On WW2 Propagation of deep water waves

Vincent Duchêne

CNRS & IRMAR, Univ. Rennes 1

Lausanne, April 29, 2022

Joint work with Benjamin Melinand (Paris Dauphine)

where |D|

Instabilities 00000 Rectification 0000000

The model

$$\begin{cases} \partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon \nabla \cdot (\zeta \nabla \psi) = 0, \\ \partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0, \\ = (-\Delta_{\mathbf{x}})^{1/2}, \, \mathbf{x} \in \mathbb{R}^d, \, d \in \{1, 2\}. \end{cases}$$
(WW2)

- (WW2) is a model for water waves in infinite depth, assuming small steepness, $\epsilon \ll 1$.
- (WW2) enjoys a Hamiltonian structure. In particular, it preserves

$$\int \zeta \, \mathrm{d}\mathbf{x}, \quad \int \zeta \nabla \psi \, \mathrm{d}\mathbf{x},$$

$$\mathcal{H}_1(\zeta,\psi) \stackrel{\text{def}}{=} \frac{1}{2} \int_{\mathbb{R}^d} \zeta^2 + \psi |D| \psi + \epsilon \zeta \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) \, \mathsf{d} \mathbf{x}.$$

• (WW2) belongs to a hierarchy of models [Craig&Sulem '93] based on the converging asymptotic expansion

$$\mathcal{H}(\zeta,\psi) \stackrel{\text{def}}{=} \mathcal{H}_1(\zeta,\psi) + \frac{1}{2} \int_{\mathbb{R}^d} \epsilon^2 \psi \mathcal{G}_2[\zeta,\zeta] \psi + \epsilon^3 \psi \mathcal{G}_3[\zeta,\zeta,\zeta] \psi + \dots_{1/1}$$

Numerical instabilities

Numerical integration of the systems in the hierarchy are easily and efficiently implemented using Fourier spectral methods (as done in e.g. [Guyenne&Nicholls '07-08])

In the computations [...] it was observed that <u>spurious oscillations</u> can develop in the wave profile, due to the onset of an instability related to the growth of numerical errors at high wavenumbers. [...] Similar <u>high-wavenumber instabilities</u> were observed by other authors [...] who used smoothing techniques to circumvent this difficulty.

Instabilities 00000 Rectification

Numerical instabilities

Numerical integration of the systems in the hierarchy are easily and efficiently implemented using Fourier spectral methods (as done in e.g. [Guyenne&Nicholls '07-08])

In the computations [...] it was observed that <u>spurious oscillations</u> can develop in the wave profile, due to the onset of an instability related to the growth of numerical errors at high wavenumbers. [...] Similar <u>high-wavenumber instabilities</u> were observed by other authors [...] who used smoothing techniques to circumvent this difficulty.

Proposed instability mechanism

[Ambrose,Bona&Nicholls '14] suggest that

$$\partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon \nabla \cdot (\zeta \nabla \psi) = 0,$$

$$\partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0,$$

[and also (WW3)] is ill-posed in Sobolev spaces, based on

- tailored numerical experiments;
- the toy model

$$\partial_t \psi + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0.$$
 (toy)

[Ambrose,Bona&Nicholls '14]

For all $s \in [0, 3)$, the Cauchy problem associated with (toy) is ill-posed^a in $H^{s}(\mathbb{T})$.

^athere exists a sequence $(\psi_n)_{n\in\mathbb{N}}$ of smooth solutions to (toy) defined on $t\in[0, T_n)$ and such that $|\psi_n(0; \cdot)|_{H^s}\searrow 0$, $T_n\searrow 0$ as $n\to\infty$ and $|\psi_n(t, \cdot)|_{L^2}\to\infty$ as $t\nearrow T_n$.

