Trapping waves Bifurcation of discrete eigenvalues from the edges of

the continuous spectrum of the Schrödinger operator

Vincent Duchêne

(joint work with M.I. Weinstein and I. Vukicevic)

Institut de Recherche Mathématiques de Rennes APAM, Columbia University, New York

> École Thématique du GDR CHANT 7-11 Janvier 2013

Maxwell's equations (no charge, current)

$$\nabla \cdot (\varepsilon \mathbf{E}) = \mathbf{0} \qquad \nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times (\mathbf{B}/\mu) = -\varepsilon \partial_t \mathbf{E}$$
$$\varepsilon = \varepsilon(\mathbf{x}) \qquad \mu = \mu_0$$

Transverse electric mode (TE) $\mathbf{E} = (E_x, E_y, \mathbf{0})$ $\mathbf{B} = (\mathbf{0}, \mathbf{0}, B_z)$ Harmonic solutions $\mathbf{E} = \mathbf{U}(x, z)e^{i\omega t}$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$$

Scalar approximation \longrightarrow Helmholtz equation

u(x,z)e^{iωt}

$$\nabla \cdot (\varepsilon \mathbf{E}) = \mathbf{0} \qquad \nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times (\mathbf{B}/\mu) = -\varepsilon \partial_t \mathbf{E}$$
$$\varepsilon = \varepsilon(\mathbf{x}) \qquad \mu = \mu_0$$

Transverse electric mode (TE) $\mathbf{E} = (E_x, E_y, \mathbf{0})$ $\mathbf{B} = (\mathbf{0}, \mathbf{0}, B_z)$ Harmonic solutions $\mathbf{E} = \mathbf{U}(\mathbf{x}, \mathbf{z})e^{i\omega t}$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$$

Scalar approximation \longrightarrow Helmholtz equation

u(x,z)e^{iωt}

Maxwell's equations (no charge, current)

$$\nabla \cdot (\varepsilon \mathbf{E}) = \mathbf{0} \qquad \nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \times (\mathbf{B}/\mu) = -\varepsilon \partial_t \mathbf{E}$$
$$\varepsilon = \varepsilon(\mathbf{x}) \qquad \mu = \mu_0$$

Transverse electric mode (TE) $\mathbf{E} = (E_x, E_y, \mathbf{0})$ $\mathbf{B} = (\mathbf{0}, \mathbf{0}, B_z)$ Harmonic solutions $\mathbf{E} = \mathbf{U}(x, z)e^{i\omega t}$

$$\nabla (\nabla \mathbf{E}) - \nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$$

Scalar approximation \longrightarrow Helmholtz equation

Helmholtz equation

 $-\nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$

Paraxial wave solutions

 $\mathbf{E} = \mathbf{A}(\mathbf{x}, \mathbf{z}) \mathbf{e}^{\mathbf{i}(\beta \mathbf{z} + \omega \mathbf{t})}$

$$\partial_x^2 A + \partial_z^2 A + 2i\beta \partial_z A + (\omega^2 \mu_0 \varepsilon - \beta^2) A = 0$$

Paraxial approximation \longrightarrow Schrödinger equation

$$2i\beta\partial_z A + \partial_x^2 A + (\omega^2 \mu_0 \varepsilon - \beta^2) A = 0$$

We seek localised (in x) propagating waves, so discrete eigenvalues of the Schrödinger operator $H_V \equiv (-\partial_x^2 + V)$

Helmholtz equation

 $-\nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$

Paraxial wave solutions

 $\mathbf{E} = \mathbf{A}(\mathbf{x}, \mathbf{z}) \mathbf{e}^{\mathbf{i}(\beta \mathbf{z} + \omega \mathbf{t})}$

$$\partial_x^2 A + \partial_z^2 A + 2i\beta \partial_z A + (\omega^2 \mu_0 \varepsilon - \beta^2) A = 0$$

Paraxial approximation \longrightarrow Schrödinger equation

$$2i\beta\partial_z A + \partial_x^2 A + (\omega^2 \mu_0 \varepsilon - \beta^2) A = 0$$

We seek localised (in x) propagating waves, so discrete eigenvalues of the Schrödinger operator $H_V \equiv \left(-\frac{d^2}{dx^2} + V(x)\right)$

For any $k \in \mathbb{R}$, $|t(k)|^2 + |r_{\pm}(k)|^2 = 1$, and $E(k) = k^2 > 0$

If $|t(\kappa)| = \infty$ then $\kappa = i\theta, \theta > 0, E(\kappa) = -\theta^2 < 0$ is a discrete eigenvalue (bound state)

For any $k \in \mathbb{R}$, $|t(k)|^2 + |r_{\pm}(k)|^2 = 1$, and $E(k) = k^2 > 0$

If $|t(\kappa)| = \infty$ then $\kappa = i\theta, \theta > 0, E(\kappa) = -\theta^2 < 0$ is a discrete eigenvalue (bound state)

