One-dimensional scattering and localization properties of highly oscillatory potentials

Vincent Duchêne (joint work with I. Vukićević & M.I. Weinstein)

Geometry and Analysis seminar, Columbia University

Dec 01, 2011

- A motivation for our problem
- Scattering on the line
- The case of a highly oscillatory potential

Discontinuities in the potential

- Jump conditions and interface correctors
- A rigorous approach

Low energy analysis

- Generic and exceptional potentials
- Main result
- Consequences

Introduction • ○ ○ ○ Discontinuities in the potential

Motivation

Low energy analysis

u(x, z) satisfies the Hemholtz equation

$$\partial_x^2 u(x,z) + \partial_z^2 u(x,z) + k^2 n_0^2 u(x,z) = k^2 (n_0^2 - n^2(x)) u(x,z),$$

 $k = \omega/c$, n(x) the refractive index, and n_0 the mean.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials Dec 01, 2011 3 / 10

Motivation

Low energy analysis

u(x, z) satisfies the Hemholtz equation

$$\partial_x^2 u(x,z) + \partial_z^2 u(x,z) + k^2 n_0^2 u(x,z) = k^2 (n_0^2 - n^2(x)) u(x,z),$$

 $k = \omega/c$, n(x) the refractive index, and n_0 the mean.

Define $u(x, z) = F(x, z)e^{ikn_0 z}$ with **Paraxial approximation :** $|2ikn_0\partial_z F| \gg |\partial_z^2 F|$ yields the Schrödinger equation :

$$2ikn_0 \ \partial_z F = (-\partial_x^2 + k^2(n_0^2 - n(x)^2)) F \equiv H F.$$

with solution

$$F = e^{-iz(2ikn_0)^{-1}H}F(x,0).$$

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials Dec 01, 2011 3 / 1

Motivation

Low energy analysis

u(x, z) satisfies the Hemholtz equation

$$\partial_x^2 u(x,z) + \partial_z^2 u(x,z) + k^2 n_0^2 u(x,z) = k^2 (n_0^2 - n^2(x)) u(x,z),$$

 $k = \omega/c$, n(x) the refractive index, and n_0 the mean.

Define $u(x, z) = F(x, z)e^{ikn_0 z}$ with **Paraxial approximation :** $|2ikn_0\partial_z F| \gg |\partial_z^2 F|$ yields the Schrödinger equation :

$$2ikn_0 \ \partial_z F = (-\partial_x^2 + k^2(n_0^2 - n(x)^2)) F \equiv H F.$$

with solution

$$F = e^{-iz(2ikn_0)^{-1}H}F(x,0).$$

We study the 1d, time-independent Schrödinger equation

$$\left(-\partial_x^2+V(x)-k^2\right)\psi = 0,$$

with V a localized, highly oscillatory potential.

Vincent Duchêne

(S)

Discontinuities in the potential 000

Low energy analysis

Scattering on the line

$$\left(\begin{array}{ccc} -\partial_x^2 \ + \ V(x) \ - \ k^2 \end{array}
ight) \psi \ = \ 0, \qquad -\infty < x < \infty.$$

Qn : What can we say when the potential is highly oscillatory?

$$V(x) \equiv q_{\varepsilon}(x) \equiv q(x, x/\varepsilon),$$

with $x \mapsto q(x, \cdot)$ localized and $y \mapsto q(\cdot, y)$ 1-periodic.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials Dec 01, 2011 4/

Discontinuities in the potential 000

Low energy analysis

Scattering on the line

$$\left(\begin{array}{ccc} -\partial_x^2 + V(x) - k^2 \end{array}
ight) \psi = 0, \qquad -\infty < x < \infty.$$

Qn : What can we say when the potential is highly oscillatory?

$$V(x) \equiv q_{\varepsilon}(x) \equiv q(x, x/{\varepsilon}),$$

with $x \mapsto q(x, \cdot)$ localized and $y \mapsto q(\cdot, y)$ 1-periodic.

