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Abstract. We study one-dimensional scattering for a decaying potential with rapid periodic oscillations
and strong localized singularities. In particular, we consider the Schrödinger equation H ϵψ≡ ð−∂2x þV 0ðxÞþ
qðx; x ∕ ϵÞÞψ ¼ k2ψ for k ∈ R and ϵ ≪ 1. Here qð·; yþ 1Þ ¼ qð·; yÞ has mean zero and jV 0ðxÞ þ qðx; ·Þj → 0 as
jxj → ∞. The distorted plane waves of H ϵ are solutions of the form eV ϵ�ðx; kÞ ¼ e�ikx þ us

�ðx; kÞ, us
� outgoing

as jxj → ∞. We derive their ϵ small asymptotic behavior, from which the asymptotic behavior of scattering
quantities such as the transmission coefficient, tϵðkÞ, follow. Let thom0 ðkÞ denote the homogenized transmission
coefficient associated with the average potential V 0. If the potential is smooth, then classical homogenization
theory gives asymptotic expansions of, for example, distorted plane waves and transmission and reflection coef-
ficients. Singularities ofV 0 or discontinuities of qϵ are “interfaces” across which a solution must satisfy interface
conditions (continuity or jump conditions). To satisfy these conditions it is necessary to introduce interface
correctors, which are highly oscillatory in ϵ. Our theory admits potentials which have discontinuities in the
microstructure, qϵðxÞ, as well as strong singularities in the background potential, V 0ðxÞ. A consequence of
our main results is that tϵðkÞ− thom0 ðkÞ, the error in the homogenized transmission coefficient, is (i) Oðϵ2Þ if
qϵ is continuous and (ii) OðϵÞ if qϵ has discontinuities. Moreover, in the discontinuous case, the correctors
are highly oscillatory in ϵ, i.e., ∼ expð2πi νϵÞ for ϵ ≪ 1. Thus a first order corrector is not well defined since
ϵ−1ðtϵðkÞ− thom0 ðkÞÞ does not have a limit as ϵ → 0. This expression may have limits which depend on the par-
ticular sequence throughwhich ϵ tends to zero. The analysis is based on a (preconditioned) Lippman–Schwinger
equation, introduced by S.E. Golowich and M.I. Weinstein [Multiscale Model. Simul., 3 (2005), pp. 477–521].
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1. Introduction. An important method for computing the effective properties of
highly oscillatory media is the method of homogenization. The goal of homogenization is
to approximate a highly oscillatory medium, described by a differential equation with
oscillatory coefficients, by an approximate and homogeneous medium, described by a
“homogenized” differential equation with constant or slowly varying coefficients. In its
regime of validity, the homogenized differential equation (i) predicts effective properties
which are approximately those of the heterogeneous medium and (ii) is, by comparison
with the full problem, much simpler to study either analytically or by numerical
simulation.

While the homogenized limit can often be obtained by a formal multiple scale ex-
pansion or by variational methods (see [3], [10], [1], and [17]), these expansions are ty-
pically valid in the bulk medium, away from boundaries, discontinuities, or more singular
sets of coefficients. Indeed, solutions to elliptic operators with oscillatory coefficients on
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bounded domains have been shown to require boundary layer correctors, which are sen-
sitive to the manner in which the microstructure meets a boundary (see [13], [11], [2], [6],
and [7]) or interface [15]. Furthermore, the importance of correctors to homogenization
due to interface effects, boundary layers, etc. is explored analytically and computation-
ally in the context of accurate estimation of scattering resonances in [8] and [9].

In this article we study the scattering problem for the one-dimensional time-
independent Schrödinger equation

ðH ϵ − k2Þψ≡
�
−

d2

dx2
þ V ϵðxÞ− k2

�
ψðxÞ ¼ 0:ð1:1Þ

The potential, V ϵðxÞ ¼ V 0ðxÞ þ qðx; x ∕ ϵÞ, is the sum of a slowly varying part with
smooth and singular components, V 0 ¼ V reg þ V sing, and a rapidly oscillatory part,
qϵðxÞ ¼ qðx; x ∕ ϵÞ, ϵ ≪ 1. V ϵðxÞ is assumed to decay to zero as x tends to infinity.
We also assume V ϵðxÞ ≥ 0, a simple way to restrict to the case where H ϵ has no discrete
eigenvalues (bound states) and has only continuous spectrum (extended/radiation
states). The wave number, k, is fixed, and we study the ϵ− small behavior.

Many physically important scattering properties are not captured by leading order
homogenization. Line widths and imaginary parts of scattering resonances are key to
quantifying the lifetimes of metastable states in quantum systems or, in electromag-
netics, the leakage rates of energy from photonic structures; see [8], [9], and the refer-
ences therein. In [8] and [9] it was shown that inclusion of even the first nontrivial
correction due to microstructure can yield large improvements in the approximation
of such scattering quantities. Since, as we shall see, defects and singularities can be re-
sponsible for the dominant correctors and these contributions are not captured in a
smooth homogenization setting, we therefore seek a better understanding of homogeni-
zation for wave/scattering problems in their presence. In this article we ask the
following:

How are scattering properties, such as transmission and reflection coefficients, tϵðkÞ
and rϵðkÞ, influenced by interfaces, defects, and singularities?

The heart of the matter is an asymptotic study of the distorted plane waves, solu-
tions of ðH ϵ − k2Þψ ¼ 0 of the form

eV ϵ�ðx; kÞ ¼ e�ikx þ us
�ðx; kÞ; us

� outgoing as jxj → ∞ for ϵ small:

Consequences of our analysis include the following:
1. Theorem 5.1 provides a convergent expansion of the distorted plane waves of

HQ ¼ −∂2x þ V 0 þQ, which is valid for a large class of perturbing potentials,Q,
which may be pointwise large but highly oscillatory (supported at high frequen-
cies although not necessarily periodic). Theorem 5.5 is the corresponding expan-
sion for the transmission coefficient t½k;Q�. By Proposition 5.3 we can apply
Theorems 5.1 and 5.5 to QðxÞ ¼ qϵðxÞ ¼ qðx; x ∕ ϵÞ, where qðx; yÞ is 1-periodic
in y, decaying as jxj → ∞, and satisfies Hypotheses (V).

2. Theorem 2.1 implies that
(i)tϵðkÞ− thom0 ðkÞ ¼ Oðϵ2Þ if qϵ is continuous, and
(ii)tϵðkÞ− thom0 ðkÞ ¼ OðϵÞ if qϵ has discontinuities.

For qϵ discontinuous interface correctors, which are highly oscillatory in ϵ, enter the
expansion; see the discussion in section 4 concerning failure and restoration of interface
conditions at singularities of V 0 or discontinuities of qϵ. These correctors are related to
the asymptotics of boundary layers arising in work on homogenization of divergence
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form operators on bounded domains (see [13], [11], [2], [6], and [7]). Since these correctors
involve ϵ dependence of the form: ∼ expð2πi νϵÞ, ϵ ≪ 1, 0 ≠ ν ∈ R, the expression
ϵ−1ðtϵðkÞ− thom0 ðkÞÞ does not have a limit as ϵ → 0, and a correction to the value of
thom0 ðkÞ is not well defined. However, there can be limits which depend on the particular
sequences through which ϵ tends to zero. See the more detailed discussion after the
statement of Theorem 2.2.

Outline of the article. In section 2 we state detailed hypotheses and our main
theorems on transmission coefficients, Theorems 2.1 and 2.2, which depend on our ana-
lysis of distorted plane waves (Theorem 5.1). We also present the results of numerical
simulations designed to illustrate the relationship between regularity of the potential,
V ϵ, and ϵ small asymptotics of the transmission coefficient, stated in Theorem 2.1. In
section 3 we present the technical background on one-dimensional scattering theory. In
section 4 we derive, by including interface correctors to an expansion derived by the
classical method of multiple scales, an expansion of the distorted plane waves and of
the transmission coefficient valid to all orders in the small parameter ϵ . Section 5 con-
tains rigorous proofs of the expansion of the distorted plane waves (Theorem 5.1) and
transmission coefficients (Theorem 5.1 and 5.5) with error bounds. The proof is based on
the reformulation of the scattering problem as a preconditioned Lippman–Schwinger
equation, an approach introduced in [9]. Appendix A contains a brief discussion of
the numerical methods used in the simulations. Appendix C contains the technical proof
of operator bounds which are central to the proofs in section 5.

2.Mainresultsanddiscussion. Webeginwiththekeyhypotheses.Hypotheses(V)
make precise the decomposition of the potential, V , into regular, singular, and oscilla-
tory parts. Hypothesis (G) specifies, for the cases of generic and nongeneric potentials,
V 0, the admissible values of the wave number, k. We then state and discuss our main
results concerning the transmission coefficients in the small ϵ limit.

Hypotheses (V).

V ϵðxÞ≡ V 0ðxÞ þ qϵðxÞ ðreal-valuedÞ
≡ V singðxÞ þ V regðxÞ þ qϵðxÞ;ð2:1Þ

qϵðxÞ≡ q

�
x;
x

ϵ

�
; V ϵðxÞ ≥ 0;ð2:2Þ

where
1. The singular part of V ϵ, V sing:

V singðxÞ ¼
XN−1

j¼0

cjδðx− xjÞ; where cj; xj ∈ R; xj < xjþ1:ð2:3Þ

2. The regular part of V ϵ: V reg ∈ L1;2ðRÞ with

kVkL1;2 ≡
Z
R
ð1þ jsjÞ2jV ðsÞjds < ∞:ð2:4Þ

3. The rapidly varying part of V ϵ, qϵðxÞ ¼ qðx; xϵÞ: The mapping ðx; yÞ ↦ qðx; yÞ is
(a) one-periodic, i.e., for each x ∈ R, qðx; yþ 1Þ ¼ qðyÞ,
(b) mean zero with respect to y, i.e., for each x ∈ R,
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Z
1

0
qðx; yÞdy ¼ 0;ð2:5Þ

(c) q ∈ pC 3
xL

2
y;per, the set of functions q∶ R× S1 → R, such that there exists a

finite partition of R

−∞ ¼ a0 < a1 < a2 < : : : < aM < aMþ1 ¼ þ∞

with

XMþ1

j¼0

Z
1

0
kqð·; yÞk2

C3ðaj;ajþ1Þdy < ∞.ð2:6Þ

4. We shall work with the Fourier expansion of qðx; yÞ, written as

qðx; yÞ ¼
X
j≠0

qjðxÞe2πijy; qjðxÞ≡
Z

1

0
e−2πijyqðx; yÞdyð2:7Þ

and assume Z
R

Z
1

0
jqðx; yÞj2dydx ¼

X
jjj≥1

Z
R
jqjðxÞj2 < ∞;ð2:8Þ

Z
1

0
jqðx; yÞj2dy ¼

X
jjj≥1

jqjðxÞj2 → 0; jxj → ∞:ð2:9Þ

5. Proposition 5.3, which is a step in proving Theorem 2.1, requires more decay at
infinity for qϵ: there exists ρ > 8 such that

ð1þ j · j2Þρ∕ 2qj ∈ L2; jjj ≥ 1; and
X
jjj≥1

kð1þ j · j2Þρ∕ 2qjkL2 < ∞;ð2:10Þ

d

dx
ðð1þ jxj2Þρ∕ 2qjðxÞÞ ∈ L2 and sup

jjj≥1

���� d

dx
ðð1þ jxj2Þρ∕ 2qjðxÞÞ

����
L2
x

< ∞:

ð2:11Þ

Hypothesis (G). If V 0 is generic (see Definition 3.6), then the wave number, k ∈ K ,
which can be taken to be an arbitrary compact subset of R. If V 0 is not generic, then the
compact set K must be such that 0 ∈= K .

Remark 2.1. If V 0 is not generic (as, for example, V 0 ≡ 0), then the expansions we
present in Theorems 2.1 and 2.2 are not uniform in a neighborhood of k ¼ 0. This will be
the subject of a future paper.

The aim of this article is to understand the scattering properties for this class of
potentials. In particular, we are interested in the influence of combined microstructure
(qϵ) and singularities (V sing) on the reflection and transmission coefficients and distorted
plane waves (see below). Formal application of classical homogenization theory (see, for
example, [3]) suggests that the leading order (in ϵ → 0) scattering behavior is governed
by the averaged (homogenized) operator −∂2x þV 0ðxÞ; see (2.1). For example, if V ϵðxÞ
is smooth (in particular, V sing ≡ 0), then the transmission coefficient satisfies the
expansion
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tϵðkÞ∼ thom0 ðkÞ þ ϵthom1 ðkÞ þ ϵ2thom2 ðkÞþ · · · ;ð2:12Þ

where thomj are computed from the formal two-scale homogenization expansion. In par-
ticular, thom0 is the transmission coefficient associated with the averaged potentialV 0ðxÞ.
However, homogenization is a theory valid only in the bulk, away from boundaries or
nonsmooth points of coefficients. For our class of potentials, this expansion must be
corrected.

