈〈Ri|i ∈ I〉〉
(3) small elements survive: for every C > 0, there exists AC , λc such that if

F satisfies the (AC , λc)-small cancellation condition, then any non-trivial
element whose translation length is at most Cδ is not killed in G/〈〈Ri〉〉.

(4) G/〈〈Ri|i ∈ I〉〉 acts on a suitable hyperbolic space.

Remarks. In the setting of C′(1/6) small cancellation, the groups Ri are con-
jugates of the cyclic groups generated by relators. Thus, if Qi is the axis of
some conjugate r of a relator, then Stab(Qi) is the maximal cyclic subgroup con-
taining r. In particular, Stab(Qi)/Ri is trivial if r is not a proper power, and
Stab(Qi)/Ri ≃ Z/kZ if r = uk for some u that is not a proper power.

In (3), one can even prove that elements of translation length at most inj(F)(1−
max{C1λ,

C2

A }) are not killed.

It is difficult to state right now the properties of the suitable hyperbolic space X
in (4). One of the main goals of these lectures is to describe this space X. One can
still say that one of its main properties is thatX has a controlled geometry, including
a controlled hyperbolicity constant. However, one can say more assuming that our
initial space X is proper, and that the action of G is proper and cocompact (so that
G is a hyperbolic group). If each Stab(Qi)/Ri is finite, and I/G is finite, then X
is also proper with a proper cocompact action of G/〈〈Ri|i ∈ I〉〉 so G/〈〈Ri|i ∈ I〉〉
is also a hyperbolic group.





LECTURE 2

Applying the small cancellation theorem

Assume that we have a group G acting on a space X . We are going to see how
to produce small cancellation moving families, and how to use them.

1. When the theorem does not apply

Given a group G acting on a hyperbolic space, small cancellation families may very
well not exist, except for trivial ones.

A first type of silly example is the solvable Baumslag-Solitar group BS(1, n) =
〈a, t|tat−1 = an〉, n > 1. This group acts on the Bass-Serre tree of the underlying
HNN extension, but there is no small cancellation family.

Exercise 2.1. Prove this assertion. Note that any two hyperbolic elements of
BS(1, n) share a half axis.

Since we think of small cancellation families as a way to produce quotients,
one major obstruction to the existence of such families occurs if G has very few
quotients, for instance if it is simple. This is the case for the simple group G =
Isom+(Hn) for example. If we restrict ourselves to finitely generated groups, an ir-
reducible lattice in Isom+(H2)× Isom+(H2) acts on H2 (in two ways), but any non-
trivial quotient is finite by the Margulis normal subgroup theorem [Mar91]. Simi-
lar, but more sophisticated examples include Burger-Mozes simple group [BM00],
a lattice in the product of two trees viewed as a group acting on one of these two
trees, or some Kac-Moody groups when the twin buildings are hyperbolic [CR09].

Exercise 2.2. What are trivial small cancellation families? Here are examples:

(1) The empty family.
(2) Take Q = {X} consisting of the single subspace X, and R = {N} consists

of a single normal subgroup of G, (including the case N = {1} and N =
G).

(3) Another way is to take Q a G-invariant family of subspaces that satisfy
the fellow traveling condition (for instance bounded subspaces), and take
(RQ)Q∈Q a copy of the trivial group for each subspace.

More generally, a trivial small cancellation family is a family such that Ri = {1}
except for at most one index i.

Prove that if G is simple, then there exists A, λ such that any (A, λ)-small
cancellation moving family is trivial in the above sense.

Hint: Consider a small cancellation moving family (Qi)i∈I , (Ri)i∈I . Since G is
simple, Ri = Stab(Qi) by the small cancellation Theorem. If h1 ∈ Ri1 \ {1}, h2 ∈
Ri2 for i1 6= i2, prove that hN1 h

N
2 satisfies the WPD property below, contradicting

that G is simple.

11
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2. Weak proper discontinuity

In hyperbolic groups, the easiest small cancellation family consists of the conjugates
of a suitable power of a hyperbolic element. The proof is based on the properness
of the action. In fact, a weaker notion, due to Bestvina-Fujiwara is sufficient.

Preliminaries about quasi-axes

Here we discuss the notion quasi-axes for hyperbolic elements g ∈ G. This is a
g-invariant almost convex subset of X , that is quasi-isometric to R, with constants
depending only on δ. One could define such a quasi-axis in terms of the boundary
at infinity of X , but because we don’t assume properness of X , we prefer avoiding
this.

To make many statements simpler, we will always assume that X is a metric
graph, all of whose edges have the same length.

Define [g] = inf{d(x, gx)|x ∈ X} the translation length of g. Recall that g
is hyperbolic if the orbit map Z → X defined by i 7→ gix is a quasi-isometric
embedding (for some x, equivalently for any x). This occurs if and only the stable
norm of g, defined as ‖g‖ = limi→∞

1
i d(x, g

ix) is not zero (the limit exists by
subadditivity, and does not depend on x).

These are closely related as [g]− 16δ ≤ ‖g‖ ≤ [g] [CDP90, 10.6.4]. In partic-
ular, if [g] > 16δ then g is hyperbolic.

Consider a hyperbolic element g. Define the characteristic set of g as Cg =
{x|d(x, gx) = [g]} (a non-empty set since X is a graph). We want to say that if [g]
is large enough, Cg is close to being a bi-infinite line (with constants independent
of g). Given x ∈ Cg, consider the bi-infinite path l = lx,g = ∪i∈Z[g

ix, gi+1x]. One
easily checks that if y ∈ l, then d(y, gy) = [g], so l is contained in Cg. Moreover, l a
local geodesic: any subsegment of length [g] is geodesic. By stability of 100δ-local
geodesics [BH99, Th 1.13 p.405], there exists a constant C depending only on δ
such that if [g] ≥ 100δ, lx,g and ly,g are at Hausdorff distance at most C. Similar
arguments show that if [g] ≥ 100δ, for any k, Cg and Cgk are at Hausdorff distance
at most C for some constant C depending only on δ.

In this sense, if [g] ≥ 100δ, Cg is a good quasi-axis for g. If g is hyperbolic
with [g] ≤ 100δ, then there is k such [gk] ≥ 100δ, and a better quasi-axis for g
would be Cgk (note that it is g-invariant). Finally, we want the quasi-axis to be
almost convex. One easily checks that Cgk is 2C+4δ-quasiconvex. Thus, we define

the quasi-axis of g as Ag = C+2C+4δ
gk where k is the smallest power of g such that

[gk] ≥ 100δ.

Lemma 2.3. There exists a constant C such that for all hyperbolic isometry g, for
all x ∈ Ag and all i ∈ Z, i‖g‖ ≤ d(x, gix) ≤ i‖g‖+ C.

This follows from the fact that the quasi-axes Ag and Agi are at bounded

Hausdorff distance, and from the inequality [gi]− 16δ ≤ ‖gi‖ = i‖g‖ ≤ [gi].

Weak proper discontinuity

Definition 2.4. We say that g ∈ G, acting hyperbolically on X, satisfies the WPD
property (for weak proper discontinuity) if there exists r0 such that for every pair
of points x, y ∈ Ag at distance at least r0, the set of all elements a ∈ G that move
both x and y by at most 100δ is finite:

#{a ∈ G|d(x, ax) ≤ 100δ, d(y, ay) ≤ 100δ} <∞.
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Obviously, if the action of G on X is proper, then any hyperbolic element
g satisfies the WPD property. In particular, any element of infinite order in a
hyperbolic group satisfies the WPD property.

Here is an equivalent definition:

Definition 2.5. g satisfies the WPD property if for all l, there exists rl such that
for every pair of points x, y ∈ Ag at distance at least rl, the set of all elements
a ∈ G that move both x and y by at most l is finite:

#{a ∈ G|d(x, ax) ≤ l, d(y, ay) ≤ l} <∞.

Exercise 2.6. Prove that the definitions are equivalent.

A lot of interesting groups have such elements.

Example 2.7.

(1) If G is hyperbolic or relatively hyperbolic, then any hyperbolic element
satisfies the WPD property for the action of G on its Cayley graph if G
is hyperbolic, or Bowditch’s space with horoballs.

(2) If G is a non-cyclic right-angled Artin group that is not a direct product,
then G acts on a tree in which there is an element satisfying the WPD
property (see [DGO, cor. 6.50]).

(3) If G is the mapping class group of a surface (of large enough complexity)
acting on its curve complex, any pseudo-anosov element is a hyperbolic
element satisfying the WPD property [BF07].

(4) If G = Out(Fn), or G is the Cremona group Bir(P2), then G acts on a
hyperbolic space with an element satisfying the WPD property [BF10,

CL].
(5) If G acts properly on a proper CAT (0) space Y , and if g is a rank one

hyperbolic element (its axis does not bound a half plane), there is an
element satisfying the WPD property for some action of G on some hy-
perbolic space (see [Sis11], based on [BBF10]).

Proposition 2.8. Assume that g satisfies the WPD property. Then for all A, λ,
there exists N such that the moving family consisting of the conjugates of 〈gN 〉,
together with their quasi-axes, satisfies the (A, λ)-small cancellation condition.