Discontinuities in the potential

Low energy analysis

Homogenization

We seek the distorted plane waves of (S) under the form

 $e^{q_{\varepsilon}}_{+}(x) \equiv F^{\varepsilon}(x,x/\varepsilon) \equiv F_{0}(x,x/\varepsilon) + \varepsilon F_{1}(x,x/\varepsilon) + \varepsilon^{2}F_{2}(x,x/\varepsilon) + \dots$

Plug the Ansatz into equation

$$\left(-\left(\frac{\partial}{\partial x}+\frac{1}{\epsilon}\frac{\partial}{\partial y}\right)^2 + q(x,y) - k^2\right)F^{\varepsilon}(x,y) = 0,$$

and solve at each order .

One obtains

•
$$F_0(x,y) = e_+^{q_{av}}(x)$$
, satisfies $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)e_+^{q_{av}} = 0$, with $q_{av}(x) \equiv \int_0^1 q(x,y)dy$;
• $F_1 \equiv 0$;
• $F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x,y)$, with
• $F_2^{(p)}(x,y) = -\frac{e_+^{q_{av}}(x)}{4\pi^2} \sum_{|j| \ge 1} \frac{q_j(x)}{j^2} e^{2i\pi jy}$, when $q(x,y) = \sum_j q_j(x)e^{2i\pi jy}$,
• $\left(-\frac{d^2}{dx^2} + q_{av}(x) + \int_0^1 q(x,y)F_2^{(p)}(x,y)dy - k^2\right)F_2^{(h)}(x) = 0$.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 5/16

Discontinuities in the potential

Low energy analysis

Homogenization

We seek the distorted plane waves of (S) under the form

 $e^{q_{\varepsilon}}_{+}(x) \equiv F^{\varepsilon}(x,x/\varepsilon) \equiv F_{0}(x,x/\varepsilon) + \varepsilon F_{1}(x,x/\varepsilon) + \varepsilon^{2}F_{2}(x,x/\varepsilon) + \dots$

Plug the Ansatz into equation

$$\left(-\left(\frac{\partial}{\partial x}+\frac{1}{\epsilon}\frac{\partial}{\partial y}\right)^2 + q(x,y) - k^2\right)F^{\varepsilon}(x,y) = 0,$$

and solve at each order .

One obtains

•
$$F_0(x, y) = e_+^{q_{av}}(x)$$
, satisfies $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)e_+^{q_{av}} = 0$, with $q_{av}(x) \equiv \int_0^1 q(x, y)dy$;
• $F_1 \equiv 0$;
• $F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x, y)$, with
• $F_2^{(p)}(x, y) = -\frac{e_+^{q_{av}}(x)}{4\pi^2} \sum_{|j| \ge 1} \frac{q_j(x)}{j^2} e^{2i\pi jy}$, when $q(x, y) = \sum_j q_j(x)e^{2i\pi jy}$,
• $\left(-\frac{d^2}{dx^2} + q_{av}(x) + \int_0^1 q(x, y)F_2^{(p)}(x, y)dy - k^2\right)F_2^{(h)}(x) = 0$.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 5/

Discontinuities in the potential

Homogenization

Low energy analysis

One obtains

• $F_0(x, y) = e_+^{q_{av}}(x)$, satisfies $\left(-\frac{d^2}{dx^2} + q_{av} - k^2\right)e_+^{q_{av}} = 0$, with $q_{av}(x) \equiv \int_0^1 q(x, y)dy$; • $F_1 \equiv 0$; • $F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x, y)$, with • $F_2^{(p)}(x, y) = -\frac{e_+^{q_{av}}(x)}{4\pi^2} \sum_{|j| \ge 1} \frac{q_j(x)}{j^2} e^{2i\pi jy}$, when $q(x, y) = \sum_j q_j(x)e^{2i\pi jy}$, • $\left(-\frac{d^2}{dx^2} + q_{av}(x) + \int_0^1 q(x, y)F_2^{(p)}(x, y)dy - k^2\right)F_2^{(h)}(x) = 0$.

Asymptotic expansion of the transmission coefficient.

$$t^{q_{\varepsilon}}(k) = t_0(k) + \varepsilon^2 t_2(k) + \mathcal{O}(\varepsilon^3)$$

where

- $t_0 = t^{q_{av}}(k)$, the transmission coefficient of q_{av} ;
- t_2 depends on q and k, but not on ε .

