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The governing equations Several (coupled) asymptotic models An uncoupled model

Discovery of the dead water phenomenon

Fridtjof Nansen, 1861–1930

“ When caught in dead water, ’Fram’ appeared

to be held back, as if by some mysterious force

(...) ’Fram’ was capable of 6 to 7 knots. When in

dead water she was unable to make 1.5 knots. We

made loops in our course, turned sometimes right

around, tried all sorts of antics to get clear of it,

but to very little purpose. ”

Vilhelm Bjerknes, 1862–1951

“ I remarked that in the case of a layer of fresh wa-

ter resting on the top of salt water, a ship will (...)

generate invisible waves in the salt-water fresh wa-

ter boundary below ; I suggested that the great

resistance experienced by the ship was due to

the work done in generating these [internal]

waves.”
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Discovery of the dead water phenomenon

Vilhelm Bjerknes, 1862–1951

“ I suggested that the great resistance expe-

rienced by the ship was due to the work done

in generating these [internal] waves. (...) In De-

cember 1899 I consequently suggested a pupil of

mine, Dr. V. Walfrid Ekman (...) that he should

do some simple preliminary experiments.”

Vagn Walfrid Ekman, 1874–1954

Experiment of [Vasseur,Mercier,Dauxois (2008)]
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Mathematical modelization

All existing models 1 are based on linear boundary conditions.

1 The governing equations
Our framework
Dirichlet-Neumann operators
The full Euler system

2 Several (coupled) asymptotic models
Expansion of the Dirichlet-Neumann operators
A fully nonlinear model (Green-Naghdi-type)
Weakly nonlinear models (Boussinesq-type)

3 An uncoupled model
The fKdV approximation
Rigorous justification
A consequence

1. [Ekman (1904), Hudimac (1961), Sabunçu (1961), Price,Wang,Baar (1989),
Miloh,Tulin,Zilman (1993), Nguyen,Yeung (1997), Motygin,Kuznetsov (1997),
Ten,Kashiwagi (2004), Lu,Chen (2009)]
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We follow a strategy similar to

One layer case : [Bona,Chen,Saut (2002,2004), Bona,Colin,Lannes (2005),
Alvarez-Samaniego,Lannes (2008)]

Bi-fluidic case : [Bona,Lannes,Saut (2008), VD (2010,2011)]
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Assumptions of our framework

Dimension d = 1, flat bottom, fixed surface ζ1 ≡ ζ1(x − cs t).

Irrotational, incompressible, inviscid, immiscible fluids.

Fluids at rest at infinity, no surface tension.
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Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators







∆x,zφ2 = 0 in {−d2 < z < ζ2},
φ2 = ψ2 on {z = ζ2},
∂zφ2 = 0 on {z = −d2},

↓
φ2







∆x,zφ1 = 0 in {ζ2 < z < d1 + ζ1},
φ1 = ψ1 on {z = d1 + ζ1},
∂n2φ1 = ∂n2φ2 on {z = ζ2}.

↓
φ1

Therefore, the system is entirely defined by

ζ1 ; ζ2 ; ψ1 ≡ φ1|surface ; ψ2 ≡ φ2|interface.
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Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

Dirichlet-Neumann operators

The following operators are well-defined :

G2ψ2 ≡
√

1 + |∂xζ2|2∂nφ2|interface,

G1(ψ1, ψ2) ≡
√

1 + |∂xζ1|2∂nφ1|surface,

H(ψ1, ψ2) ≡ ∂x

(

φ1|interface

)

.

Therefore, the system is entirely defined by

ζ1 ; ζ2 ; ψ1 ≡ φ1|surface ; ψ2 ≡ φ2|interface.
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The full Euler system

The dimensionless full Euler system






































−cs∂xζ1 − G1(ψ1, ψ2) = 0,

∂tζ2 − G2ψ2 = 0,

∂t

(

ρ2∂xψ2 − ρ1H(ψ1, ψ2)
)

+ g(ρ2 − ρ1)∂xζ2

+ 1
2∂x

(

ρ2|∂xψ2|2 − ρ1|H(ψ1, ψ2)|2
)

= ∂xN2,

(Σ)

Using that ζ1 is some fixed data, the system reduces to two evolution
equations for (ζ2, v), with v the shear velocity defined by

v ≡ ∂x

(

(

ρ2φ2 − ρ1φ1

)

|z=εζ2

)

= ρ2∂xψ2 − ρ1H(ψ1, ψ2).

Solutions of this system are exact solutions of our problem. We construct
asymptotic models, and therefore look for approximate solutions.
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Nondimensionalizing the system

ε1 ≡ a1

d1
, ε2 ≡ a2

d1
, µ ≡ d1

2

λ2
, γ ≡ ρ1

ρ2
, δ ≡ d1

d2
, Fr =

cs

c0
.