For any $k \in \mathbb{R}$, $|t(k)|^2 + |r_{\pm}(k)|^2 = 1$, and $E(k) = k^2 > 0$

If $|t(\kappa)| = \infty$ then $\kappa = i\theta, \theta > 0, E(\kappa) = -\theta^2 < 0$ is a discrete eigenvalue (bound state)

Th'm (Simon '76): Assume $(1 + |x|^2)V \in L^1$ and $\int V \leq 0$ Then there exists a bound state $E^{\lambda} = -\lambda^2 \theta^2$ and $\theta = -\frac{1}{2} \int V - \lambda \frac{1}{4} \iint V(x)|x - y|V(y) + o(\lambda)$

Outline of the talk

The case of a localized microstructure

Homogenization The effective mass Consequences Sketch of the proof

The case of an oscillatory background

Floquet-Bloch mode Introduction of a localized defect Sketch of the proof

Perspectives

A localized microstructure

We study the eigenvalue problem

$$\left(-\frac{d^2}{dx^2} + \mathbf{q}_{\epsilon}\right)\psi^{\epsilon} = \mathbf{E}^{\epsilon}\psi^{\epsilon} \qquad (E)$$

where $q_{\epsilon}(x) = q(x, x/\epsilon)$, with $x \mapsto q(x, \cdot)$ localized and $y \mapsto q(\cdot, y)$ is 1-periodic

We seek the distorted plane waves of (E) under the form

 $\mathbf{e}_{+}^{q_{\epsilon}}(\mathbf{x}) \equiv \mathbf{F}^{\epsilon}(\mathbf{x},\mathbf{x}/\epsilon) \equiv \mathbf{F}_{0}(\mathbf{x},\mathbf{x}/\epsilon) + \epsilon \mathbf{F}_{1}(\mathbf{x},\mathbf{x}/\epsilon) + \epsilon^{2}\mathbf{F}_{2}(\mathbf{x},\mathbf{x}/\epsilon) + \dots$

12/42

A localized microstructure

We study the eigenvalue problem

$$\left(-\frac{d^2}{dx^2} + \mathbf{q}_{\epsilon}\right)\psi^{\epsilon} = \mathbf{E}^{\epsilon}\psi^{\epsilon} \qquad (E)$$

where $q_{\epsilon}(x) = q(x, x/\epsilon)$, with $x \mapsto q(x, \cdot)$ localized and $y \mapsto q(\cdot, y)$ is 1-periodic

We seek the distorted plane waves of (E) under the form

 $\mathbf{e}_{+}^{q_{\epsilon}}(\mathbf{x}) \equiv \mathbf{F}^{\epsilon}(\mathbf{x},\mathbf{x}/\epsilon) \equiv \mathbf{F}_{0}(\mathbf{x},\mathbf{x}/\epsilon) + \epsilon \mathbf{F}_{1}(\mathbf{x},\mathbf{x}/\epsilon) + \epsilon^{2}\mathbf{F}_{2}(\mathbf{x},\mathbf{x}/\epsilon) + \dots$

13/42

Homogenization

We study the eigenvalue problem

$$\left(-\left(\frac{\partial}{\partial x}+\frac{1}{\epsilon}\frac{\partial}{\partial y}\right)^2 + q(x,y) - k^2\right)F^{\epsilon}(x,y) = 0, \quad (E')$$

We seek the distorted plane waves of (E') under the form $F^{\epsilon}(x,y) \equiv F_0(x,y) + \epsilon F_1(x,y) + \epsilon^2 F_2(x,y) + \dots$

One obtains:

•
$$F_0(x,y) = F_0^{(h)}(x)$$
 with $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)F_0^{(h)} = 0$
 $q_{av}(x) \equiv \int_0^1 q(x,y) \, dy$

- $F_{I}(x,y) \equiv 0$
- $F_2(x,y) = F_2^{(h)}(x) + F_2^{(p)}(x,y)$

 $\mathbf{t}^{q_{\epsilon}}(k) = \mathbf{t}_{\mathrm{av}}(k) + \epsilon^{2}\mathbf{t}_{2}(k) + \mathcal{O}(\epsilon^{3})$

Homogenization

We study the eigenvalue problem

$$\left(-\left(\frac{\partial}{\partial x}+\frac{1}{\epsilon}\frac{\partial}{\partial y}\right)^2 + q(x,y) - k^2\right)F^{\epsilon}(x,y) = 0, \quad (E')$$

We seek the distorted plane waves of (E') under the form $F^{\epsilon}(x,y) \equiv F_0(x,y) + \epsilon F_1(x,y) + \epsilon^2 F_2(x,y) + \dots$

One obtains:

•
$$F_0(x,y) = F_0^{(h)}(x)$$
 with $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)F_0^{(h)} = 0$
 $q_{av}(x) \equiv \int_0^1 q(x,y) \, dy$