Vincent Duchêne

d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 5

Discontinuities in the potential $_{\rm OOO}$

Low energy analysis

The homogenization fails in the two following cases :

• $x \mapsto q(x, \cdot)$ is discontinuous.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 6/3

The homogenization fails in the two following cases :

- $x \mapsto q(x, \cdot)$ is discontinuous.
- 2 $k \ll 1$ and $q_{av} \equiv 0$.
 - If $q_{av} \equiv 0$, then $t^{q_{av}}(k) = 1$, for any k (exceptional!) In the generic case, $t^{V}(k) \rightarrow 0$ when $k \rightarrow 0$.

 $\implies t^{q_{\varepsilon}}(k) \ = \ t^{q_{av}}(k) \ + \ \varepsilon^2 t_2(k) \ + \ \mathcal{O}(\varepsilon^3) \text{ is not uniform in } k.$

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials D

- A motivation for our problem
- Scattering on the line
- The case of a highly oscillatory potential

- Jump conditions and interface correctors
- A rigorous approach

Low energy analysis

- Generic and exceptional potentials
- Main result
- Consequences

Discontinuities in the potential

Low energy analysis

$x \mapsto q(x, x/\varepsilon)$ has discontinuities at

 $x_1 < x_2 < \cdots < x_n$.

Jump conditions. Any solution ψ of (S) satisfies

$$\left[\frac{\mathsf{d}}{\mathsf{d}x}\psi\right]_{x} = [\psi]_{x} = 0, \qquad \forall x \in \mathbb{R},$$

where $[\psi]_x \equiv \psi(x^+) - \psi(x^-)$.

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

$$\psi_{a}(x) \equiv \begin{cases} \alpha \ \psi_{-}(x;k) & \text{if } x < a, \\ \beta \ \psi_{+}(x;k) & \text{if } x > a, \end{cases} \quad \text{with } \begin{cases} \left(-\frac{d^{2}}{dx^{2}} + q_{av} - k^{2}\right)\psi_{\pm} = 0, \\ \psi_{\pm}(x) \sim e^{\pm ikx}, \ x \to \pm \infty. \end{cases}$$

Application to the transmission coefficient

$$t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \dots$$

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 8/1

Discontinuities in the potential

Low energy analysis

$x \mapsto q(x, x/\varepsilon)$ has discontinuities at

 $x_1 < x_2 < \cdots < x_n$.

Jump conditions. Any solution ψ of (S) satisfies

$$\left[rac{\mathsf{d}}{\mathsf{d}x}\psi
ight]_x \;=\; \left[\psi
ight]_x \;=\; 0, \qquad orall x\in\mathbb{R},$$

where $[\psi]_x \equiv \psi(x^+) - \psi(x^-)$.

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

$$\psi_{a}(x) \equiv \begin{cases} \alpha \ \psi_{-}(x;k) & \text{if } x < a, \\ \beta \ \psi_{+}(x;k) & \text{if } x > a, \end{cases} \quad \text{with } \begin{cases} \left(-\frac{d^{2}}{dx^{2}} + q_{av} - k^{2}\right)\psi_{\pm} = 0, \\ \psi_{\pm}(x) \sim e^{\pm ikx}, \ x \to \pm \infty. \end{cases}$$

Application to the transmission coefficient

$$t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \dots$$

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 8 / 1

Discontinuities in the potential

Low energy analysis

$x \mapsto q(x, x/\varepsilon)$ has discontinuities at

 $x_1 < x_2 < \cdots < x_n$.

Jump conditions. Any solution ψ of (S) satisfies

$$\left[rac{\mathsf{d}}{\mathsf{d}x}\psi
ight]_x \;=\; \left[\psi
ight]_x \;=\; 0, \qquad orall x\in\mathbb{R},$$

where $[\psi]_x \equiv \psi(x^+) - \psi(x^-)$.

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

$$\psi_{a}(x) \equiv \begin{cases} \alpha \ \psi_{-}(x;k) & \text{if } x < a, \\ \beta \ \psi_{+}(x;k) & \text{if } x > a, \end{cases} \quad \text{with } \begin{cases} \left(-\frac{d^{2}}{dx^{2}} + q_{av} - k^{2}\right)\psi_{\pm} = 0, \\ \psi_{\pm}(x) \sim e^{\pm ikx}, \ x \to \pm \infty. \end{cases}$$

Application to the transmission coefficient

$$t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \dots$$

Discontinuities in the potential

Low energy analysis

$x \mapsto q(x, x/\varepsilon)$ has discontinuities at $x_1 < x_2 < \cdots < x_n$.

