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Discovery of the dead water phenomenon

“ When caught in dead water, 'Fram’ appeared
to be held back, as if by some mysterious force
(...) 'Fram’ was capable of 6 to 7 knots. When in
dead water she was unable to make 1.5 knots. We
made loops in our course, turned sometimes right
around, tried all sorts of antics to get clear of it,

1

but to very little purpose. '

“ | remarked that in the case of a layer of fresh wa-
ter resting on the top of salt water, a ship will (...)
generate invisible waves in the salt-water fresh wa-
ter boundary below; | suggested that the great
resistance experienced by the ship was due to

the work done in generating these [internal]

waves.”
Vilhelm Bjerknes, 1862-1951
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Discovery of the dead water phenomenon

“ | suggested that the great resistance expe-
rienced by the ship was due to the work done
in generating these [internal] waves. (...) In De-
cember 1899 | consequently suggested a pupil of
mine, Dr. V. Walfrid Ekman (...) that he should

do some simple preliminary experiments.”

R, F3 % 6 @ 0 12 . 74 ompersec.

Vagn Walfrid Ekman, 1874-1954
» Experiment of [Vasseur,Mercier,Dauxois (2008)]
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Matherﬁafical modelization

All existing models ! are based on linear boundary conditions.

o The governing equations
@ Our framework
@ Dirichlet-Neumann operators
@ The full Euler system

@ Several (coupled) asymptotic models
@ Expansion of the Dirichlet-Neumann operators
@ A fully nonlinear model (Green-Naghdi-type)
® Weakly nonlinear models (Boussinesqg-type)

9 An uncoupled model
@ The fKdV approximation
@ Rigorous justification
@ A consequence

1. [Ekman (1904), Hudimac (1961), Sabuncu (1961), Price,Wang,Baar (1989),
Miloh, Tulin,Zilman (1993), Nguyen,Yeung (1997), Motygin,Kuznetsov (1997),
Ten,Kashiwagi (2004), Lu,Chen (2009)]
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Mathematical modelization

9 The governing equations
@ Our framework
@ Dirichlet-Neumann operators
@ The full Euler system

© Several (coupled) asymptotic models
@ Expansion of the Dirichlet-Neumann operators
@ A fully nonlinear model (Green-Naghdi-type)
@ Weakly nonlinear models (Boussinesqg-type)

9 An uncoupled model
@ The fKdV approximation
@ Rigorous justification
@ A consequence

The governing equations

We follow a strategy similar to
@ One layer case : [Bona,Chen,Saut (2002,2004), Bona,Colin,Lannes (2005),
Alvarez-Samaniego,Lannes (2008)]
@ Bi-fluidic case : [Bona,Lannes,Saut (2008), VD (2010,2011)]
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o The governing equations
@ Our framework
@ Dirichlet-Neumann operators
@ The full Euler system
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Assumptions of our framework

z
Cs
-
(\f\? di + G(7 —cst)
N ——
G(t,z)
—ds
x
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ Irrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Assumptions of our framework

z
Cs
- 5
(\‘(\7 di +Gi(r — cst)
\_/
vi= V.01
G(t, )
va = Va2
—ds
T
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ lrrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Assumptions of our framework

z
Cs
-—
(\‘(—\7 dy + ¢ (x — est)
N —
vi=V..01 div vy =A¢; =0
G(t,z)
va = Va2 div vea = Ay =0
—ds
x
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ Irrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Assumptions of our framework

z
Cs
— 5
(\I\? di + Gi(x — est)
N —
vi= V.01 div vy =A¢; =0 1 + 3| Va1 = —,,El -9z
G(t, )
va =V .02 div ve = Aga =0 2 + 3| Va0 = —p% - gz
—ds
x
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ Irrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Assumptions of our framework