Our main result is the small ϵ characterization of the distorted plane waves pre-
sented in Theorem 5.1. A key consequence of our analysis is the following theorem.

THEOREM 2.1. Let V ϵðxÞ ¼ V 0ðxÞ þ qϵðxÞ with V 0 and qϵðxÞ ¼ qðx; x ∕ ϵÞ satisfying
Hypotheses (V), and k ∈ K a compact subset of R satisfying Hypothesis (G). Denote by
eV 0�ðx; kÞ the distorted plane waves associated with the unperturbed operator
−∂2x þ V 0ðxÞ; see section 3.

Then there exists ϵ0 ¼ ϵ0ðKÞ, such that, for 0 < ϵ < ϵ0, the transmission coefficient
tϵ ¼ tϵðkÞ (see 3.7) associated with V ϵðxÞ satisfies the following expansion uniformly in
k ∈ K :

tϵðkÞ ¼ thom0 ðkÞ þ ϵtϵ1ðkÞ þ ϵ2ðthom2 ðkÞ þ tϵ2ðkÞÞ þ tϵremðkÞ;ð2:13Þ

where thom0 ðkÞ denotes the transmission coefficient associated with the average (homo-
genized) potential V 0 and

tϵ1ðkÞ ¼
1

4kπ

XM
j¼1

eV 0þðaj; kÞeV 0−ðaj; kÞ
X
jlj≥1

½ql�aj
e2iπl

aj
ϵ

l
;ð2:14Þ

thom2 ðkÞ ¼ i

8kπ2

X
jjj≥1

j−2

Z
R
jqjðzÞj2eV 0−ðz; kÞeV 0þðz; kÞdz;ð2:15Þ

tϵ2ðkÞ ¼
i

8kπ2

XM
j¼1

X
jlj≥1

½∂xðeV 0þðx; kÞeV 0−ðx; kÞqlðxÞÞ�aj
e2iπl

aj
ϵ

l2
;ð2:16Þ

tϵremðkÞ ¼ oðϵ2þÞ; more precisely quantif ied in Proposition 5.6:ð2:17Þ

(a) thomj , j ¼ 0; 2 : : : , denote the expansion coefficients for the transmission coeffi-
cient obtained from the two-scale (bulk) homogenization expansion, valid for
smooth potentials,

(b) tϵ1 arises due to discontinuities in x ↦ qðx; ·Þ, and
(c) tϵ2 arises due to both the singular part of the potential, V sing, and discontinuities

in x ↦ qðx; ·Þ or x ↦ ∂xqðx; ·Þ.
tϵ1 and t

ϵ
2 are uniformly bounded for ϵ small. However, each is a sum over rapidly oscillat-

ing (as ϵ → 0) terms of the form expði νϵÞ, corresponding to discontinuity points of qϵ ðtϵ1Þ
and points in the support of V singð tϵ2Þ.

Theorem 2.1 is a consequence of the more general Theorem 2.2, stated below, which
follows from the asymptotic study of the convergent expansion of the distorted plane
waves, presented in Theorem 5.1. The proof of Theorem 5.1 is based on the construction
and asymptotic study of the scattering problem via a preconditioned Lippman–
Schwinger equation. This approach is quite general and applies to the perturbation
theory of Schrödinger operators of the form
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H ¼ −∂2x þ V 0ðxÞ þQðxÞ;

where Q is small in the sense that jjjQjjj∼ kðI − ΔÞ−1
2QðI − ΔÞ−1

2kL2→L2 is small. This
formulation was introduced in [9] to study the perturbation of scattering resonances due
to high contrast microstructure perturbations of a potential. If Q is a “microstructure,”
roughly meaning that it is supported at high frequencies, then jjjQjjj is small. Here we
apply this method and obtain a convergent expansion ofQ ↦ eV 0þQðx; kÞ for fixed k and
jjjQjjj sufficiently small. The expansion of the transmission coefficient, Q ↦ tV 0þQðkÞ, is
a direct consequence of the following theorem.

THEOREM 2.2. Let V ðxÞ ¼ V 0ðxÞ þQðxÞ with V 0 satisfying Hypotheses (V) and
ð1þ jxj2Þρ∕ 2Q ∈ L2 for ρ > 8. We use the following norm on Q (see section 5.2):

jjjQjjj≡ khD0i−1ð1þ jxj2Þρ ∕ 4Qð1þ jxj2Þρ∕ 4hD0i−1kL2→L2 :

Set k ∈ K a compact subset of R satisfying Hypothesis (G), and denote by eV 0�ðx; kÞ the
distorted plane waves associated with the unperturbed operator −∂2x þV 0ðxÞ; see
section 3. Denote by t ¼ tðk;QÞ ¼ tðkÞ the transmission coefficient (see (3.7)) asso-
ciated with V ðxÞ. There exists τ0 ¼ τ0ðKÞ such that, for 0 < jjjQjjj < τ0ðKÞ, we have
the following expansion which holds uniformly in k ∈ K :

tðk;QÞ ¼ thom0 ðkÞ þ t1½Q� þ t2½Q;Q� þ tremðkÞ;ð2:18Þ

with thom0 ðkÞ the transmission coefficient, associated with the average (homogenized)
potential V 0, and the following:

t1½Q� ¼ 1

2ik

Z
∞

−∞
QðζÞeV 0þðζ; kÞeV 0−ðζ; kÞdζ;ð2:19Þ

t2½Q;Q� ¼ 1

2ik

Z
∞

−∞
QRV 0

ðkÞðQðζÞeV 0þðζ; kÞÞeV 0−ðζ; kÞdζ;ð2:20Þ

tremðkÞ ¼ OðjjjQjjj2þÞ and more precisely estimated in Theorem 5.5:ð2:21Þ

Here RV 0
ðkÞ, eV 0þðx; kÞ, and eV 0−ðx; kÞ are defined in section 3.

Remark 2.2 (symmetry considerations). There is a class of potentials, qϵ, whose
members are discontinuous, and yet the (oscillatory in ϵ) correctors, tϵj, j ≥ 1, vanish.
In subsection 2.1 we explore families of such structures. Indeed, let us apply Theorem 2.2
withV ≡ V ϵ satisfies Hypotheses (V) as well as the additional properties ofV 0 even and
qϵ “separable”:

V 0ðxÞ ¼ V 0ð−xÞ; qϵðxÞ ¼ q0ðxÞqper
�
x

ϵ

�
:

One can easily see that V 0 is even implies that eV 0þð·; kÞeV 0−ð·; kÞ is even. Therefore,
if q0 and qper are of opposite parity, then x ↦ eV 0þðx; kÞeV 0−ðx; kÞqϵðxÞ is odd, and
therefore t1½qϵ�ðkÞ≡ 0 for any ϵ > 0. It follows that, for such potentials and even if
qϵ is discontinuous, the leading order correction to thom0 ðkÞ is t2½Q;Q� which is of order
Oðϵ2Þ (see section 5.4). Moreover, in this special case, the second order corrector is well
defined:

lim
ϵ↓0

ϵ−2ðtϵðkÞ− thom0 ðkÞÞ ¼ thom2 ðkÞ:
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The three subplots of Figure 2.1 illustrate the results of Theorem 2.1 on the behavior
of tϵ − t0 for several contrasting choices of potential V ϵ ¼ V 0 þ qϵ, where V 0 is a finite
sum of Dirac delta functions, at equally spaced points.1

• The left panel of Figure 2.1 corresponds to the case where qϵ is discontinuous. It
shows that

tϵ − thom0 ¼ OðϵÞ; ϵ → 0; and yet ϵ−1ðtϵ − thom0 Þ does not have a limit:

• The center panel of Figure 2.1 corresponds to the case where qϵ is a smooth
function and V 0 is a Dirac delta function. Here

tϵ − thom0 ¼ Oðϵ2Þ; ϵ → 0; and yet ϵ−2ðtϵ − thom0 Þ does not have a limit:

• The right panel of Figure 2.1 corresponds to the case where qϵ is a smooth func-
tion and V 0 is a smoothed out Dirac delta function. Here we find

tϵ − thom0 ¼ Oðϵ2Þ; ϵ → 0; and lim
ϵ↓0

ϵ−2ðtϵ − thom0 Þ is well defined:

This phenomenon of indeterminacy of higher order correctors due to boundary layer
effects is discussed in the context of a Dirichlet spectral problem [13], [11].

The transition between the cases of a regular potential and a potential containing
singularities is illustrated in Figure 2.2. The three panels show the behavior of tϵ − t0
with respect to ϵ, where the potential V ϵ ¼ V 0 þ qϵ satisfies qϵ is smooth and V 0 is a
sum of smoothed out Dirac delta functions. From right to left, V 0 is an improving
approximation of Dirac delta functions.

2.1. Some specific structures. We now study in detail two natural and illustra-
tive classes of potentials.

1. We first consider a one-parameter family of structures, which are truncations of
a smooth potential, where, for certain parameter ranges, the manner of trunca-
tion causes a discontinuity. The latter corresponds to cleaving a periodic struc-
ture in a manner not commensurate with the background medium:

V ϵ
1ðx; θÞ ¼ cos

�
2πx

ϵ
þ θ

�
1½−1;1�ðxÞ:ð2:22Þ

FIG. 2.1. Illustration of Theorem 2.1 via plot of log jtϵ − thom0 j versus log ϵ−1 for the case of q discontinuous
and V 0 a sum of Dirac delta functions (left panel, average slope 1), q smooth, and V 0 a sum of Dirac delta
functions (center panel, average slope 2). The right panel (slope 2) is for the case where V ϵ ¼ V 0 is a smooth
approximation of a finite sum of Dirac delta functions.

1The precise functions and parameters used to obtain the plots displayed in Figures 2.1 and 2.2 are given in
Appendix A.
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We are obviously in the case related in Remark 2.2 with V 0 ≡ 0 (so that
eV�ðx; kÞ ¼ e�ikx and thom0 ¼ 1). More precisely, it is easy to show that

tϵ1ðk; θÞ≡
1

4kπ

XM
j¼1

eV 0þðaj; kÞeV 0−ðaj; kÞ
X
jlj≥1

½ql�aj
e2iπl

aj
ϵ

l

¼ −i

2kπ
cosðθÞ sin

�
2π

ϵ

�
:

In general, tϵ1ðkÞ ≠ 0, but for θ ¼ π
2 þmπ, m ∈ Z, qϵð·; θÞ is even; therefore, for

all k ∈ R and ϵ > 0, we have t1½qϵ�ðkÞ ¼ 0.
2. Our second example is a piecewise constant (discontinuous) structure which is

smoothly truncated,

V ϵ
2ðx; θÞ≡ hper

�
x

ϵ
þ θ

�
e−

x2

ðx−1Þðxþ1Þ1½−1;1�ðxÞð2:23Þ

with hperðyÞ the one-periodic function such that hðyÞ ¼ −1 for y ∈ ð−1 ∕ 2; 1 ∕ 2�
and hðyÞ ¼ 1 for y ∈ ð1 ∕ 2; 3 ∕ 2�.
Since the slow-varying part of qϵðxÞ is smooth and V 0 has no singularity,
Theorem 2.1 predicts that

tϵ − thom0 ¼ Oðϵ2Þ; ϵ → 0; and lim
ϵ↓0

ϵ−2ðtϵ − thom0 Þ ¼ thom2 is well defined;

even though the function qϵðxÞ has internal discontinuities. In Figure 2.3, we
plot log jtϵ − thom0 j versus log ϵ−1 for the two potentialsV ϵ

1 andV ϵ
2, setting k ¼ 1

and θ ¼ 0.

FIG. 2.3. Plot of log jtϵ − thom0 j versus log ϵ−1 for the case of the potentials V ϵ1 ðx; θÞ in (2.22) (left panel,
slope 1) and V ϵ2 ðx; θÞ in (2.23) (right panel, slope 2). One has k ¼ 1 and θ ¼ 0.