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

$$\psi_{a}(x) \equiv \begin{cases} \alpha \ \psi_{-}(x;k) & \text{if } x < a, \\ \beta \ \psi_{+}(x;k) & \text{if } x > a, \end{cases} \quad \text{with } \begin{cases} \left(-\frac{d^{2}}{dx^{2}} + q_{av} - k^{2}\right)\psi_{\pm} = 0, \\ \psi_{\pm}(x) \sim e^{\pm ikx}, \ x \to \pm \infty. \end{cases}$$

Application to the transmission coefficient

$$t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \dots$$

where

- $t_1^{\varepsilon}(k)$ comes from discontinuities in $x \mapsto q(x, \cdot)$;
- $t_2^{\varepsilon}(k)$ comes from discontinuities in $x \mapsto \partial_x q(x, \cdot)$.

Vincent Duchêne

d scattering and localization properties of highly oscillatory potentials Dec 01, 2011

Dec 01, 2011 8 / 16

Discontinuities in the potential $\circ \bullet \circ$

Low energy analysis

A rigorous approach

 $V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.}$ $|||Q||| \equiv ||\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} ||_{L^2 \to L^2} \ll 1,$ where $\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2}$ and $\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2.$

Lippmann-Schwinger equation. e_{+}^{V} , as a solution of (S), satisfies

$$e_{+}^{V} = \left(I + \left(-\partial_{x}^{2} + q_{av} - k^{2}\right)^{-1}Q\right)^{-1}e_{+}^{q_{av}} \equiv \left(I + R_{V}Q\right)^{-1}e_{+}^{q_{av}}$$

$$= e_{+}^{q_{av}} - R_{V}Q e_{+}^{q_{av}} + R_{V}QR_{V}Q e_{+}^{q_{av}} + \dots$$

Application to the transmission coefficient.

$$t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q;Q] + \dots$$

Vincent Duchêne

d scattering and localization properties of highly oscillatory potentials

Discontinuities in the potential $\circ \bullet \circ$

Low energy analysis

A rigorous approach

 $V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.}$ $|||Q||| \equiv ||\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} ||_{L^2 \to L^2} \ll 1,$ where $\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2}$ and $\chi(x) \equiv (1 + x^2)^{-\sigma}, \ \sigma > 2.$

Lippmann-Schwinger equation. e_+^V , as a solution of (S), satisfies

$$e_{+}^{V} = \left(I + \left(-\partial_{x}^{2} + q_{av} - k^{2}\right)^{-1}Q\right)^{-1}e_{+}^{q_{av}} \equiv \left(I + R_{V}Q\right)^{-1}e_{+}^{q_{av}}$$

$$= e_{+}^{q_{av}} - R_{V}Q e_{+}^{q_{av}} + R_{V}QR_{V}Q e_{+}^{q_{av}} + \dots$$

Application to the transmission coefficient.

$$t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q;Q] + \dots$$

Discontinuities in the potential $\circ \bullet \circ$

Low energy analysis

A rigorous approach

 $V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.}$ $|||Q||| \equiv ||\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} ||_{L^2 \to L^2} \ll 1,$ where $\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2}$ and $\chi(x) \equiv (1 + x^2)^{-\sigma}, \ \sigma > 2.$

Lippmann-Schwinger equation. e_+^V , as a solution of (S), satisfies

$$\langle D \rangle \chi e_{+}^{V} = \left(I + \underbrace{\langle D \rangle \chi R_{V} \chi \langle D \rangle}_{\mathcal{R}_{V}} \underbrace{\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1}}_{\mathcal{Q}} \right)^{-1} \langle D \rangle \chi e_{+}^{q_{av}}$$

$$= \langle D \rangle \chi e_{+}^{q_{av}} - \mathcal{R}_{V} \mathcal{Q} \langle D \rangle \chi e_{+}^{q_{av}} + \mathcal{R}_{V} \mathcal{Q} \mathcal{R}_{V} \mathcal{Q} \langle D \rangle \chi e_{+}^{q_{av}} + \dots$$