z
Cs
-0
(\‘(—\7 e =TGP0 g4 (e ent)
N—
vi= V.01 div vy =A¢; =0 1 + 3| Va1 = —,,El -9z
0102 = /14 [0:C220n 01 = /1 + [0:C[?0n b
Gty @)
va =V .02 div ve = Aga =0 2 + 3| Va0 = —p% - gz
0202 =0 —dy
X
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ Irrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Assumptions of our framework

z
Cs
- 5
(\‘ﬂ? e =TGP0 g4 (e ent)
N ——
vi= V.01 div vy =A¢; =0 1 + 3| Va1 = —,,El -9z
_irle —0iGa = TGP0 =TT 0GP0
Ga(t,z)
Vo = Va6 div ve = Agy =0 Do + 5| Vaeo? = =L — gz
002 =0 —dy
T
@ Dimension d = 1, flat bottom, fixed surface (1 = (i1(x — cst).

@ Irrotational, incompressible, inviscid, immiscible fluids.

@ Fluids at rest at infinity, no surface tension.
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Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

b= c

b se=u

¢ On@1 = Onto

Apa =0
/8z¢2:0 Apy =0

Dx 02 =0 in{—-db <z<(}, Ax,z01 =0 in{G<z<d+G},
$2 =2 on {z = (2}, 1 =1 on {z=d + G},
az¢2 =0 on {Z = —dz}, 6n2¢1 = 8n2¢2 on {Z = <2}

! !

®2 1

Therefore, the system is entirely defined by

G i Q@ i Y1=9gurface ¢ Y2 = D2jinterface:
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Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

Dirichlet-Neumann operators

The following operators are well-defined :

Goy2 = \/ 1+ |0xC2|*Ond2jinterfaces
G1(¥1,12) = /1 + 011?01 syrfaces

H(t1,¢2) = Ox <¢1|interface) :

Therefore, the system is entirely defined by

G 5 & o

V1= drisurface Y2 = P2jinterface-
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The full Euler system

The dimensionless full Euler system
_C58XC1 - Gl(w17¢2) = 07

0:Go — Gpo = 0,

O (Pzaxwz — p1H (1, ¢2)) +g(p2 — p1)0x(2
+%5X(P2|5X¢2|2 —P1|H(¢17¢2)|2) = 0N,

Using that (71 is some fixed data, the system reduces to two evolution
equations for ({2, v), with v the shear velocity defined by

v = 0Ok ((P2</52 - Pl¢1)|2:€<2) = p20x9P2 — p1H(11,92).

Solutions of this system are exact solutions of our problem. We construct
asymptotic models, and therefore look for approximate solutions.
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@ Several (coupled) asymptotic models
@ Expansion of the Dirichlet-Neumann operators
@ A fully nonlinear model (Green-Naghdi-type)
® Weakly nonlinear models (Boussinesqg-type)
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Nondimensionalizing the system
z
d1 L& 1&] J
P1
az
0
P2 A
—do
1 = dla 2 = dl’ = )\2’ = /72’ = d27 %

p<Ll, ale = 0W), e
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Expansion of the Dirichlet-Neumann operators
The dimensionless full Euler system
: 1
~ZFroG - Gt i) = 0,
€2 1 12
0t — —Gapa = 0,
1

O (3x¢2 = W’H(wl,@/fz)) + (v + 6)0x(2 + 2—23X(|3x¢2|2 = 7|H(¢17¢2)|2>
- M628XN27

()

Proposition
Let s > 1, (1, (o, %1, 2 € HSTE(R). Then one has

‘Gzibz — uGa1 — 12Gan o < ucC
’Gl(lbl,l/iz) — uGi1 — pPGio . < 1°C,
)H(%,%) — 01 — pHy - S u2C,
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A strongly nonlinear model :
1/, 1—v = O(p), p < L

0.35
‘ Wave resi coeffi it
03 1
Cn®
025 1w
1502 1
0.15 1
0.1 1
0.05
0
(o 5 10 15
T L T + T
3l a
oF N 7
o i
1.5 i
1+ i
051 B
0 L L L L L L L
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A weakly nonlinear model :
€1/ = € = p = ¢ < 1.