Outline

Context

2 Instabilities

- Quasi-linearization
- Toy model
- Numerics
- 3 Rectification
 - Construction
 - Justification

Instabilities ••••• Rectification

Quasi-linearization

$$egin{aligned} &\partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon
abla \cdot (\zeta
abla \psi) &= 0, \ &\partial_t \psi + \zeta + rac{\epsilon}{2} \left(|
abla \psi|^2 - (|D|\psi)^2
ight) &= 0, \end{aligned}$$

(WW2)

Compensation Lemma [Saut&Xu '12]

Let $d \in \{1,2\}$, $t_0 > d/2$. For all $r \leq 1$ and $s \geq t_0 + r$,

 $\left| |D|(f|D|g) + \nabla \cdot (f \nabla g) \right|_{H^s} \lesssim \left| \nabla f \right|_{H^s} \left| \nabla g \right|_{H^{s-r}}.$

Proof (d = 1). Denote $a = |D|(f|D|g) + \partial_x(f\partial_x g)$. For $\xi \ge 0$,

 $\widehat{a}(\xi) = \int_{\mathbb{R}} \left(|\xi| |\xi - \eta| - \xi(\xi - \eta) \right) \widehat{f}(\eta) \widehat{g}(\xi - \eta) \, \mathrm{d}\eta = 2 \int_{\xi}^{\infty} \xi(\eta - \xi) \widehat{f}(\eta) \widehat{g}(\xi - \eta) \, \mathrm{d}\eta.$ Since $|\xi| < |\eta|$ and $|\eta - \xi| < |\eta|$, one has for all s > 0 and r' > 0

 $|\langle \xi
angle^s | \widehat{a}(\xi)| \leq 2 \int_{\mathbb{R}} \langle \eta
angle^{s+r'} |\eta| | \widehat{f}(\eta) | \langle \xi - \eta
angle^{-r'} | \xi - \eta| | \widehat{g}(\xi - \eta)| \, \, \mathrm{d}\eta.$

By Young's inequality and since $\langle \cdot
angle^{-t_0} \in L^2(\mathbb{R})$, with r' = 0,

 $\left| |D|(f|D|g) + \nabla \cdot (f \nabla g) \right|_{H^s} \lesssim \left| \partial_x f \right|_{H^s} \left| \partial_x g \right|_{H^{t_0}}.$

This shows the result, without restriction on r when d = 1.

Instabilities 00000

Quasi-linearization

$$\partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon \nabla \cdot (\zeta \nabla \psi) = 0,$$

$$\partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0.$$

The principle part of the first equation is

$$\partial_t \dot{\zeta} - |D| \dot{\psi} + \epsilon |D| (\dot{\zeta} |D| \underline{\psi}) + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0.$$

The principle part of the second equation is

 $\partial_t \dot{\psi} + \dot{\zeta} + \epsilon (\nabla \underline{\psi}) \cdot (\nabla \dot{\psi}) - \epsilon (|D|\underline{\psi}) (|D|\dot{\psi}) = 0.$

One recognizes Alinhac's good unknown: $\check{\psi} \stackrel{\text{def}}{=} \dot{\psi} - \epsilon(|D|\psi)\dot{\zeta}$:

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0, \\ \partial_t \check{\psi} + \mathfrak{a}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \nabla \check{\psi}) = 0, \end{cases}$$
(Q-WW2)

$$\mathfrak{a}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} \underbrace{f - \epsilon(|D|\underline{\zeta})f}_{a(\underline{\zeta})f} - \epsilon^2 \underbrace{(|D|\underline{\psi})|D|\{(|D|\underline{\psi})f\}}_{\underline{z}}.$$

Instabilities 00000

Quasi-linearization

$$\partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon \nabla \cdot (\zeta \nabla \psi) = 0,$$

$$\partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0.$$

The principle part of the first equation is

$$\partial_t \dot{\zeta} - |D| \dot{\psi} + \epsilon |D| (\dot{\zeta} |D| \underline{\psi}) + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0.$$