- $F_{I}(x,y) \equiv 0$
- $F_2(x,y) = F_2^{(h)}(x) + F_2^{(p)}(x,y)$

 $\mathbf{t}^{q_{\epsilon}}(k) = \mathbf{t}_{\mathrm{av}}(k) + \epsilon^{2}\mathbf{t}_{2}(k) + \mathcal{O}(\epsilon^{3})$

Homogenization

We study the eigenvalue problem

$$\left(-\left(\frac{\partial}{\partial x}+\frac{1}{\epsilon}\frac{\partial}{\partial y}\right)^2 + q(x,y) - k^2\right)F^{\epsilon}(x,y) = 0, \quad (E')$$

We seek the distorted plane waves of (E') under the form $F^{\epsilon}(x,y) \equiv F_0(x,y) + \epsilon F_1(x,y) + \epsilon^2 F_2(x,y) + \dots$

One obtains:

•
$$F_0(x,y) = F_0^{(h)}(x)$$
 with $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)F_0^{(h)} = 0$
 $q_{av}(x) \equiv \int_0^1 q(x,y) \, dy$

- $F_{I}(x,y) \equiv 0$
- $F_2(x,y) = F_2^{(h)}(x) + F_2^{(p)}(x,y)$

 $t^{q_{\epsilon}}(k) = t_{av}(k) + \epsilon^{2}t_{2}(k) + \mathcal{O}(\epsilon^{3})$

A non-uniform expansion

The potential V = 0 is an exceptional potential! $t^{0}(k) \equiv I$ Generically, $t^{V}(k) \rightarrow 0 \ (k \rightarrow 0)$

Thus if $\int_0^1 q(\cdot, y) \, dy = 0$, the expansion is not uniform.

A non-uniform expansion

The potential V = 0 is an exceptional potential! Generically, $t^{V}(k) \rightarrow 0 \ (k \rightarrow 0)$

Thus if $\int_0^1 q(\cdot, y) \, dy = 0$, the expansion is not uniform.

 $t^{q_{\epsilon}}(k) = t_{av}(k) + \epsilon^{2}t_{2}(k) + \mathcal{O}(\epsilon^{3})$

 $t^{0}(k) \equiv I$

Main result

Th'm (VD, M.I. Weinstein, I. Vukicevic '12) Let $q_{\epsilon}(x) = \sum_{j} q_{j}(x) e^{2i\pi j\frac{x}{\epsilon}}$ be smooth, exponentially decaying. Then there exists $\epsilon_{0} > 0$ and K a complex neighborhood of 0 s.t. $\forall (\epsilon, k) \in [0, \epsilon_{0}) \times K$ $\left| \frac{k}{t^{\sigma_{\text{eff}}}(k)} - \frac{k}{t^{q_{\epsilon}}(k)} \right| \leq \epsilon^{3} C(K, ||V||).$ where $\sigma_{\text{eff}}(x) \equiv -\epsilon^{2} \Lambda_{\text{eff}}(x) \equiv -\frac{\epsilon^{2}}{(2\pi)^{2}} \sum_{j \neq 0} \frac{|q_{j}(x)|^{2}}{j^{2}}$

Corollaries. Assume moreover that $q_{av}(x) = q_0(x) = 0$ i) Uniformly in $k \in \mathbb{R}$ $\sup_{k \in \mathbb{R}} |t^{\sigma_{eff}}(k) - t^{q_{\epsilon}}(k)| = \mathcal{O}(\epsilon)$. ii) Scaled limit $k = \epsilon^2 \kappa, \kappa \neq i \frac{\int \Lambda_{eff}}{2}$ $\lim_{\epsilon \to 0} t^{q_{\epsilon}}(\epsilon^2 \kappa) = \frac{\kappa}{\kappa - i \frac{\int \Lambda_{eff}}{2}}$. iii) Bound state $E^{\epsilon} = k_{\epsilon}^2$ $k_{\epsilon} = i \frac{\epsilon^2}{2} \int \Lambda_{eff} + \mathcal{O}(\epsilon^3)$.

Main result

Th'm (VD, M.I. Weinstein, I. Vukicevic '12) Let $q_{\epsilon}(x) = \sum_{j} q_{j}(x) e^{2i\pi j\frac{x}{\epsilon}}$ be smooth, exponentially decaying. Then there exists $\epsilon_{0} > 0$ and K a complex neighborhood of 0 s.t. $\forall (\epsilon, k) \in [0, \epsilon_{0}) \times K$ $\left| \frac{k}{t^{\sigma_{\text{eff}}}(k)} - \frac{k}{t^{q_{\epsilon}}(k)} \right| \leq \epsilon^{3} C(K, ||V||).$ where $\sigma_{\text{eff}}(x) \equiv -\epsilon^{2} \Lambda_{\text{eff}}(x) \equiv -\frac{\epsilon^{2}}{(2\pi)^{2}} \sum_{j \neq 0} \frac{|q_{j}(x)|^{2}}{j^{2}}$