Corollary 2.9. If G contains a hyperbolic element with the WPD property, then
G is not simple.

Exercise 2.10. Prove the proposition.

Hints: First prove that there exists a constant ∆ such that if Ag fellow travels
with Ahgh−1 = hAg on a distance at least ∆, then hAg is at finite Hausdorff distance
from Ag. For this, show that if the fellow-traveling distance ∆(Ag , Ahgh−1) is large,

there is a large portion of Ag that is moved by bounded amount by gi.hg±ih−1 for
many i’s. Then apply the WPD property to deduce that h commutes with some
power of g, hence maps Ag at finite Hausdorff distance. To conclude that this gives
a small cancellation family, prove that the subgroupE(g) = {h ∈ G|dH(h.Ag, Ag) <
∞} is virtually cyclic (where dH denotes the Hausdorff distance). Now take N such
that [gN ] is large compared to ∆(Ag , Ahgh−1), and such that 〈gN 〉 ⊳ E(g) (recall
that the definition of a moving family requires the group Ri to be normal in the
stabilizer of the corresponding space Qi).
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Remark 2.11 (Remark about torsion). If G is not torsion-free, choosing N such
that [gN ] is large compared to ∆(Ag, Ahgh−1) is not sufficient, as is shown by the
exercise below.

Exercise 2.12. Let F be a finite group, ϕ : F → F a non-trivial automorphism,
of order d. Let G = (Z ⋉ϕ F ) ∗ Z =< a, b, F |∀f ∈ F, afa−1 = ϕ(f) >. Let X be a
Cayley graph of this group.

Show that the family of conjugates of 〈ak〉 does not satisfy any small cancellation
condition if k is not a multiple of d.

3. SQ-universality

We will greatly strengthen Corollary 2.9 saying that G is not simple if it contains
a hyperbolic element with the WPD property.

Definition 2.13. A group G is SQ-universal1 if for any countable group A, there
exists a quotient of G in which A embeds.

Since there are uncountably many 2-generated groups, and since a given finitely
generated group has only countably many 2-generated subgroups, a SQ-universal
group has uncountably many non-isomorphic quotients.

Theorem 2.14. If G is not virtually cyclic, acts on a hyperbolic space X, and
contains a hyperbolic element satisfying the WPD property, then G is SQ-universal.

The first step in the proof consists in producing a free subgroup satisfying the
small cancellation condition.

Proposition 2.15. Assume that G is not virtually cyclic, acts on a hyperbolic space
X, and contains a hyperbolic element h satisfying the WPD property. Then for all
(A, λ), there exists H < G a free group of rank 2 and QH ⊂ X an H-invariant
almost convex subset, so that

(1) the conjugates of H and the corresponding translates of QH form a moving
family satisfying the (A, λ)-small cancellation condition, and

(2) the stabilizer of QH is H × F for some finite subgroup F .

Exercise 2.16. Prove the proposition if G is torsion-free.
Hint: prove that there is some conjugate k of h such that ∆(Ah, Ak) is finite.

Replace h, k by large powers so that their translation length is large compared to
∆(Ah, Ak). The consider something like a = h1000k1000h1001k1001 . . . h1999k1999,
and b = h2000k2000h2001k2001 . . . h2999k2999, and H = 〈a, b〉.

Note that such H might fail to satisfy the small cancellation condition in pres-
ence of torsion. Indeed, there may be some element of finite order that almost fixes
only half of the axis of a, so that ∆(Aa, Acac−1) might be large.

The proof sketched in the exercise works if E(h) = Z × F for some finite
subgroup F , and if F < E(k) for all conjugate k of h. To prove the proposition in
full generality, one constructs h such that this holds, see [DGO, Section 6.2].

Proof of the Theorem. It is a classical result that every countable group
embeds in a two generated group [LS01]. Thus it is enough to prove that any two-
generated group A embeds in some quotient of G. Let F2 → A be an epimorphism,

1SQ stands for subquotient
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and N be its kernel. Let H < G be a free group of rank 2 satisfying the small
cancellation hypothesis as in the proposition, and let QH ⊂ X be the corresponding
subspace in the moving family. View N as a normal subgroup of H .

We claim that N also satisfies the (A, λ)-small cancellation. Indeed, we assign
the group gNg−1 to the subspace g.QH . For this to be consistent, we need N to
be normal in Stab(QH). This is true because Stab(QH) = H × F .

Applying the small cancellation theorem, we see that Stab(QH)/N embeds in
G/〈〈N〉〉. It follows that A ≃ H/N embeds in G/〈〈N〉〉. �

4. Dehn fillings

Let G be a relatively hyperbolic group with respect to a subgroup P (we assume
that there is one parabolic group only for notational simplicity). By definition,
this means that G acts properly on a proper hyperbolic space X with the following
properties: there is a G-invariant family Q of disjoint, almost-convex horoballs
in X ; all the horoballs in Q are in the same orbit, and their stabilizers are the
conjugates of P ; and G acts cocompactly on the complement of these horoballs.

In fact, we can additionally assume that the distance between any two distinct
horoballs is as large as we want, in particular, greater than 40δ. This means that the
fellow traveling constant for Q is zero! Given R0 ⊳ P , the family R of conjugates
of R0 defines a moving family F = (R,Q).

Now for the small cancellation theorem to apply, we need the injectivity radius
to be large. This clearly fails since elements of R0 are parabolic, so their translation
length is small. However, the following variant of the small cancellation theorem
holds.

In the small cancellation hypothesis, replace the large injectivity radius (asking
that all points of Qi are moved a lot by each g ∈ Ri \ {1}), by the following one
asking this only on the boundary of Qi:

Theorem 2.17. Consider a moving family on a hyperbolic space with the notations
above. There exists A0 a universal constant such that the following holds. Assume
that ∆(Q) = 0 (the Qi’s don’t come close to each other), and that

∀i ∈ I, ∀g ∈ Ri \ {1}, ∀x ∈ ∂Qi, d(x, gx) > A0δ.

Then the conclusion of the small cancellation theorem still holds, where Assertion
(3) is modified as follows: any non-trivial element whose translation length is at
most Cδ, and which is not contained in a conjugate of some Ri is not killed in
G/〈〈Ri〉〉.

Let ∗ be a base point on the horosphere ∂Q preserved by P . Since P acts
cocompactly on ∂Q, consider r > 0 such that the P -orbit of B(∗, r) contains ∂Q.
Now if R0 avoids the finite set S ⊂ P of all elements g ∈ P \ {1} such that
d(∗, g∗) ≤ 2r +A then R0 satisfies this new assumption.

We thus get the Dehn filling theorem:

Theorem 2.18 ([Osi07, GM08]). Let G be hyperbolic relative to P . Then there
exists a finite set S ⊂ P \ {1} such that for all R0 ⊳ P avoiding S,

• P/R0 embeds in G/〈〈R0〉〉
• G/〈R0〉 is hyperbolic relative to P/R0. In particular, if R0 has finite index

in P , then G/〈〈R0〉〉 is hyperbolic.
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In fact, the proof allows us to control the hyperbolicity constant of the hyper-
bolic space on which the quotient group acts. This can be a very useful property.



LECTURE 3

Rotating families

1. Road-map of the proof of the small cancellation theorem

The goal of the remaining two lectures is to prove the geometric small cancellation
theorem.

There are essentially two main steps in the proof, each step involving only one
of the two main hypotheses.

(1) Construct from the space X and the subspaces Qi a cone-off Ẋ by coning
all the subspaces Qi, and prove its hyperbolicity. This step does not
involve the groups Ri, so this is independent of the large injectivity radius
hypothesis.

(2) Because the spaces Qi have been coned, each subgroup Ri fixes a point in

Ẋ, and thus looks like a rotation. Our moving family becomes a rotating
family. One studies the normal group N = 〈〈(Ri)i∈I〉〉 via its action on
the cone-off. This is where the large injectivity radius assumption is used:
it translates into a so-called very rotating assumption saying somehow
that every non-trivial element of Ri rotates by a large angle. The group
G/N naturally acts on the quotient space Ẋ/N , and the hyperbolicity of

the quotient space Ẋ/N is then easy to deduce.

In this lecture, we discuss the second step which involves the study of rotating
families.

2. Definitions

Consider a group G acting on a δ-hyperbolic space X .

Definition 3.1. A rotating family is a collection {Rc, c ∈ C} of subgroups of G
indexed by a subset C ⊂ X such that

• Rc fixes c for all c ∈ C
• C is G-invariant
• and ∀g ∈ G, ∀c ∈ C, Rgc = gRcg

−1.

One says that the rotating family is ρ-separated if any two distinct points in C
are at distance at least ρ.

The set C is called the set of apices of the family, and the groups Rc are called
the rotation subgroups of the family. Note that this definition implies that Rc is a
normal subgroup of the stabilizer Stab(c) of c ∈ C.