The principle part of the second equation is

$$\partial_t \dot{\psi} + \dot{\zeta} + \epsilon (\nabla \underline{\psi}) \cdot (\nabla \dot{\psi}) - \epsilon (|D|\underline{\psi}) (|D|\dot{\psi}) = 0.$$

One recognizes Alinhac's good unknown: $\check{\psi} \stackrel{\text{def}}{=} \dot{\psi} - \epsilon (|D|\psi)\dot{\zeta}$:

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0, \\ \partial_t \check{\psi} + \mathfrak{a}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \nabla \check{\psi}) = 0, \end{cases}$$
(Q-WW2)

$$\mathfrak{a}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} \underbrace{f - \epsilon(|D|\underline{\zeta})f}_{\mathfrak{a}(\underline{\zeta})f} - \epsilon^2 \underbrace{(|D|\underline{\psi})|D|\{(|D|\underline{\psi})f\}}_{\underline{\mathfrak{a}}(\underline{\zeta})f}.$$

Instabilities ○○○●○

Toy model

Rectification

We mimic

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0, \\ \partial_t \check{\psi} + \mathfrak{a}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \nabla \check{\psi}) = 0, \end{cases}$$
(Q-WW2)

$$\mathfrak{a}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} \underbrace{f - \epsilon(|D|\underline{\zeta})f}_{\mathfrak{a}(\underline{\zeta})f} - \epsilon^2 \underbrace{(|D|\underline{\psi})|D|\{(|D|\underline{\psi})f\}}_{\underline{\mathfrak{g}}}.$$

$$\begin{cases} \partial_t \zeta - |D|\psi = 0, \\ \partial_t \psi + (1 - \alpha[\psi]|D|)\zeta = 0, \end{cases}$$

$$\alpha[\psi] \stackrel{\text{def}}{=} \epsilon^2 \int (|D|\psi)^2 \, \mathrm{d}\mathbf{x}.$$
 (toy)

Instabilities

Toy model

Rectification 0000000

$$\begin{cases} \partial_t \zeta - |D|\psi = 0, \\ \partial_t \psi + (1 - \alpha[\psi]|D|)\zeta = 0, \end{cases} \qquad \alpha[\psi] \stackrel{\text{def}}{=} \epsilon^2 \int (|D|\psi)^2 \, \mathrm{d}\mathbf{x}. \quad (\text{toy})$$

Ill-posedness in $H^{\infty}(\mathbb{T}^d)$ [D-Melinand] For all $\epsilon > 0$, there exists $(\zeta_n, \psi_n)_{n \in \mathbb{N}}$ smooth solutions to (toy) defined on $[0, T_n)$ with

$$\forall s \in \mathbb{R}, \ \left| \zeta_n \right|_{t=0} \left|_{H^s(\mathbb{T}^d)} + \left| \psi_n \right|_{t=0} \right|_{H^s(\mathbb{T}^d)} \searrow 0 \quad \text{and} \quad T_n \searrow 0 \quad (n \to \infty),$$

and

$$\forall s' \in \mathbb{R}, \qquad \left| \psi^n(t, \cdot) \right|_{H^{s'}(\mathbb{T}^d)} \to \infty \quad (t \nearrow T_n).$$

<u>Proof.</u> We put $\zeta_n|_{t=0} = 0$ and $\psi_n|_{t=0} = b_n \cos(\mathbf{k}_0 \cdot \mathbf{x}) + c_n \cos(\mathbf{k}_n \cdot \mathbf{x})$ where $\mathbf{k}_0 \neq \mathbf{0}, \ |\mathbf{k}_n| \nearrow \infty, \ b_n = |\mathbf{k}_n|^{-1/4}, \ c_n = \exp(-|\mathbf{k}_n|^{1/4}).$