Application to the transmission coefficient.

$$t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q;Q] + \dots$$

Discontinuities in the potential $\circ \bullet \circ$

Low energy analysis

A rigorous approach

 $V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.}$ $|||Q||| \equiv ||\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} ||_{L^2 \to L^2} \ll 1,$ where $\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2}$ and $\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2.$

Lippmann-Schwinger equation. e_+^V , as a solution of (S), satisfies

$$\langle D \rangle \chi e^{V}_{+} = \left(I + \underbrace{\langle D \rangle \chi R_{V} \chi \langle D \rangle}_{\mathcal{R}_{V}} \underbrace{\langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1}}_{\mathcal{Q}} \right)^{-1} \langle D \rangle \chi e^{q_{av}}_{+}$$

$$= \langle D \rangle \chi e^{q_{av}}_{+} - \mathcal{R}_{V} \mathcal{Q} \langle D \rangle \chi e^{q_{av}}_{+} + \mathcal{R}_{V} \mathcal{Q} \mathcal{R}_{V} \mathcal{Q} \langle D \rangle \chi e^{q_{av}}_{+} + \dots$$

Application to the transmission coefficient.

$$t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q;Q] + \ldots$$

Discontinuities in the potential $\circ \circ \bullet$

Low energy analysis

Back to the periodic case $V = q_{av} + Q$, with $Q(x) \equiv q(x, x/\varepsilon)$.

$$\implies$$
 $|||Q||| = \mathcal{O}(\varepsilon).$

$$t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q;Q] + \ldots$$

where

•
$$t_0 = t^{q_{av}}(k)$$
, the transmission coefficient of q_{av} ;
• $t_1[Q] = \int f(x)Q(x)dx = \int f(x)q(x, x/\varepsilon)dx = \sum_j \int f(x)q_j(x)e^{ij\frac{x}{\varepsilon}}$
 $\hookrightarrow \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \dots$
• $t_2[Q; Q] \approx \int g(x)Q(x)Q(x)dx = \sum_{j,k} \int f(x)q_j(x)q_k(x)e^{i(j+k)\frac{x}{\varepsilon}}$

$$\hookrightarrow \varepsilon^2 t_2(k) + \dots$$

We recover

$$t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + .$$

Vincent Duchêne

. .

- A motivation for our problem
- Scattering on the line
- The case of a highly oscillatory potential

- Jump conditions and interface correctors
- A rigorous approach

3 Low energy analysis

- Generic and exceptional potentials
- Main result
- Consequences

Low energy analysis

Generic and exceptional potentials

$$t^{V}(k) = \frac{2ik}{2ik - I^{V}(k)}, \qquad I^{V}(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f^{V}_{+}(x;k)dx.$$

Generic potential : $I^{V}(k) \rightarrow \gamma \neq 0$, and $t^{V}(k) \rightarrow 0$. Exceptional case : $I^{V}(k) \rightarrow 0$, and $t^{V}(k) \rightarrow 0$.

 $V \equiv 0$ is exceptional !

Thus if $q_{av} \equiv 0$ (or more generally exceptional), the expansion

$$t^{q_{\varepsilon}}(k) = t^{q_{av}}(k) + \varepsilon^{2}t_{2}(k) + \mathcal{O}(\varepsilon^{3})$$

is not uniform in k.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Low energy analysis

Generic and exceptional potentials

$$t^{V}(k) = \frac{2ik}{2ik - I^{V}(k)}, \qquad I^{V}(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_{+}^{V}(x;k)dx.$$

Generic potential : $I^{V}(k) \rightarrow \gamma \neq 0$, and $t^{V}(k) \rightarrow 0$. Exceptional case : $I^{V}(k) \rightarrow 0$, and $t^{V}(k) \rightarrow 0$.

 $V \equiv 0$ is exceptional!

Thus if $q_{av} \equiv 0$ (or more generally exceptional), the expansion

$$t^{q_{\varepsilon}}(k) = t^{q_{av}}(k) + \varepsilon^{2}t_{2}(k) + \mathcal{O}(\varepsilon^{3})$$

is not uniform in k.

