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Motivation Well-posedness Solitary waves

The water-waves system

The domain is an infinite layer with a free surface.

The fluid is incompressible, the only external force is gravity.

Particles of fluid cannot cross the surface or bottom.

Surface tension, viscosity are not taken into account.
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Motivation Well-posedness Solitary waves

The water-waves system

[Feynman] “[water waves] that are easily seen by everyone and which are usually
used as an example of waves in elementary courses [...] are the worst possible
example [...]; they have all the complications that waves can have.”
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Motivation Well-posedness Solitary waves

The Saint-Venant system

Hydrostatic approximation : ∇P = gez

Columnar motion : (u · ex)2 = (u · ex)2

(notation : ū(x) = 1
d+ζ

∫ ζ
−d u(x , z)dz)

Closed equations for variables ζ and u · ex .

3 / 23



Motivation Well-posedness Solitary waves

The Saint-Venant system


∂tζ + ∂x((d + ζ)u) = 0

∂tu + g∂xζ + u∂xu = 0
(SV)
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Motivation Well-posedness Solitary waves

The Saint-Venant system

ε
def
= a/d ; µ

def
= d2/λ2.


∂tζ + ∂x((1 + εζ)u) = 0

∂tu + ∂xζ + εu∂xu = O(µ)
(SV)
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Motivation Well-posedness Solitary waves

The Green-Naghdi system

[(c) Hitori Sushi (flickr)]
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The Green-Naghdi system


∂tζ + ∂x(hu) = 0(
Id + µT [h]

)
∂tu + ∂xζ + εu∂xu + εµR[h, u] = O(µ2)

(GN)

with

T [h]V
def
= − 1

3h
∂x(h3∂xV )

R[h, u]
def
= − 1

3h
∂x

(
h3
(
u∂2xu − (∂xu)2

))
Formal derivation
[Serre’53, Su&Gardner’69, Green&Naghdi’76, Miles&Salmon’85...]

[Bonneton&Lannes’09]

Properties

Hamiltonian formulation (directly related to the water-waves system)

Invariance with respect to horizontal/time translation, Galilean boost

Conservation of mass, momentum, energy (Noether’s theorem)
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Motivation Well-posedness Solitary waves

Dispersion relation

Explicit dispersion relation for plane waves e i(kx−ω(k)t)(
ω(k)

k

)2

=
tanh(

√
µk)

√
µk

vs

(
ω(k)

k

)2

=
1

1 + µ
3 k

2
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Our modified Green-Naghdi system
∂tζ + ∂x(hu) = 0(
Id + µT F[h]

)
∂tu + ∂xζ + εu∂xu + εµRF[h, u] = O(εµ2)

(mGN)

T [h]V
def
= − 1

3h
∂x(Fh3∂xFV )

R[h, u]
def
= − 1

3h
∂x

(
h3
(
u(∂xF)2u − (∂xFu)2

))
and F = F (

√
µ|D|) i.e. (Fourier multiplier) F̂u(ξ) = F (

√
µ|ξ|)û(ξ):

F =

√
3

√
µ|D| tanh(

√
µ|D|)

− 3

µ|D|2

Properties

Hamiltonian formulation (directly related to the water-waves system)
Invariance with respect to horizontal/time translation, Galilean boost.
Conservation of mass, momentum, energy (Noether’s theorem)
“Full dispersion” model 8 / 23
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Motivation Well-posedness Solitary waves

Experimental validation (?)

[Hammack&Segur ’84]
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Experimental validation (?)
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Motivation Well-posedness Solitary waves

The Saint-Venant system

We study the initial value problem for
∂tζ + ∂x((1 + εζ)u) = 0

∂tu + ∂xζ + εu∂xu = 0
(SV)

System of conservation laws (= compressible Euler equations).

Hyperbolic, symmetrizable =⇒ strong local well-posedness.

[Friedrichs, Garding, Lax, Leray, Kato] ’50s, ’60s

Let ζ0, u0 ∈ Hs(R)2 with s > 3/2 be such that 1 + εζ0 > 0. Then there
exists T > 0 and (ρ, u) ∈ C 0([0,T/ε);Hs(Rd)d+1) unique solution to the
Saint-Venant system with initial data ζ0, u0.
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Motivation Well-posedness Solitary waves

Energy estimate

[Friedrichs, Garding, Lax, Leray, Kato] ’50s, ’60s

Let ζ0, u0 ∈ Hs(R)2 with s > 3/2 be such that 1 + εζ0 > 0. Then there
exists T > 0 and (ρ, u) ∈ C 0([0,T/ε);Hs(Rd)d+1) unique solution to the
Saint-Venant system with initial data ζ0, u0.

