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Motivation Consistency Full justification Conclusion

Models for free-surface flows

d

g

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”

Standard models include: Saint-Venant, Boussinesq, Serre–Green–Naghdi,
Matsuno, Korteweg–de Vries, Benjamin–Bona–Mahony, Camassa–Holm,
Kawahara, Whitham, Kadomtsev–Petviashvili, Benney-Roskes, NLS...
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Motivation Consistency Full justification Conclusion

Models for free-surface flows: comparison

Korteweg–de Vries equation

∂tζ +
√
gd∂x(ζ + 3

4d ζ
2 + d2

6 ∂
2
x ζ) = 0.

X rigorously justified for long waves
X Hamiltonian structure (conserved quantities)
××× dimension n = 1, unidirectional
××× no wavebreaking, solitary waves of arbitrary amplitude

Whitham equation

∂tζ +
√
gd∂x(

√
tanh(d |D|)

d |D| ζ + 3
4d ζ

2) = 0.

X rigorously justified for long waves1

X Hamiltonian structure (conserved quantities)
××× dimension n = 1, unidirectional
X wavebreaking, solitary waves with maximal height2

1[Klein,Linares,Pilod,Saut ’18]
2respectively [Hur ’17] and [Ehrnström&Wahlén ’19]
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Motivation Consistency Full justification Conclusion

Models for free-surface flows: comparison

Boussinesq systems
For given a, b, c ∈ R,{
∂tζ − ad2∆∂tζ +∇ ·

(
du + bd3∆u + ζu

)
= 0,

∂tu− cd2∆∂tu + g∇ζ + g( 1
3 − a− b − c)d2∆∇ζ + (u · ∇)u = 0.

X rigorously justified for long waves (if well-posed [Saut&Xu ’12, ’15])

X Hamiltonian structure (conserved quantities) (if a = c)

X dimension n ≥ 1, bidirectional
??? no wavebreaking, solitary waves of arbitrary height

Boussinesq-Whitham systems
Aim: Exhibit at least one system with the following properties:
X rigorously justified for long waves
X Hamiltonian structure (conserved quantities)
X dimension n ≥ 1, bidirectional
??? wavebreaking, solitary waves with maximal amplitude

2 / 17
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Boussinesq-Whitham systems
Surveys by [Klein,Linares,Pilod,Saut’18][Carter’18][Dinvay,Dutykh,Kalisch’19]

1 [Aceves-Sánchez,Minzoni,Payanotaros ’13], [Moldabayev,Kalisch,Dutykh ’15]{
∂tζ + tanh(d|D|)

d|D| d∇ · u +∇ · (ζu) = 0

∂tu + g∇ζ + (u · ∇)u = 0

××× existence of solutions requires either positive deformation [Pei,Wang’19] or
surface tension [Kalisch,Pilod’19]

2 [Hur,Pandey’19] {
∂tζ + d∇ · u +∇ · (ζu) = 0

∂tu + tanh(d|D|)
d|D| g∇ζ + (u · ∇)u = 0

××× Wrong Hamiltonian. Well-posedness not known.

3 [Dinvay,Dutykh,Kalisch’19]{
∂tζ + d∇ · u + tanh(d|D|)

d|D| ∇ · (ζu) = 0

∂tu + tanh(d|D|)
d|D| g∇ζ + tanh(d|D|)

d|D| (u · ∇)u = 0

X Hamiltonian, good well-posedness properties [Dinvay,Selberg,Tesfahun].

Aim of this talk: show that this model (among others) is a long wave
asymptotic model with improved precision with respect to Boussinesq.

3 / 17



1 Motivation

2 Consistency
the water-waves system
long wave expansions
Boussinesq-Whitham models

3 Full justification
from consistency to convergence
large-time well-posedness theory

4 Conclusion



Motivation Consistency Full justification Conclusion

The water-waves system

The domain is an infinite layer with a free surface.

The fluid is incompressible, the only external force is gravity.

Particles of fluid cannot cross the surface or bottom.

Surface tension, viscosity, atm. pressure are not taken into account.

Irrotational motion: u = gradφ.

4 / 17
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Irrotational motion
Potential flows
In the irrotational setting u = gradφ, the fluid velocity is determined by

ζ(t, x) and ψ(t, x)
def
= φ(t, x , ζ(t, x))

after solving 
∆φ = 0 in {(x , z) − d < z < ζ(t, x)},
∂zφ = 0 on {(x , z) z = −d},
φ = ψ on {(x , z) z = ζ(t, x)}.

Zakharov/Craig-Sulem formulation [Zakharov ’68, Craig&Sulem ’93]

The full Euler equations are equivalent to the following system{
∂tζ − δH

δψ = 0,

∂tψ + δH
δζ = 0,

where

H def
=

1

2

∫
R
gζ2 + ψG [ζ]ψ dx , G [ζ]ψ = (∂zφ−∇ζ · ∇φ)|z=ζ .