FIG. 2.2. Plot of log jtϵ − thom0 j versus log ϵ−1 for the case of q smooth and V 0 a sum of three approximate
Dirac delta functions δρðxÞ≡ 1

ρ
ffiffiffi
π

p e−x2 ∕ ρ2
with ρ ¼ 0.001, 0.01, 0.1.
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3. Background on one-dimensional scattering theory. For simplicity,
we consider potentials, W , which have no localized eigenstates, i.e., the spectrum of
−∂2x þW ðxÞ is continuous. We further assume that W has the form

W ¼ W reg þW sing with W reg ∈ L1;3 ∕ 2þðRÞ; W sing ¼
XN−1

j¼0

cjδðx− xjÞ;

where cj; xj ∈ R; xj < xjþ1.
We now introduce an appropriate notion of solution to the Schrödinger equation

ðHW − k2Þu≡
�
−

d2

dx2
þW ðxÞ− k2

�
u ¼ 0:ð3:1Þ

Let ½U �ξ denote the jump in U at the point ξ, i.e.,

½U �ξ ¼ lim
x→ξþ

UðxÞ− lim
x→ξ−

UðxÞ:ð3:2Þ

DEFINITION 3.1. We say that u is a solution of the time-independent Schrödinger
equation (3.1) if u is piecewise C 2 and satisfies (3.1) on R \ suppW sing ¼
R \ fx0; : : : ; xN−1g as well as the jump conditions8>>>>>><

>>>>>>:

½u�x ¼ 0; x ∈ R;�
d
dx u

�
x

¼ 0 if x ∈ R \ suppW sing;�
d
dx u

�
xj

¼ cjuðxjÞ; where xj ∈ suppW sing:

ð3:3Þ

Of special interest are the Jost solutions, defined below.
DEFINITION 3.2. The Jost solutions f�ðx; kÞ≡m�ðx; kÞe�ikx are the unique solutions

of (3.1) such that

lim
x→�∞

m�ðx; kÞ ¼ 1:

This definition is valid, as we see in Appendix B. We shall use some smoothness and
decay properties of these solutions, which are also postponed to Appendix B, for the sake
of readability.

With the help of the Jost solutions, we are able to define scattering quantities as the
transmission and reflection coefficients and the distorted plane waves.

Since f�ðx; kÞ and f�ðx;−kÞ are solutions of (3.1) and are independent for k ≠ 0,
there exists unique functions t�ðkÞ and r�ðkÞ such that

f−ðx; kÞ ¼
rþðkÞ
tþðkÞ

fþðx; kÞ þ
1

tþðkÞ
fþðx;−kÞ;

fþðx; kÞ ¼
r−ðkÞ
t−ðkÞ

f−ðx; kÞ þ
1

t−ðkÞ
f−ðx;−kÞ:

It is then easy to check that tþðkÞ ¼ t−ðkÞ≡ tðkÞ and that tðkÞ and r�ðkÞ are continuous
at k ¼ 0. The distorted plane waves eW�ðx; kÞ are then defined.
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DEFINITION 3.3. Given a potential W ðxÞ, we define eW�ðx; kÞ, the distorted plane
waves associated with HW , by

eþðx; kÞ≡ tðkÞfþðx; kÞ≡ tðkÞmþðx; kÞeikx;ð3:4Þ
e−ðx; kÞ≡ tðkÞf−ðx; kÞ≡ tðkÞm−ðx; kÞe−ikx:ð3:5Þ

The distorted plane waves eW�ðx; kÞ play the role forHW that the plane waves e�ikx

play for H 0 ¼ −∂2x, as we see below. Let us first introduce the notion of outgoing radia-
tion as jxj → ∞.

DEFINITION 3.4. UðxÞ is said to satisfy an outgoing radiation condition or to be
outgoing as jxj → ∞ if

ð∂x∓ikÞU → 0 as x → �∞:

PROPOSITION 3.5. Given a potential W ðxÞ, eW�ðx; kÞ, the distorted plane waves
eW�ðx; kÞ are the unique solutions of (3.1) satisfying

eW�ðx; kÞ ¼ e�ikx þ outgoing ðxÞ:ð3:6Þ
More precisely, they satisfy the following asymptotic relations [4]:8>><

>>:
eWþðx; kÞ− ðeikx þ rþðkÞe−ikxÞ → 0 as x → −∞;
eWþðx; kÞ− tðkÞeikx → 0 as x → þ∞;
eW−ðx; kÞ− tðkÞe−ikx → 0 as x → −∞;
eW−ðx; kÞ− ðe−ikx þ r−ðkÞeikxÞ → 0 as x → þ∞:

ð3:7Þ

A consequence of the relations (3.7) is the Wronskian identity:

WronðeWþð·; kÞ; eW−ð·; kÞÞ≡ eWþ∂xeW− − ∂xeWþeW− ¼ −2iktðkÞ:ð3:8Þ

In terms of the Jost solutions,

Wronðfþð·; kÞ; f−ð·; kÞÞ ¼ −
2ik

tðkÞ ; k ≠ 0:ð3:9Þ

By analyticity in W , potentials for which Wronðfþð·; kÞ; f−ð·; kÞÞjk¼0 ¼ 0 are iso-
lated in the space of potentials.

DEFINITION 3.6. A potential W is said to be generic if

Wronðfþðx; 0Þ; f−ðx; 0ÞÞ ¼ Wronðmþðx; 0Þ;m−ðx; 0ÞÞ ≠ 0:

Otherwise, the operatorHW is said to have a zero-energy resonance, i.e.,HWu ¼ 0 has a
nontrivial solution that is bounded both as x → ∞ and as x → −∞.

Note that the potentialW ðxÞ≡ 0 is not generic sincemþðx; kÞ≡m−ðx; kÞ≡ 1. IfW
is generic, we have (see [4], [12], and [18])

tðkÞ ¼ −
2ik

Wronðfþð·; 0Þ; f−ðx; 0ÞÞ
þ oðkÞ ¼ OðkÞ; jkj → 0:ð3:10Þ

In particular, tð0Þ ¼ 0 and r�ð0Þ ¼ −1.
A simple calculation then yields the following expressions for the outgoing Green’s

function (resolvent kernel) and the outgoing resolvent, RW ðkÞ, k ≠ 0:
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RW ðx; y; kÞ ¼
8<
:

1
−2iktðkÞ eW−ðy; kÞeWþðx; kÞ; y < x;

1
−2iktðkÞ eW−ðx; kÞeWþðy; kÞ; y > x;

ð3:11Þ

RW ðkÞFðxÞ ¼
�
−

d2

dx2
þW ðxÞ− k2

�−1

FðxÞ ¼
Z

∞

−∞
RW ðx; ζ; kÞFðζÞdζ:ð3:12Þ

Remark 3.1. Note that these expressions, originally defined for k ≠ 0, are easily ex-
tended to the point k ¼ 0 for generic potentials. Indeed, one has, by Definition 3.6,

1

−2iktðkÞ eW−ðy; kÞeWþðx; kÞ ¼
f−ðy; kÞfþðx; kÞ

Wronðfþð·; kÞ; f−ð·; kÞÞ
:

In the generic case, this expression has a limit when k → 0 by (3.9) and (3.10). In the
following, we work with the distorted plane waves, which sometimes lead to expressions
which are defined only for k ≠ 0. By the above considerations, it is easy to check that, in
the case of a generic potential, these expressions have a well-defined finite limit when
k → 0.

In particular, we have the following proposition.
PROPOSITION 3.7. Let F ∈ L1ðRÞ. Assume W ðxÞ satisfying Hypotheses (V) and

k ∈ K satisfying Hypothesis (G). Then the inhomogeneous equation�
−

d2

dx2
þW ðxÞ− k2

�
U ¼ Fð3:13Þ

has the unique outgoing solution U ¼ RW ðkÞF . Moreover, kUkL∞ ≤ CkFkL1 with a con-
stant, CðKÞ.

Proof. Existence follows from the explicit integral representation (3.12). Note that
if W is generic, then RW ðkÞF is defined for any k ∈ R, whereas in the nongeneric case,
Wronðfþðx; kÞ; f−ðx; kÞÞ → 0ðk → 0Þ and f�ðx; kÞ does not tend to zero as k → 0 [4], so
that RW ðkÞF has a simple pole at k ¼ 0.

To prove uniqueness, note that if the difference, dðxÞ, of two solutions is nonzero,
then dðxÞ is a nontrivial solution of the scattering resonance problem, that is,
ðHW − k2Þd ¼ 0, dðxÞ outgoing at jxj → ∞ with scattering resonance energy k2 ∈ R.
However, the scattering resonance energies must satisfy ℑðk2Þ < 0; see, for example,
[16]. Therefore, dðxÞ≡ 0. This completes the proof. ▯

4. Homogenization/multiple scale perturbation expansion.

4.1. Multiple scale expansion. In this section, our goal is to formally obtain
the expansion displayed in Theorem 2.1, using a systematic two-scale/homogenization
perturbation scheme. A proof (and derivation by other means) of this expansion is pre-
sented in section 5.

We seek a solution of�
−

d2

dx2
þV 0ðxÞ þ q

�
x;
x

ϵ

�
− k2

�
eV ϵþðx; kÞ ¼ 0ð4:1Þ

in the form of a two-scale function, eV ϵþðx; kÞ ¼ U ϵðx; xϵÞ, which satisfies the jump con-
ditions (3.3) and the outgoing radiation condition of Definition 3.6. Treating x and y as
independent variables, we find that U ϵðx; yÞ is a solution of
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�
−
�
∂
∂x

þ 1

ϵ

∂
∂y

�
2

þ V 0ðxÞ þ qðx; yÞ− k2
�
U ϵðx; yÞ ¼ 0:ð4:2Þ

We then formally expand U ϵðx; yÞ as

U ϵðx; yÞ ¼
X∞
j¼0

ϵjUjðx; yÞð4:3Þ

and require that

Ujðx; yþ 1Þ ¼ Ujðx; yÞ; j ≥ 0;

U 0ðx; yÞ− eikx; Ujðx; yÞ; j ≥ 1; outgoing as jxj → ∞;

Ujðx; yÞjy¼x ∕ ϵ satisfies jump conditions ð3.3Þ:ð4:4Þ

The problem is solved by substituting the expansion (4.3) into (4.2) and imposing
the equation, jump conditions, and radiation condition at each order in ϵ. The differ-
ential equation becomes�

−
�
∂
∂x

þ 1

ϵ

∂
∂y

�
2

þ V 0ðxÞ þ qðx; yÞ− k2
�
U ϵ

�
x;
x

ϵ

�
¼

X∞
j¼−2

ϵjrj ¼ 0;ð4:5Þ

implying the following hierarchy of equations at each order in ϵ:

Oðϵ−2Þ r−2 ¼ −∂2yU 0 ¼ 0;ð4:6aÞ
Oðϵ−1Þ r−1 ¼ −∂2yU 1 − 2∂y∂xU 0 ¼ 0;ð4:6bÞ

Oðϵ0Þ r0 ¼ −∂2yU 2 − 2∂y∂xU 1 − ∂2xU 0 þ ðV 0 þ qÞU 0 − k2U 0 ¼ 0;ð4:6cÞ
Oðϵ1Þ r1 ¼ −∂2yU 3 − 2∂y∂xU 2 − ∂2xU 1 þ ðV 0 þ qÞU 1 − k2U 1 ¼ 0;ð4:6dÞ
Oðϵ2Þ r2 ¼ −∂2yU 4 − 2∂y∂xU 3 − ∂2xU 2 þ ðV 0 þ qÞU 2 − k2U 2 ¼ 0;ð4:6eÞ
Oðϵ3Þ r3 ¼ −∂2yU 5 − 2∂y∂xU 4 − ∂2xU 3 þ ðV 0 þ qÞU 3 − k2U 3 ¼ 0;ð4:6fÞ

: : : : : :

OðϵjÞ rj ¼ rj½Ujþ2; Ujþ1; Uj� ¼ 0:ð4:6gÞ

For example, to construct an approximate solution of (4.2) satisfying (4.4) up to
the order 3, we solve simultaneously the equations rj ¼ 0 for j ¼ −2; : : : ; 3. This will
determine the functions U 0, U 1, U 2, and U 3 which make U ϵ an approximate solution
through order Oðϵ3Þ. Since eV ϵþðx; kÞ− eikx is to be outgoing, we require U 0 − eikx and
each Uiði ¼ 1; : : : ; 3Þ to satisfy the outgoing condition. We now proceed with the
implementation.

