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[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”
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[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”

Standard models include: Saint-Venant, Boussinesq, Serre—Green—Naghdi,
Matsuno, Korteweg—de Vries, Benjamin—Bona—Mahony, Camassa—Holm,
Kawahara, Whitham, Kadomtsev—Petviashvili, Benney-Roskes, NLS...
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Models for free-surface flows: comparison

o Korteweg—de Vries equation
0eC + VgdOx(C + 5 + F %) = 0.

V' rigorously justified for long waves

v/ Hamiltonian structure (conserved quantities)

X dimension n = 1, unidirectional

X no wavebreaking, solitary waves of arbitrary amplitude
e Whitham equation

OeC + Vgdox((/ZHEPUC + 2¢?) =

rigorously justified for long waves!

Hamiltonian structure (conserved quantities)
dimension n = 1, unidirectional
wavebreaking, solitary waves with maximal height?
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Models for free-surface flows: comparison

o Korteweg—de Vries equation
O + VBAO(C + 756> + F0%() = 0.

v rigorously justified for long waves

v/ Hamiltonian structure (conserved quantities)

X dimension n = 1, unidirectional

X no wavebreaking, solitary waves of arbitrary amplitude
o Whitham equation

OrC + VVad0x(\/ G HT A + 55¢7) = 0.

v rigorously justified for long waves?

V" Hamiltonian structure (conserved quantities)
X dimension n = 1, unidirectional
V" wavebreaking, solitary waves with maximal height?

![Klein,Linares,Pilod,Saut '18]
2respectively [Hur '17] and [Ehrnstrom&Wahlén '19]
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Models for free-surface flows: comparison

o Boussinesq systems
For given a, b, c € R,

0:¢ — ad’ Ao+ V - (du + bd3Au + Cu) =0,
dru — cd’Adu+ gV (+g(3 —a—b—c)d>AV(+ (u-V)u=0.

v rigorously justified for long waves (if well-posed [Saut&Xu '12, '15])
v/ Hamiltonian structure (conserved quantities) (if a = c)

v dimension n > 1, bidirectional

? no wavebreaking, solitary waves of arbitrary height

@ Boussinesq-Whitham systems
Aim: Exhibit at least one system with the following properties:
rigorously justified for long waves
Hamiltonian structure (conserved quantities)
dimension n > 1, bidirectional
? wavebreaking, solitary waves with maximal amplitude



Motivation
oeo

Models for free-surface flows: comparison

o Boussinesq systems
For given a, b, c € R,

9¢¢ — ad’ A0, + V - (du + bd3Au + Cu) =0,
dru — cd’Adu+ gV (+g(3 —a—b—c)d>AV(+ (u-V)u=0.

v rigorously justified for long waves (if well-posed [Saut&Xu '12, '15])
v/ Hamiltonian structure (conserved quantities) (if a = c)

v dimension n > 1, bidirectional

? no wavebreaking, solitary waves of arbitrary height

@ Boussinesq-Whitham systems
Aim: Exhibit at least one system with the following properties:
v rigorously justified for long waves
v/ Hamiltonian structure (conserved quantities)
v dimension n > 1, bidirectional
? wavebreaking, solitary waves with maximal amplitude
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Boussinesq-Whitham systems
Surveys by [Klein,Linares,Pilod,Saut'18][Carter'18][Dinvay,Dutykh,Kalisch'19]
© [Aceves-Sanchez,Minzoni,Payanotaros '13], [Moldabayev,Kalisch,Dutykh '15]
0 + APV GV u 4+ V- (Cu) = 0
Ou+gVei+ (u-Viu=0

X existence of solutions requires either positive deformation [Pei,Wang'19] or
surface tension [Kalisch,Pilod’19]

@ [Hur,Pandey’'19]

tanh(d|DJ)

0:(+dV-u+V-(Cu)=0
O+ =558V + (u-Vju=0

X Wrong Hamiltonian. Well-posedness not known.
© [Dinvay,Dutykh,Kalisch'19]
0eC +dV -u+ =LY . (Cu) =0
Do+ 3440 (L IO T — 0

\/ Hamiltonian, good well-posedness properties [Dinvay,Selberg, Tesfahun].