Corollaries. Assume moreover that $q_{av}(x) = q_0(x) = 0$ i) Uniformly in $k \in \mathbb{R}$ $\sup_{k \in \mathbb{R}} |t^{\sigma_{eff}}(k) - t^{q_{\epsilon}}(k)| = \mathcal{O}(\epsilon)$.

ii) Scaled limit $k = \epsilon^2 \kappa, \kappa \neq i \frac{\int \Lambda_{\text{eff}}}{2}$ $\lim_{\epsilon \to 0} t^{q_\epsilon} (\epsilon^2 \kappa) = \frac{\kappa}{\kappa - i \frac{\int \Lambda_{\text{eff}}}{2}}.$

iii) Bound state $E^{\epsilon} = k_{\epsilon}^2$ $k_{\epsilon} = i\frac{\epsilon^2}{2}\int \Lambda_{\text{eff}} + \mathcal{O}(\epsilon^3).$

Main results

Corollaries.

- i) Uniformly in $k \in \mathbb{R}$ $\sup_{k \in \mathbb{R}} |t^{\sigma_{eff}}(k) t^{q_{\epsilon}}(k)| = \mathcal{O}(\epsilon).$
- ii) Scaled limit $k = \epsilon^2 \kappa, \kappa \neq i \frac{\int \Lambda_{\text{eff}}}{2}$ $\lim_{\epsilon \to 0} t^{q_{\epsilon}}(\epsilon^2 \kappa) = \frac{\kappa}{\kappa i \frac{\int \Lambda_{\text{eff}}}{2}}.$
- iii) Bound state $E^{\epsilon} = k_{\epsilon}^2 \qquad k_{\epsilon} = i \frac{\epsilon^2}{2} \int \Lambda_{\text{eff}} + \mathcal{O}(\epsilon^3).$

Summary

The eigenvalue problem

$$\left(\begin{array}{c} -\frac{d^2}{dx^2} + q_{\epsilon} \end{array}\right)\psi^{\epsilon} = E^{\epsilon}\psi^{\epsilon}$$

with $q_{\epsilon}(x) = \sum_{j \neq 0} q_j(x)e^{2i\pi j\frac{x}{\epsilon}}$ is approximated by

the eigenvalue problem

$$\left(-\frac{d^2}{dx^2} - \epsilon^2 \Lambda_{\text{eff}}\right) \psi^{\epsilon} = \mathcal{E}_{\text{eff}}^{\epsilon} \psi^{\epsilon}$$

with $\Lambda_{\text{eff}}(\mathbf{x}) \equiv \frac{1}{(2\pi)^2} \sum_{j \neq 0} \frac{|q_j(\mathbf{x})|^2}{j^2}$ is approximated by

the eigenvalue problem

$$\left(-\frac{d^2}{dx^2} - \epsilon^2 \int \Lambda_{\text{eff}} \times \delta\right) \psi^{\epsilon} = E^{\epsilon}_{\delta} \psi^{\epsilon}$$

Summary

If $\epsilon > 0$ is sufficiently small $\left(-\frac{d^2}{dx^2} + q_{\epsilon} \right) \psi^{\epsilon} = E^{\epsilon} \psi^{\epsilon}$ with $q_{\epsilon}(\mathbf{x}) = \sum q_j(\mathbf{x}) e^{2i\pi j\frac{\mathbf{x}}{\epsilon}}$ has a unique eigenvalue: $k_{\epsilon} = i \frac{\epsilon^2}{2} \int \Lambda_{\text{eff}} + \mathcal{O}(\epsilon^3).$ $\mathbf{E}^{\epsilon} = \mathbf{k}_{\epsilon}^{\mathbf{2}}$ E(k)=k² \mathbf{F}^{ϵ}

Sketch of the proof

Define the Jost solutions $f_{\pm}(x;k) = \frac{1}{t(k)}e_{\pm}(x;k)$

The Jost solutions are the unique solutions to Volterra equation

$$f_{+}^{V}(x;k) = e^{ikx} + \int_{x}^{\infty} \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y)f_{+}^{V}(y)dy.$$

One has

$$\frac{k}{t^{V}(k)} = k - \frac{1}{2i}I^{V}(k), \qquad I^{V}(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_{+}^{V}(x;k)dx.$$

Sketch of the proof

Define the Jost solutions $f_{\pm}(x;k) = \frac{1}{t(k)}e_{\pm}(x;k)$

The Jost solutions are the unique solutions to Volterra equation

$$f_{+}^{V}(x;k) = e^{ikx} + \int_{x}^{\infty} \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y)f_{+}^{V}(y)dy.$$

