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Internal waves in ocean

Figure: Sulu Sea. April 8, 20031
The large picture

1Credits: NASA’s Earth Observatory (Picture of the Day July 1, 2003)
http://earthobservatory.nasa.gov/IOTD/view.php?id=3586

http://earthobservatory.nasa.gov/IOTD/view.php?id=3586
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Internal waves in ocean

Figure: St. Lawrence Estuary1

1Credits: St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
http://myweb.dal.ca/kelley/SLEIWEX/index.php

http://myweb.dal.ca/kelley/SLEIWEX/index.php
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Two layers of immiscible, homogeneous, ideal, incompressible fluids
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The governing equations

Hypotheses on the fluids

The assumptions

The fluid is irrotational

The fluid is homogeneous, incompressible

The fluid is inviscid

The fluid particles do not cross the bottom

The fluid particles do not cross the surface

The particles of the two fluids do not cross

the interface.

The equations

vi = ∇x,zφi (i = 1, 2)

∆x,zφi = 0

∂tφi + 1
2
|∇x,zφi |

2 = − P
ρi

− gz

∂zφ2 = 0 on Γb

∂tζ1 =
√

1 + |∂xζ1|2∂nφ1 on Γ1

∂tζ2 =
√

1 + |∂xζ2|2∂nφ1

=
√

1 + |∂xζ2|2∂nφ2 on Γ2.
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Additional assumptions

The fluid is at rest at infinity

The pressure P is constant at the surface, and continuous at the interface

There is no surface tension
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Reduction of the equations

Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

∂zφ2 = 0

φ2 = ψ2

( ∂2
x + ∂2

z ) φ2 = 0







∆x,zφ2 = 0 in Ω2,
φ2 = ψ2 on Γ2 ≡ {z = ζ2},
∂zφ2 = 0 on Γb ≡ {z = −d2},

↓
φ2

φ1 = ψ1

∂n2
φ1 = ∂n2

φ2

( ∂2
x + ∂2

z ) φ1 = 0







∆x,zφ1 = 0 in Ω1,
φ1 = ψ1 on Γ1 ≡ {z = d1 + ζ1},
∂n2φ1 = ∂n2φ2 on Γ2.

↓
φ1



The full Euler system Some asymptotic models The dead water phenomenon

Reduction of the equations

Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

∂zφ2 = 0

φ2 = ψ2

( ∂2
x + ∂2

z ) φ2 = 0







∆x,zφ2 = 0 in Ω2,
φ2 = ψ2 on Γ2 ≡ {z = ζ2},
∂zφ2 = 0 on Γb ≡ {z = −d2},

↓
φ2

φ1 = ψ1

∂n2
φ1 = ∂n2

φ2

( ∂2
x + ∂2

z ) φ1 = 0







∆x,zφ1 = 0 in Ω1,
φ1 = ψ1 on Γ1 ≡ {z = d1 + ζ1},
∂n2φ1 = ∂n2φ2 on Γ2.

↓
φ1



The full Euler system Some asymptotic models The dead water phenomenon

Reduction of the equations

Dirichlet-Neumann operators

The equations can be reduced to evolution equations located on the
surface and on the interface thanks to the following operators

Definition (Dirichlet-Neumann operators)

The following operators are well-defined:

G2ψ2 ≡
√

1 + |∂xζ2|2∂nφ2|interface,

G1(ψ1, ψ2) ≡
√

1 + |∂xζ1|2∂nφ1|surface,

H(ψ1, ψ2) ≡ ∂x

(

φ1|z=ζ2

)

.