Let us reformulate this definition. Start with a groupG, and considerR1,. . . ,Rk

some subgroups of G. The goal is to understand the quotient G/〈〈R1, ..., Rk〉〉. We
assume that every Ri fixes a point ci such that Ri is a normal subgroup of the
stabilizer of ci, and that ci is not in the G-orbit of cj for i 6= j. Then one gets

17
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a rotating family by putting C = G.{c1, . . . , ck}, and by defining {Rc, c ∈ C} by
Rgci = gRig

−1. The fact that there no ambiguity in this definition is a consequence
of the fact that Ri is normal in the stabilizer of ci.

The following definition formalizes the fact that every non-trivial element of Ri

rotates by a large angle.

Definition 3.2 (Very rotating condition: local version). We say that the rotating
family is very rotating if the following holds. Consider c ∈ C, g ∈ Rc \ {1}, and
x, y ∈ B(c, 40δ) \ B(c, 20δ). If d(x, y) ≤ d(x, c) + d(c, y) − 10δ, then any geodesic
between x and gy contains c.

Intuitively, the very rotating condition says that if x, c, y make a small angle
at c, and g ∈ Rc \ {1}, then x, c, gy makes a large angle at c. This somehow means
that g rotates by a large angle. This is for instance the case if X is CAT (−1), and
if for all x ∈ X \ {c}, the geodesics [c, x], [c, gx] make an angle of at least 2π (see
Lemma 4.8). For exposition reasons, the definition above is slightly different from
the one in [DGO], but this does not change the nature of the results.

The very rotating condition is local around an apex. It implies the following
global condition. This shows in particular that Rc acts freely and discretely on
X \B(c, 20δ).

Lemma 3.3 (Very rotating condition: global version). Consider c ∈ C, and x, y ∈
X at distance at least 20δ from c such that d(x, y) ≤ d(x, c) + d(c, y) − 22δ. Then
for any g ∈ Rc \ {1}, any geodesic between x and gy contains c. In particular, for
any choice of geodesics [x, c], [c, gy], their concatenation [x, c] ∪ [c, gy] is geodesic.

Proof. To unify notations, write x1 = x, x2 = y. For i ∈ {1, 2}, let pi, qi ∈
[c, xi] be such that d(pi, c) = 20δ, and d(qi, c) = 11δ. By thinness of a triangle with
vertices c, x1, x2, d(q1, q2) ≤ 4δ. In particular, d(p1, p2) ≤ d(p1, q1)+4δ+d(q2, p2) =
d(p1, c) + d(c, p2) − 18δ. The local very rotating hypothesis says that d(p1, c) +
d(c, gp2) = d(p1, gp2). Consider any geodesic [x1, gx2], and let p′1, q

′
1, gq

′
2, gp

′
2 ∈

[x1, gx2] be such that d(p′i, xi) = d(pi, xi) and d(q′i, xi) = d(qi, xi). By the triangle
inequality, d(p′i, c) ≥ d(pi, c) = 20δ. By thinness of the triangle x1, c, gx2, d(qi, q

′
i) ≤

4δ, so d(q′1, q
′
2) ≤ 12δ, and d(p′1, p

′
2) ≤ d(p′1, q

′
1) + 12δ + d(p′2, q

′
2) = 30δ. Thus, the

local very rotating condition applies to the points p′1, p
′
2, and we get that [p′1, gp

′
2]

contains c, and so does [x1, gx2]. �

3. Statements

Now we state some results describing the structure of the normal subgroup gener-
ated by the rotating family.

Theorem 3.4. Let (Rc)c∈C be a ρ-separated very rotating family, with ρ large
enough compared to the hyperbolicity constant δ. Let N = 〈〈Rc|c ∈ C〉〉. Then

(1) Stab(c)/Rc embeds in G/N . More generally, if [g] < ρ and g ∈ N then
g ∈ Rc for some c ∈ C,

(2) there exists a subset S ⊂ C such that N is the free product of the collection
of (Rc)c∈S, and

(3) X/N is hyperbolic.

Remark 3.5. ρ ≥ 120δ is enough for the first two assertions. For the last one, we
need it to be large enough to apply the Cartan-Hadamard theorem (Theorem 3.11
below), see Proposition 3.12 below.
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The first assertion follows from the following form of the Greendlinger lemma
which we are going to prove together with the theorem. The classical Greendlinger
Lemma says that if a cyclically reduced word w represents the trivial element in a
small cancellation group, then it has a subword u that is a subword of a relator r
with |u| > |r|/2, thus w can be shortened by replacing u by the inverse of the rest
of the relator. This is the basis of Dehn’s algorithm for solving the word problem
in a small cancellation group.

Theorem 3.6. (Greendlinger lemma) Every element g in N that does not lie in
any Rc is loxodromic in X, it has a g-invariant geodesic line l, this line contains a
point c ∈ C such that there is a shortening element at c in l (as defined below).

Definition 3.7. Let l be a geodesic, and c ∈ l. A shortening element at c in l is
an element r ∈ Rc \ {1} such that if q1, q2 are the two points in l at distance 20δ
from c, then d(q1, rq2) ≤ 10δ.

Assume that l is a g-invariant geodesic line, and that there is a shortening
element r at c ∈ l. Then up to exchanging the roles of q1 and q2, we can assume
that q1, q2, gq1 are aligned in this order in l. Since d(q1, gq1) = [g], we get

[gr] ≤ d(r−1q1, gq1) ≤ d(r−1q1, q2) + d(q2, gq1)

≤ 10δ + d(q1, gq1)− d(q1, q2) = [g]− 30δ,

so [gr] ≤ [g] − 30δ. Thus, Greendlingers’s lemma gives a form of (relative) linear
isoperimetric inequality: every element g of N is the product of at most [g]/30δ
elements of the rotation subgroups.

4. Proof of Theorem 3.4

The proof is by an iterative process, described by Gromov in [Gro01b], see [DGO].
To perform it, we construct inductively a sequence of subsets called windmills with
a set of properties that remain true inductively (see Definition 3.8 and Figure 1).
To each windmill W ⊂ X , we associate the group GW generated by {Rc|c ∈ W}.
As the windmills we construct are going to exhaust X (see Proposition 3.9), the
groups GW will exhaust the normal subgroup N = 〈Rc|c ∈ C〉.

Definition 3.8 (Windmill). A windmill is a subset W ⊂ X satisfying the following
axioms.

(1) W is almost convex,
(2) W+40δ ∩ C =W ∩ C 6= ∅,
(3) The group GW generated by

⋃

c∈W∩C Rc preserves W ,
(4) There exists a subset SW ⊂ W ∩ C such that GW is the free product

∗c∈SW
Rc.

(5) (Greendlinger) Every elliptic element of GW lies in some Rc, c ∈W ∩C,
other elements of Rc have an invariant geodesic line l such that l ∩ C
contains a point at which there is a shortening element (as in Definition
3.7).

To initiate this inductive process, we choose c ∈ C, and we take as initial
windmill W0 = {c} (we could also choose for instance W0 = B(c, r) with r ≤
ρ− 50δ)).
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W

W1
W2

c1

c2
c3

Figure 1. A windmill. The iterative step starts with a windmill
W , constructs W ′

1,W
′
2, and the end of the iterative step, the new

windmill W ′ is a thickening of W ′
2.

Proposition 3.9 (Inductive procedure). For any windmill W , there exists a wind-
mill W ′ containing W+10δ and W+60δ ∩ C, and such that GW ′ = GW ∗ (∗x∈SRc)
for some S ⊂ C ∩ (W ′ \W ).

Proof of Theorem 3.4 from Proposition 3.9. Starting from W0 = {c},
define Wi+1 from Wi by applying the proposition. Since ∪iWi = X , ∪iGWi

= N .
Greendlinger lemma follows, and so does the fact that N is a free product. �

Proof of Proposition 3.9. If W+60δ does not intersect C, we just inflate
W by taking W ′ =W+10δ. Otherwise, we construct W ′ in several steps.

Step 1. Let C1 = C ∩ (W+60δ \ W ). For each c ∈ C1 choose a projection
pc of c on W , and a geodesic [c, pc]. This choice can be done GW -equivariantly
because GW acts freely on C1 (by Greendlinger hypothesis, and the very rotating
assumption). Define W ′

1 =W ∪
⋃

c∈C1
[c, pc]. Almost convexity of W easily implies

that W ′
1 is 12δ-quasiconvex. Note for future use that for any c ∈ C1, W

′
1 \ [c, pc]

is also 12δ-quasiconvex for the same reason. Since C is ρ-separated with ρ > 112δ,
any point in C \ {c} is at distance at least 52δ from [c, pc]. This implies that

W ′+52δ
1 ∩ C =W ′

1 ∩C.
Step 2. The group G′ = 〈Rc|c ∈ W ′

1〉 is the group generated by GW and by
{Rc|c ∈ C1}. We define W ′

2 = G′.W ′
1. Abstract nonsense shows that G′ = 〈Rc|c ∈

W ′
2〉.

Step 3. We take W ′ =W ′+12δ
2 = G′.(W ′+12δ

1 ).