<

Instabilities

Toy model

$$\begin{cases} \partial_t \zeta - |D|\psi = 0, \\ \partial_t \psi + (1 - \alpha[\psi]|D|)\zeta = 0, \end{cases} \qquad \alpha[\psi] \stackrel{\text{def}}{=} \epsilon^2 \int (|D|\psi)^2 \, \mathrm{d}\mathbf{x}. \quad (\text{toy})$$

Ill-posedness in $H^{\infty}(\mathbb{T}^d)$ [D-Melinand]

<u>Proof.</u> We put $\zeta_n|_{t=0} = 0$ and $\psi_n|_{t=0} = b_n \cos(\mathbf{k}_0 \cdot \mathbf{x}) + c_n \cos(\mathbf{k}_n \cdot \mathbf{x})$ where

$$\mathbf{k}_0 \neq \mathbf{0}, \; |\mathbf{k}_n| \nearrow \infty, \; b_n = |\mathbf{k}_n|^{-1/4}, \; c_n = \exp(-|\mathbf{k}_n|^{1/4}).$$

By studying the system of ODEs on Fourier coefficients, we observe successively

- low-high instabilities: $\alpha[\psi]|\mathbf{k}_0| < 1$ but $\alpha[\psi_0]|\mathbf{k}_n| > 2 \Rightarrow c_n(t) \geq \frac{c_n}{8}e^{|\mathbf{k}_n|^{1/2}t}$,
- high-high instabilities: $c_n(t) \gtrsim |\mathbf{k}_n|^{-1} \Rightarrow \alpha[\psi_n] |\mathbf{k}_n| > 2 \Rightarrow c_n(t) \geq \frac{c_n}{8} e^{|\mathbf{k}_n|^{1/2}t}$
- high-high blow-up: $c_n(t) \gtrsim 1 \Rightarrow \frac{d}{dt} \widehat{\psi}_{\mathbf{k}_n}^n \geq \frac{1}{4} |\mathbf{k}_n|^{1/2} \widehat{\psi}_{\mathbf{k}_n}^n(t)^2 \Rightarrow \text{blow-up.}$

Instabilities

Rectification

Numerical validation

Numerical integration of (WW2) initial data

 $\zeta(t=0,x)=0$ et $\psi'(t=0,x)=\left(\sin(x)+rac{\sin(\mathcal{K}x)}{\mathcal{K}^2}
ight)\exp(-|x|^2).$

Figure: Time integration with $\epsilon = 1/5$, K = 400.

Instabilities

Rectification

Numerical validation

Numerical integration of (WW2) initial data

 $\zeta(t=0,x)=0 \quad \text{et} \quad \psi'(t=0,x)=\left(\sin(x)+\frac{\sin(\mathcal{K}x)}{\mathcal{K}^2}\right)\exp(-|x|^2).$

Figure: Blow-up time T^* depending on K and ϵ . The toy model predicts $T^* \propto (\epsilon K)^{-1}$ if $\epsilon^2 K \gg 1$.

Outline

Context

Instabilitie

- Quasi-linearization
- Toy model
- Numerics

- Construction
- Justification

Quasi-linearization

$$\begin{cases} \partial_t \zeta - |D|\psi + \epsilon |D|(\zeta |D|\psi) + \epsilon \nabla \cdot (\zeta \nabla \psi) = 0, \\ \partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) = 0. \end{cases}$$

Rectification

The principle part of the first equation is

$$\partial_t \dot{\zeta} - |D| \dot{\psi} + \epsilon |D| (\dot{\zeta} |D| \underline{\psi}) + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0.$$

The principle part of the second equation is

$$\partial_t \dot{\psi} + \dot{\zeta} + \epsilon (\nabla \underline{\psi}) \cdot (\nabla \dot{\psi}) - \epsilon (|D|\underline{\psi}) (|D|\dot{\psi}) = 0.$$

One recognizes Alinhac's good unknown: $\check{\psi} \stackrel{\text{def}}{=} \dot{\psi} - \epsilon(|D|\psi)\dot{\zeta}$:

