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Context Instabilities Rectification

The model{
∂tζ − |D|ψ + ε|D|(ζ|D|ψ) + ε∇ · (ζ∇ψ) = 0,

∂tψ + ζ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0,

(WW2)

where |D| = (−∆x)1/2, x ∈ Rd , d ∈ {1, 2}.

(WW2) is a model for water waves in infinite depth, assuming small
steepness, ε� 1.
(WW2) enjoys a Hamiltonian structure. In particular, it preserves∫

ζ dx,

∫
ζ∇ψ dx,

H1(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + ψ|D|ψ + εζ
(
|∇ψ|2 − (|D|ψ)2

)
dx.

(WW2) belongs to a hierarchy of models [Craig&Sulem ’93] based on the
converging asymptotic expansion

H(ζ, ψ)
def
= H1(ζ, ψ) +

1

2

∫
Rd

ε2ψG2[ζ, ζ]ψ + ε3ψG3[ζ, ζ, ζ]ψ + . . .
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Context Instabilities Rectification

Numerical instabilities
Numerical integration of the systems in the hierarchy are easily and
efficiently implemented using Fourier spectral methods (as done in e.g.
[Guyenne&Nicholls ’07-08])

In the computations [...] it was observed that spurious oscillations can
develop in the wave profile, due to the onset of an instability related
to the growth of numerical errors at high wavenumbers. [...] Similar
high-wavenumber instabilities were observed by other authors [...] who
used smoothing techniques to circumvent this difficulty.

ε = 1/4,N = 29, L = 4π,dt = 10−3 ε = 1/4,N = 211, L = 4π,dt = 10−3
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Context Instabilities Rectification

Proposed instability mechanism

[Ambrose,Bona&Nicholls ’14] suggest that{
∂tζ − |D|ψ + ε|D|(ζ|D|ψ) + ε∇ · (ζ∇ψ) = 0,

∂tψ + ζ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0,

(WW2)

[and also (WW3)] is ill-posed in Sobolev spaces, based on

tailored numerical experiments;
the toy model

∂tψ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0. (toy)

[Ambrose,Bona&Nicholls ’14]

For all s ∈ [0, 3), the Cauchy problem associated with (toy) is ill-poseda in
Hs(T).

athere exists a sequence (ψn)n∈N of smooth solutions to (toy) defined on
t ∈ [0,Tn) and such that

∣∣ψn(0; ·)
∣∣
Hs ↘ 0, Tn ↘ 0 as n→∞ and∣∣ψn(t, ·)

∣∣
L2 →∞ as t ↗ Tn.
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Context Instabilities Rectification

Quasi-linearization{
∂tζ − |D|ψ + ε|D|(ζ|D|ψ) + ε∇ · (ζ∇ψ) = 0,

∂tψ + ζ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0,

(WW2)

Compensation Lemma [Saut&Xu ’12]

Let d ∈ {1, 2}, t0 > d/2. For all r ≤ 1 and s ≥ t0 + r ,∣∣|D|(f |D|g) +∇ · (f∇g)
∣∣
Hs .

∣∣∇f
∣∣
Hs

∣∣∇g
∣∣
Hs−r .

Proof (d = 1). Denote a = |D|(f |D|g) + ∂x(f ∂xg). For ξ ≥ 0,

â(ξ) =
∫
R
(
|ξ||ξ− η| − ξ(ξ− η)

)
f̂ (η)ĝ(ξ− η) dη = 2

∫∞
ξ
ξ(η− ξ)f̂ (η)ĝ(ξ− η) dη.

Since |ξ| ≤ |η| and |η − ξ| ≤ |η|, one has for all s ≥ 0 and r ′ ≥ 0

〈ξ〉s |â(ξ)| ≤ 2
∫
R〈η〉

s+r ′ |η||f̂ (η)|〈ξ − η〉−r ′ |ξ − η||ĝ(ξ − η)| dη.

By Young’s inequality and since 〈·〉−t0 ∈ L2(R), with r ′ = 0,∣∣|D|(f |D|g) +∇ · (f∇g)
∣∣
Hs .