Caveat lector! The formal expansion presented in the remainder of this section
yields terms involving spatial derivatives of eV 0þðx; kÞ and qjðxÞ of arbitrarily high
order. Now ∂xeV 0þðx; kÞ has jump discontinuities on suppV sing, and qjðxÞ has jump
discontinuities. Hence, the expansion must be viewed in a distributional sense, e.g., in-
volving terms such as ∂αxδðx− xjÞ, etc. Furthermore, when we impose the jump condi-
tions (3.3) to the expansion, order by order in ϵ, we shall throughout assign
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½∂αxδðx− xjÞ�x¼xj
¼ 0. Although seemingly risky, in section 5 we give a complete rigorous

proof of the expansion with error bounds.
Beginning at Oðϵ−2Þ, one has, from (4.6a),

r−2 ¼ 0 ⇒ ∂2yU 0 ¼ 0 ⇒ U 0ðx; yÞ ¼ U 0ðxÞ:ð4:7Þ

Consequently, one has, from (4.6b),

r−1 ¼ 0 ⇒ ∂2yU 1 ¼ −2∂y∂xU 0 ¼ 0 ⇒ U 1ðx; yÞ ¼ U 1ðxÞ:ð4:8Þ

Recall that y ↦ qðx; yÞ is one-periodic and ∫ 1
0qðx; yÞdy ¼ 0. Integration of (4.6c)

with respect to y yieldsZ
1

0
r0ðx; yÞdy ¼ 0 ⇒ −

d2

dx2
U 0ðxÞ þ V 0ðxÞU 0ðxÞ− k2U 0ðxÞ ¼ 0:ð4:9Þ

Furthermore, since U 0 − eikx is outgoing, one has, by Proposition 3.5,

U 0ðxÞ≡ eV 0þðx; kÞ:ð4:10Þ

By (4.9) and (4.6c), we have

r0 ¼ 0 ⇔ −∂2yU 2ðx; yÞ þ qðx; yÞeV 0þðxÞ ¼ 0:ð4:11Þ

Thus, we decompose U 2 as

U 2 ¼ U
ðhÞ
2 ðxÞ þ U

ðpÞ
2 ðx; yÞ;

with U
ðpÞ
2 ðx; yÞ a particular solution and U

ðhÞ
2 ðxÞ a homogeneous solution to be

determined.
Again, since y ↦ qðx; yÞ is one-periodic and ∫ 1

0qðx; yÞdy ¼ 0 when, by (4.6d),Z
1

0
r1ðx; yÞdy ¼ 0 ⇒ −

d2

dx2
U 1ðxÞ þ V 0ðxÞU 1ðxÞ− k2U 1ðxÞ ¼ 0:ð4:12Þ

Since U 1 is outgoing, we claim

U 1 ≡ 0:ð4:13Þ
Indeed, in this case k2 is a scattering resonance energy and U 1 its corresponding mode.
Scattering resonances necessarily satisfy ℑk2 < 0 [16]. However, k2 ∈ R, and
hence U 1 ≡ 0.

Consequently,

r1 ¼ 0 ⇒ −∂2yU 3ðx; yÞ− 2∂y∂xU 2 ¼ 0:ð4:14Þ

In the same way as for U 2, we decompose U 3 as

U 3 ¼ U
ðhÞ
3 ðxÞ þ U

ðpÞ
3 ðx; yÞ

with U
ðpÞ
3 ðx; yÞ a particular solution and U

ðhÞ
3 ðxÞ a homogeneous solution to be

determined.
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Integration of (4.6e) and (4.6f) with respect to y, respectively, yields

−
d2

dx2
U

ðhÞ
2 ðxÞ þ V 0ðxÞU ðhÞ

2 ðxÞ þ
Z

1

0
qðx; yÞU ðpÞ

2 ðx; yÞdy− k2U
ðhÞ
2 ðxÞ ¼ 0;ð4:15Þ

−
d2

dx2
U

ðhÞ
3 ðxÞ þ V 0ðxÞU ðhÞ

3 ðxÞ− k2U
ðhÞ
3 ðxÞ ¼ −

Z
1

0
U

ðpÞ
3 ðx; yÞqðx; yÞdy:ð4:16Þ

We now solve (4.11), (4.14), (4.15), and (4.16) to obtain a unique (approximate)
solution satisfying both outgoing and jump conditions, as we see in the following. First
we use the decomposition in the Fourier series of qðx; yÞ in y:

qðx; yÞ ¼
X
j≠0

qjðxÞe2iπjy:

Consequently, (4.11) leads immediately to

U
ðpÞ
2 ðx; yÞ ¼ −

eV 0þðx; kÞ
4π2

X
jjj≥1

qjðxÞ
j2

e2iπjy:ð4:17Þ

From (4.14), one deduces

∂2yU 3ðx; yÞ ¼
i

π

X
jjj≥1

∂xðeV 0þðx; kÞqjðxÞÞ
j

e2iπjy:

A particular solution U
ðpÞ
3 ðx; yÞ is therefore given by

U
ðpÞ
3 ðx; yÞ ¼ i

4π3

X
jjj≥1

∂xðeV 0þðx; kÞqjðxÞÞ
j3

e2iπjy:ð4:18Þ

Then, using the Fourier series of q and U
ðpÞ
2 , we obtain the following equations from

(4.15) and (4.16):

−
d2

dx2
U

ðhÞ
2 ðxÞ þ V 0ðxÞU ðhÞ

2 ðxÞ− k2U
ðhÞ
2 ðxÞ ¼ eV 0þðx; kÞ

4π2

X
jjj≥1

jqjðxÞj2
j2

; andð4:19Þ

−
d2

dx2
U

ðhÞ
3 ðxÞ þV 0ðxÞU ðhÞ

3 ðxÞ− k2U
ðhÞ
3 ðxÞ

¼ −
Z

1

0
U

ðpÞ
3 ðx; yÞqðx; yÞdy ¼ i

4π3

X
jjj≥1

∂xðeV 0þðx; kÞqjðxÞÞq−jðxÞ
j3

:
ð4:20Þ

By Proposition 3.7, (4.19) and (4.20) have unique outgoing solutions. We refer to the
expansion of U ϵ obtained in this way as the bulk (homogenization) expansion.

Bulk (homogenization) expansion.

U ϵðx; yÞ ¼ eV 0þðx; kÞ þ ϵ2ðU ðpÞ
2 ðx; yÞ þ U

ðhÞ
2 ðxÞÞ þ ϵ3ðU ðpÞ

3 ðx; yÞ þU
ðhÞ
3 ðxÞÞþ · · · .

ð4:21Þ

It consists of a leading order average term (homogenization) plus correctors at each
order in ϵ due to microstructure.
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Failure of jump conditions at interfaces. Recall that we seek a solution which
satisfies the jump conditions (3.3) on U ϵðx; yÞ for all ðx; yÞ ¼ ðx; x∕ ϵÞ at each order in ϵ.
The leading order term, eV 0þ, satisfies all jump conditions. Now consider the terms
U

ðpÞ
j ðx; yÞ þ U

ðhÞ
j ðxÞ, arising at order OðϵjÞ. By construction, U ðhÞ

j satisfies (3.3). How-

ever, U ðpÞ
j ðx; x ∕ ϵÞ does not. Indeed, for the cases j ¼ 2, 3, referring to expressions (4.17)

and (4.18), we observe violation of (3.3) in U
ðpÞ
j ðx; x ∕ ϵÞ at discontinuities of qjðxÞ and

eV 0þðx; kÞ and their derivatives.
More precisely, the jump conditions for U ðpÞ

2 fail at al (l ¼ 1; : : : ;M ) each point of
discontinuity of qðx; x ∕ ϵÞ since one has�

U
ðpÞ
2

�
x;
x

ϵ

��
a

¼ F ϵ
2;a;ð4:22Þ

�
d

dx
U

ðpÞ
2

�
x;
x

ϵ

��
a

¼ 1

ϵ
Gϵ

2;a þ H ϵ
2;að4:23Þ

with

F ϵ
2 ≡

−1

4π2

X
jjj≥1

eV 0þða; kÞ½qj�a
e2iπja ∕ ϵ

j2
;

Gϵ
2;a ≡

−i

2π

X
jjj≥1

eV 0þða; kÞ½qj�a
e2iπja ∕ ϵ

j
;

H ϵ
2;a ≡

−1

4π2

X
jjj≥1

½∂xðeV 0þðx; kÞqjðxÞÞ�a
e2iπja ∕ ϵ

j2
:ð4:24Þ

In the same way, the jump conditions for U
ðpÞ
3 fail at points of discontinuity of

the functions qðx; x ∕ ϵÞ and ∂xqðx; x ∕ ϵÞ, and for x ∈ fx0; : : : ; xN−1g the support of
V sing (recall that V sing ¼

P
N−1
j¼0 cjδðx− xjÞ)�

U
ðpÞ
3

�
x;
x

ϵ

��
a

¼ F ϵ
3;a;ð4:25Þ

�
d

dx
U

ðpÞ
3

�
x;
x

ϵ

��
a

¼ 1

ϵ
Gϵ

3;a þ H ϵ
3;að4:26Þ

with F ϵ
3;a and H ϵ

3;a bounded highly oscillating functions and

Gϵ
3;a ≡

1

2π2

X
jjj≥1

½∂xðeV 0þðx; kÞqjðxÞÞ�a
e2iπja ∕ ϵ

j2
:ð4:27Þ

F ϵ
3;a andH ϵ

3;a can be made explicit, but we omit these expressions as they contribute only
at Oðϵ3Þ.

Restoring the jump conditions at interfaces. In order to restore the jump con-
ditions (3.3), we must add to the expansion, at each point where the jump conditions are
not satisfied, an appropriate corrector. These correctors each solve a nonhomogeneous
equation, driven by the jumps in the bulk expansion (4.21).
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To see this, first note that ½ ddx U ðpÞ
j �

a
¼ Oðϵ−1Þ, j ¼ 2, 3. Since U

ðpÞ
j contributes at

order ϵj, this suggests adding a corrector at order ϵj−1. Thus, we introduce the following.
Bulk expansion with corrector terms.

U ϵðx; yÞ ¼ eV 0þðx; kÞ þ ϵUϵ
1ðxÞ þ ϵ2ðU ðpÞ

2 ðx; yÞ þU
ðhÞ
2 ðxÞ þ Uϵ

2ðxÞÞ
þ ϵ3ðU ðpÞ

3 ðx; yÞ þ U
ðhÞ
3 ðxÞ þ Uϵ

3ðxÞÞþ · · · .ð4:28Þ

The interface correctors Uϵ
jðxÞ are to be determined so that, at each order in ϵ, the ex-

pansion (4.28) satisfies the jump conditions (3.3), the differential equation (4.1), and the
outgoing radiation condition.

We construct Uϵ
jðxÞ, j ¼ 1; 2, below. The general construction uses the follow-

ing lemma.
LEMMA 4.1. Let F1, F2 ∈ R and V 0 ¼ V sing þ V reg as in (2.1). Then there exists

UðxÞ, an outgoing piecewise C 2 solution of�
−

d2

dx2
þ V 0ðxÞ− k2

�
U ¼ 0 for x < a and x > a;ð4:29Þ

which also satisfies the following jump conditions at the point x ¼ a:

½UðxÞ�a ¼ F1;

�
d

dx
UðxÞ

�
a

− cUða−Þ ¼ F2:

Here Uða−Þ ¼ limx↑aUðxÞ, and the constant

c ¼
�

0 if a ∈= suppV sing;
cj0 if a ¼ xj0 ∈ suppV sing;

ð4:30Þ

recall V singðxÞ ¼
P

N−1
j¼0 cjδðx− xjÞ.

UðxÞ has the form

UðxÞ ¼
�
αeV 0−ðx; kÞ if x < a;
βeV 0þðx; kÞ if x > a

ð4:31Þ

for appropriate choice of α and β, namely,

α ¼ F2eV 0þða; kÞ− F1∂xeV 0þðaþ; kÞ
2ikthom0 ðkÞ and β ¼ F2eV 0−ða; kÞ− F1∂xeV 0−ðaþ; kÞ

2ikthom0 ðkÞ :

ð4:32Þ

Before giving the proof, we explain why choosing Uϵ
j as in Lemma 4.1 does not

change the bulk expansion (4.21) constructed above. Therefore, our approach, which
first computes the bulk expansion and then the correctors, is consistent.