Let us check that W ′ satisfies Axiom 2 of a windmill. We have W ′+40δ
=

W ′+52δ
2 . Since W ′+52δ

1 ∩ C = W ′
1 ∩ C, we get W ′+40δ ∩ C = W ′

2 ∩ C ⊂ W ′ ∩ C.
Axiom 2 follows. It also follows that G′ = GW ′ , and that W ′ is GW ′ -invariant so
Axiom 3 follows.
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To prove that W ′ satisfies the other axioms, we first look at how W ′
1 is rotated

around some c ∈ C1. So take h ∈ Rc \ {1}, and look at W ′
1 ∪ hW ′

1. Consider
x ∈ W ′

1 \ [c, pc] and y ∈ h(W ′
1 \ [c, pc]). Consider qx ∈ [c, x] and q′x ∈ [c, pc], both at

distance 20δ from c. Define qy ∈ [c, y] and q′y ∈ [c, hpc] similarly. By thinness of the
triangle c, x, pc, d(qx, q

′
x) ≤ 4δ: otherwise, there would be some q′′x ∈ [pc, x] such that

d(qx, q
′′
x) ≤ 4δ, and by 12δ-quasiconvexity of W ′

1 \ [c, pc], d(qx,W
′
1 \ [c, pc]) ≤ 16δ,

so d(c,W ′
1 \ [c, pc]) ≤ 36δ, a contradiction. Similarly, d(qy , q

′
y) ≤ 4δ, and since

h−1q′y = q′x, d(qx, h
−1qy) ≤ 8δ. The global very rotating condition implies that any

geodesic from x to y contains c. We note that h is a shortening element of [x, y] at
c. We have proved:

Lemma 3.10 (Key lemma). Fix c ∈ C1, h ∈ Rc \ 1, x ∈ W ′
1 \ [c, pc] and y ∈

h(W ′
1 \ [c, pc]). Then any geodesic from x to y contains c and h is a shortening

element of [x, y] at c.

By 12δ-quasiconvexity of W ′
1 and hW ′

1, we get that for any x, y as in the lemma,
[x, y] is in the 12δ-neighbourhood of W ′

1∪hW
′
1. If x lies in [c, pc] or y lies in h[c, pc],

we get similarly that [x, y] lies in the 12δ-neighbourhood of W ′
1 ∪hW

′
1 so W ′

1 ∪hW
′
1

is 12δ-quasiconvex.
Now we prove that W ′

2 has a tree-like structure (see Figure 1). Recall that
W ′

2 = G′.W ′
1. Let Γ be the graph with vertex set V = VC(Γ)⊔VW (Γ), where VC(Γ)

is the set of apices in G′.C1, and VW (Γ) is the set of translates of W under G′. We
put an edge between gW and gc for any g ∈ G′ and c ∈ C1.

...

GW

Rc1

Rc2

Rc4

Rc3

...

Figure 2. The graph of groups defining the tree T , where
c1, c2, . . . is an enumeration of S1

Since C1 is GW -invariant, we consider S1 ⊂ C1 a set of representatives of
C1/GW (note that S1 may be infinite). We define the free product Ĝ = GW ∗
(∗c∈S1

Rc), viewed as a tree of groups with trivial edge groups as in the Figure 2.
Let T be the corresponding Bass-Serre tree. We denote by uW ∈ T the vertex
stabilized by W , and for each c ∈ S1, we denote by uc ∈ T the vertex stabilized by
Rc. Denote by VW (T ) the set of vertices of T in the orbit of uW , and VC(T ) the
set of other vertices of T . Any edge of T has an endpoint in VW (T ) and the other
endpoint in VC(T ). The inclusions GW ⊂ G′ and Rc ⊂ G′ induce an epimorphism

ϕ : Ĝ → G′, and there is a natural ϕ-equivariant map f : T → Γ sending uW to
W , and uc to c for all c ∈ S1.

We prove that ϕ and f are isomorphisms.
We first note that the key lemma implies that f does not identify any pair of

vertices in VW (T ) at distance 2 from each other.
Next, we claim that f is injective on the set of vertices adjacent to uW . Other-

wise, there are c, c′ ∈ S1 and g, g′ ∈ GW such that f(guc) = f(g′uc′), i.e. gc = g′c′.
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Since S1 is a set of representatives for the orbits of GW , this implies that c = c′,
and the element g−1g′ fixes c. As noted above, the Greendlinger Axiom 5 for W
implies that GW acts freely on C1 so g−1g′ = 1. This proves the claim, and shows
more generally that f does not identify any pair of vertices in VC(T ) at distance 2
from each other.

We now claim that f does not identify any pair of points u 6= u′ ∈ VC(T ).
Consider the segment [u, u′]T ⊂ T , and let u = u1, u2, . . . , un = u′ be the points in
[u, u′]T ∩ VC(T ). Let ci ∈ C be the image of ui under f . Consider the path γ in X
defined as a concatenation of geodesics [c1, c2]X , [c2, c3]X , ..., [cn−1, cn]X . The key
lemma (applied around c2) shows that any geodesic from c1 to c3 contains c2 so in
particular, γ3 = [c1, c2]∪ [c2, c3] is a geodesic and there is a shortening element at c2
for [c1, c2]∪ [c2, c3]. Similarly, [c2, c3]∪ [c3, c4] is geodesic, and there is a shortening
element at c3 for [c2, c3] ∪ [c3, c4]. Then the global very rotating condition at c3
applies to γ3 ∪ [c3, c4] and shows that γ3 ∪ [c3, c4] is geodesic. By induction, we get
that γ is geodesic so c1 6= cn hence f(u) 6= f(u′), which proves our claim.

Finally, a similar argument shows that f is injective in restriction to VW (T ).
Indeed, if gW 6= g′W ∈ VW (T ), consider a path of the form

[x, c1]X .[c1, c2]X . . . [cn, y]X

where x ∈ gW , y ∈ g′W and {c1, . . . , cn} = [gW, g′W ]T ∩ VC(T ). The argument
above shows that this path is geodesic. It follows that f is injective.

Injectivity of ϕ follows since an element of kerϕ has to fix T pointwise, and is
therefore trivial. Since f and ϕ are obviously onto, they are isomorphisms. This
proves that G′ can be written as a free product as in the Proposition, and that W ′

satisfies Axiom 4.
The paths [x, c1]X .[c1, c2]X . . . [cn, y]X considered above also have shortening

pairs at ci. The very rotating condition implies that any geodesic segment between
x and y has to contain ci and is therefore of this form. Since W ′

1 is 12δ-quasiconvex,
it follows that so is W ′

2. It follows that W ′ is almost convex, and Axiom 1 holds.
The Greendlinger Axiom is similar: if g ∈ GW ′ is elliptic in the tree T , there

is nothing to prove because W is a windmill. If g is hyperbolic in T , its axis
contains a vertex in u ∈ VC(T ). Let u = u1, u2, . . . , un = gu be the points in
[u, gu]T ∩ VC(T ), and let ci ∈ C be the image of ui under f . Then the g-translates
of [c1, c2]X .[c2, c3]X . . . [cn−1, cn]X form a g-invariant bi-infinite geodesic, and there
is a shortening element in at each ci. �

5. Hyperbolicity of the quotient

The goal of this section is to prove the hyperbolicity of the quotient space X/N .
We will prove local hyperbolicity, and use the Cartan-Hadamard Theorem.

5.1. The Cartan Hadamard Theorem

The Cartan-Hadamard theorem allows us to deduce global hyperbolicity from local
hyperbolicity, see [DG08], and more detailed account in Coulon’s notes [Cou], (see
also [OOS09, Th 8.3]).

Theorem 3.11 (Cartan-Hadamard Theorem). There exist universal constants
C1, C2 such that the following holds. Consider a geodesic space Y and some δ > 0
such that

• Y is C1δ-locally δ-hyperbolic, and
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• Y is 32δ-simply connected.

Then Y is (globally) C2δ-hyperbolic.

We will denote by RCH(δ) = C1δ and δCH(δ) = C2δ. The assumption that
Y is locally δ-hyperbolic asks that for any subset {a, b, c, d} ⊂ Y whose diameter
is at most RCH(δ), the 4-point inequality holds: d(a, b) + d(c, d) ≤ max{d(a, c) +
d(b, d), d(a, d) + d(b, c)}+ 2δ.

The assumption that Y is 32δ-simply connected means that the fundamental
group of Y is normally generated by free homotopy classes of loops of diameter
at most 32δ. Equivalently, one may ask that the Rips complex P32δ(Y ) is simply
connected.

