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Motivation

u(x, z)e'“t

L

u(x, z) satisfies the Hemholtz equation
Q2u(x,z) + O2u(x,z) + K*ndu(x,z) = K*(nd — n*(x))u(x, z),

k = w/c, n(x) the refractive index, and ng the mean.



Introduction
[ ]

Motivation

u(x, z) satisfies the Hemholtz equation
Q2u(x,z) + O2u(x,z) + K*ndu(x,z) = k*(nd — n*(x))u(x, z),
k = w/c, n(x) the refractive index, and ng the mean.

Define u(x,z) = F(x, z)ek™? with
Paraxial approximation : [2ikng0,F| > |02F|
yields the Schrédinger equation :
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F — e—iz(kano)leF(X’ 0)
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Motivation
u(x, z) satisfies the Hemholtz equation
Q2u(x,z) + 02u(x,z) + k*ndu(x,z) = k*(nd — n*(x))u(x, z),
k = w/c, n(x) the refractive index, and ng the mean.

Define u(x, z) = F(x, z)e*™Z with
Paraxial approximation : |2ikngd,F| > |0%F|
yields the Schrodinger equation :

2ikng 9,F = (=02 + k*(n§ — n(x)?)) F = H F.

with solution
F — e—iz(2ikn0)71HF(X’ 0)

We study the 1d, time-independent Schrédinger equation
(R +V(x)—Kk)y =0, (S)

with V' a localized, highly oscillatory potential.
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Introduction
Scattering on the line
(=02 + V(x) — kK*)yp =0, —00 < X < 00. J

e“ 1KX

r- (k)e**

eiKX

re (k)e '

t(k)ekx t(k)e™ 'k

e (x; k) eV (x; k)
Qn : What can we say when the potential is highly oscillatory ?
V(x) = a.(x) = qlx.x/2).

with x — q(x, -) localized and y — q(+,y) 1-periodic.
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Scattering on the line

(=02 + V(x) — K )y =0, —00 < X < 00. J

t(k)ex

el (x; k) e (x; k)
Qn : What can we say when the potential is highly oscillatory 7

V(x) = q(x) = qlx,x/e),

with x — g(x, -) localized and y — q(-,y) 1-periodic.
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Homogenization
We seek the distorted plane waves of (S) under the form
e¥(x) = Fi(x,x/e) = Fo(x,x/e) + eFi(x,x/e) + *Fa(x,x/e) + ...

Plug the Ansatz into equation

o 10\ 5\ .
<— (a*"g@) + q(x,y) — k)F (x,y) =0,

and solve at each order .

One obtains
o Fo(x,y) = e (x), satisfies (—j—; + qav — k?)el* =0, with
-1
gav(x) = ./0 q(x,y)dy;

e F1=0;
°o [ = F2(h)(x) + Fz(p) (x,y), with
o F2(P)(qu) _ 7e‘;;(;) zj‘::l %J_(ZX) e2mY \when g(x,y) = zj qj(X)GZI",ijY

o (=L + qu(x) + [y alx, ) FP (x, y)dy — K)FP(x) = 0.
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We seek the distorted plane waves of (S) under the form

el*(x) = F(x,x/e) = Fo(x,x/e) + eFi(x,x/e) + e2Fy(x,x/e) +

Plug the Ansatz into equation

o 10\ 5\ .
<_<8X+68y) —i—(ﬂX,y)-k)F(X,y) _Oa

and solve at each order .

One obtains
e Fo(x,y) = ej‘f”( ), satisfies (—5722 + qav — k?)el* =0, with
Gav(x) =[5 a(x, y)dy ;

o F]_ = O,
o Fr= Fz(h)(x) + F(p)(x y) with
o FP(x,y) = e ¥y L2e2 ™, when q(x,y) = X qi(x)e2 ™,

2
o (—L + qu(x) + [ a(x,¥)F 2’<x,y>dy K2)F" (x) = 0.
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Homogenization
One obtains
e Fo(x, y) = ej‘f”( ) satisfies (—5’722 + Gav — k2)el™ = 0, with
an fO

(] F1 = 0

o F2=F"(x)+ FP(x.y), with
° F2( )( x,y) = :;2 Z|J|>1 12 2/7rJy, when ¢g(x,y) = Zj qj(x)e2i”jy,
° (7% +qav +f0 ( ) X y)dy k2)F( )( ): 0.