5 / 17
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Asymptotic models

We seek simplified models with valid predictions in a given regime.

Through rescaling, we work with dimensionless variables of size ≈ 1, and
dimensionless parameters appear in the system :

ε
def
= a/d ; µ

def
= d2/λ2.

Shallow-water: µ� 1. Weakly nonlinear: ε� 1. Long waves: ε, µ� 1.
6 / 17
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The Dirichlet-to-Neumann operator

We want provide approximate expressions for (as ε, µ� 1) to

Gµ[εζ]ψ = (∂zφ− µε∇ζ · ∇φ)|z=εζ

where φ satisfies the (scaled) Laplace problem
∂2
zφ+ µ∆xφ = 0 in {(x , z) − 1 < z < εζ(t, x)},
∂zφ = 0 on {(x , z) z = −1},
φ = ψ on {(x , z) z = εζ(t, x)}.

Strategy [Lannes ’13]

Flatten the domain with Σ : (X , z) ∈ Rn × (0, 1) 7→ (X , σ(X , z))

where σ(X , z) = (1 + εζ)z + εζ  φ̃(X , z)
def
= φ(X , σ(X , z)).

Construct φ̃app solving approximately the equations on the flat strip.
Elliptic estimates  control of φ̃− φ̃app.
Use in the identity

1

µ
Gµ[εζ]ψ = ∇ ·

(∫ 0

−1
∂z φ̃(∇σ)−∇x φ̃(∂zσ)dz

)
.

7 / 17
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Use in the identity

1

µ
Gµ[εζ]ψ = ∇ ·

(∫ 0

−1
∂z φ̃(∇σ)−∇x φ̃(∂zσ)dz

)
.

For instance,

φ̃app(·, z) = ψ  1
µG

µ[εζ]ψ = −∇ ·
(
(1 + εζ)∇ψ

)
+O(µ)

 Saint-Venant system is consistent with precision O(µ)

φ̃app(·, z) = ψ − 1
2 (1 + εζ)2(z2 + 2z)∆ψ  1

µG
µ[εζ]ψ = [· · · ] +O(µ2)

 Green-Naghdi system is consistent with precision O(µ2)

φ̃app(·, z) =
cosh(

√
µ|D|(z+1))

cosh(
√
µ|D|) ψ  1

µG
µ[εζ]ψ = [· · · ] +O(εµ)

 Boussinesq-Whitham systems are consistent with precision O(εµ)
7 / 17
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[Emerald]

Let s ∈ N, h,M > 0. There exists C > 0 such that for any ζ ∈ Hs+4(Rn)
such that

1 + εζ ≥ h and ε
∥∥ζ∥∥

Hs+4 ≤ M,

and for any ψ ∈ L2
loc(R) such that ∇ψ ∈ Hs+3(Rn) we have

∥∥ 1

µ
Gµ[εζ]ψ +∇ ·

(
(1 + εζ)Fµ∇ψ

)∥∥
Hs ≤ εµC

∥∥ζ∥∥
Hs+4

∥∥∇ψ∥∥
Hs+3

where Fµ =
tanh(

√
µ|D|)√

µ|D| .

Consistency [Emerald]

Let s ∈ N, h,M > 0. There exists C > 0 such that for any ζ, ψ strong
solution to (WW) such that for any t ∈ [0,T ),

1 + εζ ≥ h and ε
∥∥ζ∥∥

Hs+4 + ε
∥∥∇ψ∥∥

Hs+3 ≤ M,

we have {
∂tζ +∇ ·

(
(1 + εζ)Fµ∇ψ

)
= r1

∂tψ + ζ + ε
2 |∇ψ|

2 = r2,

with ∥∥(r1, r2)
∥∥
Hs ≤ εµC

(∥∥ζ∥∥
Hs+4 +

∥∥∇ψ∥∥
Hs+3

)2
.

××× Not Hamiltonian (?). Not well-posed (?)
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Hamiltonian systems

To construct Hamiltonian systems, we use the approximation

H def
=

1

2

∫
R
ζ2+ψ

1

µ
Gµ[εζ]ψ dx =

1

2

∫
R
ζ2+∇ψ·Fµ∇ψ+εζ|∇ψ|2dx+O(εµ)

where Fµ =
tanh(

√
µ|D|)√

µ|D| , and use Hamilton’s equations.