We will apply this Theorem to Y = X/N . Note that since X is δ-hyperbolic,
X is 4δ-simply connected [CDP90, Section 5, prop. 1.1]. Since N is generated
by isometries fixing a point, X/N is also 4δ-simply connected. Indeed, let γ be a
loop in X/N . Lift it to γ in X , joining x to gx with g ∈ N . Write g = gn...g1
with gi fixing a point. One can homotope γ rel endpoints to ensure that γ contains
a fixed point c of gn (just insert a path and its inverse). Then γ = γ1.γ2 where
the endpoint of γ1 and the initial point of γ2 are c. Downstairs, this is gives a
homotopy. Now change γ2 to g−1

n γ2. Downstairs, this does not change the path.
The new path γ1.g

−1
n γ2 joins x to gn−1 . . . g1x. Repeating, we can assume g = 1

so that γ is a loop in X . By hypothesis, γ =
∏

i pilip
−1
i where pi is a path with

origin at x, and li is a loop of diameter at most 4δ. Projecting downstairs, we get
the same property for the projection.

Thus, in view of the Cartan-Hadamard Theorem, it is enough to prove local
hyperbolicity of the quotient.

5.2. Proof of local hyperbolicity

We will only prove the proposition in the particular case where X is a cone-off of
radius ρ (see Corollary 4.3 in the next lecture). The main simplification is that in
this case, the neighbourhood of an apex is a hyperbolic cone over a graph, and so
is its quotient. Thus we can apply Proposition 4.6 saying that such a hyperbolic
cone is locally 2δH2-hyperbolic, where δH2 is the hyperbolicity constant of H2.

Proposition 3.12. Under the assumptions of 3.4, assume that X and the rotating
family are obtained by coning-off a small cancellation moving family, as described
in the next section, where ρ is the radius of the cone-off. We denote by δ the
hyperbolicity constant of X, N be the normal group generated by the rotating family,
X = X/N , and C the image of C in X/N . Let δ′ = max{δ, δH2

}, and assume that
ρ ≥ 10max{RCH(δ′)}. Then

(1) for each apex c ∈ C, the 9ρ/10-neighbourhood c in X is ρ/10-locally 2δH2-
hyperbolic,

(2) the complement of the 8ρ/10-neighbourhood C in X is ρ/10-locally δ-
hyperbolic. In fact, any subset of diameter at most ρ/10 in X \ C+8ρ/10

isometrically embeds in X/N , and
(3) X/N is δCH(δ′)-hyperbolic.

In the case where our rotating family is not obtained by coning-off, one can
also prove that X/N is locally hyperbolic with worse constants, see [DGO].

Proof. The first assertion is a direct consequence of the fact that the hyper-
bolic cone over a graph is 2δH2-hyperbolic (Proposition 4.6).
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For the second assertion, let E ⊂ X \C+8ρ/10 be a subset of diameter at most
ρ/10, and let E′ be its ρ/10-neighbourhood. We claim that E′ injects into X, so
that E isometrically embeds in X . Now assume on the contrary that there are
x, y ∈ E′ and g ∈ N \ {1} such that y = gx. In particular [g] < ρ, so by Assertion
1 of Theorem 3.4, g ∈ Rc for some c ∈ C. Then the very rotating condition implies
that any geodesic [x, y] contains c, so d(x, c) ≤ 3ρ/10, a contradiction.

To conclude, we have shown that X/N is ρ/10-locally δ′-hyperbolic with δ′ =
max{δ, δH2

}. Since X/N is 4δ-simply connected, and since ρ > 10RCH(δ′), the
Cartan-Hadamard Theorem says that X/N is globally δCH(δ′)-hyperbolic. �

6. Exercises

Exercise 3.13. Assume that ρ ≫ δ. Let E ⊂ X be an almost convex subset,
and assume that E does not intersect the ρ/10-neighbourhood of C. Prove that E
isometrically embeds in X/N .

Hint: prove that any subset of E of diameter ρ/100 isometrically injects in
X/N . Then say that a ρ/100-local geodesic in X/N is close to a global geodesic.

Exercise 3.14. Assume that G is torsion-free, and that for all c, Stab(c)/Rc is
torsion-free. Prove that G/N is torsion-free.

Hint: use the fact that an elliptic isometry of a δ-hyperbolic space has an orbit
of diameter at most 16δ. Then given g ∈ G/N of finite order, look for a lift in G
with smallest translation length.



LECTURE 4

The cone-off

1. Presentation

The goal of this section is, given a hyperbolic space X and a family Q of almost
convex subspaces, to perform a coning construction of these subspaces, thus obtain-
ing a new hyperbolic space Ẋ called the cone-off space. The effect of this operation
is to transform a small cancellation moving family on X into a very rotating family
on this new space Ẋ.

This construction has been introduced by Gromov in [Gro01a, Gro03], and
further developed by Gromov, Delzant and Coulon [DG08, Cou11, Cou]. A
construction of this type was introduced before by Bowditch in the context of
relatively hyperbolic groups (with cone points at infinity). See also Farb’s and
Groves-Manning’s constructions [Far98, GM08]. We follow [Cou11], with minor
modifications and simplifications.

For simplicity we assume that X is a metric graph, all of whose edges have the
same length. This is no loss of generality: if X is a length space, the graph Y with
vertex set X where one connects x to y by an edge of length l if d(x, y) ≤ l satisfies
∀x, y ∈ X , dX(x, y) ≤ dY (x, y) ≤ dX(x, y) + l. We don’t assume that X is locally
compact.

Topologically, we are going to cone a family Q of subgraphs (see Figure 1), and
to put a geometry by identifying the added triangles with sectors of H2 of fixed
radius ρ (see Section 2 for details). Thus ρ is a parameter of this construction, to
be chosen.

X

Qi

Ẋ

Figure 1. The cone-off.

The assumptions will be that X is δ-hyperbolic with δ very small, and that we
have a family Q of almost convex subspaces having a small fellow traveling length.

The features of the resulting space will be as follows:

(1) Ẋ is a hyperbolic space, whose hyperbolicity constant is good (meaning:
a universal constant; in particular, ρ can be chosen to be very large com-
pared to this hyperbolicity constant).

25
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(2) If a group G acts on X , preserving Q, and if to each Q ∈ Q corresponds a
group RQ (in an equivariant way) preserving Q and with sufficiently large

injectivity radius, then (RQ)Q∈Q is a very rotating family on Ẋ .

With quantifiers, the main result of this section will be:

Theorem 4.1. There exist constants δc,∆c, ρ0, δU as follows. If X is δc-hyperbolic,
and Q is a family of almost convex subspaces such that ∆(Q) ≤ ∆c, then for all

ρ ≥ ρ0, the corresponding cone-off Ẋ satisfies:

(1) Ẋ is R-locally (2δH2)-hyperbolic (where δH2 is the hyperbolicity constant of
H2, and R = RCH(2δH2) is the constant required by the Cartan-Hadamard
theorem).

(2) It is globally δU -hyperbolic (with δU = δCH(2δH2)).
(3) If F = (RQ)Q∈Q is a moving family whose injectivity radius is at least

2π sinh(ρ), then (RQ)Q∈Q is a 2ρ-separated very rotating family on Ẋ.

Note that the hyperbolicity constant δU of Ẋ does not depend on X or ρ.
In fact, the geometry of the cone-off is even nicer than this δU -hyperbolicity.

Indeed, this space is CAT (−1, ε), meaning in a precise sense “almost CAT (−1)”.
This property introduced in [Gro01a] implies hyperbolicity with a hyperbolicity
constant close to δH2 , but gives in particular a much better control of bigons than
in a standard δH2 -hyperbolic space (at least when ε is small enough). We will not
discuss this property here.

It is important that ρ is large compared to the hyperbolicity constant δU of Ẋ,
in particular to apply the theorem about rotating families. We have the freedom
to do so in Theorem 4.1 since δU is independent of ρ.

The hypotheses on X in the theorem can be achieved by rescaling the metric
if the fellow traveling constant ∆(Q) of Q is finite. However, if F = (RQ)Q∈Q is
a moving family, this rescaling scales down the injectivity radius accordingly. In
order to get the very rotating condition on the cone-off, Assertion 3 of Theorem
4.1 requires RQ to have a large injectivity radius after rescaling. To achieve this,
the initial injectivity radius has to be large compared to the initial hyperbolicity
constant and the initial fellow traveling constant. This is exactly what the small
cancellation hypothesis asks for.

Corollary 4.2. For any ρ ≥ ρ0, there exists Aρ, λρ > 0 such that if (RQ)Q∈Q is an
(Aρ, λρ)-small cancellation moving family on X, then (RQ)Q∈Q is a 2ρ-separated

very rotating family on Ẋα, the cone-off of radius ρ of Xα, where Xα is the rescaling
of X by a factor α > 0.

Proof. One can take Aρ = 2π sinh(ρ)
δc

and λρ = ∆c

2π sinh(ρ) . Indeed, if Xα is

the space X where the metric is multiplied by the factor α = min{ δc
δ ,

∆c

∆ }, then
Theorem 4.1 applies to Xα. Moreover, if (RQ)Q∈Q satisfies the (Aρ, λρ)-small
cancellation condition, it acts on Xα with injectivity radius at least 2π sinh ρ. As-
sertion 3 of Theorem 4.1 implies that (RQ)Q∈Q acts on the cone-off Ẋα of Xα as a
2ρ-separated very rotating family. �
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Let ρU ≥ ρ0 be such that Theorem 3.4 about rotating families applies to any
2ρU -separated very-rotating family on a δU -hyperbolic space (where δU is the hy-
perbolicity constant of the cone-off given by Theorem 4.1). Applying Corollary 4.2
to this value of ρ, we get:

Corollary 4.3. There exists A0, λ0 > 0 such that if F = (RQ)Q∈Q is an (A0, λ0)-
small cancellation moving family on X, then (RQ)Q∈Q is a very rotating family on

Ẋα, the cone-off of radius ρU of a rescaled version of X.