As pointed out the expressions in the bulk expansion (4.21

Ujðx; yÞ ¼ Ubulk
j ðx; yÞ≡ U

ðpÞ
j ðx; x ∕ ϵÞ þ U

ðhÞ
j ðxÞð4:33Þ

do not satisfy jump conditions (3.3). Suppose now that we replace the functions
Ujðx; yÞ ¼ Ubulk

j ðx; yÞ by Ujðx; yÞ ¼ Ubulk
j ðx; yÞ þ Uϵ

aðxÞ and that we seek Uϵ
aðxÞ so as

to ensure jump conditions (3.3). (Assume only one corrector is required.) Note that since
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Uϵ
aðxÞ lies in the kernel of ∂y, adding such a term has no effect on the equations deter-

mining U
ðpÞ
j ðx; yÞ. Further, we want to preserve the form of U ðhÞ

j ðxÞ, which has pre-
viously been constructed. Thus,

rj½Ujþ2; Ujþ1; U
bulk
j þ Uϵ

a� ¼rj½Ujþ2; Ujþ1; U
bulk
j �

þ ð−∂2x þV 0ðxÞ− k2ÞUϵ
aðxÞ þ qðx; yÞUϵ

aðxÞ:ð4:34Þ

The equation for U ðhÞ
j ðxÞ is obtained by averaging (4.34) with respect to y. Since qðx; yÞ

has mean zero with respect to y, this gives

Z
1

0
rj½Ujþ2; Ujþ1; U

bulk
j �ðx; yÞdyþ ð−∂2x þ V 0ðxÞ− k2ÞUϵ

aðxÞ ¼ 0:ð4:35Þ

Thus, if we choose Uϵ
aðxÞ to satisfy (4.29), then the second term in (4.35) vanishes and

the equation for U ðhÞ
j ðxÞ is preserved. Therefore, if Lemma 4.1 is used to determine the

jump-driven correctors at each order in ϵ, then the corrected bulk expansion (4.28) is the
solution we seek.

Proof of Lemma 4.1. The piecewise form of U (4.31) satisfies the outgoing radiation
condition by construction. The constants α and β are determined by the jump
conditions.

Using the fact that eV 0þðx; kÞ and eV 0−ðx; kÞ satisfy the jump conditions (3.3),
one has

8>>><
>>>:

½UðxÞ�a¼ βeV 0þða; kÞ− αeV 0−ða; kÞ;�
d
dxUðxÞ

�
a

− cUða−Þ¼ β∂xeV 0þðaþ; kÞ− α∂xeV 0−ða−; kÞ− cαeV 0−ða−; kÞ
¼ β∂xeV 0þðaþ; kÞ− α∂xeV 0−ðaþ; kÞ:

Solving this inhomogeneous system, using the value of the Wronskian, given in (3.8),
leads immediately to (4.32). This completes the proof of Lemma 4.1. ▯

We now proceed to apply Lemma 4.1 to determine the correctors associated with
U

ðpÞ
2 and U

ðpÞ
3 . Using (4.22)–(4.23) and (4.25)–(4.26), the jump conditions (3.3) applied

to ϵUϵ
1 þ ϵ2Uϵ

2 þ ϵ2U ðpÞ
2 þ ϵ3U ðpÞ

3 read

ϵ½Uϵ
1�a þ ϵ2ðF ϵ

2;a þ ½Uϵ
2�aÞ ¼ Oðϵ3Þ;ð4:36Þ

ϵ

�
Gϵ

2;a þ
�
d

dx
Uϵ
1

�
a

− cUϵ
1ða−Þ

�
þ ϵ2

�
H ϵ

2;a − cU
ðpÞ
2 ða−Þ þGϵ

3;a

þ
�
d

dx
Uϵ
2

�
a

− cUϵ
1ða−Þ

�
¼ Oðϵ3Þ:ð4:37Þ

Equations (4.36) and (4.37) imply jump conditions at order ϵ and order ϵ2. There-
fore, we construct Uϵ

j;a, j ¼ 1; 2, solving the two inhomogeneous problems at each point,
a, of nonsmoothness.
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System for corrector Uϵ
1;a.�

−
d2

dx2
þV 0ðxÞ− k2

�
Uϵ
1;a ¼ 0; x ≠ a;ð4:38Þ

½Uϵ
1;a�a ¼ 0;

�
d

dx
Uϵ
1;a

�
a

− cUϵ
1;aða−Þ ¼ −Gϵ

2;a:ð4:39Þ

System for corrector Uϵ
2;a.�

−
d2

dx2
þV 0ðxÞ− k2

�
Uϵ
2;a ¼ 0; x ≠ a;ð4:40Þ

½Uϵ
2;a�a ¼ −F ϵ

2;a;

�
d

dx
Uϵ
2;aðxÞ

�
a

− cUϵ
2;aða−Þ ¼ −H ϵ

2;a −Gϵ
3;a þ cU

ðpÞ
2 ða−Þ:ð4:41Þ

Lemma 4.1, applied to (4.38)–(4.39) and (4.40)–(4.41) defines the unique correctors
Uϵ
1;a and Uϵ

2;a: U
ϵ
1;a is given by (4.31), i.e.,

Uϵ
1;aðxÞ ¼

�
αϵ
1;aeV 0−ðx; kÞ if x < a;

βϵ
1;aeV 0þðx; kÞ if x > a

ð4:42Þ

with αϵ
1;a and βϵ

1;a given by

αϵ
1;a ¼ −

Gϵ
2;a

2ikthom0 ðkÞ eV 0þða; kÞ; βϵ
1;a ¼ −

Gϵ
2;a

2ikthom0 ðkÞ eV 0−ða; kÞ;ð4:43Þ

where Gϵ
2;a is given in (4.24). Then Uϵ

2;a is given by (4.31) with αϵ
2;a and βϵ

2;a α and β

given by

αϵ
2;a ¼ 1

2ikthom0 ðkÞ ðð−H ϵ
2;a −Gϵ

3;a þ cU
ðpÞ
2 ða−ÞÞeV 0þða; kÞ þ F ϵ

2;a∂xeV 0þðaþ; kÞÞ;

βϵ
2;a ¼ 1

2ikthom0 ðkÞ ðð−H ϵ
2;a −Gϵ

3;a þ cU
ðpÞ
2 ða−ÞÞeV 0−ða; kÞ þ F ϵ

2;a∂xeV 0−ðaþ; kÞÞ;ð4:44Þ

where H ϵ
2;a, F

ϵ
2;a, and Gϵ

3;a are given in (4.24) and (4.27).
Therefore, at OðϵÞ, we define the corrector Uϵ

1 as

Uϵ
1 ¼

XM
j¼1

Uϵ
1;aj

;ð4:45Þ

where aj, j ¼ 1; : : : ;M denote the points of discontinuity of qðx; x∕ ϵÞ .
At order Oðϵ2Þ, we have a violation of the jump conditions (3.3) due to

(i) points of “discontinuity” of qjðxÞ, i.e., ajðj ¼ 1; : : : ;MÞ for which ½qj�a ≠ 0 or
½∂xqj�a ≠ 0, and

(ii) the singular set suppV sing ¼ fx0; : : : ; xN−1g.
Thus we construct, Uϵ

2;a, for all a in the set, Ω, of nonsmooth points of V ϵðxÞ

Ω ¼ fx0; : : : ; xN−1g ∪ f−∞ < a1 < · · · < aM−1 < ∞gð4:46Þ
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and define the corrector Uϵ
2 by

Uϵ
2 ¼

X
a∈Ω

Uϵ
2;a:ð4:47Þ

We summarize the preceding calculation in the following proposition.
PROPOSITION 4.2.

eV ϵþðx; kÞ ¼U ϵðx; x ∕ ϵÞ ¼ eV 0þðx; kÞ þ ϵUϵ
1ðxÞ

þ ϵ2ðU ðhÞ
2 ðxÞ þ U

ðpÞ
2 ðx; x∕ ϵÞ þ Uϵ

2ðxÞÞ þOðϵ3Þð4:48Þ

gives a formal construction of the distorted plane wave eV ϵþðx; kÞ through Oðϵ2Þ with
error of size Oðϵ3Þ. The correctors Uϵ

1ðxÞ and Uϵ
2ðxÞ are given by (4.38)–(4.39) and

(4.40)–(4.41).
Finally, U ðpÞ

j ðx; yÞ and U
ðhÞ
j ðxÞ are given by

U
ðpÞ
2 ðx; yÞ ¼ −

eV 0þðx; kÞ
4π2

X
jjj≥1

qjðxÞ
e2iπjy

j2
;

�
−

d2

dx2
þ V 0ðxÞ− k2

�
U

ðhÞ
2 ðxÞ ¼ eV 0þðx; kÞ

4π2

X
jjj≥1

jqjðxÞj2
j2

; U
ðhÞ
2 outgoing;

U
ðpÞ
3 ðx; yÞ ¼ −

i

4π3

X
jjj≥1

∂xðeV 0þðx; kÞqjðxÞÞ
e2iπjy

j3
;

�
−

d2

dx2
þ V 0ðxÞ− k2

�
U

ðhÞ
3 ðxÞ ¼ i

X
jjj≥1

∂xðeV 0þðx; kÞqjðxÞÞq−jðxÞ
4π3j3

; U
ðhÞ
3 outgoing:

4.2. Expansion of the transmission coefficient, tϵ�k�. The results of the pre-
vious section can now be used to derive expansion (2.13) for the transmission coefficient,
tϵðkÞ, associated with the potential V ϵðxÞ. tϵðkÞ, through order ϵ2, is derived by isolating
appropriate terms in the expansion (4.48). The sense in which the remainder is small is
proved, by entirely different means, in section 5.
Oðϵ0Þ: The only term at order one is eV 0þ, which gives the leading order transmission

coefficient, thom0 ðkÞ, corresponding to the average potential V 0.

Oðϵ1Þ: At order ϵ, we seek the contribution to tϵðkÞ from Uϵ
1. From (4.31) we have, since

eV 0þðx; kÞ∼ thom0 ðkÞeikx as x → þ∞, that the contribution of Uϵ
1;a to the transmission

coefficient is given by

tϵ1;a ¼ βϵ
1;at

hom
0 ðkÞ ¼ 1

4πk
eV 0þða; kÞeV 0−ða; kÞ

X
jjj≥1

½qj�a
e2iπja ∕ ϵ

j
:

Finally, summing over all contributions from points of discontinuity of qj, one obtains
the complete first order contribution from Uϵ

1:

tϵ1 ¼
X
j

tϵ1;aj ¼
XM
j¼1

eV 0þðaj; kÞeV 0−ðaj; kÞ
4πk

X
jlj≥1

½ql�aj
e2iπl

aj
ϵ

l
:ð4:49Þ
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Oðϵ2Þ: (a) No contribution to tϵðkÞ from ϵ2U ðpÞ
2 :

We estimate U
ðpÞ
2 pointwise.

����U ðpÞ
2

�
x;
x

ϵ

����� ≤ 1

4π2 jeV 0þðx; kÞj
X
jjj≥1

jqjðxÞj
j2

≤ C

�X
jjj≥1

jqjðxÞj2
�

1 ∕ 2
→ 0;

jxj → ∞:

Here we have used the uniform bound (B.3) on eV 0þ for x ≥ 0 and the
hypothesis (2.9). Since U

ðpÞ
2 ðx; xϵÞ → 0 as x → ∞, it does not contribute

to the transmission coefficient.
(b) Contribution of ϵ2U ðhÞ

2 ðxÞ to tϵðkÞ:
From (4.19), one has

�
−

d2

dx2
þ V 0ðxÞ− k2

�
U

ðhÞ
2 ðxÞ ¼ eV 0þðx; kÞ

4π2

X
jjj≥1

jqjðxÞj2
j2

:

Using expression (3.12) for the outgoing resolvent,we have

U
ðhÞ
2 ðxÞ ¼RV 0

ðkÞ
�
eV 0þð·; kÞ

4π2

X
jjj≥1

jqjð·Þj2
j2

�

¼ −1

2ikthom0 ðkÞ
Z

x

−∞

eV 0þðζ; kÞ
4π2

X
jjj≥1

jqjðζÞj2
j2

eV 0−ðζ; kÞeV 0þðx; kÞdζ

þ −1

2ikthom0 ðkÞ
Z þ∞

x

eV 0þðζ; kÞ
4π2

X
jjj≥1

jqjðζÞj2
j2

eV 0þðζ; kÞeV 0−ðx; kÞdζ:

Therefore, since qj ∈ L2 for all j ∈ Z and eV 0� ∈ L∞, one has, when
x → ∞,

lim
x→∞

U
ðhÞ
2 ðxÞ−

�
−eV 0þðx; kÞ
8ikπ2thom0 ðkÞ

Z
R

X
jjj≥1

jqjðζÞj2
j2

eV 0−ðζ; kÞeV 0þðζ; kÞdζ
�

¼ 0:

It follows that the contribution of Uh
2ðxÞ to the transmission coefficient is

thom2 ðkÞ≡−
1

8ikπ2

Z
R

X
jjj≥1

jqjðζÞj2
j2

eV 0−ðζ; kÞeV 0þðζ; kÞdζ:ð4:50Þ

(c) Contribution of ϵ2Uϵ
2 to tϵðkÞ:

We study Uϵ
2 as above. From (4.31) we have, since eV 0þðx; kÞ∼ thom0 ðkÞeikx

as x → þ∞, that the contribution of Uϵ
2;a to the transmission coefficient is

given by tϵ2 ≡ thom0 ðkÞβϵ
2;a.