Therefore, the system is entirely defined by

ζ1 ; ζ2 ; ψ1 ≡ φ1|surface ; ψ2 ≡ φ2|interface.
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Reduction of the equations

The full Euler system

Thanks to the the previous definitions, and after an adapted change of
variables (obtained through the study of the linearized system), one obtains

The dimensionless full Euler system

(Σ)














































∂tζ1 − 1
εG1(ψ1, ψ2) = 0,

∂tζ2 − 1
εG2ψ2 = 0,

∂t∂xψ1 + ∂xζ1 + ε
2∂x(|∂xψ1|2) − ε2∂xN1 = 0,

∂t(∂xψ2 − γH(ψ1, ψ2)) + (1 − γ)∂xζ2 + ε
2∂x(|∂xψ2|2 − γ|H(ψ1, ψ2)|2)

− ε2∂xN2 = 0,

Solutions of this system are exact solutions of our problem. We construct
then asymptotic models, and therefore look for approximate solutions.
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State of the art

The one-layer problem in the long wave regime

Justification of asymptotic Boussinesq model and KdV approximation:
[Craig 1985], [Schneider, Wayne 2000], [BenYoussef, Colin 2000],
[Bona, Colin, Lannes 2005], [Alvarez-Samaniego, Lannes 2008]

The two-layer problem, with a rigid lid
KdV equations for internal waves [Keulegan, 1953], [Long, 1956]
Boussinesq-type models [Miyata 1985], [Choi, Camassa 1996]
Hamiltonian formulation [Lvov, Tabak 2004], [Craig, Guyenne,
Kalisch 2005]
Consistency of Boussinesq-type models [Bona, Lannes, Saut 2008]
(d = 1 or 2, with topography)
Stability of the flow [Chumakova, Menzaque, Milewski, Rosales,
Tabak, Turner 2004]

The two-layer problem, with a free surface
The KdV equations [Peters, Stoker 1960]
Boussinesq-type models [Matsuno 1993], [Choi, Camassa 1996]
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The Boussinesq/Boussinesq models

Asymptotic expansion of the operators

Proposition

Let s > 1, ζ1, ζ2, ψ1, ψ2 ∈ Hs+t(R). Then one has

∣

∣

∣
G2ψ2 + ε∂x(h2∂xψ2) + ε2

1

3δ3
∂3

x∂xψ2)
∣

∣

∣

H s
≤ ε3C

∣

∣

∣
G1(ψ1, ψ2) + ε∂x(h1∂xψ1 + h2∂xψ2)

+ ε2∂3
x

(1

3
∂xψ1 +

( 1

3δ3
+

1

2δ

)

∂xψ2

)∣

∣

∣

H s
≤ ε3C ,

∣

∣

∣
H(ψ1, ψ2) − ∂xψ1 − ε∂2

x

(1

2
∂xψ1 +

1

δ
∂xψ2

)∣

∣

∣

H s
≤ ε2C ,

Notations: h1 = 1 + εζ1 − εζ2 and h2 = 1
δ + εζ2.
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The Boussinesq/Boussinesq models

The Boussinesq/Boussinesq models

A Boussinesq/Boussinesq model






























∂tζ1 + ∂x(h1∂xψ1) + ∂x(h2∂xψ2) = −ε
(

1
3∂

4
xψ1 + ( 1

3δ3
+ 1

2δ )∂
4
xψ2

)

,
∂tζ2 + ∂x(h2∂xψ2) = −ε 1

3δ3
∂4

xψ2,

∂t∂xψ1 + ∂xζ1 +
ε

2
∂x

(

|∂xψ1|2
)

= 0,

∂t∂xψ2 + (1 − γ)∂xζ2 + γ∂xζ1 +
ε

2
∂x

(

|∂xψ2|2
)

= ε∂t∂
2
x

(γ
δ ∂xψ2 + γ

2∂xψ1

)

,

↪→ ∂tU + A0∂xU + ε
(

A1(U)∂xU + B∂2
x∂tU + C∂3

xU
)

= 0

with U = (ζ1, ζ2, ∂xψ1, ∂xψ2).

Proposition (consistency)

The full Euler system is consistent with the Boussinesq/Boussinesq model,
with precision O(ε2).
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The Boussinesq/Boussinesq models

The Boussinesq/Boussinesq models

A Boussinesq/Boussinesq model

(MB) ∂tU + A0∂xU + ε
(

A1(U)∂xU + B∂2
x∂tU + C∂3

xU
)

= 0.