One has

$$\frac{k}{t^{\vee}(k)} = k - \frac{1}{2i}I^{\vee}(k), \qquad I^{\vee}(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_{+}^{\vee}(x;k)dx.$$

Sketch of the proof

 $\forall (\epsilon, \mathbf{k}) \in [\mathbf{0}, \epsilon_{\mathbf{0}}) imes \mathbf{K}$

One has

$$\frac{k}{t^{V}(k)} = k - \frac{1}{2i}I^{V}(k), \qquad I^{V}(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_{+}^{V}(x;k)dx.$$

More generally,

$$\frac{k}{t^{\mathsf{V}}(k)} = \frac{k}{t^{\mathsf{W}}(k)} - \frac{1}{2i}I^{[\mathsf{V},\mathsf{W}]}(k),$$

$$I^{[\mathsf{V},\mathsf{W}]}(k) \equiv \int f^{\mathsf{W}}_{-}(\cdot;k)(\mathsf{V}-\mathsf{W})f^{\mathsf{V}}_{+}(\cdot;k)$$

Integration by part, with well-chosen potentials yields

$$\frac{k}{t^{\sigma_{\text{eff}}}(k)} - \frac{k}{t^{q_{\epsilon}}(k)} \leq \epsilon^{3} C(K, ||V||).$$

Outline of the talk

The case of a localized microstructure

Homogenization The effective mass Consequences Sketch of the proof

The case of an oscillatory background

Floquet-Bloch mode Introduction of a localized defect Sketch of the proof

Perspectives

Floquet-Bloch states

Pseudo-periodic eigenvalue problem Q(x + I) = Q(x) $\left(-\frac{d^2}{dx^2} + Q\right)\psi = E(k)\psi \qquad \psi(\mathbf{x}+\mathbf{I};k) = e^{2\pi i k}\psi(\mathbf{x};k)$ Or, equivalently, $\psi(\mathbf{x}; \mathbf{k}) \equiv e^{2\pi i \, \mathbf{k} \mathbf{x}} p_b(\mathbf{x}; \mathbf{k})$ $\left(-\left(\frac{d}{d\mathbf{x}} + 2\pi i \, \mathbf{k}\right)^2 + Q \right) p = E(\mathbf{k}) p \qquad p(\mathbf{x} + \mathbf{I}; \mathbf{k}) = p(\mathbf{x}; \mathbf{k})$ For any $k \in \left(-\frac{1}{2}, \frac{1}{2}\right]$ there exists $E_0(k), E_1(k), \ldots$ $\sum_{k=1}^{E_2(k)} \{ p_b(x;k) \}_{b \in \mathbb{N}} \text{ orthonormal set in } L^2_{per}([0,1])$ **D** $\begin{array}{l} \mathsf{E}_{1}^{(k)} \{ u_{b}(x;k) \equiv e^{2\pi i \, kx} p_{b}(x;k) \}_{b \in \mathbb{N}} \\ \mathsf{E}_{0}^{(k)} \end{array} \end{array}$ Floquet-Bloch states, Bo complete in $L^2(\mathbb{R})$ 1/2 k 0 -1/2

Floquet-Bloch states

Pseudo-periodic eigenvalue problem Q(x + I) = Q(x) $\left(-\frac{d^2}{dx^2} + Q\right)\psi = \mathbf{E}(\mathbf{k})\psi \qquad \psi(\mathbf{x}+\mathbf{l};\mathbf{k}) = \mathrm{e}^{2\pi i\,\mathbf{k}}\psi(\mathbf{x};\mathbf{k})$ Or, equivalently, $\psi(\mathbf{x};\mathbf{k}) \equiv e^{2\pi i \, \mathbf{k} \mathbf{x}} p_b(\mathbf{x};\mathbf{k})$ $\left(-\left(\frac{d}{dx}+2\pi i \, \mathbf{k}\right)^2 + Q\right) p = E(\mathbf{k}) p \qquad p(\mathbf{x}+\mathbf{I};\mathbf{k}) = p(\mathbf{x};\mathbf{k})$ For any $k \in \left(-\frac{1}{2}, \frac{1}{2}\right]$ there exists $E_0(k), E_1(k), \ldots$ $\sum_{b \in \mathbb{N}} E_2(k) \{ p_b(x; k) \}_{b \in \mathbb{N}} \text{ orthonormal set in } L^2_{per}([0, 1]) \}$ \mathbf{B}^{Z} ഫ് $\begin{bmatrix} \mathsf{E}_{1}(k) \\ \mathsf{u}_{b}(\mathbf{x}; \mathbf{k}) \end{bmatrix} \equiv e^{2\pi i \, \mathbf{k} \mathbf{x}} p_{b}(\mathbf{x}; \mathbf{k}) \}_{b \in \mathbb{N}}$ $\begin{bmatrix} \mathsf{E}_{0}(k) \\ \mathsf{Floquet-Bloch states,} \end{bmatrix}$ ^о complete in $L^2(\mathbb{R})$ 1'/20 -1/2