Sketch of the proof. We seek an a priori control in Hs of the solutions to

∂tu + A(u)∂xu = 0.

O.D.E. in Banach space Hs(Rd), but loss of derivatives?

Example: the solution to ∂tu + A∂xu = 0 is u = e−tA∂x u0 with

̂e−tA∂x u0(ξ) = e−itAξû0(ξ).

thus
∥∥e−tA∂x∥∥

Hs→Hs ≤ C iff A is diagonalizable with real eigenvalues
(for instance if A is real symmetric, or if there exists S self-adjoint, positive
definite such that SA is real symmetric)
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Motivation Well-posedness Solitary waves

Energy estimate

[Friedrichs, Garding, Lax, Leray, Kato] ’50s, ’60s

Let ζ0, u0 ∈ Hs(R)2 with s > 3/2 be such that 1 + εζ0 > 0. Then there
exists T > 0 and (ρ, u) ∈ C 0([0,T/ε);Hs(Rd)d+1) unique solution to the
Saint-Venant system with initial data ζ0, u0.

Sketch of the proof. We seek an a priori control in Hs of the solutions to

S(u)∂tu + A(u)∂xu = 0.

If S = S(t, x) and A = A(t, x) are symmetric.
Test the equation with u and integrate by parts:

1

2

d

dt

∫
Rd

S(t, x)u · u dx =
1

2

∫
R

(
∂xA(t, x)− ∂tS(t, x)

)
u · u dx .

If ∂xA, ∂tS ∈ L∞, then (by Grönwall)
∣∣u∣∣

L2
.
∣∣u0
∣∣
L2
eCt .

Differentiate the equation and use same trick ⇒
∣∣u∣∣

Hn .
∣∣u0
∣∣
Hne

Ct .

The Picard iterates, defined by S(uk)∂tuk+1 + A(uk)∂xuk+1 = 0,
converge (for T small) towards a solution of the nonlinear equation.
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Sketch of the proof. The Saint-Venant system
∂tζ + ∂x((1 + εζ)u) = 0

∂tu + ∂xζ + εu∂xu = 0
(SV)

may be symmetrized as follows(
1 0
0 1 + εζ

)
∂t

(
ζ
u

)
+

(
εu 1 + εζ

1 + εζ (1 + εζ)εu

)
∂x

(
ζ
u

)
=

(
0
0

)
.
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Motivation Well-posedness Solitary waves

The (modified) Green-Naghdi system
∂tζ + ∂x(hu) = 0(
Id + µT F[h]

)
∂tu + ∂xζ + εu∂xu + εµRF[h, u] = 0

(mGN)

T [h]V
def
= − 1

3h
∂x(Fh3∂xFV )

R[h, u]
def
= − 1

3h
∂x

(
h3
(
u(∂xF)2u − (∂xFu)2

))
Existence and uniqueness of a strong solution to the Cauchy problem, in
the Sobolev setting and uniformly with respect to µ� 1 .

Green-Naghdi system [Li’02]

modified GN system (with surface tension) [Duchene,Israwi&Talhouk’16]

Difficulties

The weak dispersion (µ� 1) forbids the use of dispersive techniques.
The presence of higher-order operators makes it difficult to control
derivatives of the unknown, because the commutator[

∂x ,R[h, u]
]

is not of order zero.
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The (modified) Green-Naghdi system
∂tζ + ∂x(hu) = 0

h
(
Id + µT F[h]

)
∂tu + h∂xζ + εhu∂xu + εµhRF[h, u] = 0

(mGN)

hT F[h]V
def
= −1

3
∂x(Fh3∂xFV )

hRF[h, u]
def
= −1

3
∂x

(
h3
(
u(∂xF)2u − (∂xFu)2

))
Energy space : Provided h ∈ L∞ and h > 0, one has∫
R
ζ2+

(
hu+µT F[h]u

)
udx ≈

∥∥ζ∥∥2
L2

+
∥∥u∥∥2

L2
+µ
∥∥∂xFu

∥∥2
L2

def
=
∥∥ζ∥∥2

L2
+
∥∥u∥∥2

X 0

Quasilinearisation : for n sufficiently large,
∂tζ

(n) + εu∂xζ
(n) + h∂xu

(n) = f1

h
(
Id + µT F[h]