Aim of this talk: show that this model (among others) is a long wave
asymptotic model with improved precision with respect to Boussinesq.
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@ large-time well-posedness theory

@ Conclusion



Motivation

P = Patm

Po

d

Consistency Full justification
000000 0000

The water-waves system

/—atC = 1+ |aacC|2u’n

A

divu = 0

dru+ (u-gradju + pylgradP = —ge,

Conclusion

¢(t,x)

h(t,x)

x ~u-e, =0

The domain is an infinite layer with a free surface.
The fluid is incompressible, the only external force is gravity.
Particles of fluid cannot cross the surface or bottom.

Surface tension, viscosity, atm. pressure are not taken into account.
[rrotational motion: u = gradde.
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Conclusion
Irrotational motion
Potential flows

In the irrotational setting u = grad¢, the fluid velocity is determined by

C(t:x) and v(t,x) = 6(t, x, (£, ))
after solving

Ap=0 in {(x,z) —d<z<{(t,x)},
0,0=0 on {(x,z) z = —d},
¢=1 on {(x,2) z = ¢(t,x)}.

Zakharov/Craig-Sulem formulation
The full Euler equations are equivalent to the following system

. OH
()1L 50 — =0,
()t( Jr ’:)i—[ = 0
where

def 1
Hz/gQ + Y G[C|y



Motivation Con5|stency FUH ustification Conclusion
000C ofe

Irrotational motlon
Potential flows
In the irrotational setting u = grad¢, the fluid velocity is determined by

6(t,x) and (£, x) = (t, x, G (£, x))
after solving
Ap=0 in {(x,z) —d<z<{(t,x)},
0,¢=0 on {(x,z) z = —d},
b=t on{(x2)z=C(tx)}

Zakharov/Craig-Sulem formulation [Zakharov '68, Craig&Sulem '93]
The full Euler equations are equivalent to the following system

)
atg_%: ’
O + ¢ — Y

where

7 / g UG dx, G = (926 — VC - Vo) loe.
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Asymptotic models

We seek simplified models with valid predictions in a given regime.

¢(t,x)

gl h(t,x)

—d y .
x

Through rescaling, we work with dimensionless variables of size ~ 1, and
dimensionless parameters appear in the system :

e & a/d ; i e d?/)2.

Shallow-water: 1 < 1. Weakly nonlinear: ¢ < 1. Long waves: ¢, 1 < 1.




Motivation Consistency Full justification Conclusion
[e]e]e} O00e000 0000 [e]e)

The Dirichlet-to-Neumann operator
We want provide approximate expressions for (as e, 1 < 1) to

G"'[eCly = (020 — 1€V (- V)=
where ¢ satisfies the (scaled) Laplace problem
02¢ + 1Dy =0 in {(x,z) —1<z<e((t,x)},
0,0=0 on {(x,z) z= -1},
¢ =1 on {(x,z) z=¢€((t,x)}.

Strategy
e Flatten the domain with X : (X,z) € R" x (0,1) — (X,0(X, 2))
where (X, z) = (14 eQ)z+ ¢ ~ (X, z) € ¢(X,0(X, 2)).
o Construct ¢*PP solving approximately the equations on the flat strip.
o Elliptic estimates ~» control of ¢ — ¢*PP.
@ Use in the identity

e [y =V - (/01 9,0(Vo) — VXc’N)(OZ(r)dZ> .
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The Dirichlet-to-Neumann operator

We want provide approximate expressions for (as ¢, 1 < 1) to

GH'[eClt = (920 — 1€V (- V)| 2=
where ¢ satisfies the (scaled) Laplace problem
02¢ + 1A =0 in {(x,z) —1<z<e(t,x)},
0,0=0 on {(x,z) z = -1},
b= on {(x,2) z = eC(t, )}