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot (\dot{\zeta} \nabla \underline{\psi}) = 0, \\ \partial_t \check{\psi} + \mathfrak{a}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \nabla \check{\psi}) = 0, \end{cases}$$
(Q-WW2)

$$\mathfrak{a}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} \underbrace{f - \epsilon(|D|\underline{\zeta})f}_{\mathfrak{a}(\underline{\zeta})f} - \epsilon^2 \underbrace{(|D|\underline{\psi})|D|\{(|D|\underline{\psi})f\}}_{\underline{\mathfrak{a}}(\underline{\zeta})f}.$$

Quasi-linearization

$$\begin{split} \partial_t \zeta - |D|\psi + \epsilon |D|((\mathsf{J}\zeta)|D|\psi) + \epsilon \nabla \cdot ((\mathsf{J}\zeta)\nabla\psi) &= 0, \\ \partial_t \psi + \zeta + \frac{\epsilon}{2} \left(|\nabla \psi|^2 - (|D|\psi)^2 \right) &= 0. \end{split}$$

Rectification

The principle part of the first equation is

 $\partial_t \dot{\zeta} - |D| \dot{\psi} + \epsilon |D| ((\mathsf{J}\dot{\zeta})|D|\underline{\psi}) + \epsilon \nabla \cdot ((\mathsf{J}\dot{\zeta})\nabla \underline{\psi}) = \mathbf{0}.$

The principle part of the second equation is

$$\partial_t \dot{\psi} + \dot{\zeta} + \epsilon (\nabla \underline{\psi}) \cdot (\nabla \dot{\psi}) - \epsilon (|D|\underline{\psi}) (|D|\dot{\psi}) = 0.$$

One recognizes Alinhac's good unknown: $\check{\psi} \stackrel{\text{def}}{=} \dot{\psi} - \epsilon(|D|\psi)(\mathsf{J}\dot{\zeta})$:

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot ((\mathbf{J} \dot{\zeta}) \nabla \underline{\psi}) = \mathbf{0}, \\ \partial_t \check{\psi} + \mathfrak{a}_{\mathbf{J}}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \nabla \check{\psi}) = \mathbf{0}, \end{cases}$$
(Q-WW2)

with

<

$$\mathfrak{a}_{\mathsf{J}}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} \underbrace{f - \epsilon(|D|\underline{\zeta})\mathsf{J}f}_{a(\underline{\zeta})\mathsf{J}f} - \epsilon^{2}\underbrace{(|D|\underline{\psi})\mathsf{J}|D|\{(|D|\underline{\psi})\mathsf{J}f\}}_{\odot}.$$

The regularized sysem

By plugging J = J(D) self-adjoint,

$$\begin{cases} \partial_t \zeta - |D|\psi + \epsilon |D|((\mathsf{J}\zeta)|D|\psi) + \epsilon \nabla \cdot ((\mathsf{J}\zeta)\nabla\psi) = 0, \\ \partial_t \psi + \zeta + \frac{\epsilon}{2}\mathsf{J}\left(|\nabla\psi|^2 - (|D|\psi)^2\right) = 0, \end{cases}$$
(RWW2)

enjoys a canonical hamiltonian structure, with

$$\mathcal{H}_{1}^{\mathsf{J}}(\zeta,\psi) \stackrel{\text{def}}{=} \frac{1}{2} \int_{\mathbb{R}^{d}} \zeta^{2} + \psi |D|\psi + \epsilon(\mathsf{J}\zeta) \left(|\nabla\psi|^{2} - (|D|\psi)^{2} \right) \, \mathsf{d}\mathbf{x}$$

Well-posedness [D-Melinand]