Asymptotic expansion of the transmission coefficient.

t9 (k) = to(k) + ta(k) + O(e®)
where
e ty = t%v(k), the transmission coefficient of g, ;

@ t» depends on g and k, but not on €
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The homogenization fails in the two following cases :

Q@ x — g(x,-) is discontinuous.

10 10°
10° -
10 1
o 10 1 7
0 1 S;f’ 10°
) o 2 7 ) 10
107"
. 107
10
10 10
10 10 10 10° 107 10 10 10
Smooth potential Discontinuous potential

Q@ k<« 1andg, =0.
If gov = 0, then t%v(k) = 1, for any k (exceptional!)
In the generic case, t(k) — 0 when k — 0.

= t%(k) = t9%v(k) + £2to(k) + O(&%) is not uniform in k.
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The homogenization fails in the two following cases :
Q@ x — q(x,-) is discontinuous.
Q@ k< 1andg, =0.
If gav = 0, then t9%v(k) = 1, for any k (exceptional !)
In the generic case, tY(k) — 0 when k — 0.

= t9% (k) = t%v(k) + 2ty(k) + O(g3) is not uniform in k.

k)
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x — q(x, x/¢) has discontinuities at
X1 < Xo < -+ < Xp.

Jump conditions. Any solution 9 of (S) satisfies

d
[&@b]x =[], = 0, Vx € R,

where [¢], = ¥(xT) — (x7).

Interface correctors. In the homogenization expansion, one can introduce
interface correctors, of the form

B [ av_(x k) if x<a, . (—%Jrqav—kQ)lﬁi:O,
balx) = { Bui(ak) if x>a M { Pu(x) ~ B x = too,

t°(k) = to(k) + + 2t(k) + + ...
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x — g(x,x/e) has discontinuities at
X1 < Xp < - < Xp.
Jump conditions. Any solution 9 of (S) satisfies

d

[dxw}x = [¢], = 0, Vx € R,

where [¢], = ¥(xT) — (x7).

Interface correctors. In the homogenization expansion, one can introduce
interface correctors, of the form

_ [ av_(xk) if x<a, . (= &5+ qa — K)ps = 0,
Valx) = { Bui(xik) if x>a { a() ~ €=, X oo,
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x — q(x, x/¢) has discontinuities at
Xy < Xp < -+ < Xp.

Jump conditions. Any solution 9 of (S) satisfies

Low energy analysis
00000

d
[dxz/;L = [¥], = O, Vx € R,

where [¢], = ¥(xT) — (x7).

Interface correctors. In the homogenization expansion, one can introduce
interface correctors, of the form

_ [ av_(xk) if x<a, . (= &5+ qa — K)ps = 0,
Valx) = { Bui(xik) if x>a { a() ~ €=, X oo,

Application to the transmission coefficient

t5(k) = to(k) + eti(k) + e2ta(k) +e%t5(k) + ...
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x — q(x, x/¢) has discontinuities at
Xy < Xp < -+ < Xp.

Interface correctors. In the homogenization expansion, one can introduce
interface correctors, of the form

_ [ av_(xk) if x<a, . (= L+ oy — k) =0,
Ya(x) = { B (xik) if x>a { wi(;) ~ TR x s fo0.

Application to the transmission coefficient

t°(k) = to(k) + eti(k) + 2ta(k) +%t5(k) + ...
where

o ti(k) comes from discontinuities in x — q(x,-);

o t5(k) comes from discontinuities in x — dxq(x, -).
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A rigorous approach

Introduction
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V = ga + Q, with Q localized at high frequencies.
Rl = 1) X' Qx D) Mo < 1,

where (D)* = (1— )% and  x(x) = (1+x2)77, o> 2.