µ� 1, ε1/ε2 = O(µ), ε2 = O(1) or O(µ).
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Expansion of the Dirichlet-Neumann operators

The dimensionless full Euler system






























− ε1
ε2

Fr ∂xζ1 − 1

µ
G1(ψ1, ψ2) = 0,

∂tζ2 − 1

µ
G2ψ2 = 0,

∂t

(

∂xψ2 − γH(ψ1, ψ2)
)

+ (γ + δ)∂xζ2 +
ε2
2
∂x

(

|∂xψ2|2 − γ|H(ψ1, ψ2)|2
)

= µε2∂xN2,

(Σ̃)

Proposition

Let s > 1, ζ1, ζ2, ψ1, ψ2 ∈ Hs+t(R). Then one has

∣

∣

∣
G2ψ2 − µG2,1 − µ2G2,2

∣

∣

∣

H s
≤ µ3C

∣

∣

∣
G1(ψ1, ψ2) − µG1,1 − µ2G1,2

∣

∣

∣

H s
≤ µ3C ,

∣

∣

∣
H(ψ1, ψ2) − ∂xψ1 − µH1

∣

∣

∣

H s
≤ µ2C ,
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A strongly nonlinear model :
ε1/ε2, 1 − γ = O(µ), µ � 1.

Vincent Duchêne The dead-water phenomenon Erwin Schrödinger International Institute (Wien) , May 17, 2011 11 / 22



The governing equations Several (coupled) asymptotic models An uncoupled model

A weakly nonlinear model :
ε1/ε2 = ε2 = µ ≡ ε � 1.

A Boussinesq/Boussinesq model
{

∂tζ2 + 1
δ+γ ∂xv + ε δ2−γ

(γ+δ)2
∂x(ζ2v) + ε 1+γδ

3δ(δ+γ)2
∂3

xv = −ε Fr γ
δ+γ ∂xζ1,

∂tv + (γ + δ)∂xζ2 + ε
2
δ2−γ

(γ+δ)2
∂x

(

|v |2
)

= 0.

↪→ ∂tU + A0∂xU + ε
(

A1(U)∂xU + A2∂
3
xU

)

= ε∂xF (x − Fr t)
(MB)

with U = (ζ2, v), F : R → R
2.

Consistency

The full Euler system is consistent with the Boussinesq/Boussinesq model,
with precision O(ε2).

Open questions :

Well-posedness of any Boussinesq/Boussinesq system ?
Convergence of solutions towards solutions of the full Euler system ?
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Symmetrization

We have a system of the form

∂tU + A0∂xU + ε
(

A1(U)∂xU + A2∂
3
xU

)

= ε∂xF (x − Fr t).

Multiply by adapted S ≡ S0 + εS1(U) − εS2∂
2
x , and withdraw O(ε2)

terms. One obtains a perfectly symmetric model of the form :

The symmetric Boussinesq/Boussinesq model

(

S0 + ε
(

S1(U) − S2∂
2
x

)

)

∂tU +
(

Σ0 + ε
(

Σ1(U) − Σ2∂
2
x

)

)

∂xU = ε∂xG ,

(SB)
with the following properties :
• Matrices S0, S2, Σ0, Σ2 ∈ M2(R) are symmetric.
• S1(·) and Σ1(·) are linear mappings, with values in M2(R), and for all
U ∈ R

2, S1(U) and Σ1(U) are symmetric.
• S0 et S2 are definite positive.
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Rigorous justification of the model

Consistency

The full Euler system is consistent with the symmetric Boussinesq/Boussinesq
model (SB), with precision O(ε2).

Well posedness

The symmetric system is well-posed in H
s+1 (s > 3/2) over times of order O(1/ε).

Moreover, one has the estimate
(

∣

∣U(t)
∣

∣

2

Hs + ε
∣

∣U(t)
∣

∣

2

Hs+1

)1/2

=
∣

∣U(t)
∣

∣

Hs+1
ε

≤ C0(e
C1εt − 1) .

Convergence

The difference between any solution U of the full Euler system (Σ), and the solution UB

of the symmetric Boussinesq/Boussinesq model (SB) with same initial data, satisfies

∀t ∈ [0, T/ε],
∣

∣U − UB

∣

∣

L∞([0,t];Hs+1
ε

)
≤ εC2(e

C3εt
− 1).

Numerical simulation
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The WKB expansion

We seek an approximate solution of system (SB) :

(

S0 + ε
(

S1(U) − S2∂
2
x

)

)

∂tU +
(

Σ0 + ε
(

Σ1(U) − Σ2∂
2
x

)

)

∂xU = ε∂xG

At first order : (S0∂t + Σ0∂x)U0 = 0.
There exists a basis ei diagonalizing S0 and Σ0 :

=⇒ U0 =
∑

uiei , with ∂tui (t, x) + ci∂xui = 0.