Let J = J(D) with $J \leq \langle \cdot \rangle^{-1}$. Let $s \geq d/2 + 1/2$. For all $(\zeta_0, \psi_0) \in H^s(\mathbb{R}^d) \times H^{s+1/2}(\mathbb{R}^d)$, there exists a unique maximal solution $(\zeta, \psi) \in \mathcal{C}((-T_\star, T^\star); H^s(\mathbb{R}^d) \times H^{s+1/2}(\mathbb{R}^d))$ to (RWW2), $(\zeta, \psi)|_{t=0} = (\zeta_0, \psi_0)$. Moreover, if $J \leq \langle \cdot \rangle^{-m}$, m > d/2 + 3/2 and ϵ small enough, then $T_\star = T^\star = +\infty$.

<u>Proof.</u> Compensation lemma [Saut&Xu'12] + Duhamel formula. For ϵ small enough, $\mathcal{H}_{1}^{\mathsf{J}}(\zeta, \psi) \approx |\zeta|_{L^{2}}^{2} + ||D|^{1/2}\psi|_{L^{2}}^{2}$ is preserved. Rectification

The cost of regularizing

Rectification

Consistency [D-Melinand]

If $J = J_0(\delta D)$ with $J_0 \in L^{\infty}(\mathbb{R}^d)$ and $|\cdot|^{-\ell}(1 - J_0) \in L^{\infty}(\mathbb{R}^d)$, then for all $\delta > 0$, s > d/2 and $(\zeta, \psi) \in C([0, T]; H^{\max(s+\ell+1,s+2)}(\mathbb{R}^d) \times H^{\max(s+\ell+\frac{3}{2})}(\mathbb{R}^d))$ solution to (RWW2), (ζ, ψ) satisfies (WW) up to remainder terms

$$\begin{split} & \left| R_0 \right|_{H^s \times H^{s+\frac{1}{2}}} \lesssim \epsilon^2 \left(\left| \zeta \right|_{H^{s+2}} + \left| \left| D \right|^{1/2} \psi \right|_{H^{s+1}} \right), \\ & \left| R_\mathsf{J} \right|_{H^s \times H^{s+\frac{1}{2}}} \lesssim \epsilon \, \delta^\ell \left(\left| \zeta \right|_{H^{s+\ell+1}} + \left| \nabla \psi \right|_{H^{s+\ell+\frac{1}{2}}} \right). \end{split}$$

Proof.

For R_0 , [Alvarez-Samaniego&Lannes'08]. For R_J , $|f - Jf|_{H^s} \leq C_\ell \delta^\ell |f|_{H^s}$, with $C_\ell = || \cdot |^{-\ell} (1 - J_0)|_{L^{\infty}}$.

The cost of regularizing

Consistency [D-Melinand]

If $J = J_0(\delta D)$ with $J_0 \in L^{\infty}(\mathbb{R}^d)$ and $|\cdot|^{-\ell}(1 - J_0) \in L^{\infty}(\mathbb{R}^d)$, then for all $\delta > 0$, s > d/2 and $(\zeta, \psi) \in C([0, T]; H^{\max(s+\ell+1,s+2)}(\mathbb{R}^d) \times H^{\max(s+\ell+\frac{3}{2})}(\mathbb{R}^d))$ solution to (RWW2), (ζ, ψ) satisfies (WW) up to remainder terms

$$\begin{split} & \left| R_0 \right|_{H^s \times H^{s+\frac{1}{2}}} \lesssim \epsilon^2 \left(\left| \zeta \right|_{H^{s+2}} + \left| \left| D \right|^{1/2} \psi \right|_{H^{s+1}} \right), \\ & \left| R_\mathsf{J} \right|_{H^s \times H^{s+\frac{1}{2}}} \lesssim \epsilon \, \delta^\ell \left(\left| \zeta \right|_{H^{s+\ell+1}} + \left| \nabla \psi \right|_{H^{s+\ell+\frac{1}{2}}} \right). \end{split}$$

Error between (RWW2) and (WW): smooth i.d. (left) and non-smooth i.d. (right).