Discontinuities in the potential 000

Low energy analysis

Generic and exceptional potentials

Thus if $q_{av} \equiv 0$ (or more generally exceptional), the expansion $t^{q_{\varepsilon}}(k) = t^{q_{av}}(k) + \varepsilon^2 t_2(k) + O(\varepsilon^3)$

is not uniform in k.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Discontinuities in the potential $_{\rm OOO}$

Low energy analysis

Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

$$f^{V}_{+}(x;k) = e^{ikx} + \int_{x}^{\infty} \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y) f^{V}_{+}(y) dy.$$

This can be generalized to

$$f^{V}_{+}(x;k) = f^{W}_{+}(x;k) + \int_{x}^{\infty} \frac{f^{W}_{+}(x;k)f^{W}_{-}(y;k) - f^{W}_{-}(x;k)f^{W}_{+}(y;k)}{Wron[f^{W}_{+}(x;k),f^{W}_{-}(x;k)]} V(y)f^{V}_{+}(y)dy.$$

$$\implies \frac{k}{t^{V}(k)} = \frac{k}{t^{W}(k)} - \frac{1}{2i}I^{[V,W]}(k), \quad I^{[V,W]}(k) \equiv \int f_{-}^{W}(\cdot;k)(V-W)f_{+}^{V}(\cdot;k).$$

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires q_ε ≡ q(x, x/ε), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows k to lie in a complex strip ℑ(k) < α.

Discontinuities in the potential $_{\rm OOO}$

Low energy analysis

Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

$$f^{V}_{+}(x;k) = e^{ikx} + \int_{x}^{\infty} \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y) f^{V}_{+}(y) dy.$$

This can be generalized to

$$f^{V}_{+}(x;k) = f^{W}_{+}(x;k) + \int_{x}^{\infty} \frac{f^{W}_{+}(x;k)f^{W}_{-}(y;k) - f^{W}_{-}(x;k)f^{W}_{+}(y;k)}{Wron[f^{W}_{+}(x;k),f^{W}_{-}(x;k)]} V(y)f^{V}_{+}(y)dy.$$

$$\implies \frac{k}{t^{V}(k)} = \frac{k}{t^{W}(k)} - \frac{1}{2i}I^{[V,W]}(k), \quad I^{[V,W]}(k) \equiv \int f_{-}^{W}(\cdot;k)(V-W)f_{+}^{V}(\cdot;k).$$

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires q_ε ≡ q(x, x/ε), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows k to lie in a complex strip $\Im(k) < \alpha$.

Discontinuities in the potential $_{\rm OOO}$

Low energy analysis

Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

$$f^{V}_{+}(x;k) = e^{ikx} + \int_{x}^{\infty} \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y) f^{V}_{+}(y) dy.$$

This can be generalized to

$$f^{V}_{+}(x;k) = f^{W}_{+}(x;k) + \int_{x}^{\infty} \frac{f^{W}_{+}(x;k)f^{W}_{-}(y;k) - f^{W}_{-}(x;k)f^{W}_{+}(y;k)}{Wron[f^{W}_{+}(x;k),f^{W}_{-}(x;k)]} V(y)f^{V}_{+}(y)dy.$$

$$\implies \frac{k}{t^{V}(k)} = \frac{k}{t^{W}(k)} - \frac{1}{2i}I^{[V,W]}(k), \quad I^{[V,W]}(k) \equiv \int f_{-}^{W}(\cdot;k)(V-W)f_{+}^{V}(\cdot;k).$$

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires q_ε ≡ q(x, x/ε), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows k to lie in a complex strip $\Im(k) < \alpha$.