)
∂tu

(n) + h∂xζ
(n) + εhu∂xu

(n) − εµ
3 h

3u∂x(∂xF)2u(n) = f2

with
∥∥f1∥∥L2 . εC (

∥∥ζ∥∥
Hn ,
∥∥u∥∥

X n) and
∥∥f2∥∥(X 0)′

. εC (
∥∥ζ∥∥

Hn ,
∥∥u∥∥

X n).
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The (modified) Green-Naghdi system
∂tζ + ∂x(hu) = 0

h
(
Id + µT F[h]

)
∂tu + h∂xζ + εhu∂xu + εµhRF[h, u] = 0

(mGN)

Main result : Existence and uniqueness of a strong solution

Assume the Fourier multiplier F = F (
√
µD) is such that

1 F is even and non-negative;

2 ξ 7→ |ξ|F (ξ) is sub-additive.

Let (ζ0, u0) ∈ (Hn ×X n) with n sufficiently large be such that 1 + εζ0 > 0.
Then there exists T > 0 and (ζ, u) ∈ C 0([0,T/ε);Hn × X n) unique strong
solution to (mGN) with initial data ζ0, u0.

Bonus : By [Lannes], and if F ∈W 2,∞, and F (0) = 1, then the solution to
the water-waves system with corresponding initial data remains close at
precision O(µ2) over the time interval [0,T/ε).
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Motivation Well-posedness Solitary waves

The minimization problem


∂tζ + ∂x(hu) = 0(
Id + µT [h]

)
∂tu + ∂xζ + εu∂xu + εµR[h, u] = O(µ2)

(GN)

Hamiltonian structure {
∂tζ + ∂x

δH
δv = 0

∂tv + ∂x
δH
δζ = 0

where
v

def
=
(
Id + µT [h]

)
u

and

H(ζ, v)
def
=

1

2

∫
R
ζ2 + v

(
Id + µT [h]

)−1
v dx

Preserved quantities∫
R
ζ ;

∫
R
v ; I(ζ, v)

def
=

∫
R
ζv dx and H(ζ, v).
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)−1
v dx

Preserved quantities∫
R
ζ ;

∫
R
v ; I(ζ, v)

def
=

∫
R
ζv dx and H(ζ, v).

Minimization problem
Solitary waves satisfy δH− cδI = 0, but critical points of H− cI are not
minimizers or maximizers.

Solitary waves satisfy δE(ζ) = 2c−2ζ where E(ζ) = I
(
ζ , (Id + µT [h])ζ

)
.

We seek arg min{E(ζ) :
∥∥ζ∥∥

H1 ≤ 1,
∥∥ζ∥∥2

L2
= q}.
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Motivation Well-posedness Solitary waves

The strategy

We seek arg min{E(ζ) :
∥∥ζ∥∥

H1 ≤ 1,
∥∥ζ∥∥2

L2
= q}

where (setting ε = µ = 1)

E(ζ) =

∫
R

ζ2

1 + ζ
+

1

3
(1 + ζ)3∂x

( ζ

1 + ζ

)2
dx .

Consider a minimizing sequence, and try to prove that it “converges”.

Lions’ concentration-compactness argument

(Concentration) There exists a sequence {xn}n∈N ⊂ R with the property that
for each ε > 0, there exists r > 0 with∫ xn+r

xn−r en dx ≥ I − ε for all n ∈ N.

Coercivity

If q sufficiently small,
∥∥ζ∥∥

L∞
< 1 and E(ζ) ≈

∥∥ζ∥∥2
H1 .

16 / 23



Motivation Well-posedness Solitary waves

The strategy

Lions’ concentration-compactness argument

Any sequence {en}n∈N ⊂ L1(R) of non-negative functions such that

lim
n→∞

∫
R
en dx = I > 0

admits a subsequence for which one of the following phenomena occurs.

(Vanishing) For each r > 0, one has limn→∞

(
supx∈R

∫ x+r

x−r en dx
)

= 0.