It is now easy to deduce the small cancellation Theorem 1.3.

Proof of the small cancellation Theorem 1.3. All the assertions fol-
low immediately from Corollary 4.3 and Theorem 3.4, except maybe Assertion (3)
saying that given C > 0, elements with a translation length at most Cδ survive in
the quotients if the small cancellation constants are good enough.

Greendlinger’s lemma says that any element g ∈ G\{1} with translation length

less than 2ρ in Ẋα survives, except if contained in some group of our small cancella-
tion moving family F . But if we take A > C, the small cancellation assumption says
that elements of Ri \ {1} act on X with translation length greater that Aδ ≥ Cδ.
Now given C > 0, consider ρ such that Cδc < 2ρ. Assume that our moving fam-
ily F satisfies the (Aρ, λρ)-small cancellation condition with Aρ, λρ as in Corollary

4.2. Let Ẋα be the space given by this corollary. Then any element acting on X
with translation length at most Cδ, acts on the spaces Xα and Ẋα with translation
length at most Cδc < 2ρ, and is therefore not killed in the quotient. �

2. The hyperbolic cone of a graph

Given ρ > 0, and α ∈ (0, π), consider a hyperbolic sector of radius ρ and angle α
in H2. The arclength of its boundary arc of circle is l = α sinh ρ. If α ≥ π, one
can still define a hyperbolic sector of angle α by gluing several sectors of angle less
than π.

ρ

ρ
l = α sinh ρ

α

If Q is a metric graph, all whose edges have length l, the hyperbolic cone over
Q is the triangular 2-complex C(Q) = ([0, ρ] × Q)/∼ where ∼ is the equivalence
relation that collapses Q×{0} to a point. The cone point c = Q×{0} is also called
the apex of C(Q). We define a metric on each 2-cell of C(Q) by identifying it with
the hyperbolic sector of radius ρ and arclength l. We identify Q with Q×{ρ}, but
we distinguish the original metric dQ from the new metric dC(Q). If we want to
emphasize the dependance in ρ, we will denote the cone by Cρ(Q).

For t ∈ [0, ρ], x ∈ Q we denote by tx the image of (t, x) in C(Q). There is an
explicit formula for the distance in C(Q) [BH99, Def 5.6 p.59]:

coshd(tx, t′x′) = cosh t cosh t′ − sinh t sinh t′ cos

(

min

{

π,
dQ(x, x

′)

sinh(ρ)

})

.
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This formula allows one to define the hyperbolic cone over any metric space. We
shall not use it directly (except in the proof of Fact 4.14). Instead, we will use the
following basic facts.

Proposition 4.4 ([BH99, Chap I.5, Prop. 5.10]).

(1) For each x ∈ Q, the radial segment {tx| t ∈ [0, ρ]} is the only geodesic
joining c to x;

(2) For each x, y ∈ Q such that dQ(x, y) ≥ π sinh ρ, then for any t, s ∈ [0, ρ]
the only geodesic joining tx to sy is the concatenation of the two radial
segments [tx, c] ∪ [c, sy].

(3) For each x, y ∈ Q such that dQ(x, y) < π sinh ρ, and all s, t ∈ (0, ρ], there
is a bijection between the set of geodesics between x and y in Q and the
set of geodesics between tx and sy in C(Q). None of these geodesics go
through c.

The map C(Q) \ {c} → Q defined by tx 7→ x is called the radial projection.

Exercise 4.5. Prove that the radial projection is locally Lipschitz. Note that it is
not globally Lipschitz in general.

Prove that the local Lipschitz constant tends to 1 as one gets closer to Q: for
each ε > 0, there exists t0 < ρ such that for each tx ∈ C(Q), and with t ≥ t0,
there exists a neighbourhood U of tx in C(Q) such that the restriction of the radial
projection on U is (1 + ε)-Lipschitz.

The hyperbolic cone on a tripod is CAT (−1) because it is obtained by gluing
CAT (−1) spaces over a convex subset. It follows that the cone over a tree is
CAT (−1) since by Proposition 4.4, any geodesic triangle is contained in the cone
over a tripod. This extends to the hyperbolic cone over an R-tree which can be
defined by writing the R-tree as an increasing union of metric trees (with edges of
varying lengths), or by the distance formula above. One can also view this fact
as a particular case of Beretosvkii’s theorem saying that, writing κ = π sinh ρ, the
hyperbolic cone of radius ρ over any CAT (κ)-space, is CAT (−1) [BH99, Chap I.5,
Th 3.14]. In particular, the hyperbolic cone over an R-tree is δH2 -hyperbolic.

Proposition 4.6. The hyperbolic cone of any radius, over any graph, is 2δH2-
hyperbolic.

This is analogous to the hyperbolicity of a Groves-Manning combinatorial
horoballs [GM08].

Remark 4.7. We don’t want to assume local compactness of Q. The fact that Q
is a graph whose edges have the same length is used to ensure that Q and C(Q),
(and later the cone-off) are geodesic spaces. Indeed, a theorem by Bridson shows
that any connected simplicial complex whose cells are isometric to finitely many
convex simplices in H

n, and glued along their faces using isometries, is a geodesic
space [BH99, Th 7.19]. This can be easily adapted to our situation where 2-cells
are all isometric to the same 2-dimensional sector.

The following very simple proof is due to Coulon.

Proof. Let C be such a cone, and c its apex. One checks the hyperbolic 4-
point inequality: given x, y, z, t ∈ C, we want to prove that one of the following
inequalities holds

L : xy + zt ≤ xz + yt+ 4δH2 R : xy + zt ≤ xt+ yz + 4δH2
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(where we use the notation xy = d(x, y)).
Since any 3-point set is isometric to a subset of a tree, and since the cone over

a tree is CAT (−1), for any 3 points u, v, w ∈ C, we know that u, v, w, c satisfy the
δH2-hyperbolic 4-point inequality. Consider the inequalities

Lx : cy + zt ≤ cz + yt+ 2δH2 , Rx : cy + zt ≤ ct+ yz + 2δH2

Ly : cx+ zt ≤ ct+ xz + 2δH2 , Ry : cx+ zt ≤ cz + xt+ 2δH2

Lz : ct+ xy ≤ cx+ yt+ 2δH2 , Rz : ct+ xy ≤ cy + xt+ 2δH2

Lt : cz + xy ≤ cy + xz + 2δH2 , Rt : cz + xy ≤ cx+ yz + 2δH2 .

We know that for each u ∈ {x, y, z, t}, either Lu or Ru holds.
If Lx and Lt hold, then summing, we see that L holds. Similarly, assuming

that neither L nor R holds, we get

Lx ⇒ ¬Lt ⇒ Rt ⇒ ¬Ry ⇒ Ly ⇒ ¬Lz ⇒ Rz .

Up to exchanging the role of z and t, we may assume that Lx holds, and
therefore that so do Rt, Ly and Rz . Summing up Lx + Rt + Ly + Rz, we get that
L+R holds, so either L or R holds. �

The definition of the hyperbolic cone generalizes naturally to ρ = ∞, where one
glues on each edge a sector of horoball with arclength l (explicitly, each triangle is
isometric to [0, l]× [1,∞) in the upper half-plane model of H2). The same argument
shows that the a horospheric cone over any graph is also 2δH2 -hyperbolic.

Lemma 4.8 (Very rotating condition). Recall that c is the apex of C(Q). Assume
that some group R acts on Q, and that dQ(y, gy) ≥ 2π sinh ρ for all y ∈ Q, g ∈
R \ {1}. Then for all x1, x2 ∈ C(Q) such that d(x1, gx2) < d(x1, c) + d(x2, c), then
any geodesic from x1 to x2 in C(Q) contains c. In particular, R satisfies the very
rotating condition on C(Q).

Proof. For i = 1, 2, denote xi = tiyi with yi ∈ Q. To prove that any geodesic
[x1, x2] contains the apex c, we have to check that dQ(y1, y2) ≥ π sinh ρ. By the
triangle inequality, no geodesic [x1, gx2] contains c so dQ(y1, gy2) ≤ π sinh ρ. By
hypothesis on g, dQ(y1, y2) ≥ dQ(y2, gy2) − dQ(gy2, y1) ≥ 2π sinh ρ − π sinh ρ ≥
π sinh ρ. �

3. Cone-off of a space over a family of subspaces

Let X be a δ-hyperbolic metric graph, whose edges all have the same length. Let
Q be a family of almost convex subgraphs. We fix some radius ρ > 0. For every
Q ∈ Q, C(Q) is the hyperbolic cone of radius ρ over Q. We denote its apex by cQ.
Later, we will also consider a moving family F = (RQ)Q∈Q.