From (4.44), (4.24), and (4.26), we have
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tϵ2;aðkÞ ¼ βϵ
2;at

hom
0 ðkÞ

¼ −eV 0−ða; kÞ
8π2ik

X
jjj≥1

ðceV 0þða; kÞqjða−Þ þ ½∂xðeV 0þðx; kÞqjðxÞÞ�aÞ
e2iπja ∕ ϵ

j2

−
1

8π2ik

X
jjj≥1

eV 0þða; kÞ½qj�a∂xeV 0−ðaþ; kÞ e
2iπja ∕ ϵ

j2
:

Using the easily verified identity

½qjðxÞ∂xeV 0−ðx; kÞ�a ¼ ∂xeV 0−ðaþ; kÞ½qjðxÞ�a þ ceV 0−ða; kÞqjða−Þ;
ð4:51Þ

we obtain

tϵ2;aðkÞ ¼
−1

8π2ik

X
jjj≥1

ð½∂xðeV 0þðx; kÞqjðxÞÞ�aeV 0−ða; kÞ

þ ½qjðxÞ∂xeV 0−ðx; kÞ�aeV 0þða; kÞÞ
e2iπja ∕ ϵ

j2

¼ i

8π2k

X
jjj≥1

½∂xðeV 0−ðx; kÞeV 0þðx; kÞqjðxÞÞ�a
e2iπja ∕ ϵ

j2
:

Finally, summing over all contributions of all singular and/or discontinu-
ity points of V ϵ, we obtain the simple expression

tϵ2ðkÞ ¼
X
a∈Ω

tϵ2;aðkÞ ¼
i

8π2k

X
a∈Ω

X
jlj≥1

½∂xðeV 0−ðx; kÞeV 0þðx; kÞqlðxÞÞ�a
e2iπla ∕ ϵ

l2
:

ð4:52Þ

Oðϵ3Þ: By similar considerations to the above discussion of U ðhÞ
2 and U

ðpÞ
2 , the terms

U ϵ
3 ¼ U

ðhÞ
3 þU

ðpÞ
3 in the expansion of eV ϵ

þ give a correction to tϵðkÞ of order ϵ3

and is therefore subsumed by the error term in the expansion (2.13).
In summary, we have an expansion of tϵðkÞ, agreeing with the expansion (2.13) in

Theorem 2.1.
PROPOSITION 4.3 (formal corrected homogenization expansion).

tϵðkÞ ¼ thom0 ðkÞ þ ϵtϵ1ðkÞ þ ϵ2ðthom2 ðkÞ þ tϵ2ðkÞÞ þOðϵ3Þ;ð4:53Þ

where the leading order term, thom0 ðkÞ, is the transmission coefficient associated with the
homogenized (average with respect to the fast scale) potential V 0, thom2 ðkÞ is a classical
homogenization theory corrector given by (4.50), and tϵj, j ¼ 1; 2, are interface correc-
tors given by (4.49) and (4.52).

Note that if V 0 is generic, then since using that tV 0
ðkÞ and eV 0�ðx; kÞ are OðkÞ as

k → 0, we see the expansion is formally valid for any k ∈ R. However, if V 0 is not
generic, then we must exclude k ¼ 0; see the discussion of Remark 3.1.

5. Rigorous analysis of the scattering problem. In the preceding section, we
applied the classical method of multiple scales to derive a formal expansion for the dis-
torted plane wave eV ϵþðx; kÞ and transmission coefficient tϵðkÞ; see section 3. For suffi-
ciently smooth potentials, this expansion satisfies, at each order in ϵ, all necessary
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continuity conditions as well as the radiation condition at infinity; see Definitions 3.1
and 3.4.

We found, however, that if the potential is nonsmooth, this expansion, while valid in
the bulk, violates continuity conditions (i) at discontinuities and (ii) at strong singula-
rities of the background, unperturbed potential, V 0ðxÞ ¼ V regðxÞ þ V singðxÞ. We found,
in section 4 that we can, “by hand,” construct interface correctors for each point of non-
smoothness, thereby giving a corrected expansion (bulk expansion plus interface correc-
tors) which is a valid solution to any finite order in ϵ. The expansion of Proposition 4.3 is
explicit through order ϵ2 with order ϵ3 correctors.

Question. Does the procedure of section 4 yield a valid expansion with an error
term satisfying an appropriate higher order error bound?

It turns out that the formal expansion is correct with an appropriate error estimate.
However, we obtain this result not by expansion in scalar ϵ but rather in the function
qϵðxÞ, with respect to which there is an analytic perturbation theory in an appropriate
function space. Smallness required for control of the perturbation expansion derives
from qϵðx; x ∕ ϵÞ being supported at high frequencies if ϵ is small. The principle terms,
displayed in the expansion of Proposition 4.3 (and, indeed, the terms at any finite order
in the small parameter, ϵ), are obtained via small ϵ asymptotics of the leading
order terms in the qϵ expansion. The approach we use was introduced by Golowich
and Weinstein in [9].

5.1. Formulation of the problem. We consider the general one-dimensional
scattering problem

�
−

d2

dx2
þ V 0ðxÞ þQðxÞ− k2

�
eVþ ¼ 0;

eV 0þQ;þðx; kÞ− eikx → 0; x → −∞;ð5:1Þ

where V 0ðxÞ as hypothesized in section 1 and Q is a spatially localized perturbing po-
tential, which we think of as being spectrally supported at high frequencies. Q may be
large in L∞. As a model, we have in mind QðxÞ ¼ qϵðxÞ ¼ qðx; x∕ ϵÞ with ϵ small.

We introduce the scattered field, us, via

eVþðx; kÞ ¼ eV 0þðx; kÞ þ usðx; kÞ;ð5:2Þ

where us is outgoing as x → �∞. Therefore, us is the solution of

�
−

d2

dx2
þ ðV 0 þQÞðxÞ− k2

�
usðx; kÞ ¼ −QeV 0þðx; kÞð5:3Þ

with outgoing conditions ð∂x∓ikÞus → 0, x → �∞.
Applying the outgoing resolvent, RV 0

ðkÞ, to (5.3) and rearranging terms, we obtain
the Lippman–Schwinger equation

us ¼ −ðI þ RV 0
ðkÞQÞ−1RV 0

ðkÞQeV 0þð·; kÞ
⇒ eVþðx; kÞ ¼ eV 0þðx; kÞ− ðI þ RV 0

ðkÞQÞ−1RV 0
ðkÞQeV 0þð·; kÞ:ð5:4Þ

Consider now the formal Neumann expansion, obtained from (5.4):
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eVþðx; kÞ ¼ eV 0þðx; kÞ− RV 0
ðkÞðQeV 0þðx; kÞÞ þ RV 0

ðkÞQRV 0
ðkÞðQeV 0þðx; kÞÞþ · · ·

¼ eV 0þðx; kÞ þ
X∞
m¼0

½ð−RV 0
ðkÞQÞmeV 0þ�ðx; kÞ:ð5:5Þ

In this section we show, for a class of Q, which include high-contrast (pointwise large)
microstructure (highly oscillatory) potentials, that the expansion (5.5) converges in an
appropriate sense and that any truncation satisfies an error bound.

5.2. Reformulation of the Lippman–Schwinger equation and the norm
jjjQjjj. We seek a reformulation of the Lippman–Schwinger equation (5.4) in which
it is explicitly clear that if Q is highly oscillatory, then the terms of the Neumann series
are successively smaller. Introduce, via the Fourier transform, the operator hD0is,

hD0isg≡ ðI − ΔÞs ∕ 2g≡ 1

2π

Z þ∞

−∞
eixξð1þ ξ2Þs ∕ 2ĝðξÞdξð5:6Þ

and the localized function χ,

χðxÞ ¼ hxi−σ ¼ ð1þ x2Þ−σ
2 ; σ > 4:ð5:7Þ

Now introduce the spatially and frequency weighted distorted plane wave, EVþðx; kÞ,
given by

EVþðx; kÞ≡ ðhD0iχeVþÞðx; kÞ:ð5:8Þ
With the operator definitions

TRV0
ðkÞ≡ hD0iχRV 0

ðkÞχhD0i;ð5:9Þ

TQ ≡ hD0i−1χ−1Qχ−1hD0i−1 ¼ hD0i−1hxiσ · Q · hxiσhD0i−1;ð5:10Þ

EVþðx; kÞ can be seen to satisfy

ðI þ TRV0
TQÞðEVþð·; kÞ− EV 0þð·; kÞÞ ¼ −hD0iχRV 0

ðkÞQeV 0þðx; kÞ:ð5:11Þ

Here is the motivation for our strategy. Note that TQ has the operator hD0i−1 as
both a pre- and postmultiplier. This has the effect of a high frequency cutoff. Therefore,
for highly oscillatory Q, TQ is expected to be of small operator norm. If the norm of
TRV0

∘ TQ is small, then I þ TRV0
∘ TQ is invertible and we have the preconditioned

Lippman–Schwinger equation

EVþð·; kÞ ¼ EV 0þð·; kÞ− ðI þ TRV0
TQÞ−1hD0iχRV 0

ðkÞQeV 0þðx; kÞ:ð5:12Þ

We proceed now to construct a norm, jjjQjjj, such that if jjjQjjj is small, then
TRV0

TQ is bounded and of small norm as an operator norm from L2 to L2.
The norm we choose for the perturbing potential is defined as follows:

jjjQjjj≡ kTQkL2→L2 ¼ khD0i−1hxiσQhxiσhD0i−1kL2→L2 ; σ > 4:ð5:13Þ

The next result establishes the expansion of the distorted plane waves eVþðx; kÞ in a
H 1ðR;χðxÞdxÞ and, therefore, by the Sobolev inequality, an L∞ðR;χðxÞdxÞ convergent
expansion for jjjQjjj sufficiently small.
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THEOREM 5.1. Let V satisfy Hypotheses (V) and k ∈ K a compact subset of R,
satisfying Hypothesis (G). Define

τ0ðKÞ≡ 1

maxk∈KkTRV0
ðkÞk

L2→L2

> 0:

If jjjQjjj < τ0ðKÞ, then the following are true for all k ∈ K :
• The preconditioned Lippman–Schwinger equation (5.12) has a unique spatially

and spectrally weighted distorted plane solution, EVþðx; kÞ.
• This solution can be expressed as a series, which converges in L2ðRÞ, uniformly

in k ∈ K :

EVþðx; kÞ ¼ EV 0þðx; kÞ þ
X∞
m¼0

ð−TRV0
ðkÞTQÞm½hD0iχRV 0

ðkÞQeV 0þ�ðx; kÞ

¼ EV 0þðx; kÞ− hD0iχRV 0
ðkÞQeV 0þðx; kÞ

þ TRV0
ðkÞTQhD0iχRV 0

ðkÞQeV 0þðx; kÞ− · · · .

• It follows that the distorted plane wave, eV 0þQ;þðx; kÞ, satisfies the approxima-
tion for any M ≥ 1

����hD0iχ
�
usð·; kÞ þ

XM
m¼0

½ð−RV 0
ðkÞQÞmeV 0þ�ð·; kÞ

�����
L2ðRÞ

≤ C jjjQjjjMþ1ð5:14Þ

with usðx; kÞ≡ eV 0þQ;þðx; kÞ− eV 0þðx; kÞ.
Remark 5.1. In the proof of Theorem 5.1, the distinction between generic and non-

generic cases arises through the properties of the unperturbed resolvent, RV 0
ðkÞ, as

k → 0; see Proposition 3.7.
In the following, we prove that both TRV0

and TQ are well-defined operators,
bounded in L2. Then Theorem 5.1 follows immediately if Q satisfies the smallness
condition

kTQkL2→L2 < min
k∈K

ðkTRV0
ðkÞk

L2→L2
Þ−1 ≡ τ0ðkÞ:ð5:15Þ

PROPOSITION 5.2. Let hxi2σQðxÞ ∈ L2ðRÞ. Then TQ, as defined in (5.10), is a
Hilbert–Schmidt operator and is therefore compact.

PROPOSITION 5.3. Let qϵðxÞ satisfy the conditions in Hypotheses (V). Then, for ϵ
small,

kTqϵkL2→L2 ¼ OðϵÞ:ð5:16Þ

PROPOSITION 5.4. TRV0
ðkÞ is a bounded operator from L2 to L2.