∣∣∂x f
∣∣
Hs

∣∣∂xg
∣∣
Ht0

.

This shows the result, without restriction on r when d = 1.
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Context Instabilities Rectification

Quasi-linearization{
∂tζ − |D|ψ + ε|D|(ζ|D|ψ) + ε∇ · (ζ∇ψ) = 0,

∂tψ + ζ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0.

(WW2)

The principle part of the first equation is

∂t ζ̇ − |D|ψ̇ + ε|D|(ζ̇|D|ψ) + ε∇ · (ζ̇∇ψ) = 0.

The principle part of the second equation is

∂tψ̇ + ζ̇ + ε(∇ψ) · (∇ψ̇)− ε(|D|ψ)(|D|ψ̇) = 0.

One recognizes Alinhac’s good unknown: ψ̌
def
= ψ̇ − ε(|D|ψ)ζ̇:{

∂t ζ̇ − |D|ψ̌ + ε∇ · (ζ̇∇ψ) = 0,

∂tψ̌ + a[ζ, ψ]ζ̇ + ε
(
∇ψ · ∇ψ̌

)
= 0,

(Q-WW2)

with
a[ζ, ψ]f

def
= f − ε(|D|ζ)f︸ ︷︷ ︸

a(ζ)f

−ε2 (|D|ψ)|D|
{

(|D|ψ)f
}︸ ︷︷ ︸

A

.
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Context Instabilities Rectification

Toy model

We mimic {
∂t ζ̇ − |D|ψ̌ + ε∇ · (ζ̇∇ψ) = 0,

∂tψ̌ + a[ζ, ψ]ζ̇ + ε
(
∇ψ · ∇ψ̌

)
= 0,

(Q-WW2)

a[ζ, ψ]f
def
= f − ε(|D|ζ)f︸ ︷︷ ︸

a(ζ)f

−ε2 (|D|ψ)|D|
{

(|D|ψ)f
}︸ ︷︷ ︸

A

.

with{
∂tζ − |D|ψ = 0,

∂tψ +
(
1− α[ψ]|D|

)
ζ = 0,

α[ψ]
def
= ε2

∫
(|D|ψ)2 dx. (toy)
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Toy model{
∂tζ − |D|ψ = 0,

∂tψ +
(
1− α[ψ]|D|

)
ζ = 0,

α[ψ]
def
= ε2

∫
(|D|ψ)2 dx. (toy)

Ill-posedness in H∞(Td) [D-Melinand]

For all ε > 0, there exists (ζn, ψn)n∈N smooth solutions to (toy) defined on
[0,Tn) with

∀s ∈ R,
∣∣ζn |t=0

∣∣
Hs(Td )

+
∣∣ψn |t=0

∣∣
Hs(Td )

↘ 0 and Tn ↘ 0 (n→∞),

and
∀s ′ ∈ R,

∣∣ψn(t, ·)
∣∣
Hs′ (Td )

→∞ (t ↗ Tn).

Proof. We put ζn |t=0 = 0 and ψn |t=0 = bn cos(k0 · x) + cn cos(kn · x) where

k0 6= 0, |kn| ↗ ∞, bn = |kn|−1/4, cn = exp(−|kn|1/4).
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Toy model

{
∂tζ − |D|ψ = 0,

∂tψ +
(
1− α[ψ]|D|

)
ζ = 0,

α[ψ]
def
= ε2

∫
(|D|ψ)2 dx. (toy)
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Proof. We put ζn |t=0 = 0 and ψn |t=0 = bn cos(k0 · x) + cn cos(kn · x) where

k0 6= 0, |kn| ↗ ∞, bn = |kn|−1/4, cn = exp(−|kn|1/4).

By studying the system of ODEs on Fourier coefficients, we observe successively

low-high instabilities: α[ψ]|k0| < 1 but α[ψ0]|kn| > 2 ⇒ cn(t) ≥ cn
8 e|kn|

1/2t ,

high-high instabilities: cn(t) & |kn|−1 ⇒ α[ψn]|kn| > 2⇒ cn(t) ≥ cn
8 e|kn|

1/2t ,

high-high blow-up: cn(t) & 1 ⇒ d
dt ψ̂

n
kn
≥ 1

4 |kn|
1/2ψ̂n

kn
(t)2 ⇒ blow-up.
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Numerical validation
Numerical integration of (WW2) initial data

ζ(t = 0, x) = 0 et ψ′(t = 0, x) =

(
sin(x) +

sin(Kx)

K 2

)
exp(−|x |2).