Definition 4.9. The hyperbolic cone-off of X over Q, of radius ρ, is the 2-complex

Ẋ =



X ⊔
∐

Q∈Q

(C(Q))





/

∼

where ∼ is the equivalence relation that identifies for each Q ∈ Q, the subset of X
defined by Q, and its image in C(Q).
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The metric on Ẋ is the corresponding path metric.
Although C(Q) may fail to be isometrically embedded in Ẋ, for any R > 0,

any subset of B(cQ, ρ−R) of diameter at most R is isometrically embedded in Ẋ.

X

Qi

Ẋ

Recall that we assume that every Q ∈ Q is almost convex in the following sense:
for all x, y ∈ Q, there exist x′, y′ ∈ Q such that d(x, x′) ≤ 8δ, d(y, y′) ≤ 8δ and
all geodesics [x, x′], [x′, y′], [y′, y] are contained in Q. In particular, for all x, y ∈ Q,
dX(x, y) ≤ dQ(x, y) ≤ dX(x, y) + 32δ.

Once hyperbolicity of Ẋ is established, Assertion 3 of Theorem 4.1 is immediate
from Lemma 4.8. Indeed if x ∈ Q, and injX(F) ≥ 2π sinh ρ, then dQ(x, gx) ≥
dX(x, gx) ≥ 2π sinh ρ and Lemma 4.8 concludes that the very rotating property

holds in C(Q). Since the ball of radius ρ/2 in C(Q) isometrically embeds in Ẋ,
and since the very rotating condition happens in the ball of radius 40δ around an
apex, Assertion 3 of Theorem 4.1 holds as long as we take ρ0 ≥ 80δU .

We note that if X is δ-hyperbolic, then it is 4δ-simply connected, hence so is
Ẋ by the Van Kampen theorem (each Q ∈ Q is connected because it is almost
convex). Thus, by the Cartan-Hadamard Theorem, to prove the hyperbolicity of

Ẋ, it is enough to prove that Ẋ is R-locally 2δH2-hyperbolic, with R = RCH(2δH2).
In other words, Assertion 1 of Theorem 4.1 implies Assertion 2. Thus Theorem 4.1
follows from the following result.

Theorem 4.10. Fix R = RCH(2δH2) as above. There exists δc,∆c > 0 such that
for all δc-hyperbolic metric graph X whose edges have the same length, and for all
∆c fellow-traveling family Q of almost convex subgraphs of X, and all ρ > 7R, the
hyperbolic cone-off of radius ρ of X over Q is R-locally (2δH2)-hyperbolic.

The limit case of the theorem is as follows.

Lemma 4.11. Let T be an R-tree, Q be a family of closed subtrees of T , any
two of which intersect in at most one point. Then the cone-off Ṫ of T over Q is
δH2-hyperbolic (in fact CAT (−1)).

Remark 4.12. We only defined the cone-off of a graph over a family of subgraphs,
but the definition extends immediately to the setting of the lemma.

Proof of the lemma. If Q is finite and T is a finite metric tree, then Ṫ is
δH2-hyperbolic. For instance, this follows by induction on #Q using the fact that the
space obtained by gluing two δH2-hyperbolic spaces over a point is δH2-hyperbolic
(see also [BH99, Th II.11.1]). For the general case, consider x1, x2, x3, x4 ∈ Ṫ , and

write Ṫ as an increasing union of cone-offs Ṡn of finite trees, with {x1, x2, x3, x4} ⊂
Ṡn for all n, such that dṠn

(xi, xj) → dṪ (xi, xj). The 4-point inequality of Ṡn thus

implies the 4-point inequality for Ṫ . �
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3.1. Ultralimits to prove local hyperbolicity

Let ω : 2N → {0, 1} be a non-principal ultrafilter. By definition, this is a finitely
additive “measure” defined on all subsets of N, such that ω(N) = 1, and ω(F ) = 0
for every finite subset F ⊂ N. Zorn’s Lemma shows that for any infinite subset
E, there is a non-principal ultrafilter such that ω(E) = 1. Given a sequence of
properties Pi depending on i ∈ N, we say that Pi holds for ω-almost every i if
ω({i|Pi true}) = 1. Since ω takes values in {0, 1}, if Pi does not hold for ω-almost
every i, its negation holds for ω-almost every i. If (ti)i∈N is any sequence of real
numbers, one can always define limω ti ∈ [−∞,∞]: this is the only l ∈ [−∞,∞]
such that for any neighborhood U of l, ti ∈ U for ω-almost every i. Thus, the
ultrafilter ω selects an accumulation point of the sequence.

Let (Xi, ∗i)i∈N be a sequence of pointed metric spaces. Let B ⊂
∏

iXi be
the set of all sequences of points (xi)i∈N such that d(xi, ∗i) is bounded ω-almost
everywhere, i.e. on a subset of ω-measure 1 (equivalently limω d(xi, ∗i) < ∞). By
definition, the ultralimit of (Xi, ∗i) for ω is the metric space X∞ = B/∼ where
(xi)i∈N ∼ (yi)i∈N if limω d(xi, yi) = 0, and where the distance between (xi)i∈N and
(yi)i∈N is defined as limω d(xi, yi).

If xi ∈ Xi is a sequence of points such that d(xi, ∗i) is bounded ω-almost
everywhere, we define the ultralimit of xi as the image of (xi)i∈N in X∞.

We will use ultralimits in the following fashion. Note that we do not rescale our
metric spaces, contrary to what one does in the construction of asymptotic cones.
Assume that (Xi)i∈N is a sequence of metric spaces such that any ultralimit of Xi

is δ-hyperbolic (for any ultrafilter, and any base point ∗i). Then for all R, ε > 0,
Xi is R-locally (δ + ε)-hyperbolic for i large enough. Indeed, if this does not hold,
then there is a subsequence Xik and a subset {xik , yik , zik , tik} ⊂ Xik of diameter at
most R that contradicts the 4-point (δ+ε)-hyperbolicity condition. Taking ∗i = xi
as a base point, and taking ω a non-principal ultrafilter such that ω({ik}k∈N) = 1,
we get an ultralimit X∞ in which the ultralimit of the points {xik , yik , zik , tik}
contradicts δ-hyperbolicity.

3.2. Proof of the local hyperbolicity of the cone-off

Proof of Theorem 4.10. Let R be given. We need to prove that any 4-point
set {x, y, z, t} of diameter at most R satisfies the 2δH2-hyperbolic inequality. We use
that any subset of B(cQ, ρ − R) of diameter at most R is isometrically embedded

in Ẋ . Since C(Q) is 2δH2-hyperbolic, we are done if {x, y, z, t} is contained in
B(cQ, ρ−R).

There remains to check that there exist ∆c, δc such that the 2R-neighborhood
of X in Ẋ is R-locally 2δH2-hyperbolic. If not, there are two sequences δi, ∆i

converging to 0, such that for each i ∈ N, one can find a counterexample as follows:
there are

• a δi-hyperbolic space Xi,
• a family Qi of almost convex subsets of Xi with ∆(Qi) ≤ ∆i, and
• a radius ρi > 7R,

so that the cone-off Ẋi of radius ρi of Xi over Qi contains a subset {xi, yi, zi, ti} ⊂
Ẋi of diameter at most R for which the 4-point 2δH2-hyperbolicity inequality fails.
Let ∗i ∈ Xi be a point at distance at most 2R from xi. We note that {xi, yi, zi, ti} ⊂
B(∗i, 3R).
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Let ω be a non-principal ultrafilter, and Ẋ∞ the ultralimit of Ẋi pointed at ∗i.
We denote by ∗ ∈ Ẋ∞ the ultralimit of the sequence (∗i)i∈N. Let x, y, z, t ∈ Ẋ∞ be
the ultralimit of the points xi, yi, zi and ti. Since 2δH2 > δH2 , to get a contradiction,
it is enough to prove that x, y, z, t satisfy the 4-point δH2 -hyperbolicity inequality.

We want to compare Ẋ∞ with the cone-off on an R-tree. Let T be the ultralimit
of Xi pointed at ∗i (this is an R-tree). We denote by ∗T ∈ T the ultralimit of
(∗i)i∈N. To define a cone-off of T , we need to define a family of subtrees Q of
T . Given a sequence of subspaces Q = (Qi)i∈N ∈

∏

i∈N
Qi (each Qi ∈ Qi is a

subset of Xi,), we say that this sequence is non-escaping if there exists qi ∈ Qi

such that d(qi, ∗i) is bounded ω-almost everywhere, Let Q∞ ⊂ (
∏

i∈N
Qi)/ ∼ω

be the set of non-escaping sequences up to equality ω-almost everywhere. Given
Q = (Qi)i∈N a non-escaping sequence, let Qω be the ultralimit of (Qi)i∈N based at
qi. Note that this ultralimit does not depend on the choice of qi as long as d(qi, ∗i)
is bounded ω-almost everywhere. There is a natural map Qω → T induced by the
inclusions Qi → Xi. This map is an isometry because the inclusion Qji → Xi is an
isometry up to an additive constant bounded by 32δi, and δi converges to 0. Thus
we identify Qω with its image in T . Then we define the collection of all possible
such subsets Qω by Q = (Qω)Q∈Q∞

, and we consider Ṫ the corresponding cone-off
with radius ρ = limω ρi (note that ρ might be infinite, in which case we construct
the corresponding horospheric cone-off).