Rectification

The gain of regularizing

Rectification

Large time well-posedness [D-Melinand]

Let $J_0 = J_0(|D|)$ with $\langle \cdot \rangle^{-1} J_0 \in L^{\infty}$, $\langle \cdot \rangle \nabla J \in L^{\infty}$. Let s > d/2 + 2, $s \in \mathbb{N}$, C > 1and M > 0. There exists $T_0 > 0$ such that for all $\epsilon > 0$, for all $(\zeta_0, \psi_0) \in H^s(\mathbb{R}^d) \times H^{s+\frac{1}{2}}(\mathbb{R}^d)$ with

$$0 < \epsilon M_0 \stackrel{\text{def}}{=} \epsilon \left(\left| \zeta_0 \right|_{H^s} + \left| |D|^{1/2} \psi_0 \right|_{H^s} \right) \le M,$$

and for all $\delta \geq \epsilon M_0$, one has: for all $J = J_0(\delta D)$, there exists a unique $(\zeta, \psi) \in C([0, T_0/(\epsilon M_0)]; H^s \times H^{s+\frac{1}{2}})$ solution to (RWW2), $(\zeta, \psi)|_{t=0} = (\zeta_0, \psi_0)$, with

 $\sup_{t\in [-T_0/(\epsilon M_0), T_0/(\epsilon M_0)]} \left(\left| \zeta(t, \cdot) \right|_{H^s}^2 + \left| |D|^{1/2} \psi(t, \cdot) \right|_{H^s}^2 \right) \leq C \left(\left| \zeta_0 \right|_{H^s}^2 + \left| |D|^{1/2} \psi_0 \right|_{H^s}^2 \right).$

Proof.

- If $\epsilon \gtrsim 1$, Duhamel formula $\Rightarrow T_0 \approx \delta$.
- If $\epsilon \ll 1$, energy method $\Rightarrow T_0 \approx \min(\{1, \delta/\epsilon\})$.

The gain of regularizing

Rectification

Large time well-posedness [D-Melinand]

Let $J_0 = J_0(|D|)$ with $\langle \cdot \rangle^{-1} J_0 \in L^{\infty}$, $\langle \cdot \rangle \nabla J \in L^{\infty}$. Let s > d/2 + 2, $s \in \mathbb{N}$, C > 1and M > 0. There exists $T_0 > 0$ such that for all $\epsilon > 0$, for all $(\zeta_0, \psi_0) \in H^s(\mathbb{R}^d) \times H^{s+\frac{1}{2}}(\mathbb{R}^d)$ with

$$0 < \epsilon M_0 \stackrel{\text{def}}{=} \epsilon \left(\left| \zeta_0 \right|_{H^s} + \left| |D|^{1/2} \psi_0 \right|_{H^s} \right) \le M,$$

and for all $\delta \geq \epsilon M_0$, one has: for all $J = J_0(\delta D)$, there exists a unique $(\zeta, \psi) \in C([0, T_0/(\epsilon M_0)]; H^s \times H^{s+\frac{1}{2}})$ solution to (RWW2), $(\zeta, \psi)|_{t=0} = (\zeta_0, \psi_0)$, with

 $\sup_{t\in [-T_0/(\epsilon M_0), T_0/(\epsilon M_0)]} \left(\left| \zeta(t, \cdot) \right|_{H^s}^2 + \left| |D|^{1/2} \psi(t, \cdot) \right|_{H^s}^2 \right) \leq C \left(\left| \zeta_0 \right|_{H^s}^2 + \left| |D|^{1/2} \psi_0 \right|_{H^s}^2 \right).$

Proof.

- If $\epsilon \gtrsim 1$, Duhamel formula $\Rightarrow T_0 \approx \delta$.
- If $\epsilon \ll 1$, energy method $\Rightarrow T_0 \approx \min(\{1, \delta/\epsilon\})$.