Figure: Time integration with ε = 1/5, K = 400.
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Numerical validation
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Figure: Blow-up time T ? depending on K and ε.

The toy model predicts T ? ∝ (εK )−1 if ε2K � 1 .
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Quasi-linearization{
∂tζ − |D|ψ + ε|D|((Jζ)|D|ψ) + ε∇ · ((Jζ)∇ψ) = 0,

∂tψ + ζ + ε
2

(
|∇ψ|2 − (|D|ψ)2

)
= 0.

(WW2)

The principle part of the first equation is

∂t ζ̇ − |D|ψ̇ + ε|D|((Jζ̇)|D|ψ) + ε∇ · ((Jζ̇)∇ψ) = 0.

The principle part of the second equation is

∂tψ̇ + ζ̇ + ε(∇ψ) · (∇ψ̇)− ε(|D|ψ)(|D|ψ̇) = 0.

One recognizes Alinhac’s good unknown: ψ̌
def
= ψ̇ − ε(|D|ψ)(Jζ̇):{

∂t ζ̇ − |D|ψ̌ + ε∇ · ((Jζ̇)∇ψ) = 0,

∂tψ̌ + aJ[ζ, ψ]ζ̇ + ε
(
∇ψ · ∇ψ̌

)
= 0,

(Q-WW2)

with
aJ[ζ, ψ]f

def
= f − ε(|D|ζ)Jf︸ ︷︷ ︸

a(ζ)Jf

−ε2 (|D|ψ)J|D|
{

(|D|ψ)Jf
}︸ ︷︷ ︸

,

.
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Context Instabilities Rectification

The regularized sysem

By plugging J = J(D) self-adjoint,{
∂tζ − |D|ψ + ε|D|((Jζ)|D|ψ) + ε∇ · ((Jζ)∇ψ) = 0,

∂tψ + ζ + ε
2 J
(
|∇ψ|2 − (|D|ψ)2

)
= 0,

(RWW2)

enjoys a canonical hamiltonian structure, with

HJ
1(ζ, ψ)

def
=

1

2

∫
Rd

ζ2 + ψ|D|ψ + ε(Jζ)
(
|∇ψ|2 − (|D|ψ)2

)
dx.

Well-posedness [D-Melinand]

Let J = J(D) with J . 〈·〉−1. Let s ≥ d/2 + 1/2. For all
(ζ0, ψ0) ∈ Hs(Rd)× Hs+1/2(Rd), there exists a unique maximal solution
(ζ, ψ) ∈ C((−T?,T

?); Hs(Rd)× Hs+1/2(Rd)) to (RWW2), (ζ, ψ) |t=0 = (ζ0, ψ0).
Moreover, if J . 〈·〉−m, m > d/2 + 3/2 and ε small enough, then
T? = T ? = +∞.

Proof. Compensation lemma [Saut&Xu’12] + Duhamel formula.

For ε small enough, HJ
1(ζ, ψ) ≈

∣∣ζ∣∣2
L2 +

∣∣|D|1/2ψ
∣∣2
L2 is preserved.
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The cost of regularizing
Consistency [D-Melinand]

If J = J0(δD) with J0 ∈ L∞(Rd) and | · |−`(1− J0) ∈ L∞(Rd), then for all δ > 0,

s > d/2 and (ζ, ψ) ∈ C([0,T ]; Hmax(s+`+1,s+2)(Rd)× Hmax(s+`+ 3
2 )(Rd)) solution

to (RWW2), (ζ, ψ) satisfies (WW) up to remainder terms∣∣R0

∣∣
Hs×Hs+ 1

2
. ε2

(∣∣ζ∣∣
Hs+2 +

∣∣|D|1/2ψ
∣∣
Hs+1

)
,∣∣RJ

∣∣
Hs×Hs+ 1

2
. ε δ`

(∣∣ζ∣∣
Hs+`+1 +

∣∣∇ψ∣∣
Hs+`+ 1

2

)
.