Lemma 4.13.

(1) For Q 6= Q′ ∈ Q∞, Qω ∩Q′
ω contains at most one point. In particular Ṫ

is δH2-hyperbolic.
(2) There is a natural 1-Lipschitz map ψ̇ : Ṫ → Ẋ∞ that maps isometrically

BṪ (∗T , 3R) to BẊ∞

(∗, 3R).

The lemma allows us to conclude the proof: {x, y, z, t} ⊂ BẊ∞

(∗, 3R), which is

isometric to a subset of the δH2-hyperbolic space Ṫ , so x, y, z, t satisfy the 4-point
δH2-hyperbolicity inequality. �

Proof of Lemma 4.13. For Assertion 1, consider Q = (Qi)i∈N, Q′ = (Q′
i)i∈N

with Qi 6= Q′
i for ω-almost every i. Given x ∈ Qω∩Q′

ω, there are sequences (xi)i∈N,
(x′i)i∈N representing x such that xi ∈ Qi, x

′
i ∈ Q′

i. In particular limω d(xi, x
′
i) = 0.

If y ∈ Qω ∩Q′
ω is another point, there exist similarly, yi ∈ Qi, y

′
i ∈ Q′

i representing
y, so that in particular, limω d(yi, y

′
i) = 0. If x 6= y, then d(x, y) > 0, so d(xi, yi) and

d(x′i, y
′
i) are bounded below by d(x, y)/2 for ω-almost every i. By almost convexity,

we see that Qi fellow travels Q′
i by at least d(x, y)/4 for ω-almost every i. Since

∆i tends to 0, we get Qi = Q′
i for almost every i, so Q = Q′, a contradiction. This

proves Assertion 1.
Now we define the map ψ̇ : Ṫ → Ẋ∞. Inclusions ϕXi

: Xi → Ẋi are 1-

Lipschitz and define naturally a 1-Lipschitz map ψ : T → Ẋ∞. Similarly, given
Q = (Qi)i∈N ∈ Q∞, the inclusions ϕC(Qi) : Cρi

(Qi) → Ẋi induce a 1-Lipschitz

map ψC(Qω) : Cρ(Qω) → Ẋ∞. Since for each Q ∈ Q∞, ψ coincides with ψCρ(Qω)

in restriction to Qω, these maps induce a 1-Lipschitz map ψ̇ : Ṫ → X∞. Note that
in general, ψ̇ may be not onto.

To prove Assertion 2, we define a partial inverse ψ′ of ψ̇. Given x ∈ BẊ∞

(∗, 3R),

represent x by a sequence xi ∈ Ẋi with dẊi
(xi, ∗i) ≤ 3R.
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If xi lies in Xi (i.e. not in the interior of a cone) for ω-almost every i, we want
to define ψ′(x) as the ultralimit in T of xi. For this ultralimit to exist, we have
to prove that dXi

(xi, ∗i) is bounded ω-almost everywhere. But since ρi > 3R, any
geodesic [∗i, xi] avoids the ρi − 3R neighbourhood of any apex. Now there exists
M such that the radial projection is locally M -Lipschitz (independently of ρi, see
Exercise 4.15). It follows that the radial projection of this geodesic has length
bounded by 3RM , so the ultralimit of xi in T exists.

Similarly, if xi lies in a cone for ω-almost every i, write xi = siyi for some
si < ρi, and yi ∈ Xi. The argument above shows that dXi

(∗i, yi) is bounded, so
the ultralimit of yi in T exists, we denote it by y. Moreover, the sequence Q of
cones Qi containing xi is non-escaping, so we can define ψ′(x) as sy in the cone
Qω, s = limω si.

It is clear from the definition that ψ′(x) is a preimage of x under ψ̇. There
remains to show that ψ′ is 1-Lipschitz. It is based on the following technical fact,
proved below.

Fact 4.14. For any ρ0, ε,D0 > 0, there exists n ∈ N such that the following holds.
Consider a graph X, and a cone-off Ẋ of radius ρ ≥ ρ0. Then for any pair of
points x, y ∈ Ẋ with d(x, y) ≤ D0, there is a path p joining x to y in Ẋ such that

• the length of p is at most dẊ(x, y) + ε
• p is a concatenation of at most n paths, each of which is either contained

in X or in a cone C(Q).

To conclude, take ρ0 = 7R, ρ > 7R, ε > 0, and let D0 = 6R + 3ε. We
assume that ε is small enough so that D0 < 7R. Consider n given by the fact.
Consider x, y ∈ BẊ∞

(∗, 3R), write x and y as an ultralimit of sequences xi, yi ∈
BẊi

(∗i, 3R+ε). Consider pi a path joining xi, yi of length at most dẊi
(xi, yi)+ε ≤

D0 and which is a concatenation of at most n sub-paths as in the fact. We can
assume that p is a concatenation of exactly n subpaths: pi = p1i · p

2
i · · · p

n
i . Because

D0 < 7R < ρ, pi stays at distance at least 7R − D0 from the cone point. Fix
k ∈ {1, . . . , n}. If pki ⊂ Xi for ω-almost every i, then the ultralimit of pki defines
a path pk∞ ⊂ T . Otherwise, pki is contained in a cone for ω-almost every i. Since
the distance from pki to the cone point is bounded below by 7R − D0 > 0, its
radial projection has bounded length by Exercise 4.15. It follows that the radial
projections of pki converge to a path of finite length in T . Thus, writing pki as a

map pki : [0, 1] → Qi,k × [0, ρi], and taking an ultralimit defines a path pk∞ in Ṫ .
We thus get a path p∞ = p1∞ · · · pn∞ joining ψ′(x) to ψ′(y), and whose length is at
most limω dẊi

(xi, yi) + ε = dẊ(x, y) + ε. �

Proof of Fact 4.14. Consider p ⊂ C(Q) a geodesic path avoiding the apex
and whose endpoints are in Q. Denote by l its length and L the length of its radial
projection. We claim that L

l goes to 1 as l tends to 0 independently of ρ. More
precisely, we claim that for any λ > 1, there exists η > 0 such that if l ≤ η, then
L ≤ λl where η does not depend on ρ as long as ρ ≥ R0.

To prove the claim, we use that l and L are related by the relation

cosh l = cosh2 ρ− sinh2 ρ cos

(

L

sinh ρ

)
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which can be rewritten as

sinh l/2 = sinh ρ sin

(

L

2 sinh ρ

)

.

Since sin(x) ≥ x − 1
6x

3 and argsh(x) ≥ x − 1
6x

3 for all x ≥ 0, one can deduce

the estimate L ≥ l ≥ L − 1
24 (1 + 1

sinh2 ρ
)L3. Since ρ ≥ ρ0 > 0, we get l

L ≥

1− 1
24 (1 +

1
sinh2 ρ0

)L2 and the claim follows.

To prove the fact, consider a path p in Ẋ joining x to y, of length d(x, y)+ ε/2.
We can assume that p is a concatenation of paths p1, . . . , pk where each pi is either
contained in a cone, or contained inX . If two consecutive paths are contained in the
same cone or are both contained in X , we can replace them by their concatenation
to decrease k. Thus for each i ∈ {2, . . . , k − 1}, if pi is contained in a cone C(Q),

then the endpoints of pi are in Q. Let λ = R0+ε
R0+ε/2 ≤ d(x,y)+ε

d(x,y)+ε/2 , and consider η as

in the claim above. For each i ∈ {2, . . . , k − 1} such that pi is contained in a cone
and has length at most η, we replace it by its radial projection p′i, and we define
p′i = pi for all other indices i. The length of the obtained new path p′ is at most
λ(d(x, y) + ε/2) ≤ d(x, y) + ε. Since each p′i that is not contained in X has length
at least η, there are at most n0 = (R0 + ε)/η such sub-paths. By concatenation
of consecutive paths contained in X , we get that p′ is a concatenation of at most
2n0 + 3 paths, each of which is either contained in a cone, or contained in X . �

Exercise 4.15. Given ρ > 0 denote by pρ : BH2(0, ρ) \ 0 → S(0, ρ) the radial
projection on S(0, ρ), the circle of radius ρ. Prove that given r, ρ0 > 0, there is a
constant M such that for any ρ ∈ [ρ0+r,∞), the restriction of the radial projection

to of B(0, ρ) \ B̊(0, ρ− r) is locally M -Lipschitz.

Hint: Since the closest point projection H2 → B(0, ρ−r) is distance decreasing,
it is enough to bound the Lipschitz constant of the restriction of pρ to the circle
of radius ρ− r. Using polar coordinates, prove that this follows from the fact that

sinh ρ
sinh(ρ−r) decreases with ρ.
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