(Dichotomy) There are real sequences {xn}n∈N, {Mn}n∈N, {Nn}n∈N ⊂ R and
I ∗ ∈ (0, I ) such that Mn,Nn →∞, Mn/Nn → 0, and∫ xn+Mn

xn−Mn
en dx → I ∗ and

∫ xn+Nn

xn−Nn
en dx → I ∗ as n→∞.
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for each ε > 0, there exists r > 0 with∫ xn+r

xn−r en dx ≥ I − ε for all n ∈ N.

Coercivity

If q sufficiently small,
∥∥ζ∥∥

L∞
< 1 and E(ζ) ≈

∥∥ζ∥∥2
H1 .
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∥∥ζ∥∥

H1 ≤ 1,
∥∥ζ∥∥2

L2
= q}

where (setting ε = µ = 1)

E(ζ) =

∫
R

ζ2

1 + ζ
+

1

3
(1 + ζ)3∂x

( ζ

1 + ζ

)2
dx .

Consider a minimizing sequence, and try to prove that it “converges”.

Lions’ concentration-compactness argument
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Motivation Well-posedness Solitary waves

Excluding Dichotomy

We need to exclude the Vanishing scenario (easy) and Dichotomy scenario.

Claim : Sub-homogeneity and sub-additivity

If q sufficiently small, q 7→ Iq = min{E(ζ) :
∥∥ζ∥∥

H1 ≤ 1,
∥∥ζ∥∥2

L2
= q}

is sub-homogeneous (Iaq < aIq) and thus sub-additive (Iq1+q2 < Iq1 + Iq2).

We shall use the three following results :

Coercivity

If q sufficiently small,
∥∥ζ∥∥

L∞
< 1 and E(ζ) ≈

∥∥ζ∥∥2
H1 .

Expansion (long waves)

E(ζ) =

∫
R
ζ2 − ζ3 +

1

3
ζ2x dx +O

(∥∥ζ∥∥2
L∞

∥∥ζ∥∥2
L2 +

∥∥ζ∥∥
L∞

∥∥ζx∥∥2L2 +
∥∥ζx∥∥L2

∥∥ζxxx∥∥L2

)

Expansion (small waves)

E(ζ) =

∫
R
ζ2 +

1

3
ζ2x − ζ3 −

1

3
ζζ2x dx +O

(∥∥ζ∥∥2
L∞

∥∥ζ∥∥2
H1

)
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Motivation Well-posedness Solitary waves

Step 1
Expansion (long waves)

E(ζ) =

∫
R
ζ2 − ζ3 +

1

3
ζ2x dx +O

(∥∥ζ∥∥2
L∞

∥∥ζ∥∥2
L2 +

∥∥ζ∥∥
L∞

∥∥ζx∥∥2L2 +
∥∥ζx∥∥2L2

∥∥ζxxx∥∥L2

)

Corollary

If q sufficiently small, Iq < q −mq5/3 with m > 0.

Let ψ ∈ C∞c such that ψ ≥ 0 and
∥∥ψ∥∥2

L2
= 1.

1 For λ sufficiently small, ψλ = λ1/2ψ(λ·) satisfies ψ3
λ − ψλ

2
x = 2m > 0;

2 φq = q2/3φq(q1/3·) satisfies E(φq) = q − 2mq5/3 +O(q2).

Coercivity

If q sufficiently small,
∥∥ζ∥∥

L∞
< 1 and E(ζ) ≈

∥∥ζ∥∥2
H1 .

Corollary

If q sufficiently small and (ζn) a minimizing sequence,
∥∥ζn∥∥2H1 ≤ Cq < 1.
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Motivation Well-posedness Solitary waves

Step 2

Expansion (small waves)

E(ζ) =

∫
R
ζ2 +

1

3
ζ2x − ζ3 −

1

3
ζζ2x dx +O

(∥∥ζ∥∥2
L∞

∥∥ζ∥∥2
H1

)
Corollary

If q sufficiently small and a ∈ (1, a0], Iaq < aIq.

For (ζn) a minimizing sequence,

Iaq ≤ E(a1/2ζn) = aE(ζn)− (a3/2−a)

∫
R
ζ3n +

1

3
ζnζn

2
x dx +O((a3/2−a)q2).

and

−
(
ζ3n +

1

3
ζnζn

2
x

)
= E(ζn)−

∫
R
ζ2n +

1

3
ζn

2
x dx +O(q2) < −1

2
mq5/3.