Consistency [Emerald]

Let s ∈ N, h,M > 0. There exists C > 0 such that for any ζ, ψ strong
solution to (WW) such that for any t ∈ [0,T ),

1 + εζ ≥ h and ε
∥∥ζ∥∥

Hs+4 + ε
∥∥∇ψ∥∥

Hs+3 ≤ M,

we have {
∂tζ +∇ ·

(
Fµ∇ψ + εζ∇ψ

)
= r1

∂tψ + ζ + ε
2 |∇ψ|

2 = r2,

with ∥∥(r1, r2)
∥∥
Hs ≤ εµC

(∥∥ζ∥∥
Hs+4 +

∥∥∇ψ∥∥
Hs+3

)2
.

××× Not well-posed (?)
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Well-posed Hamiltonian systems

To construct well-posed Hamiltonian systems, we regularize

H def
=

1

2

∫
R
ζ2+ψ

1

µ
Gµ[εζ]ψ dx =

1

2

∫
R
ζ2+∇ψ·Fµ∇ψ+εζ|Fµ2∇ψ|

2dx+O(εµ)

where Fµ2 = f2(
√
µ|D|), with f2(0) = 1, f ′2(0) = 0 and f2 of order σ < 0.

Consistency [Emerald]

Let s ∈ N, h,M > 0. There exists C > 0 such that for any ζ, ψ strong
solution to (WW) such that for any t ∈ [0,T ),

1 + εζ ≥ h and ε
∥∥ζ∥∥

Hs+4 + ε
∥∥∇ψ∥∥

Hs+3 ≤ M,

we have {
∂tζ +∇ ·

(
Fµ∇ψ + εFµ2 (ζ Fµ2∇ψ)

)
= r1

∂tψ + ζ + ε
2 |F

µ
2∇ψ|2 = r2,

with ∥∥(r1, r2)
∥∥
Hs ≤ εµC

(∥∥ζ∥∥
Hs+4 +

∥∥∇ψ∥∥
Hs+3

)2
.

X If Fµ2 = Fµ =
tanh(

√
µ|D|)√

µ|D| , we recover the system in [Dinvay,Dutykh,Kalisch]
10 / 17
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From consistency to convergence

Large-time well-posedness [Álvarez-Samaniego,Lannes ’08][Iguchi ’09]

Let h0,M0 > 0 and N ≥ N0 ≥ 6, 2 ≤ P ≤ N. There exists C ,T > 0 such that for
any ε, µ ∈ (0, 1] and any ζ0,∇ψ0 ∈ HN(Rn) such that

1 + εζ0 ≥ h0 and
∥∥ζ0

∥∥
HN0

+
∥∥∇ζ0

∥∥
HN0
≤ M0,

there exists a unique solution to (WW) with initial data (ζ0, ψ0) and satisfying

∀t ∈ (0,T/ε),
∥∥(ζ,∇ψ)

∥∥
L∞(0,t;HN−P )

≤ C
∥∥(ζ0,∇ψ0)

∥∥
HN .

Rmk: There is no “loss of derivative”. C ,T are uniform w.r.t ε, µ ∈ (0, 1].

Stability [Álvarez-Samaniego,Lannes ’08][Iguchi ’09]

Let h0,M0 > 0, N ≥ N0 ≥ 6, 3 ≤ P ≤ N. There exists C ,T > 0 such that for any
ε, µ ∈ (0, 1] and any (ζapp, ψapp) solution to (WW) with remainder term R and

supt∈(0,T/ε) 1 + εζapp(t, ·) ≥ h0 and
∥∥(ζapp,∇ψapp)

∥∥
L∞(0,T/ε;HN )

≤ M0,

the difference with respect to the exact solution to (WW) with same initial data

∀t ∈ (0,T/ε),
∥∥(ζ − ζapp,∇ψ −∇ψapp)

∥∥
L∞(0,t;HN−P )

≤ C t
∥∥R∥∥

L∞(0,t;HN )
.

11 / 17
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Well-posedness: framework

We consider the initial-value problem for{
∂tζ +∇ ·

(
Fµ∇ψ + εFµ2 (ζ Fµ2∇ψ)

)
= 0,

∂tψ + ζ + ε
2 |F

µ
2∇ψ|2 = 0,

where Fµ = f (
√
µ|D|) and Fµ2 = f2(

√
µ|D|), with f , f2 of order σ ≤ 0 and

f 2
2 ≤ f . 1

For instance, Fµ =
tanh(

√
µ|D|)√

µ|D| and Fµ2 = (Fµ)α with α ≥ 1/2.

Qn: Existence and uniqueness of a strong solution to the Cauchy problem,
in the Sobolev setting and uniformly with respect to ε, µ� 1 .

The system is of quasilinear type unless |f2| . f (i.e. α ∈ [1/2, 1)).