Proposition (consistency)

The full Euler system is consistent with the Boussinesq/Boussinesq model,
with precision O(ε2).

Let U be a strong solution of the full Euler system (Σ), uniformly bounded in a

sufficiently high Sobolev norm. Then U satisfies the Boussinesq/Boussinesq

model, up to some residuals, bounded (in H s norm) by ε2C0.

Open questions:

Well-posedness of any Boussinesq/Boussinesq system?

Convergence of its solutions towards solutions of the full Euler system?
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Symmetric Boussinesq models

Symmetrization

The system can be written under the compact form

∂tU + A0∂xU + ε
(

A1(U)∂xU + B∂2
x∂tU + C∂3

xU
)

= 0.

Multiply by adapted S ≡ S0 + εS1(U) − εS2∂
2
x , and withdraw O(ε2)

terms. One obtains a perfectly symmetric model of the form:

The symmetric Boussinesq/Boussinesq model

(SB)
(

S0 + ε
(

S1(U) − S2∂
2
x

)

)

∂tU +
(

Σ0 + ε
(

Σ1(U) − Σ2∂
2
x

)

)

∂xU = 0,

with the following properties:
• Matrices S0, S2, Σ0, Σ2 ∈ M4(R) are symmetric.
• S1(·) and Σ1(·) are linear mappings, with values in M4(R), and for all
U ∈ R

4, S1(U) and Σ1(U) are symmetric.
• S0 et S2 are definite positive.
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Symmetric Boussinesq models

Consistency

The full Euler system is consistent with the symmetric Boussinesq/Boussinesq
model (SB), with precision O(ε2).

Well posedness

The symmetric system is well-posed in Hs+1 (s > 3/2) over times of order O(1/ε).
Moreover, one has the estimate

(

∣

∣U(t)
∣

∣

2

Hs + ε
∣

∣U(t)
∣

∣

2

Hs+1

)1/2

=
∣

∣U(t)
∣

∣

Hs+1
ε

≤ C0

∣

∣U0
∣

∣

Hs+1
ε

1−C0tε

∣

∣U0
∣

∣

Hs+1
ε

.
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Symmetric Boussinesq models

Consistency
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The symmetric system is well-posed in Hs+1 (s > 3/2) over times of order O(1/ε).
Moreover, one has the estimate

(

∣

∣U(t)
∣

∣

2

Hs + ε
∣

∣U(t)
∣

∣

2

Hs+1

)1/2

=
∣

∣U(t)
∣

∣

Hs+1
ε

≤ C0

∣

∣U0
∣

∣

Hs+1
ε

1−C0tε

∣

∣U0
∣

∣

Hs+1
ε

.

Convergence

The difference between any solution U of the full Euler system (Σ), and the solution UB

of the symmetric Boussinesq/Boussinesq model (SB) with same initial data, satisfies

∀t ∈ [0, T/ε],
∣

∣U − UB

∣

∣

L∞([0,t];Hs+1
ε

)
≤ ε2tC1.

Numerical simulation
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The KdV approximation

The WKB expansion

We seek an approximate solution of system (SB):
(

S0 + ε
(

S1(U) − S2∂
2
x

)

)

∂tU +
(

Σ0 + ε
(

Σ1(U) − Σ2∂
2
x

)

)

∂xU = 0

of the form Uapp(t, x) ≡ U0(εt, t, x) + εU1(εt, t, x).

At order O(1) : (S0∂t + Σ0∂x)U0 = 0.
There exists a basis ei ∈ R

4 (i = 1..4), diagonalizing S0 and Σ0:

=⇒ U0 =
4
∑

i=1
uiei , with ui(τ, t, x) = ui(τ, x − ci t).

At order O(ε) :
S0∂τU0 + Σ1(U0)∂xU0 + S1(U0)∂tU0

−Σ2∂
3
xU0 − S2∂

2
x∂tU0 = −(S0∂t + Σ0∂x)U1.