Discontinuities in the potential 000

Main result

Low energy analysis

Convergence of the transmission coefficient

Assume $q_{\varepsilon} = q(x, x/\varepsilon) = \sum_{j \neq 0} q_j(x) e^{2i\pi j\frac{x}{\varepsilon}}$ is smooth and exponentially decaying at infinity. Then there exists $\varepsilon_0 > 0$ and K a compact subset of \mathbb{C} such that $(\varepsilon, k) \in [0, \varepsilon_0) \times K$, one has

$$\left|\frac{k}{t^{\sigma_{eff}^{\varepsilon}}(k)} - \frac{k}{t^{q_{\varepsilon}}(k)}\right| \leq \varepsilon^{3} C(K, |V|),$$

where $\sigma_{\textit{eff}}^{\varepsilon}$ is the effective potential well defined by

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials Dec 01, 2011

Discontinuities in the potential

Consequences

Low energy analysis

$$\frac{k}{t^{q_{\varepsilon}}(k)} = k + \frac{\varepsilon^2}{2i} \int_{-\infty}^{\infty} \Lambda_{\text{eff}}(x) dx + \mathcal{O}(\varepsilon^3),$$

This allows to expand $t^{q_{\varepsilon}}(k)$, apart from a shrinking subset around $k^{\star} \equiv i \frac{\varepsilon^2}{2} \int \Lambda_{\text{eff}}$.

This is true in particular

• uniformly for $k \in \mathbb{R}$: $\sup_{k \in \mathbb{R}} \left| t^{\sigma_{eff}^{\varepsilon}}(k) - t^{q_{\varepsilon}}(k) \right| = \mathcal{O}(\varepsilon).$

• if
$$k = \varepsilon^2 \kappa$$
, $\kappa \neq i \frac{\int \Lambda_{\text{eff}}}{2}$:

$$\lim_{\varepsilon \to 0} t^{q_{\varepsilon}}(\varepsilon^{2}\kappa) = \frac{\kappa}{\kappa - i\frac{\int \Lambda_{\text{eff}}}{2}}$$

This universal scaled limit is the transmission coefficient for a Dirac-distribution potential : $(-\partial_x^2 - \delta(x) \int \Lambda_{\text{eff}} - \kappa^2)\psi = 0.$

Discontinuities in the potential

Low energy analysis

Consequences

0 -2 -4 -6 -8 -10 -2 -10 -1 ° × -0.002 -0.002 -0.004 -0.004 -0.006 -0.006 -0.008 -0.008 -0.01 -0.01 -0.012 -0.012 -0.014 L -0.014L ° × 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 lt^{q.}(ε²κ) lt_d(ε²κ) 0.4 0.4 0.3 0.3 0.2 0.2 ε = 0.05 ε = 0.02 0.1 ε = 0.1 0.1 ε = 0.05 ε = 0.2 ε = 0.1 Vincent Duchêne 1d scattering and localization properties of highly oscillatory optimistics 0.5 Dec 015 2011 1 2

Discontinuities in the potential 000

Low energy analysis

Consequences (continued)

$$\frac{k}{t^{q_{\varepsilon}}(k)} = k + \frac{\varepsilon^2}{2i} \int_{-\infty}^{\infty} \Lambda_{\text{eff}}(x) dx + \mathcal{O}(\varepsilon^3),$$

 $t^{q_{\varepsilon}}$ has a pole in the upper kalf plane

$$k_{\varepsilon} ~pprox ~irac{arepsilon^2}{2}\int \Lambda_{
m eff} ~+~ \mathcal{O}(arepsilon^3).$$

(using Rouché argument).

Edge bifurcation of point spectrum

 $H_{q_arepsilon} \equiv (-\partial_x^2 + q_arepsilon)$ has a point eigenvalue at energy

$$E_{arepsilon} \; = \; k_{arepsilon}^2 \; pprox \; - rac{arepsilon^4}{4} \left(\int \Lambda_{
m eff}
ight)^2 \; + \; \mathcal{O}(arepsilon^5).$$

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 16 / 16

Discontinuities in the potential 000

Low energy analysis

Consequences (continued)

Edge bifurcation of point spectrum

 $H_{q_arepsilon} \equiv (-\partial_x^2 + q_arepsilon)$ has a point eigenvalue at energy

$$E_{arepsilon} \; = \; k_{arepsilon}^2 \; pprox \; - rac{arepsilon^4}{4} \left(\int \Lambda_{
m eff}
ight)^2 \; + \; \mathcal{O}(arepsilon^5).$$

This indicates the existence of a solution u(x, z), localized in x, for a careful choice of $k = \omega/c$.

Vincent Duchêne

d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011 16/1