Lippmann-Schwinger equation. eX, as a solution of (S), satisfies

) o -1
e/ = (1+(-R+an—K)7"Q) e = (1+RQ) e
‘:‘efv — RyQ eq‘” + RyQRyQ ejq:v —+ ...

Application to the transmission coefficient.

t°(k) = to(k) + t[Q] + [Q; Q] + ...
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A rigorous approach

V = g, + Q, with Q localized at high frequencies.
Rl = D) X 'Rx D) Hlzmyz < 1,

where (D)* = (1 - d;)s/z and x(x)=(1+x*)77, 0> 2.

Lippmann-Schwinger equation. e, as a solution of (S), satisfies

-1
ef = </+(_8>2<+qav_k2)_10> e = (I+RyQ) ‘e®

R eiav _ R\/Q eQav + RVQRVQ eQav
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A rigorous approach

Low energy analysis
00000

V = g, + Q, with Q localized at high frequencies.
Rl = D) X 'Rx D) Hlzmyz < 1,

where (D)* = (1 - %)5/2 and x(x)=(1+x3)77, o>2.

Lippmann-Schwinger equation. e, as a solution of (S), satisfies

(D)xe! = ( 1+ (D)xRyx(D) (D) 'Qy (D)t )H(D)xel
RV Q
= (D)xe?” — Ry Q (D)xel” + RyQRyQ (D)xel + ...

Application to the transmission coefficient.

t°(k) to(k) + t[Q] + t[Q; Q] + ...
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A rigorous approach

Low energy analysis
00000

V = g, + Q, with Q localized at high frequencies.
QI = KDY x'Rx D) Ml2s2 < 1,

where (D)* = (1 - ddjz)s/2 and x(x)=(1+x*)77, 0> 2.

Lippmann-Schwinger equation. e, as a solution of (S), satisfies

(D)xe! = ( 1+ (D)xRyx(D) (D) 'Qy (D)t )H(D)xel
RV Q
= (D)xe?” — Ry Q (D)xel” + RyQRyQ (D)xel + ...

Application to the transmission coefficient.

(k) = to(k) + t[Q] + 2[Q: Q] + ... J
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Back to the periodic case
V = g, + Q, with Q(x) = q(x,x/¢).

= IRl = O(e).

t°(k) = to(k) + t[Q] + [Q Q] + ...

where
e ty = t%v(k), the transmission coefficient of q,, ;
o t1[Q] = [f(x)Q(x)dx = [f(x)q(x,x/e)dx = ijf(x)qj(x)ef
— etf(k) + €t2(k)—|—...
o [Q; Q] & [g(x)QX)Q(x)dx = 3, [ F(x)qi(x)qu(x)e’UTH=
— €2t2 )
We recover

t5(k) = to(k) + eti(k) + e2ta(k) +e%t5(k) + ...
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a Low energy analysis
@ Generic and exceptional potentials

@ Main result
@ Consequences
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Generic and exceptional potentials

~
<
—
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Il

tY(k) = 2k IV(R)’ /_Z V(x)e ™Y (x; k)dx.

Generic potential : /Y (k) — v # 0, and t" (k) — 0.

Exceptional case : /Y (k) — 0, and tV(k) — 0.

V = 0 is exceptional !

Thus if gov = 0 (or more generally exceptional), the expansion
t% (k) = t9(k) + 2ta(k) + O(?)

is not uniform in k.
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Generic and exceptional potentials

tY(k) = M_z’fv(k) 1Y (k) /_oo V(x)e ™Y (x; k) dx.

Generic potential : /Y (k) — v # 0, and t" (k) — 0.

Exceptional case : /Y (k) — 0, and tY(k) — 0.

V =0 is exceptional !

Thus if gay = 0 (or more generally exceptional), the expansion
t% (k) = t%(k) + 52t2(k) + (’)(53)

is not uniform in k.
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Generic and exceptional potentials

Thus if g, = 0 (or more generally exceptional), the expansion
t9% (k) = t9(k) + e2ty(k) + O(3)

is not uniform in k.