A Boussinesq/Boussinesq model

0tC2 + 5_,_,78 V+5( +5)2 (C2V)+535t5:_y,€)2 83 = _Eclg:_;_’,;axCla
Ov + (v+0)0G + 550 (V) = 0.

— 0 U+ AgdU + e( AL(U)0U + AU ) = e0xF(x — Frt)

with U:(Cz,v), FR—)R2 (MB)

Consistency

The full Euler system is consistent with the Boussinesq/Boussinesq model,
with precision O(&?).

Open questions :
@ Well-posedness of any Boussinesq/Boussinesq system 7
@ Convergence of solutions towards solutions of the full Euler system ?
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Symmetrization

We have a system of the form
U + AU + e (A(U)OU + AU ) = e0cF(x —Frt).

Multiply by adapted S = Sy + eS1(U) — £5:02, and withdraw O(&?)
terms. One obtains a perfectly symmetric model of the form :

The symmetric Boussinesq/Boussinesq model

(50 +e(Sy(U) — 526§)>8tU + (zo +e(Zy(U) — 2263))@(1 = £0,G,
(Ss)
with the following properties :
e Matrices So, S2, ¥o, X2 € M3(R) are symmetric.
e 51(+) and X4(-) are linear mappings, with values in M>(R), and for all
U € R?, S;(U) and £1(U) are symmetric.
e Sp et S, are definite positive.
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Rigorous Justlflcatlon of the model

Consistency

The full Euler system is consistent with the symmetric Boussinesq/Boussinesq
model (Sg), with precision O(g?).

Well posedness

The symmetric system is well-posed in H**! (s > 3/2) over times of order O(1/¢).
Moreover, one has the estimate

( +5’U(t

Convergence

) = U

HstL < Co(eclat - 1) .

The difference between any solution U of the full Euler system (X), and the solution Us
of the symmetric Boussinesq/Boussinesq model (Sg) with same initial data, satisfies

vt € [0, T /], |U = Us| o o.qsty < cCo(e®t — 1),
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© An uncoupled model
@ The fKdV approximation
@ Rigorous justification
@ A consequence
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The WKB expansion

We seek an approximate solution of system (Sg) :

(So+(51(U) — $202) )0eU + (To + £(F1(U) — 7202) ) 0U = £0,G J

At first order : (So0: + Lo0x)Up = 0.
There exists a basis e; diagonalizing Sp and X :

— UO = Z u;e; , with 8tUi(t,X) + Ciaxuf = 0.

At next order : We seek an approximation of the form

(WKB)
f)tU/(t.X)JrC/f)XU/ = 0, (1)
Orui + Aiuidgui + pidiu = kg, (2)

(()t + C/()X)e/ U + Z u,-jkuk(')xuj + Z‘f)’,-j(')fuj = 0. (3)
UK #i
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The WKB expansion

We seek an approximate solution of system (Sg) :

(50 +e(Si(U) - 528§)>8tU+ (zo +e(X1(U) - zzaﬁ))axu = 0,6 J

At first order : (So0: + Lo0x)Up = 0.
There exists a basis e; diagonalizing Sg and ¥ :

E UO = Z u;e; ) with 3tU/(t,X) + Ciaxuf = 0.

At next order : We seek an approximation of the form

Uspp(t,x) = D ui(et, t,x)ej + els(et, t, x). (WKB)
6tu,-(t,x)+c,-8xu; = 0, (1)
Orui + Nuidgui + pidiui = Ogi, (2)

(6t+c,-8x)e,--U1 + Z Oé;jkukaxu_,' + Z,@,’j@i’uj‘ = 0. (3)
U, k)i, i) J#i
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The fKdV Approximation

Definition

We define then the fKdV approximation as Usqy = > | uje;, where u;
satisfies

{ Orup + CiOxup + e\juiOcu; + epidiu; = e0ygi,

i _ 0
Uilt=0 = Uy,

In our case, this yields
The fKdV approximation
Ukdy = (Gv) = (G +C s (v +0)(¢ —¢-) ), with

eCe + (—FrE1)d e + e350¢10,Cx + e 503 = —cFry .
(fKdV)
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Rigorous justification (1/2)

Well-posedness

If U° € H5+2, then there exists a unique strong solution Uy(T, t, x), uniformly
bounded in C1([0, T] x R; H*+2).
The residual U; is explicit, and U; € C1([0, T] x R; H®).