Th'm (VD, M.I. Weinstein, I. Vukicevic '12) Let $E_* = E_b(k_*)$ be a spectral band edge, and assume $\partial_k^2 E_{b_*}(k_*) > 0$ and $\int_{-\infty}^{\infty} |u_{b_*}(x;k_*)|^2 V(x) \, dx < 0$ or $\partial_k^2 E_{b_*}(k_*) < 0$ and $\int_{-\infty}^{\infty} |u_{b_*}(x;k_*)|^2 V(x) \, dx > 0$ Then there exists an eigenpair $(E^{\lambda}, \psi^{\lambda})$ of the problem $\left(-\frac{d^2}{dx^2} + Q + \lambda V\right) \psi^{\lambda} = E^{\lambda} \psi^{\lambda}$

The effective problem

Th'm (VD, M.I. Weinstein, I. Vukicevic '12) Let $\mathbf{Q} \in \mathbf{L}^{\infty}$ 1-periodic and $\mathbf{V} \in \mathbf{L}^{\infty}$, $(\mathbf{I} + |\cdot|)\mathbf{V} \in \mathbf{L}^{\mathsf{I}}$ Let $E_* = E_b(k_*)$ be a spectral band edge, and assume $\partial_{k}^{2} E_{b_{*}}(k_{*}) > 0 \quad \text{and} \quad \int_{-\infty}^{\infty} |u_{b_{*}}(x;k_{*})|^{2} V(x) \, dx < 0$ or $\partial_{k}^{2} E_{b_{*}}(k_{*}) < 0 \quad \text{and} \quad \int_{-\infty}^{\infty} |u_{b_{*}}(x;k_{*})|^{2} V(x) \, dx > 0$ Then there exists an eigenpair $(\mathbf{E}^{\lambda}, \psi^{\lambda})$ of the problem $\left(-\frac{d^2}{dx^2} + Q + \lambda \mathbf{V}\right)\psi^{\lambda} = \mathbf{E}^{\lambda}\psi^{\lambda}$

Moreover, one has

 $E^{\lambda} - E_* = \lambda^2 E_0 + \mathcal{O}(\lambda^3)$ and $\psi^{\lambda} \approx u_{b_*}(x; k_*) e^{-\lambda \alpha_0 |x|}$ where $(E_0, \psi_0 \equiv e^{-\alpha_0 |x|})$ is the solution of the effective problem

 $\left(-\frac{\partial_{k}E_{b_{*}}(k_{*})}{8\pi^{2}}\frac{d^{2}}{dy^{2}} + \delta(y) \times \int_{-\infty}^{\infty} |u_{b_{*}}(x;k_{*})|^{2}V(x) dx\right)\psi_{0} = E_{0}\psi_{0}$

Then there exists an eigenpair $(E^{\lambda}, \psi^{\lambda})$ of the problem $\left(-\frac{d^2}{dx^2} + \lambda V\right)\psi^{\lambda} = E^{\lambda}\psi^{\lambda}$

Moreover, one has $E = \lambda^2 E_0 + \mathcal{O}(\lambda^3)$ and $\psi^{\lambda} \approx e^{-\lambda \alpha_0 |\mathbf{x}|}$ where $(E_0, \psi_0 \equiv e^{-\alpha_0 |\mathbf{x}|})$ is the solution of the effective problem $\left(-\frac{d^2}{dy^2} + \delta(\mathbf{y}) \times \int_{-\infty}^{\infty} V(\mathbf{x}) d\mathbf{x} \right) \psi_0 = E_0 \psi_0$

Then there exists an eigenpair $(E^{\lambda}, \psi^{\lambda})$ of the problem $\left(-\frac{d^2}{dx^2} + \lambda V\right)\psi^{\lambda} = E^{\lambda}\psi^{\lambda}$

Moreover, one has $E = \lambda^2 E_0 + \mathcal{O}(\lambda^3)$ and $\psi^{\lambda} \approx e^{-\lambda \alpha_0 |x|}$ where $(E_0, \psi_0 \equiv e^{-\alpha_0 |x|})$ is the solution of the effective problem $\left(-\frac{d^2}{dy^2} + \delta(y) \times \int_{-\infty}^{\infty} V(x) \, dx \right) \psi_0 = E_0 \psi_0$

We study the eigenvalue problem $\left(-\frac{d^2}{dx^2} + \lambda V\right)\psi^{\lambda} = E^{\lambda}\psi^{\lambda}$ Equivalently, $\left(-4\pi^2\xi^2 - E^{\lambda}\right)\widehat{\psi}^{\lambda}(\xi) + \lambda(\widehat{V}\star\widehat{\psi}^{\lambda})(\xi) = 0$