The weak dispersion (µ� 1) forbids the use of dispersive techniques.

 energy method

12 / 17
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The weak dispersion (µ� 1) forbids the use of dispersive techniques.

 energy method
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Motivation Consistency Full justification Conclusion

Well-posedness: energy estimates

We repeatedly use product and commutator estimates in Sobolev spaces,
and in particular∥∥[Fµ∇, f ]g

∥∥
L2 +

∥∥[Fµ2∇, f ]g
∥∥
L2 .

∥∥∇f ∥∥
Hk?

∥∥g∥∥
L2 (k? > n/2)

uniformly with respect to µ ∈ (0, 1], and using f , f2 of order σ ≤ 0.

Quasilinearisation: for k > 1 + n/2, using |f2| . 1,{
∂tζ

(k) +∇ ·
(
Fµ∇ψ(k) + εFµ2 (ζ Fµ2∇ψ(k)) + εFµ2 (ζ(k) Fµ2∇ψ)

)
= rk1 ,

∂t∇ψ(k) +∇ζ(k) + ε(Fµ2∇ψ · ∇)(Fµ2∇ψ(k)) = rk2 ,

with ∥∥rk1 ∥∥L2 +
∥∥rk2 ∥∥L2 ≤ ε C (

∥∥ζ∥∥
Hk ,
∥∥Fµ2∇ψ

∥∥
Hk ).

Energy space: provided 1 + εζ ∈ L∞(Rn) and 1 + εζ ≥ h0 > 0, one has

Sµ• def
= Fµ •+εFµ2 (ζ Fµ2•) ≈ Fµ

using f 2
2 ≤ f (in the setting f 2

2 ≤ Cf , we would require 1 + Cεζ ≥ h0 > 0)
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Sµ• def
= Fµ •+εFµ2 (ζ Fµ2•) ≈ Fµ

using f 2
2 ≤ f (in the setting f 2

2 ≤ Cf , we would require 1 + Cεζ ≥ h0 > 0)

Energy estimate: testing the first and second equations with ζ(k) and
Sµ∇ψ(k) respectively, we obtain the following a priori estimate

d

dt

(∥∥ζ(k)
∥∥2

L2 +
∥∥√Fµ∇ψ(k)

∥∥2

L2

)
. ε C (

∥∥ζ∥∥
Hk ,
∥∥√Fµ∇ψ

∥∥
Hk ).
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Well-posedness: result{
∂tζ +∇ ·

(
Fµ∇ψ + εFµ2 (ζ Fµ2∇ψ)

)
= 0,

∂tψ + ζ + ε
2 |F

µ
2∇ψ|2 = 0,

where Fµ = f (
√
µ|D|) and Fµ2 = f2(

√
µ|D|), with f , f2 of order σ ≤ 0 and

f 2
2 ≤ f . 1

large-time well-posedness

Let M0, h0 > 0 and k > 1 + n/2. There exists C ,T > 0 such that for any
ε, µ ∈ (0, 1) and any ζ0,

√
Fµ∇ψ0 ∈ Hk(Rn) such that

1 + εζ0 ≥ h0 > 0 and
∥∥ζ0
∥∥
Hk +

∥∥√Fµ∇ψ0
∥∥
Hk ≤ M0,

there exists (ζ, ψ) unique strong solution to (?) with initial data ζ0, ψ0 on
the time interval [0,T/ε] and one has

∀t ∈ [0,T/ε],
(∥∥ζ∥∥

Hk +
∥∥√Fµ∇ψ

∥∥
Hk

)
(t) ≤ C

(∥∥ζ0
∥∥
Hk +

∥∥√Fµ∇ψ0
∥∥
Hk

)
.
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Comparison with Boussinesq systems

Recall: Hamilton’s equations with

H def
=

1

2

∫
R
ζ2 +∇ψ · Fµ∇ψ + εζ|Fµ2∇ψ|

2

yields {
∂tζ +∇ ·

(
Fµ∇ψ + εFµ2 (ζ Fµ2∇ψ)

)
= 0,

∂tψ + ζ + ε
2 |F

µ
2∇ψ|2 = 0.

(?)

If Fµ =
tanh(

√
µ|D|)√

µ|D| and Fµ2 = Id +O(µ), then (?) has precision O(εµ).

⇀ If Fµ2 = Fµ, we recover the system in [Dinvay,Dutykh,Kalisch]

If Fµ = Id+ µ
3 ∆ +O(µ2) and Fµ2 = Id+O(µ), (?) has precision O(µ2 + εµ).

⇀ If Fµ = Id+bµ∆
(Id−aµ∆)2 and Fµ2 = 1

Id−aµ∆
, we recover some Boussinesq systems

(c = a)

From uniform estimates stem bounds between exact and approximate solutions as

error = O(precision× t) for t = O(1/ε).
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A numerical experiment
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Thank you for your attention
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