Propositions 5.2 and 5.3 are proved below. The proof of Proposition 5.4 is somewhat
more technical and is found in Appendix C.

We now prove Proposition 5.2. The proof of Proposition 5.3 then follows.
Proof of Proposition 5.2. We begin by introducing the notation

Q♯ ¼ χ−1Qχ−1:ð5:17Þ
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Then one uses the following calculation:

hD0i−1Q♯hD0i−1fðxÞ ¼hD0i−1Q♯hD0i−1

�
1

2π

Z
ξ

eixξf̂ ðξÞdξ
�

¼
Z
ξ

f̂ðξÞ
2π

hD0i−1Q♯hD0i−1eixξdξ

¼
Z
ξ

f̂ðξÞ
4π2 hD0i−1Q♯eixξð1þ ξ2Þ−1 ∕ 2dξ

¼
Z
ξ

f̂ðξÞ
4π2 ð1þ ξ2Þ−1 ∕ 2 1

2π

Z
η

eixηð1þ η2Þ−1 ∕ 2 dQ♯eiηξdηdξ

¼
Z
ξ

1

8π3

�Z
ζ
e−iyξf ðζÞdζ

�Z
η

ðhξihηiÞ−1eixηcQ♯ðξ− ηÞdηdξ

¼
Z
ζ
f ðζÞKðx; ζÞdζ

with the kernel

Kðx; ζÞ≡ 1

8π3

Z
ξ

Z
η

ð1þ ξ2Þ−1 ∕ 2ð1þ η2Þ−1∕ 2eiðxη−ζξÞcQ♯ðξ− ηÞdηdξ.ð5:18Þ

We want to prove that
RR jKðx; ζÞj2dxdζ < þ∞, i.e., K ∈ L2ðR2Þ. One has

K̂ðs; zÞ ¼
ZZ

R2
Kðx; ζÞe−ixse−iζzdxdζ

¼ 1

8π3

ZZ
x;ζ

ZZ
η;ξ

hξi−1hηi−1eixðη−sÞe−iζðξþzÞcQ♯ðξ− ηÞdxdζdηdξ

¼ 1

8π3

cQ♯ð−s− zÞ
ð1þ s2Þ1∕ 2ð1þ z2Þ1 ∕ 2 :

Therefore, we deduceZZ
x;ζ

jKðx; ζÞj2dxdζ ¼
ZZ

s;z
jbKðs; zÞj2dsdz ¼ 1

8π3

Z
s

1

1þ s2

Z
z

jcQ♯ðsþ zÞj2
1þ z2

dzds:

Since Q♯ ∈ L2ðRÞ, one has immediately
RR
x;ζ jKðx; ζÞj2dxdζ < ∞ and

kKðx; ζÞkL2ðR2Þ ≤ CkQ♯kL2ðRÞ:

Therefore, TQ is a Hilbert–Schmidt integral operator and is therefore bounded, with

kTQkL2→L2 ≤ CkQ♯kL2ðRÞ:

This completes the proof of Proposition 5.2. ▯
Proof of Proposition 5.3. Consider TQ, where Q ¼ qϵðxÞ ¼ qðx; xϵÞ as in (2.2). From

the proof below, one has Tqϵf ðxÞ ¼ ∫ ζf ðζÞK ϵðx; ζÞdζ; with the kernel K ϵðx; ζÞ satisfying

cK ϵðs; zÞ ¼
1

8π3

b
q♯ϵð−s− zÞ

ð1þ s2Þ1∕ 2ð1þ z2Þ1∕ 2 :

Using the decomposition in the Fourier series of qϵðxÞ ¼ qðx; xϵÞ, one has
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q♯ϵðxÞ≡ χ−1qϵχ
−1ðxÞ ¼

X
jjj≥1

q♯jðxÞe2iπjðx ∕ ϵÞ;

and therefore

b
q♯ϵðξÞ ¼

X
jjj≥1

Z
x
q♯jðxÞe2iπjðx ∕ ϵÞe−ixξdx ¼

X
jjj≥1

b
q♯j

�
2πj

ϵ
− ξ

�
:

One then deduces

ZZ
s;z

jcK ϵðs; zÞj2dsdz ¼
1

8π3

X
jjj≥1

ZZ
s;z

jbq♯jðsþ z þ ð2πj ∕ ϵÞÞj2

ð1þ s2Þð1þ z2Þ dsdz

¼ 1

8π3

X
jjj≥1

Z
R
dz

Z
R
dη

jbq♯jðηþ ð2πj ∕ ϵÞÞj2

ð1þ ðη− zÞ2Þð1þ z2Þ

¼
X
jjj≥1

Z
R
dz

Z
jηj≥πj

ϵ

dη
jbq♯jðηþ ð2πj ∕ ϵÞÞj2

ð1þ ðη− zÞ2Þð1þ z2Þ

þ
X
jjj≥1

Z
R
dz

Z
jηj≤πj

ϵ

dη
jbq♯jðηþ ð2πj ∕ ϵÞÞj2

ð1þ ðη− zÞ2Þð1þ z2Þ ≡ I 1 þ I 2:

Estimation of I1.

Z
R
dz

Z
jηj≥πj

ϵ

���� bq♯j
�
ηþ 2πj

ϵ

�����2
ð1þ ðη− zÞ2Þð1þ z2Þ dη ¼

�Z
jzj≥πj

2ϵ

dz þ
Z
jzj≤πj

2ϵ

dz

�Z
jηj≥πj

ϵ

dη

¼ I 1;A þ I 1;B; with

I 1;A ¼
Z
jzj≥πj

2ϵ

dz

Z
jηj≥πj

ϵ

dη ≤ C
ϵ2

j2

Z
jηj≥πj

ϵ

���� bq♯j
�
ηþ 2πj

ϵ

�����2
Z
jzj≥πj

2ϵ

1

1þ ðη− zÞ2 dzdη

≤ C  0 ϵ
2

j2
kq♯jk2L2 ; and as jη− zj ≥ πj

2ϵ
for jzj ≤ πj

2ϵ
; jηj ≥ πj

ϵ
;

I 1;B ¼
Z
jzj≤πj

2ϵ

dz

Z
jηj≥πj

ϵ

dη ≤ C
ϵ2

j2

Z
jzj≤πj

2ϵ

1

1þ z2
dz

Z
jηj≥πj

ϵ

���� bq♯j
�
ηþ 2πj

ϵ

�����2dη
≤ C  0 ϵ

2

j2
kq♯jk2L2 :

Now, summing on j, one obtains I 1ðϵÞ ¼ Oðϵ2Þ.
Estimation of I2. We first show that if we assume only that

P
jjj≥1kq♯jk2L2 < ∞,

then I 2ðϵÞ → 0 as ϵ → 0, and therefore, kTqϵk2L2→L2 ¼ oð1Þ þOðϵ2Þ ¼ oð1Þ as ϵ → with
no specified rate.

We then show that if qϵ is as in hypotheses (V), then kTqϵkL2→L2 ¼ OðϵÞ as ϵ → 0.
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Assume
P

jjj≥1kq♯jk2L2 < ∞. Then

I 2 ≡
X
jjj≥1

Z
R
dz

Z
jηj≤πj

ϵ

dη
jbq♯jðηþ ð2πj ∕ ϵÞÞj2

ð1þ ðη− zÞ2Þð1þ z2Þ

≤
Z
R

1

ð1þ z2Þ dz
X
jjj≥1

Z
jηj≤πj

ϵ

jbq♯jðηþ ð2πj ∕ ϵÞÞj2dη

≤ C
X
jjj≥1

Z
πj
ϵ ≤τ≤3πj

ϵ

jbq♯jðτÞj2dτ:
Note that

P
jjj≥1∫ Rj

b
q♯jðτÞj

2
dτ ¼ P

jjj≥1kq♯jk2L2 < ∞, implying I 2 ¼ oð1Þ as ϵ → 0.
We now turn to the case where qϵ satisfies the condition in Hypotheses (V) in order

to establish that kTqϵkL2→L2 ¼ OðϵÞ as ϵ → 0. The estimate for I 1ðϵÞ is as above:
I 1ðϵÞ ¼ Oðϵ2Þ.

Now we estimate I 2ðϵÞ using the fact that, since q♯j ∈ L2 and ðq♯jÞ 0 ∈ L2,

jbq♯jðτÞj ¼
����XM
l¼0

Z
alþ1

al

q♯jðxÞe−iτxdx

����
¼

���� 1iτ
XM
l¼0

�Z
alþ1

al

ðq♯jÞ 0ðxÞe−iτxdx− q♯jða−lþ1Þe−iτalþ1 þ q♯jðalþÞe−iτal

�����
≤ C

1

τ

�
kðq♯jÞ 0kL2 þ

XM
l¼1

½q♯jðxÞ�aj
�

¼ O
�
1

τ

�
:

Therefore, one has

I 2 ≡
X
jjj≥1

Z
R
dz

Z
jηj≤πj

ϵ

dη
jbq♯jðηþ ð2πj∕ ϵÞÞj2

ð1þ ðη− zÞ2Þð1þ z2Þ

≤ C

Z
R

1

ð1þ z2Þ dz
X
jjj≥1

Z
jηj≤πj

ϵ

�
ϵ

πj

�
2 1

1þ ðη− zÞ2 dη ≤ C  0ϵ2
X
jjj≥1

1

j2
:

One deduces finally that kTqϵkL2→L2 ¼ kK ϵkL2ðR2Þ ¼ I 1 þ I 2 ¼ OðϵÞ. This completes the
proof of Proposition 5.3. ▯

5.3. Application to the transmission coefficient, t�k� � t�k;Q�. This section
is devoted to the proof of Theorem 2.2. The heart of the matter is to view tðkÞ as a
functional of the perturbing microstructure potential QðxÞ,

Q ↦ t½Q�;ð5:19Þ

and to use the Lippman–Schwinger expansion of Theorem 5.1 to expand t½Q� for small
jjjQjjj,

t½Q� ¼ thom0 þ t1½Q� þ t2½Q;Q� þ t3½Q;Q;Q�þ · · · ;ð5:20Þ

where tj½Q;Q; : : : ; Q� is j-linear in Q. The transmission coefficient expansion of
Theorem 2.2 is recovered from the small jjjQjjj asymptotics of the first several terms
of the expansion of t½qϵ�. Finally, the error terms are estimated.
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Recall that, from (3.7), the transmission coefficient, tW ðkÞ, associated with the dis-
torted plane wave eWþðx; kÞ, is given by

tW ðkÞ ¼ lim
x→þ∞

e−ikxeWþðx; kÞ:

We denote the transmission coefficients of eV 0þðx; kÞ and eV 0þQ;þðx; kÞ, respectively,
tV 0

ðkÞ≡ t0ðkÞ≡ thom0 ðkÞ;
tV ðkÞ≡ tðkÞ ¼ lim

x→þ∞
e−ikxeV 0þQ;þðx; kÞ ¼ thom0 ðkÞ þ lim

x→þ∞
e−ikxusðx; kÞ:

To obtain the desired leading order expansion of tðkÞ of Theorem 2.2, we now derive the
small jjjQjjj asymptotics of the linear and quadratic terms in Q of (5.14).