Taking the limit as n→∞, we find

Iaq ≤ aIq − (a3/2 − a)mq5/3 < aIq.
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Motivation Well-posedness Solitary waves

The minimization problem

We seek arg min{E(ζ) :
∥∥ζ∥∥

Hν ≤ 1,
∥∥ζ∥∥2

L2
= q}

where

E(ζ) =

∫
R

ζ2

1 + ζ
+

1

3
(1 + ζ)3∂xF

( ζ

1 + ζ

)2
dx , F ≈ 1

1 + |D|1/2

Difficulties (similar as [Ehrnström, Groves & Wahlén ’12])

1 ∂xF is a nonlocal operator

2 F is a (1/2-) smoothing operator
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1 + ζ

)2
dx , F ≈ 1

1 + |D|1/2

Difficulties (similar as [Ehrnström, Groves & Wahlén ’12])

1 ∂xF is a nonlocal operator
Not a big deal. If ζ has compact support and x is outside the support,
then for any j ≥ 2,

|∂xFζ|(x) ≤
Cj

dist(x , suppζ)j
∥∥ζ∥∥

L2

(using ∂jξ(ξF (ξ))) ∈ L2)

2 F is a (1/2-) smoothing operator
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Motivation Well-posedness Solitary waves

The minimization problem

We seek arg min{E(ζ) :
∥∥ζ∥∥

Hν ≤ 1,
∥∥ζ∥∥2

L2
= q}

where

E(ζ) =

∫
R

ζ2

1 + ζ
+

1

3
(1 + ζ)3∂xF

( ζ

1 + ζ

)2
dx , F ≈ 1

1 + |D|1/2

Difficulties (similar as [Ehrnström, Groves & Wahlén ’12])

1 ∂xF is a nonlocal operator

2 F is a (1/2-) smoothing operator
More problematic. How to prove that the minimizing sequence (ζn)
satisfies

∥∥ζn∥∥Hν . q ?
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Motivation Well-posedness Solitary waves

A special minimizing sequence

Pb : Prove that a minimizing sequence (ζn) satisfies
∥∥ζn∥∥Hν . q

Note that solutions of the Euler-Lagrange equation

2
ζ

1 + ζ
− ζ2

(1 + ζ)2
− 2

3

1

(1 + ζ)2
∂xF
{

(1 + ζ)3∂xF{ ζ

1 + ζ
}
}

+
(
(1 + ζ)∂xF{ ζ

1 + ζ
}
)2)2

+ 2αζ = 0.

satisfies the estimate (but this the solution we seek).
Solution :

Consider the problem on T with a penalization
arg min{EP(ζ) + %(

∥∥ζ∥∥
Hν
P

) :
∥∥ζ∥∥

Hν ≤ 1,
∥∥ζ∥∥2

L2
= q}

 The solution solves an Euler equation, and thus
∥∥ζ∥∥

Hν
P
. q.

Let the period Pn go to infinity.
 allows to construct a minimizing sequence satisfying

∥∥ζn∥∥Hν . q.
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Motivation Well-posedness Solitary waves

The result

Main result [VD, Nilsson & Wahlén]

Let F admissible: sufficiently smooth and decaying as (1 + |ξ|)−θ, θ ∈ [0.1);
and set ν > 1/2 such that ν ≥ 1− θ. Let Dq be the set of minimizers of E
over {ζ :

∥∥ζ∥∥
Hν ≤ 1,

∥∥ζ∥∥2
L2

= q}. Then there exists q0 > 0 such that for
all q ∈ (0, q0), the following statements hold:

The set Dq is nonempty and each element in Dq solves the traveling
wave equation, which yields a supercritical solitary wave solution.

For any minimizing sequence (ζn)n∈N such that supn∈N
∥∥ζn∥∥Hν < 1,

there exists a sequence (xn)n∈N of real numbers such that a
subsequence of (ζn(·+ xn))n∈N converges to an element in Dq.

There exist constants m,Mn > 0 such that

∀n ∈ N,
∥∥ζ∥∥2

Hν(R) ≤ Mnq and c−2 ≤ 1−mq
2
3 ,

uniformly over q ∈ (0, q0) and ζ ∈ Dq.
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Thank you for your attention
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