Instabilities 00000 Rectification

Energy method

$$\begin{cases} \partial_t \zeta - |D|\psi + \epsilon |D|(\mathsf{J}\zeta)|D|\psi) + \epsilon \nabla \cdot ((\mathsf{J}\zeta)\nabla\psi) = 0, \\ \partial_t \psi + \zeta + \frac{\epsilon}{2}\mathsf{J}\left(|\nabla\psi|^2 - (|D|\psi)^2\right) = 0. \end{cases}$$

The principle part of the first equation is

 $\partial_t \dot{\zeta} - |D| \dot{\psi} + \epsilon |D| ((\mathsf{J}\dot{\zeta})|D|\underline{\psi}) + \epsilon \nabla \cdot ((\mathsf{J}\dot{\zeta})\nabla \underline{\psi}) = 0.$

The principle part of the second equation is

$$\partial_t \dot{\psi} + \dot{\zeta} + \epsilon(\nabla \underline{\psi}) \cdot \mathsf{J}(\nabla \dot{\psi}) - \epsilon(|D|\underline{\psi})\mathsf{J}(|D|\dot{\psi}) = 0.$$

One recognizes Alinhac's good unknown: $\check{\psi} \stackrel{\text{def}}{=} \dot{\psi} - \epsilon(|D|\psi)(\mathsf{J}\dot{\zeta})$:

$$\begin{cases} \partial_t \dot{\zeta} - |D| \check{\psi} + \epsilon \nabla \cdot ((\mathsf{J}\dot{\zeta}) \nabla \underline{\psi}) = \mathsf{0}, \\ \partial_t \check{\psi} + \mathfrak{a}_{\mathsf{J}}[\underline{\zeta}, \underline{\psi}] \dot{\zeta} + \epsilon (\nabla \underline{\psi} \cdot \mathsf{J} \nabla \check{\psi}) = \mathsf{0}, \end{cases}$$
(Q-RWW2)

with

$$\mathfrak{a}_{\mathsf{J}}[\underline{\zeta},\underline{\psi}]f \stackrel{\text{def}}{=} f - \epsilon(|D|\underline{\zeta})\mathsf{J}f - \epsilon^{2}(|D|\underline{\psi})\mathsf{J}^{2}|D|\{(|D|\underline{\psi})f\}.$$

and one has

 $\min(\epsilon, \epsilon^2 \delta^{-1}) \ll 1 \implies \left(\mathfrak{a}_{\mathsf{J}}[\underline{\zeta}, \underline{\psi}] f, f\right)_{L^2} \geq \frac{1}{2} |f|_{L^2}^2.$

Numerical validation

In numerical simulations, we observe a dichotomy:

- If $\delta > \delta_{\rm crit.}$, then large time stability.
- If $\delta < \delta_{\rm crit.}$, then rapid blow-up.

Figure: Critical value $\delta_{\rm crit.}$, depending on ϵ .

Rectification

Conclusion and perspectives

Conclusion

We exhibited the instability mechanism induced by (WW2), and proposed a "rectification" which (for δ well-chosen)

- does not harm the precision (in the sense of consistency) of the model;
- restores large time well-posedness (and hence convergence);
- is costless form the point of view of numerical discretization.

Perspectives

- Results are proved in deep but finite depth, not in shallow water.
- We have not proved ill-posedness.
- We would like to extend the analysis to (WWN) with N arbitrary.

Conclusion and perspectives

Conclusion

We exhibited the instability mechanism induced by (WW2), and proposed a "rectification" which (for δ well-chosen)

- does not harm the precision (in the sense of consistency) of the model;
- restores large time well-posedness (and hence convergence);
- is costless form the point of view of numerical discretization.

Perspectives

- Results are proved in deep but finite depth, not in shallow water.
- We have not proved ill-posedness.
- We would like to extend the analysis to (WWN) with N arbitrary.

Thank you for your attention