%)

0.06 0.08 0.1

0 0.02 0.04
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Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

. o0 eik(y—x) — eik(x_}’)
f+v(x; k) = e 4 / ok V(y)f+v(y)dy.
This can be generalized to

£ (k)Y (ys k) — £ (x; k) A (v K)

k) = £k [ e VIR 0y
— i~ g — "M M = [V -wr R,

Our analysis uses mostly integration by parts on these identities, with well-chosen
potentials.

@ Requires g = g(x, x/e), (almost-)periodic in the fast variable, and some
regularity in the slow variable.

@ Allows k to lie in a complex strip (k) < a.
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Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

. oo eik(y—x) — eik(x_)’)
f+V(X; k) = e 4 / o V(y)f+v(y)dy.

This can be generalized to

> Wi VW (y: k) — FV(x: K)YFY (y:
erV(X; k) = aW(X; k)+/x +( @ron[(éwlzi; k),f_‘g‘/(xk;)kJ)r] il V(Y)f+V(Y)dy-
k k 1

Our analysis uses mostly integration by parts on these identities, with well-chosen
potentials.

Requires g- = q(x, x/¢), (almost-)periodic in the fast variable, and some
regularity in the slow variable.

Allows k to lie in a complex strip (k) < .
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Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

. oo e"k(yfx) - eik(X7Y)
f+V(X; k) = e 4 / ok V(y)f_y(y)dy.

This can be generalized to

V(y)fY (y)dy.

V0 K)EY (v k) = £ O KA (v
FY(xik) = £Y(xi k) + / = Va,on[(fivv(i; k),f_‘gv(x;)kJ)r] —

k kK 1ivw

= ww "o W '[V’Wl(")E/f—w(~:k)(V—W)f+V(-;k).

Our analysis uses mostly integration by parts on these identities, with well-chosen
potentials.

@ Requires g. = g(x, x/¢), (almost-)periodic in the fast variable, and some
regularity in the slow variable.

@ Allows k to lie in a complex strip S(k) < a.
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Main result

Convergence of the transmission coefficient

Assume g. = q(x,x/e) = > i qj(x)e2i”j§ is smooth and exponentially
decaying at infinity. Then there exists g > 0 and K a compact subset of C
such that (g, k) € [0,£0) x K, one has

k k ‘

— < & CkK, |V
tU:ff(k) tqs(k) € C( 7| I)v

where o is the effective potential well defined by

2 2
05 (x) = —€2 Aegi(x) = — o (I
" ! (2w>2j§ Iz

O eff
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Consequences
k g2 [o°
=k + — Nefr %),
ko [ o)

This allows to expand t9%(k), apart from a shrinking subset around
K* =05 [ Ao
This is true in particular
o uniformly for k € R : sup,cp ‘t”gff(k) - tqs(k)’ = O(e).
o if k =¢e2k, H#i# :
K

lim t% (%K) = ———.
N LA
e—0 K — lf 2eff

This universal scaled limit is the transmission coefficient for a
Dirac-distribution potential : (—02 — §(x) [ Aegr — k%)t = 0.
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sk
o
sk
—10,
°, s = o'’ ° o5
o o
—o.002 —0.002
—0.004 1 —0.0041
0.006 [ o.006
—o.008 —o.008 [
—o.01 —o.01
—o.012 —o.012
—0.014 —0.01a
2, s = o5 S o5 s 2, s = o5 ° o5

[t%(e%%)]
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Consequences (continued)

k
tqa(k)

t9% has a pole in the upper kalf plane

2 0o
= k + ;/ Aegr(x)dx + O(3),

g2 3
(using Rouché argument).

Edge bifurcation of point spectrum

Hy. = (—02 + g:) has a point eigenvalue at energy

gt 2
E. = Kk ~ — (//\eﬁ) + O(£%).
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Consequences (continued)

Edge bifurcation of point spectrum

Hy. = (=02 + g.) has a point eigenvalue at energy

2 et 2 5
E. = kX = =4 At | + O(e).

J u(x,z)e™

z

L

This indicates the existence of a solution u(x, z), localized in x, for a
careful choice of k = w/c.
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