34/42

Near and far frequency decomposition: $I = \chi(|\xi| < \lambda^r) + \chi(|\xi| > \lambda^r)$

$$\widehat{\psi}^{\lambda} \equiv \chi(|\xi| > \lambda^{r})\widehat{\psi}^{\lambda} + \chi(|\xi| < \lambda^{r})\widehat{\psi}^{\lambda} \equiv \widehat{\psi}_{\text{far}} + \widehat{\psi}_{\text{near}}$$

$$\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{far}}(\xi) + \lambda\chi(|\xi|>\lambda^{r})\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

 $\left(4\pi^{2}\xi^{2}-\mathsf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda^{r})\int_{-\infty}^{\infty}\widehat{\mathsf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$

We study the eigenvalue problem $\left(-\frac{d^2}{dx^2} + \lambda \mathbf{V}\right)\psi^{\lambda} = \mathbf{E}^{\lambda}\psi^{\lambda}$ Equivalently, $\left(-4\pi^2\xi^2 - \mathbf{E}^{\lambda}\right)\widehat{\psi}^{\lambda}(\xi) + \lambda\left(\widehat{\mathbf{V}}\star\widehat{\psi}^{\lambda}\right)(\xi) = \mathbf{0}$

35/42

Near and far frequency decomposition: $I = \chi(|\xi| < \lambda^r) + \chi(|\xi| > \lambda^r)$

$$\widehat{\psi}^{\lambda} \equiv \chi(|\xi| > \lambda^{r})\widehat{\psi}^{\lambda} + \chi(|\xi| < \lambda^{r})\widehat{\psi}^{\lambda} \equiv \widehat{\psi}_{\text{far}} + \widehat{\psi}_{\text{near}}$$

$$\left(4\pi^{2}\xi^{2}-\mathsf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{far}}(\xi) + \lambda\chi(|\xi|>\lambda')\int_{-\infty}^{\infty}\widehat{\mathsf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

 $\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda')\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$

Far frequency equation $\widehat{\psi}_{far} \equiv \chi(\xi > \lambda')\widehat{\psi}_{far}$

 $\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{far}}(\xi) + \lambda\chi(|\xi|>\lambda^{r})\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$

$$\widehat{\psi}_{\text{far}}(\xi) + \lambda \mathcal{T}^{\lambda} \widehat{\psi}_{\text{far}} + \lambda \mathcal{T}^{\lambda} \widehat{\psi}_{\text{near}} = \mathbf{0}$$

So $\widehat{\psi}_{far}(\xi) = -\lambda (I + \lambda T^{\lambda})^{-I} T^{\lambda} \widehat{\psi}_{near}$ is uniquely determined.

Near frequency equation

$$\left(4\pi^{2}\xi^{2}-\mathsf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda^{r})\int_{-\infty}^{\infty}\widehat{V}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

is a closed equation on $\widehat{\psi}_{near} \equiv \chi(\xi < \lambda^r) \widehat{\psi}_{near}$

Far frequency equation $\widehat{\psi}_{far} \equiv \chi(\xi > \lambda')\widehat{\psi}_{far}$

 $\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{far}}(\xi) + \lambda\chi(|\xi|>\lambda^{r})\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$

$$\widehat{\psi}_{\text{far}}(\xi) + \lambda \mathcal{T}^{\lambda} \widehat{\psi}_{\text{far}} + \lambda \mathcal{T}^{\lambda} \widehat{\psi}_{\text{near}} = \mathbf{0}$$

So
$$\widehat{\psi}_{far}(\xi) = -\lambda (I + \lambda T^{\lambda})^{-I} T^{\lambda} \widehat{\psi}_{near}$$
 is uniquely determined.

Near frequency equation

$$\left(4\pi^{2}\xi^{2}-\mathsf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda^{r})\int_{-\infty}^{\infty}\widehat{\mathsf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

is a closed equation on $\widehat{\psi}_{near} \equiv \chi(\xi < \lambda')\widehat{\psi}_{near}$

Near frequency equation

$$\left(4\pi^{2}\xi^{2}-\mathsf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda')\int_{-\infty}^{\infty}\widehat{\mathsf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

is a closed equation on $\widehat{\psi}_{near} \equiv \chi(\xi < \lambda')\widehat{\psi}_{near}$

After a rescaling: $E^{\lambda} = -\lambda^2 \theta^2$ $\xi = \lambda \xi'$ $\widehat{\psi}_{near} = \frac{1}{\lambda} \widehat{\phi}^{\lambda}(\frac{\xi}{\lambda})$

$$(4\pi^{2}\xi'^{2} + \theta^{2})\widehat{\phi}^{\lambda}(\xi') + \chi(|\xi'| < \lambda^{r-1})\widehat{V}(\mathbf{0}) \int_{-\infty}^{\infty} \widehat{\phi}^{\lambda} = \mathbf{R}$$
with $\mathbf{R} = \mathcal{O}(\lambda^{r}, \lambda^{1-r})$