We split the equation in

∂τui + λiui∂xi
ui + µi∂

3
xi
ui = 0,

(∂t + ci∂x)ei · U1 +
∑

(j,k)6=(i ,i)

αijkuk∂xuj +
∑

j 6=i

βij∂
3
xuj = 0.
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The KdV approximation

The KdV Approximation

Definition

Let U be a solution of the full Euler system (Σ). We define then the KdV
approximation as UKdV =

∑4
i=1 uiei , with ui solution of

(KdV)

{

∂tui + ci∂xui + ελiui∂xui + εµi∂
3
xui = 0,

ui |t=0 = u0
i ,
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The KdV approximation

Well-posedness

There exists a unique strong solution U0(τ, t, x), uniformly bounded in
L∞([0,T ] × R; H s+2

ε ).

Then, there exists an explicit residual U1 ∈ C 1([0,T ) × R; H s).

Secular growth of the residual

∀(τ, t) ∈ [0,T ]× R,
∣

∣U1(τ, t, ·)
∣

∣

H s ≤ C0

√
t.

Moreover, if (1 + x2)U0 ∈ H s+1, then one has the uniform estimate

∣

∣U1(τ, t, ·)
∣

∣

H s ≤ C0,

Consistency

U0(εt, t, x) + εU1(εt, t, x) satisfies the symmetric Boussinesq/Boussinesq
model (SB), with precision O(ε3/2) (and O(ε2) if (1 + x2)U0 ∈ H s+1).

=⇒ convergence towards the solution of (SB).



The full Euler system Some asymptotic models The dead water phenomenon

The KdV approximation

Convergence towards solutions of the full Euler system

The difference between any solution U of the full Euler system (Σ), and
UKdV ≡ ∑4

i=1 uiei , with ui solutions of (KdV), satisfies

∣

∣U − UKdV
∣

∣

L∞([0,t];Hs+1
ε )

≤ ε
√

tC0,

Moreover, if (1 + x2)U
∣

∣

t=0
∈ Hs+4, then one has the uniform estimate

∣

∣U − UKdV
∣

∣

L∞([0,T/ε];Hs+1
ε )

≤ εC0.
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The KdV approximation

Why localization in space is relevant ?

Propagation of a soliton Splitting of a bell curve
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The KdV approximation

Why localization in space is relevant ?

Propagation of a soliton Splitting of a bell curve
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Comparison between free surface and rigid lid configurations.
Big density difference: γ = 1/4 Small density difference: γ = 0.9
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Presentation of the problem

Fridtjof Nansen, 1898

This peculiar phenomenon [...] manifests itself in the form of larger or
smaller ripples or waves stretching across the wake, the one behind the other,
arising sometimes as far forward as almost midships. When caught in dead
water, “Fram”appeared to be held back, as if by some mysterious force,
and she did not always answer the helm. In calm weather, with a light cargo,
“Fram”was capable of 6 to 7 knots. When in dead water she was unable
to make 1.5 knots. We made loops in our course, turned sometimes right
around, tried all sorts of antics to get clear of it, but to very little purpose.

Vilhelm Bjerknes, 1900

In my reply to Prof. Nansen I remarked that in the case of a layer of
fresh water resting on the top of salt water, a ship will not only produce the
ordinary visible waves at the boundary between the water and the air, but will
also generate invisible waves in the salt-water freshwater boundary below; I
suggested that the great resistance experienced by the ship was due to
the work done in generating these [internal] waves. (...) In December
1899 I consequently suggested a pupil of mine, Dr. V. Walfrid Ekman (...)
that he should do some simple preliminary experiments.

video of the experiments of Vasseur-Mercier-Dauxois, 2008
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Presentation of the problem

Rigid lid, but not flat : ζ1(t, x) ≡ ζ1(x − cst)

ζ1

ζ2

a1

a2

λ

d1

−d2

g

z

x

0

ε1 ≡ a1

d1
, ε2 ≡ a2

d1
, µ ≡ d2

1

λ2
, γ ≡ ρ1

ρ2
, δ ≡ d1

d2
, Fr =

cs

c0
.