Strategy [Lannes '13]
e Flatten the domain with X : (X,z) € R" x (0,1) — (X, 0(X, 2))
where 0(X,z) = (1+e()z+ € ~ 3(X, z) o o(X,0(X, 2)).
o Construct qZ;app solving approximately the equations on the flat strip.
o Elliptic estimates ~> control of qg — dN)app.
@ Use in the identity

Loty =9 ([ 0.8(v0) - .i(ouoaz ).
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The Dirichlet- to-Neumann operator

Strategy [Lannes '13]

o Flatten the domain with X : (X,z) € R" x (0,1) — (X, 0(X, 2))

where 0(X,z) = (1 +c()z+ e~ d(X,2) = ¢(X,0(X,2)).

@ Construct ¢*PP solving approximately the equations on the flat strip.
o Elliptic estimates ~~ control of ¢ — ¢?PP.
@ Use in the identity

lltclt[eglqp _v. ( /_ 01 0,6(Vo) — quf?(aza)dz> .

For instance,
® ¢PP(.,z) =1 v G el = =V - (L + )VY) + O(n)
~»  Saint-Venant system is consistent with precision O(11)
0 57PP(-,z) = b — 3(1+ €C)2(2% 4 22) Ay w LGy =[]+ 0(1?)
~  Green-Naghdi system is consistent with precision O(1/?)
o rwr(,z) = DI, w LGHClb =[] + O(ep)
~»  Boussinesg-Whitham systems are consistent with precision O(es)
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[Emerald]

Let s € N, h, M > 0. There exists C > 0 such that for any ¢ € HS™*(R")
such that
1+eC>h and 6HC| pors <M,

and for any ¥ € L2 (R) such that Vi) € HST3(R") we have

loc

p < eu CI¢]

sss | V¥

Hs+3

H,%Gﬂ[edw +V - ((1+Q)FVy)|

tanh(\/ﬁ|D|).

where F# = JiID]
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[Emerald]
1
H;G“[ec]¢+ V- (1 + Q)FFVY) || s < et CIC| yosal| V|| yors
"o tanh(y/Z2|D])
where F N

Consistency [Emerald]

Let s € N, hy M > 0. There exists C > 0 such that for any (, v strong
solution to (WW) such that for any t € [0, T),

1+eC>h and 6”( Hsta T EHV¢ Hs+3 <M,
we have
{ B¢ +V - (14 Q)FVY) = n
81‘1/} +<+ §|VQ)[)|2 = I’2,
with 2
H(r17r2) Hs <euC (”C Hsta T va Hs+3) .

X Not Hamiltonian (7). Not well-posed (?)
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Hamiltonian systems

To construct Hamiltonian systems, we use the approximation

1
H / <2+¢ GH[eC] dx = = / V- FAV Y +e¢ | Vi Pdx+O(epr)
where F/' = %—%”DI), and use Hamilton's equations.

Let s e N, hy M > 0. There exists C > 0 such that for any (, strong
solution to (WW) such that for any t € [0, T),

1+e¢>h and  €|[¢]| yora + €| VY| yors < M,
we have
OC+ V- (FIVY 4+ (V) =
{ oY+ ¢+ 5|VY|2 =
with
< e C (| gers + 1V rera)

Not well-posed (?)
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Hamiltonian systems

Conclusion

To construct Hamiltonian systems, we use the approximation
e 1
L /g%w Gl dx = = /g2+w FIVe 4 e¢ [V Pdx +O(ep)

tanh(,/72| D) I .
JT—
where F/' = N and use Hamilton's equations.