Perturbation of $(4\pi^2\xi'^2 + \theta^2)\widehat{\phi}^{\lambda}(\xi') + \widehat{V}(0)\int_{-\infty}^{\infty}\widehat{\phi}^{\lambda} = 0$

 $\left(-\frac{d^2}{dy^2}+\theta^2\right)\phi^{\lambda}(\mathbf{y}) + \widehat{\mathbf{V}}(\mathbf{0})\times\delta(\mathbf{y})\phi^{\lambda} = \mathbf{0}$

Near frequency equation

$$\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda')\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

is a closed equation on $\hat{\psi}_{near} \equiv \chi(\xi < \lambda') \hat{\psi}_{near}$

After a rescaling: $E^{\lambda} = -\lambda^2 \theta^2$ $\xi = \lambda \xi'$ $\widehat{\psi}_{near} = \frac{1}{\lambda} \widehat{\phi}^{\lambda} (\frac{\xi}{\lambda})$

$$(4\pi^{2}\xi'^{2} + \theta^{2})\widehat{\phi}^{\lambda}(\xi') + \chi(|\xi'| < \lambda^{r-1})\widehat{V}(\mathbf{0}) \int_{-\infty}^{\infty} \widehat{\phi}^{\lambda} = \mathbf{R}$$
with $\mathbf{R} = \mathcal{O}(\lambda^{r}, \lambda^{1-r})$

Perturbation of $(4\pi^2\xi'^2 + \theta^2)\widehat{\phi}^{\lambda}(\xi') + \widehat{V}(0)\int_{-\infty}^{\infty}\widehat{\phi}^{\lambda} = 0$

 $\left(-\frac{d^2}{dy^2}+\theta^2\right)\phi^{\lambda}(\mathbf{y}) + \widehat{\mathbf{V}}(\mathbf{0})\times\delta(\mathbf{y})\phi^{\lambda} = \mathbf{0}$

Near frequency equation

$$\left(4\pi^{2}\xi^{2}-\mathbf{E}^{\lambda}\right)\widehat{\psi}_{\mathrm{near}}(\xi) + \lambda\chi(|\xi|<\lambda')\int_{-\infty}^{\infty}\widehat{\mathbf{V}}(\xi-\zeta)(\widehat{\psi}_{\mathrm{far}}+\widehat{\psi}_{\mathrm{near}})(\zeta) = \mathbf{0}$$

is a closed equation on $\widehat{\psi}_{near} \equiv \chi(\xi < \lambda')\widehat{\psi}_{near}$

After a rescaling: $E^{\lambda} = -\lambda^2 \theta^2$ $\xi = \lambda \xi'$ $\widehat{\psi}_{near} = \frac{1}{\lambda} \widehat{\phi}^{\lambda} (\frac{\xi}{\lambda})$

$$(4\pi^{2}\xi'^{2} + \theta^{2})\widehat{\phi}^{\lambda}(\xi') + \chi(|\xi'| < \lambda^{r-1})\widehat{V}(\mathbf{0}) \int_{-\infty}^{\infty} \widehat{\phi}^{\lambda} = \mathbf{R}$$
with $\mathbf{R} = \mathcal{O}(\lambda^{r}, \lambda^{1-r})$

Perturbation of $(4\pi^2 \xi'^2 + \theta^2)\widehat{\phi}^{\lambda}(\xi') + \widehat{V}(0)\int_{-\infty}^{\infty}\widehat{\phi}^{\lambda} = 0$

 $\left(-\frac{d^2}{dy^2}+\theta^2\right)\phi^{\lambda}(\mathbf{y}) + \widehat{\mathbf{V}}(\mathbf{0})\times\delta(\mathbf{y})\phi^{\lambda} = \mathbf{0}$

Perspectives

Our work indicates the existence of a solution of Maxwell's equations with u(x,z), localized in x, for a careful choice of $\beta(\omega, \mu_0, \epsilon_0)$

– 10 µm

0.1 mm

-1 µm

41/42

 $\boldsymbol{E} = \boldsymbol{A}(\boldsymbol{x}, \boldsymbol{z}) \mathbf{e}^{i(\beta \boldsymbol{z} + \omega \boldsymbol{t})}$

Institut für Theoretische Festkörperphysik (Photonics Group), Karlsruhe

Perspectives

Our work indicates the existence of a solution of Maxwell's equations with u(x,z), localized in x, for a careful choice of $\beta(\omega, \mu_0, \epsilon_0)$

- Numerical evidence
- $\left(-\frac{d}{dx}a(x)\frac{d}{dx} + V(x)\right)\psi(x) = E\psi(x)$ (TM mode)
- Multi-dimensional case (2-dimensional structures)
- full Helmholtz equation $-\nabla^2 \mathbf{E} = \omega^2 \mu_0 \varepsilon \mathbf{E}$
- non-small defect, etc.