ε2 = µ = ε1/ε2 ≡ ε� 1, γ ∈ (0, 1), δ ∈ [δmin, δmax], Fr ∈ (0,+∞).
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Presentation of the problem

Wave (making) resistance suffered by the body

Definition (Wave resistance)

RW ≡
∫

Γship

P (−ex · n) dS = −
∫

R

P|d1+ζ1∂xζ1 dx .

where Γship is the exterior domain of the ship, P is the pressure, ex is the
horizontal unit vector and n the normal unit vector exterior to the ship.

As a solution of the Bernoulli equation, the pressure P satisfies

P(x , z)

ρ1
= −∂tφ1(x , z) − 1

2
|∇x ,zφ1(x , z)|2 − gz .

Using the previous change of variables, we define the dimensionless wave
resistance coefficient CW . In our regime (ε2 = µ = ε1/ε2 ≡ ε � 1),
the first order approximation is

CW =

∫

R

ζ1∂xζ2 dx + O(ε).
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As a solution of the Bernoulli equation, the pressure P satisfies

P(x , z)

ρ1
= −∂tφ1(x , z) − 1

2
|∇x ,zφ1(x , z)|2 − gz .

Using the previous change of variables, we define the dimensionless wave
resistance coefficient CW . In our regime (ε2 = µ = ε1/ε2 ≡ ε � 1),
the first order approximation is

CW =

∫

R

ζ1∂xζ2 dx + O(ε).
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Presentation of the problem

Numerical simulation
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Asymptotic models

The dimensionless full Euler system

The governing equations can be deduced from the full Euler system in the
free surface case:

The full Euler system when ζ1(t, x) ≡ ζ1(x − Fr t)















































ε∂tζ1 − 1
εG1(ψ1, ψ2) = 0,

∂tζ2 − 1
εG2ψ2 = 0,

∂t∂xψ1 + ∂xζ1 + ε
2∂x(|∂xψ1|2) − ε2∂xN1 = 0,

∂t(∂xψ2 − γH(ψ1, ψ2)) + (1 − γ)∂xζ2 + ε
2∂x(|∂xψ2|2 − γ|H(ψ1, ψ2)|2)

− ε2∂xN2 = 0,
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Asymptotic models

The dimensionless full Euler system

The governing equations can be deduced from the full Euler system in the
free surface case:

The dimensionless full Euler system with rigid lid

(Σ̃)











































−εFr ∂xζ1 − 1

ε
G1(ψ1, ψ2) = 0,

∂tζ2 − 1

ε
G2ψ2 = 0,

∂t

(

∂xψ2 − γH(ψ1, ψ2)
)

+ (γ + δ)∂xζ2 +
ε

2
∂x

(

|∂xψ2|2 − γ|H(ψ1, ψ2)|2
)

= ε2∂xN2,

Using that ζ1 is a fixed parameter, the system reduces to two evolution
equations for (ζ2, v), with v the shear velocity defined by

v ≡ ∂x

(

(

φ2 − γφ1

)

|z=εζ2

)

= ∂xψ2 − γH(ψ1, ψ2).
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Asymptotic models

The Boussinesq-type models

Plug the asymptotic expansion of the operators G1, G2, H into the full
Euler system (Σ̃), and withdraw O(ε2) terms.

Boussinesq/Boussinesq model
{

∂tζ2 + 1
δ+γ ∂xv + ε δ2−γ

(γ+δ)2
∂x(ζ2v) + ε 1+γδ

3δ(δ+γ)2
∂3

xv = −ε Fr γ
δ+γ ∂xζ1,

∂tv + (1 − γ)∂xζ2 + ε
2
δ2−γ

(γ+δ)2
∂x

(

|v |2
)

= 0.