Consistency [Emerald]

Let s € N, hy M > 0. There exists C > 0 such that for any ¢, strong
solution to (WW) such that for any t € [0, T),

1+eC>h and f”d Hsta T €HV¢‘ a3 S M,
we have
{ ¢+ V- (FFVY + (V) =n
Oy + ¢ + 5|VY|? = n,
with
H(r17r2)‘ Hs S GMC (HC‘ Hs+4 + Hv¢| Hs+3)

X Not well-posed (?)
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Well-posed Hamiltonian systems

To construct WeII—posed Hamiltonian systems, we regularize
1
HE / <2+¢ G [eC] dx = / 4V FIVp+eC|FL Vi Pdx+O(ep)
where F) = fz(\/ﬁ|D|) with £(0) =1, £J(0) = 0 and f, of order o < 0.

Let s € N, hy M > 0. There exists C > 0 such that for any (, v strong
solution to (WW) such that for any t € [0, T),

1 + C 2 h and HC‘ Hs+4 + Hv[‘| Hs+3 S M',
we have )
O+ V- (FFVY + eFL(CFAVY)) =
Orh + ¢ + 5|F5VY? =
with . 2
<enC <HQ|HS+4+HVU‘H5*3>
If = = w, we recover the system in
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Conclusion
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Well- posed Hamlltoman systems

To construct WeII—posed Hamiltonian systems, we regularize
e 1
L / 2+ qp G [ dx = 5 / CHVY-FIVp+eC|FL Vi Pdx+O(ep)

where ) = fz(f]D\) with »(0) =1, £;(0) =0 and £, of order o < 0.
Consistency [Emerald]

Let s € N, hy M > 0. There exists C > 0 such that for any (, v strong
solution to (WW) such that for any t € [0, T),

1+eC>h and  €|[C]]yora + €|V yors < M,
we have
{ 8¢+ V- (FFVY + eF5(CFLVY)) =
A+ ¢+ 5IF5VY? = n,
with 2
H(I’l,l’2)‘ Hs S 6/LC‘ (HC‘ Hs+4 + va{ Hs+3) .

4

h(y/71| D .
V fFf =Fr = %, we recover the system in [Dinvay,Dutykh,Kalisch]



© Full justification
@ from consistency to convergence
@ large-time well-posedness theory
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From consistency to convergence

Large-time well-posedness [Alvarez-Samaniego,Lannes '08][Iguchi '09]

Let hg, Mg >0 and N > Ny > 6, 2 < P < N. There exists C, T > 0 such that for
any ¢, 1 € (0,1] and any (o, Vtbo € HN(R™) such that

1+eCo>hy and |||l yne + V<0l e < Mo,
there exists a unique solution to (WW) with initial data (o, %) and satisfying
vt e (07 T/G), H(C7Vw)’|[_oo(0’t;HN—P) < C”(Co, V¢O)HHN'

Rmk: There is no “loss of derivative”. C, T are uniform w.r.t ¢, € (0, 1].

Let hg, Mo > 0, N> Ny > 6, 3 < P < N. There exists C, T > 0 such that for any

€ (0,1] and any (¢?PP,1)?PP) solution to (WW) and

SUP¢e(o,7/e) 1 + €€ 2PP(t .) > hy and H PP \/q)2PP) 155(0, T /c;H) < My,

the difference with respect to the exact solution to (WW) vvlth same initial data
YVt € (O T/ ) H 1|>> . v/ ,zlm)) oo (0, HN—P) <
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From consistency to convergence

Large-time well-posedness [Alvarez-Samaniego,Lannes '08][Iguchi '09]

Let hg, Mg >0 and N> Ny > 6,2 < P < N. There exists C, T > 0 such that for
any ¢, 1 € (0,1] and any (o, Vtbo € HN(R™) such that

Loz o and (ol + VGl < Mo
there exists a unique solution to (WW) with initial data (o, %) and satisfying
vt e (07 T/6)7 H(C)vw)HLoo(o’t;HN—P) < CH(C07V¢0)HHN

Rmk: There is no “loss of derivative”. C, T are uniform w.r.t e, 1 € (0, 1].