Proof.
For R0, [Alvarez-Samaniego&Lannes’08].
For RJ,

∣∣f − Jf
∣∣
Hs ≤ C`δ

`
∣∣f ∣∣

Hs , with C` =
∣∣| · |−`(1− J0)

∣∣
L∞ .

Error between (RWW2) and (WW): smooth i.d. (left) and non-smooth i.d. (right).
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The gain of regularizing

Large time well-posedness [D-Melinand]

Let J0 = J0(|D|) with 〈·〉−1J0 ∈ L∞, 〈·〉∇J ∈ L∞. Let s > d/2 + 2, s ∈ N, C > 1
and M > 0. There exists T0 > 0 such that for all ε > 0, for all
(ζ0, ψ0) ∈ Hs(Rd)× Hs+ 1

2 (Rd) with

0 < εM0
def
= ε

(∣∣ζ0

∣∣
Hs +

∣∣|D|1/2ψ0

∣∣
Hs

)
≤ M,

and for all δ ≥ εM0, one has: for all J = J0(δD), there exists a unique

(ζ, ψ) ∈ C([0,T0/(εM0)]; Hs × Hs+ 1
2 ) solution to (RWW2), (ζ, ψ) |t=0 = (ζ0, ψ0),

with

sup
t∈[−T0/(εM0),T0/(εM0)]

(∣∣ζ(t, ·)
∣∣2
Hs +

∣∣|D|1/2ψ(t, ·)
∣∣2
Hs

)
≤ C

(∣∣ζ0

∣∣2
Hs +

∣∣|D|1/2ψ0

∣∣2
Hs

)
.

Proof.

If ε & 1, Duhamel formula ⇒ T0 ≈ δ.

If ε� 1, energy method ⇒ T0 ≈ min({1, δ/ε}).
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Energy method{
∂tζ − |D|ψ + ε|D|(Jζ)|D|ψ) + ε∇ · ((Jζ)∇ψ) = 0,

∂tψ + ζ + ε
2 J
(
|∇ψ|2 − (|D|ψ)2

)
= 0.

(RWW2)

The principle part of the first equation is

∂t ζ̇ − |D|ψ̇ + ε|D|((Jζ̇)|D|ψ) + ε∇ · ((Jζ̇)∇ψ) = 0.

The principle part of the second equation is

∂tψ̇ + ζ̇ + ε(∇ψ) · J(∇ψ̇)− ε(|D|ψ)J(|D|ψ̇) = 0.

One recognizes Alinhac’s good unknown: ψ̌
def
= ψ̇ − ε(|D|ψ)(Jζ̇):{

∂t ζ̇ − |D|ψ̌ + ε∇ · ((Jζ̇)∇ψ) = 0,

∂tψ̌ + aJ[ζ, ψ]ζ̇ + ε
(
∇ψ · J∇ψ̌

)
= 0,

(Q-RWW2)

with
aJ[ζ, ψ]f

def
= f − ε(|D|ζ)Jf − ε2(|D|ψ)J2|D|

{
(|D|ψ)f

}
.

and one has
min(ε, ε2δ−1)� 1 =⇒

(
aJ[ζ, ψ]f , f

)
L2 ≥ 1

2

∣∣f ∣∣2
L2 .
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Numerical validation
In numerical simulations, we observe a dichotomy:

If δ > δcrit., then large time stability.
If δ < δcrit., then rapid blow-up.

Figure: Critical value δcrit., depending on ε.
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Conclusion and perspectives

Conclusion

We exhibited the instability mechanism induced by (WW2), and proposed
a “rectification” which (for δ well-chosen)

does not harm the precision (in the sense of consistency) of the model;

restores large time well-posedness (and hence convergence);

is costless form the point of view of numerical discretization.

Perspectives

Results are proved in deep but finite depth, not in shallow water.

We have not proved ill-posedness.

We would like to extend the analysis to (WWN) with N arbitrary.

Thank you for your attention
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