The Boussinesq/Boussinesq model system can be written as

∂tU + A0∂xU + εA1(U)∂xU − εA2∂
3
xU = εb0(x − Fr t),
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Asymptotic models

The Boussinesq-type models

Boussinesq/Boussinesq model
{

∂tζ2 + 1
δ+γ ∂xv + ε δ2−γ

(γ+δ)2
∂x(ζ2v) + ε 1+γδ

3δ(δ+γ)2
∂3

xv = −ε Fr γ
δ+γ ∂xζ1,

∂tv + (1 − γ)∂xζ2 + ε
2
δ2−γ

(γ+δ)2
∂x

(

|v |2
)

= 0.

The Boussinesq/Boussinesq model system can be written as

∂tU + A0∂xU + εA1(U)∂xU − εA2∂
3
xU = εb0(x − Fr t),

When we multiply by adapted symmetrizer S(U) ≡ S0 + εS1(U) − εS2∂
2
x , one gets

(

S0 + εS1(U) − εS2∂
2
x

)

∂tU + ( Σ0 + εΣ1(U) − εΣ2 )∂xU = εb(x − Fr t),

The symmetric Boussinesq model is consistent at order O(ε2),

The symmetric Boussinesq model is well-posed, + energy estimate,

=⇒ The solutions of the Boussinesq model converge towards solutions of the full
Euler system (Σ̃), at order O(ε2t), for t ∈ [0, T/ε].
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Asymptotic models

The KdV approximation

Definition

Let U = (ζ2, v) be a solution of the full Euler system (Σ̃). We define then
the KdV approximation as UKdV =

(

η+ + η− , (γ + δ)(η+ − η−)
)

, with
η± solution of

{

∂tη± ± ∂xη± ± ε3
2
δ2−γ
γ+δ η±∂xη± ± ε1

6
1+γδ
δ(γ+δ)∂

3
xη± = −εFr γ∂xζ1,

η±|t=0 = η0
±,

Convergence theorem

The difference between any solution U of the full Euler system (Σ̃), and UKdV is
bounded by

∣

∣U − UKdV
∣

∣

L∞([0,t];H s+1
ε )

≤ ε
√

tC0.

Moreover, if (1 + x2)U
∣

∣

t=0
∈ H s+4, then one has the uniform estimate

∣

∣U − UKdV
∣

∣

L∞([0,T/ε];H s+1
ε )

≤ εC0.
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Asymptotic models

A simple application

Lemma

Let u be the solution of

∂tu + c∂xu + ελu∂xu + εν∂3
xu = ε∂x f (x − c0t),

with u|t=0 = εu0 ∈ Hs+3, s > 3/2.

There exists T (| 1
c−c0

|) and C (| 1
c−c0

|) > 0 such that
∣

∣ u
∣

∣

L∞([0,T/ε];Hs)
≤ Cε.

The transport equation ∂tv + c∂xv = ε∂x f (x − c0t) leads to

v = εu0(x − ct) +
ε

c0 − c
( f (x − c0t) − f (x − ct) ) .

The result is obtained by comparison with this function.

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (|Fr | = 1).
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Asymptotic models

A simple application

As a consequence, the dead-water phenomenon will always be small if the
velocity of the body is away from the critical velocity (|Fr | = 1).
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Wave resistance coefficient CW at time T = 10, depending on the Froude number Fr,

with δ = 1 and 2 (γ = 0.9, ε = 0.1).



For more details:

Coupled models (Boussinesq, shallow water, Green-Naghdi): Asymptotic shallow
water models for internal waves in a two-fluid system with a free surface, SIAM J.
Math. Anal., 42 (2010)

KdV approximation: Boussinesq/Boussinesq systems for internal waves with a free
surface, and the KdV approximation, to appear in Math. Model. Numer. Anal.
(M2AN)

Dead-water phenomenon: Asymptotic models for the generation of internal waves
by a moving ship, and the dead-water phenomenon, preprint Arxiv:1012.5892.

Thank you for your attention !
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