Stability [Alvarez-Samaniego,Lannes '08][lIguchi '09]
Let hg, Mg >0, N > Ny > 6,3 < P < N. There exists C, T > 0 such that for any
e, € (0,1] and any (¢?PP, 4)*PP) solution to (WW) with remainder term R and
SUPte(0,T/¢) 1+ ecapp(t’ ) > ho and ||(<app’ vwapp)HLoo(O,T/(;HN) < MO)
the difference with respect to the exact solution to (WW) with same initial data
vt € (0, T/e), H(C — (PP VY — v@Z’app)||Lc>o(0,t;HN—P) <Ct ||RHL°°(O,t;H’V)'
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Well-posedness: framework

We consider the initial-value problem for

{ 0eC+ V- (FEVY + eFL (¢ FLVY)) =0,
Oep + ¢+ 5|FEVY? =0,

where F/ = f(,/i|D|) and F = f(\/|D|), with f, f, of order o < 0 and

ff < f <1

For instance, F/* = % and 5 = (F/)* with o > 1/2.

Qn: Existence and uniqueness of a strong solution to the Cauchy problem,

in the Sobolev setting and uniformly with respect to ¢, u < 1 .

@ The system is of quasilinear type unless |f| < f (i.e. a € [1/2,1)).
@ The weak dispersion (1 < 1) forbids the use of dispersive techniques.

~ ‘energy method ‘
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WeII posedness framework

We consider the initial-value problem for

{8tC+V-(F“V¢+€( Vy)) =0,
o+ ¢+ 5|FEVYP =0

where F/* = f(/1|D|) and F = (/11| D]), with f, f> of order 0 <0 and
ff < f <1
For instance, F/* = % and 5 = (F/)* with a > 1/2.

Qn: Existence and uniqueness of a strong solution to the Cauchy problem,
in the Sobolev setting and uniformly with respect to ¢, 1 < 1.

@ The system is of quasilinear type unless |f| < f (i.e. o € [1/2,1)).
@ The weak dispersion (1 < 1) forbids the use of dispersive techniques.

~ ‘energy method ‘
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Well- posedness energy estimates

We repeatedly use product and commutator estimates in Sobolev spaces,
and in particular

IF*~. Flell, + 175V el 2 S 1Vl llell e (ke > n/2)
uniformly with respect to i € (0, 1], and using f, f, of order o < 0.
Quasilinearisation: for k > 1+ n/2, using |h| S 1,

{atd“w-(ww“‘we (CFEVYR) + eFL (R FIVY)) = rf

DTV 1+ VW 1 (F1T - ) (TR — 1k, B

with
[l e + ezl 2 < € €l e

[F2 V]| o).
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Well-posedness: energy estimates

We repeatedly use product and commutator estimates in Sobolev spaces,
and in particular

IFV. el + 172V Flell o S IV Flle gl (k> n/2)

uniformly with respect to i € (0, 1], and using f, f, of order o < 0.

Quasilinearisation: for k > 1+ n/2, using |f| < 1,
0™ + V- (Frvpl) 4 e (CFIVY) + P (CW FIVY)) =
3V + V) 4 (FiVep - V) (FE V() = rk,
with
Iz + 1] ,2 < € €Ol

[F2 V]| o).

Energy space: provided 1+ ¢¢ € L>°(R") and 1+ ¢( > hg > 0, one has

def

Gle F/'e +cF (CFhe) ~ F/

using f22 <f (in the setting f22 < Cf, we would require 1 + Ce¢ > hy > 0)
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Well- posedness energy estimates
Quasilinearisation: for k > 14 n/2, using |f| S 1,
{ 00 + v - (Frvgpth) 4 eFL(CFVpR) + P (¢W FIVy)) =

3Vl + V¢ - e(Fhvey - V)(FSVyR) = rk,
with

ez + N2z < € €l

[FEV | e)-

Energy space: provided 1+ ¢¢ € L>°(R") and 1+ ¢{ > hg > 0, one has

SGHe déf F/' e +¢ (C o) ~ F#
using f22 <f (in the setting £2 < Cf, we would require 1+ Ce( > hg > 0)