At next order : We seek an approximation of the form

Uapp(t, x) ≡
∑

ui (εt, t, x)ei + εU1(εt, t, x). (WKB)

∂tui (t, x) + ci∂xui = 0, (1)

∂τui + λiui∂xi
ui + µi∂

3
xi
ui = ∂xgi , (2)

(∂t + ci∂x)ei · U1 +
∑

(j ,k)6=(i ,i)

αijkuk∂xuj +
∑

j 6=i

βij∂
3
xuj = 0. (3)
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The fKdV Approximation

Definition

We define then the fKdV approximation as UfKdV =
∑

uiei , where ui

satisfies
{

∂tui + ci∂xui + ελiui∂xui + εµi∂
3
xui = ε∂xgi ,

ui |t=0 = u0
i ,

In our case, this yields

The fKdV approximation

UfKdV = (ζ, v) =
(

ζ+ + ζ− , (γ + δ)(ζ+ − ζ−)
)

, with

∂tζ± + (−Fr±1)∂xζ± ± ε3
2
δ2−γ
γ+δ ζ±∂xζ± ± ε1

6
1+γδ
δ(γ+δ)∂

3
x ζ± = −εFr γ dζ1

dx
.

(fKdV)
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Rigorous justification (1/2)

Well-posedness

If U0 ∈ H s+2, then there exists a unique strong solution U0(τ, t, x), uniformly
bounded in C 1([0,T ]× R; H s+2).

The residual U1 is explicit, and U1 ∈ C 1([0,T ]× R; H s).

Secular growth of the residual

∀(τ, t) ∈ [0,T ]× R,
∣

∣U1(τ, t, ·)
∣

∣

H s ≤ C0

√
t.

Moreover, if (1 + x2)U0 ∈ H s+2, then one has the uniform estimate
∣

∣U1(τ, t, ·)
∣

∣

H s ≤ C0,

Consistency

U0(εt, t, x) + εU1(εt, t, x) satisfies the symmetric Boussinesq/Boussinesq
model (SB), with precision O(ε3/2) (and O(ε2) if (1 + x2)U0 ∈ H s+2).

=⇒ convergence towards the solution of (SB).
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Rigorous justification (2/2)

The fKdV approximation

UfKdV = (ζ, v) =
(

ζ+ + ζ− , (γ + δ)(ζ+ − ζ−)
)

, with

∂tζ± + (−Fr±1)∂xζ± ± ε3
2
δ2−γ
γ+δ ζ±∂xζ± ± ε1

6
1+γδ
δ(γ+δ)∂

3
x ζ± = −εFr γ dζ1

dx
.

(fKdV)

Convergence towards solutions of the full Euler system

The difference between any solution U of the full Euler system (Σ), and
UfKdV ≡

(

ζ+ + ζ− , (γ + δ)(ζ+ − ζ−)
)

satisfies
∣

∣U − UfKdV
∣

∣

L∞([0,t];Hs+1
ε )

≤ ε
√

tC0.

Moreover, if (1 + x2)U
∣

∣

t=0
∈ Hs+5, then one has the uniform estimate

∣

∣U − UfKdV
∣

∣

L∞([0,T/ε];Hs+1
ε )

≤ εC0.
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A simple application

Lemma

Let u be the solution of

∂tu + c∂xu + ελu∂xu + εν∂3
xu = ε∂x f (x − c0t),

with u|t=0 = εu0 ∈ Hs+3, s > 3/2.

There exists T (| 1
c−c0

|) and C (| 1
c−c0

|) > 0 such that
∣

∣ u
∣

∣

L∞([0,T/ε];Hs)
≤ Cε.

The solution of the transport equation ∂tv + c∂xv = ε∂x f (x − c0t) is

v = εu0(x − ct) +
ε

c0 − c
( f (x − c0t) − f (x − ct) ) .

The result is obtained by comparison with this function.

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (|Fr | = 1).
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A simple application

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (|Fr | = 1).
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Wave resistance coefficient CW at time T = 10, depending on the Froude number Fr,

with δ = 5/12 and 12/5 (γ = 0.9, ε = 0.1).
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Conclusion

We constructed nonlinear models that recover most of the key features of
the dead water phenomenon :

transverse internal waves are generated ;

positive drag when an internal elevation wave is located at the stern ;

the effect is strong only near critical Froude numbers ;

the maximum peak of the drag is reached at slightly subcritical values.

We do NOT recover :

divergent waves (requires horizontal dimension d = 2) ;

hysteretic aspect (requires “constant-force”models).
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The resistance coefficient

Definition (Wave resistance)

RW ≡
∫

Γship

P (−ex · n) dS = −
∫

R

P|d1+ζ1∂xζ1 dx .

where Γship is the exterior domain of the ship, P is the pressure, ex is the
horizontal unit vector and n the normal unit vector exterior to the ship.

As a solution of the Bernoulli equation, the pressure P satisfies

P(x , z)

ρ1
= −∂tφ1(x , z) − 1

2
|∇x ,zφ1(x , z)|2 − gz .

Using change of variables, we deduce the dimensionless wave resistance
coefficient CW . If ε2 = µ = ε1/ε2 ≡ ε � 1, the first order
approximation is

CW =

∫

R

ζ1∂xζ2 dx + O(ε).
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The“constant-force” hypothesis

When adjusting the velocity of the body at each time step

Fr((n + 1)∆t) ≡ Fr(n∆t) − ∆tCstt1(CW (n∆t) − Cstt2).
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