Secular growth of the residual

V(r,t) € [0, TIx R, |Ui(7,t,)

Hs S CO\/E
Moreover, if (1 + x?)Uy € H**2, then one has the uniform estimate

|Ul(7-7 tv) s S C07

H

Consistency

Uo(et, t,x) + eli(et,t, x) satisfies the symmetric Boussinesq/Boussinesq
model (Sg), with precision O(e3/2) (and O(e?) if (1 + x?)U° € H5+2).
= convergence towards the solution of (Sg).
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Rigorous justification (2/2)
The fKdV approximation
Uikdy = (¢ v) = (G +¢, (v +0) (¢ —¢-) ), with

eCx + (—Fral)aCe + e322Ca0Ce * el F503C = —eFrySt.
(fKdV)

Convergence towards solutions of the full Euler system

The difference between any solution U of the full Euler system (X), and
Udy = (¢ +¢ 5 (1+0)(¢s —¢) ) satisfies

|U B UdeV|L00([07t];H§+1) < 8\/ECO.

Moreover, if (1 +x2)U‘t:0 € H55 then one has the uniform estimate

‘U a UdeV‘Loo([oj/a];HgH) < e(p.
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A simple application

Lemma
Let u be the solution of

Otu + cOxu + eludgu + wﬁfu = e0xf(x — cot),
with up—g = eu® € HF3, s > 3/2.

There exists T(]—==|) and C(|]===1) > 0 such that

cC—Q c—Q

| u ‘LOO([O,T/E];HS) < Ce

The solution of the transport equation  O;v + cdkv = edif(x — qt) is
v = ell(x—ct) + —— (f(x—cot) — F(x—ct) ).
C —C
The result is obtained by comparison with this function.

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (| Fr| = 1).
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A simple application

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (|Fr| = 1).

0 0.5 0.83 F 15 2
3

Wave resistance coefficient Cyy at time T = 10, depending on the Froude number Fr,
with § =5/12 and 12/5 (y = 0.9, ¢ = 0.1).



Conclusion

We constructed nonlinear models that recover most of the key features of
the dead water phenomenon :

@ transverse internal waves are generated ;
@ positive drag when an internal elevation wave is located at the stern;
o the effect is strong only near critical Froude numbers;

@ the maximum peak of the drag is reached at slightly subcritical values.

We do NOT recover :
o divergent waves (requires horizontal dimension d = 2);

@ hysteretic aspect (requires “constant-force” models).



Thanks for your attention !
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The resistance coefficient

Definition (Wave resistance)
RW = / P (—ex 0 n) ds = —/ P‘dﬁ_Cl@X{l dx.
rship R

where [g,ip is the exterior domain of the ship, P is the pressure, e, is the
horizontal unit vector and n the normal unit vector exterior to the ship.

As a solution of the Bernoulli equation, the pressure P satisfies

P(x, 1
% = —0ip1(x,2) — §|Vx,z¢1(X,Z)|2 - gz

Using change of variables, we deduce the dimensionless wave resistance
coefficient Cyy. If 2 = pu = €1/ex = ¢ < 1, the first order
approximation is

Cw = /REQ@XCQ dX+O(8).



The “constant-force” hypothesis

When adjusting the velocity of the body at each time step
Fr((n+ 1)At) = Fr(nAt) — AtCstty(Cw(nAt) — Csttp).

/ r
P \\—// Fr(t)

07+ S .
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