Energy estimate: testing the first and second equations with ¢(%) and
SHV1H(K) respectively, we obtain the following a priori estimate

d
3 UL + IVFTo L) < e (e e IVFFT900)
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VVeH posedness result

{atuv (FEV + eFL(CFIVY)) =
o) + ¢+ 5|FEVY[> =0,

where F/* = (/1| D|) and F = (/12| D]), with f, f> of order 0 < 0 and

< f <1

large-time well-posedness

Let Mo, hg > 0 and k > 1+ n/2. There exists C, T > 0 such that for any
e, 10 € (0,1) and any ¢°, v/FrVy0 € H¥(R™) such that

1+e®>ho>0 and || e + |VFAVYO e < Mo,

there exists ((,) unique strong solution to (x) with initial data ¢°,+° on
the time interval [0, T /¢] and one has

vee 0, T/, ([cllp+IVF Il ) () < I et [VFV0 0)-

vy
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Comparison with Boussinesq systems

Recall: Hamilton's equations with

T / 4 V- FIVY + e FA VY2

yields
0eC + V- (FEVY + P (¢ FL V) =0, »
Oep + ¢+ 5|FL VY2 = 0.
o If F/' = tam\](fi‘fD“D‘) and F) =1d + O(u), then (%) has precision O(ep).
— |f = F", we recover the system in
o IfF* =TId+45A+O(p?) and I = Id + O(), () has precision O(1% + €p1).
(A If ) = (IT(;”: AA)Q and = ﬁ, we recover some Boussinesq systems
c=a

From uniform estimates stem bounds between exact and approximate solutions as

error = O(precision x t)  for t = O(1/e).
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Comparison with Boussinesq systems

Recall: Hamilton's equations with
e 1 )
d ! / C2+Vw F“V@b—i—edF’ V¢\2

yields
0:(+ V- (Fuvw +€eF5(¢ ngq/;)) =0, (%)
O+ C+ 5P VY2 =0

o IfFi= % and F =1Id + O(u), then (%) has precision O(ep).
— If F = F*, we recover the system in [Dinvay,Dutykh,Kalisch]
o If F =Td+ 5A+0O(;2) and I} = Id + O(u), () has precision O(i? + €f).

u _ _Idtybud po_o_ 1 ;
— If F* = (d_ar A and F) = Ti—a A We recover some Boussinesq systems
(c=a)

From uniform estimates stem bounds between exact and approximate solutions as

error = O(precision x t)  for t = O(1/e).
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Comparison with Boussinesq systems

Recall: Hamilton's equations with

H 1/c2+w FAVY + eC|FL V)2

yields
{ 0(+ V- (F“V?/J + eF5(¢ Vl/})) =0, (%)
Oetp + ( + 5|FEVY? = 0.

o IfFr = % and F; =1Id + O(u), then (x) has precision O(cp).
— If F = F*, we recover the system in [Dinvay,Dutykh,Kalisch]

o If F =Id+45A+O(;?) and F) = Id+ O(), (%) has precision O(2 + ).
(4 If F)“ = (Ilddj:,'fAA)z and = m, we recover some Boussinesq systems
c=a

From uniform estimates stem bounds between exact and approximate solutions as

error = O(precision x t)  for t = O(1/e).
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A numerical experiment

physical space at t=0.0
1.00F
075 water waves
Boussinesq
050 L ——— Boussinesqg- Whitham
025F
0.00 =
-20 -10 0 10 20
frequency
ﬂ (-
water waves
5L Boussinesq
Boussinesq- Whitham
-10
-15 |-
-150 - 100 -50 0 a0 100 150

(K< Nl > > (=1l +)



physical space

JAN

water waves
——— Boussinesq
——— Boussinesg- Whitham

-20 -10 0 10 20

frequency

water waves
——— Boussinesq
——— Boussinesg- Whitham

W

-150 -100 -50 0 50 100 150

Thank you for your attention
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