Calculation of t1�Q�. One has, from (3.11), that

−RV 0
ðkÞQeV 0þðx; kÞ ¼

Z
x

−∞
QðζÞeV 0þðζ; kÞeV 0−ðζ; kÞdζ

eV 0þðx; kÞ
2ikthom0

þ
Z þ∞

x
QðζÞeV 0þðζ; kÞeV 0þðζ; kÞdζ

eV 0−ðx; kÞ
2ikthom0

∼ t1½Q�eikx as x → ∞;

where

t1½Q�≡ 1

2ik

Z
∞

−∞
QðζÞeV 0þðζ; kÞeV 0−ðζ; kÞdζ:ð5:21Þ

Calculation of t2�Q;Q�. One has, from (3.11), that

RV 0
ðkÞQRV 0

ðkÞQðζÞeV 0þðx; kÞ

¼
Z

x

−∞
QðζÞRV 0

ðkÞðQðζÞeV 0þðζ; kÞÞeV 0−ðζ; kÞdζ
eV 0þðx; kÞ
2ikthom0

þ
Z þ∞

x
QðζÞRV 0

ðkÞðQðζÞeV 0þðζ; kÞÞeV 0þðζ; kÞdζ
eV 0−ðx; kÞ
2ikthom0

∼ t2½Q;Q�eikx;

where

t2½Q;Q�≡ 1

2ik

Z
∞

−∞
QðζÞRV 0

ðkÞðQðζÞeV 0þðζ; kÞÞeV 0−ðζ; kÞdζ

¼ 1

2ik

1

−2ikthom0

Z þ∞

−∞
QðζÞeV 0−

ðζ; kÞðI lðζÞ þ I rðζÞÞdζ with

I lðζÞ ¼
Z

ζ

−∞
QðzÞeV 0þðz; kÞeV 0−ðz; kÞeV 0þðζ; kÞdz;

I rðζÞ ¼
Z þ∞

ζ
QðzÞeV 0þðz; kÞeV 0þðz; kÞeV 0−ðζ; kÞdz:ð5:22Þ

Estimation of the error terms. The final step for the proof of Theorem 2.2 con-
sists of a bound on the contribution to the transmission coefficient from the remainder
term in expansion (5.20). This is given by the following theorem.
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THEOREM 5.5. Let K denote a compact subset of R, satisfying Hypothesis (G).
Introduce for k ∈ K

tremðk;QÞ≡ tðk;QÞ− thom0 ðkÞ− t1½Q�− t2½Q;Q�:ð5:23Þ

Then we have the following, uniformly in k ∈ K :
1. If V has compact support, then tremðkÞ ¼ OðjjjQjjj3Þ.
2. If V is exponentially decreasing, then tremðkÞ ¼ OðjjjQjjj3−Þ.
3. If hxiρþ1V 0ðxÞ ∈ L1ðRÞ and hxiρQðxÞ ∈ L2ðRÞ, ρ > 8, then there exists

2 < β < 3 such that tremðkÞ ¼ OðjjjQjjjβÞ.
Proof. It is convenient to first introduce

f rem ≡−ðI þ TRV0
TQÞ−1ðTRV0

TQÞ3hD0iχeV 0þðx; kÞð5:24Þ

≡ hD0iχus þ hD0iχRV 0
ðkÞQðxÞeV 0þðx; kÞ

− hD0iχRV 0
ðkÞQRV 0

ðkÞQðxÞeV 0þðx; kÞ:ð5:25Þ

Using (B.4), one deduces that hD0iχeV 0þðx; kÞ ∈ L2
x with

khD0iχeV 0þkL2 ¼ khηi dχeV 0þðη; kÞkL2
η

≤ kχðxÞeV 0þðx; kÞkL2
x
þ k∂xðχðxÞeV 0þðx; kÞÞkL2

x
≤ kχðxÞhxikL2

x
:

Therefore, thanks to Propositions 5.2 and 5.4 and using (5.24), one has, for jjjQjjj small
enough,

f rem ∈ L2 and kf remkL2 ≤ CχjjjQjjj3:ð5:26Þ

The following pointwise bound can also be deduced:

jhD0i−1f remj ≤ j
Z
η

hηi−1df remðηÞeiηxj ≤ khηi−1kL2
η
kf remkL2 ;

which implies

jχ−1ðxÞhD0i−1f remðxÞj ≤ Cχχ
−1ðxÞjjjQjjj3:ð5:27Þ

From (5.25) we have that tremðkÞ is the complex number for which

lim
x→∞

ðχ−1ðxÞhD0i−1f rem − tremðkÞeikxÞ ¼ 0:

We now use the decay properties of the potential V to estimate the magnitude of
tremðkÞ for jjjQjjj small.

Case 1 (V has compact support). Assume suppV ⊂ ½−M;M �, M > 0. Using the
explicit representation of RV 0

, (3.12), for x > M we have
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−RV 0
ðkÞQeV 0þðx; kÞ ¼

1

2ikthom0

Z
x

−∞
QðζÞeV 0þðζ; kÞeV 0−ðζ; kÞeV 0þðx; kÞdζ

þ 1

2ikthom0

Z þ∞

x
QðζÞeV 0þðζ; kÞeV 0þðζ; kÞeV 0−ðx; kÞdζ

¼ 1

2ikthom0

Z þ∞

−∞
QðζÞeV 0þðζ; kÞeV 0−ðζ; kÞeV 0þðx; kÞdζ

¼ t1½Q�
thom0

eV 0þðx; kÞ ¼ t1½Q�eikx:

Similarly, for the quadratic in Q-term, we have

RV 0
ðkÞQRV 0

ðkÞQeV 0þðx; kÞ ¼ t2½Q;Q�eikx:

Therefore,

us ¼ t1½Q�eikx þ t2½Q;Q�eikx þ treme
ikx;

where, for x > M ,

χ−1hD0i−1f remðxÞ ¼ tremðkÞeikx:

Therefore, using the pointwise bound (5.27), we have

jtremðkÞj ≤ Cχχ
−1ðMÞjjjQjjj3 ¼ OðjjjQjjj3Þ:

Case 2 (V is exponentially decreasing). Assume jV 0ðxÞj þ jQðxÞj ≤ Ce−αjxj for
some C , α > 0 and x > M . As in the first case, the formula for the resolvent (3.12)
leads to

−RV 0
ðkÞQeV 0þðx; kÞ ¼ t1½Q�eikx þ t1½Q�

thom0

ðeV 0þðx; kÞ− thom0 eikxÞ

þ 1

2ikthom0

Z þ∞

x
QðζÞeV 0þðζ; kÞðeV 0þðζ; kÞeV 0−ðx; kÞ− eV 0þðx; kÞeV 0−ðζ; kÞÞdζ:

Using (B.4), one can easily bound for x > M���� 1

2ikthom0

Z þ∞

x
QðζÞeV 0þðζ; kÞðeV 0þðζ; kÞeV 0−ðx; kÞ− eV 0þðx; kÞeV 0−ðζ; kÞÞdζ

����
≤ C

Z þ∞

x
Ce−αjζjhζidζ ≤ C  0e−α ∕ 2jxj:

Now we use the estimate (B.3),

jmþðx; kÞ− 1j ≤ 1þmaxð−x; 0Þ
1þ jkj

Z
∞

x
ð1þ jsjÞjV 0ðsÞjds;

so that jeV 0þðx; kÞ− thom0 eikxj ≤ Ce−α ∕ 2x for x > M . Finally one obtains

jRV 0
ðkÞQeV 0þðx; kÞ− t1½Q�eikxj ≤ Ce−α∕ 2x:
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A similar estimate holds for us ¼ eVþðx; kÞ− eV 0þðx; kÞ and for the quadratic term
RV 0

ðkÞQRV 0
ðkÞQeV 0þðx; kÞ. Therefore, for x > M , we have

jχ−1hD0i−1f remðxÞ− tremðkÞeikxj ≤ Ce−α ∕ 2x:

Again the pointwise bound (5.27) implies, for x > M , that

jtremðkÞj ≤ Cχχ
−1ðxÞjjjQjjj3 þ Ce−α∕ 2x:

Finally, choosing x ¼ − 6
α
ln jjjQjjj, one has, for jjjQjjj small enough,

jtremðkÞj ≤ C jjjQjjj3ð1þ hln jjjQjjjiÞ ≤ C jjjQjjj3−:

Case 3 (hxiρþ1V 0ðxÞ ∈ L1ðRÞ and hxiρQðxÞ ∈ L2ðRÞ with ρ > 8). We use again the
formula of the resolvent (3.12):

−RV 0
ðkÞQeV 0þðx; kÞ ¼ t1½Q�eikx þ t1½Q�

thom0

ðeV 0þðx; kÞ− thom0 eikxÞ

þ 1

2ikthom0

Z þ∞

x
QðζÞeV 0þðζ; kÞðeV 0þðζ; kÞeV 0−ðx; kÞ− eV 0þðx; kÞeV 0−ðζ; kÞÞdζ:

Using the estimate (B.3) leads to

jeV 0þðx; kÞ− thom0 ðkÞeikxj ≤ C

Z
∞

x

1

ð1þ jsjÞρ ð1þ jsjÞρþ1jV 0ðsÞjds ≤ C
1

hxiρ kV 0kL1;ρþ1 :

Therefore, one has���� 1

2ikthom0

Z þ∞

x
QðζÞeV 0þðζ; kÞðeV 0þðζ; kÞeV 0−ðx; kÞ− eV 0þðx; kÞeV 0−ðζ; kÞÞdζ

����
≤ C

Z þ∞

x
jQðζÞj 1

hζiρ
� hxi
hζiρ þ hζi

hxiρ
�
dζ ≤

C

hxiρ
���� 1

hζiρ−1

����
L2
ζ

kQðζÞkL2
ζ
;

from which we deduce

jRV 0
ðkÞQeV 0þðx; kÞ− t1½Q�eikxj ≤ C

hxiρ
�
kV 0kL1;ρþ1 þ

���� 1

hζiρ−1

����
L2
ζ

kQkL2

�
:

Similar estimates hold for us ¼ eVþðx; kÞ− eV 0þðx; kÞ and for the quadratic term
RV 0

ðkÞQRV 0
ðkÞQeV 0þðx; kÞ. Therefore, for x > M , one has

jχ−1hD0i−1f remðxÞ− tremðkÞeikxj ≤
C

hxiρ kV 0kL1;ρþ1 :

Since χðxÞ ¼ hxi−α with α > 4, the pointwise bound (5.27) yields

tremðkÞ ≤ CχhxiαjjjQjjj3 þ C
1

hxiρ

so that choosing x ¼ jjjQjjj−3 ∕ ðρþαÞ, which tends to infinity as jjjQjjj tends to 0, one has
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jtremðkÞj ≤ C jjjQjjj 3ρ
ρþα:

It follows that with α > 4 and ρ > 2α, one has

jtremðkÞj ¼ OðjjjQjjjβÞ; 2 < β≡
3ρ

ρþ α
:

This completes the proof. ▯

5.4. Completion of the proof of Theorem 2.1. In this section, we show how to
derive the corrected multiscale/homogenization expansion of section 4 from the rigorous
results of the previous section with a potential V ¼ V 0 þ qϵ satisfying Hypotheses (V)
and using Proposition 5.3. Theorem 2.1 follows then as a direct consequence.

The small ϵ asymptotics of t1�qϵ�. We use the decomposition of qϵ in Fourier
series in y

qϵðxÞ ¼ q

�
x;
x

ϵ

�
¼

X
jjj≥1

qjðxÞe2iπjðx ∕ ϵÞ

that we plug into t1½qϵ�, given in (5.21):

t1½qϵ� ¼
1

2ik

X
jjj≥1

t1½qϵ�j with t1½qϵ�j ¼
Z þ∞

−∞
qjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞe2iπjðζ ∕ ϵÞdζ:

We assume that qj is piecewise C 3 so that there exists −∞ ¼ a0 < a1 <
: : : < aM < aMþ1 ¼ ∞ such that qj ∈ C 3ðal; alþ1Þ. Then one has

tj;l1 ½qϵ� ¼
1

2ik

Z
alþ1

al

qjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞe2iπjðζ ∕ ϵÞdζ

¼ −1

2ik

Z
alþ1

al

∂ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞÞ
ϵ

2iπj
e2iπjðζ ∕ ϵÞdζ þ bj;l1

¼ 1

2ik

Z
alþ1

al

∂2ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞÞ
�

ϵ

2iπj

�
2

e2iπjðζ ∕ ϵÞdζ þ bj;l1 þ bj;l2

with the following boundary terms:

bj;l1 ¼ −ϵ

4kπj
ðqjða−lþ1ÞeV 0þðalþ1; kÞeV 0−ðalþ1; kÞe2iπjðalþ1 ∕ ϵÞ

− qjðaþl ÞeV 0þðal; kÞeV 0−ðal; kÞe2iπjðal ∕ ϵÞÞ;

bj;l2 ¼ −iϵ2

8kπ2j2
ð∂ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞjζ¼a−

lþ1
e2iπjðalþ1 ∕ ϵÞ

− ∂ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞÞjζ¼aþ
l
e2iπjðal ∕ ϵÞÞ:

Now one has
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∂2xðqjðxÞeV 0þðx; kÞeV 0−ðx; kÞÞ ¼
d2qj
dx2

ðxÞeV 0þðx; kÞeV 0−ðx; kÞ

þ 2
dqj
dx

ðxÞ∂xðeV 0þðx; kÞeV 0−ðx; kÞÞ
þ 2qjðxÞ∂xeV 0þðx; kÞ∂xeV 0−ðx; kÞ
þ qjðxÞðð∂2xeV 0þðx; kÞÞeV 0−ðx; kÞ
þ eV 0þðx; kÞ∂2xeV 0−ðx; kÞÞ:

The first three terms are piecewise C1 so that oscillatory integrals predict that

Z
alþ1

al

�
d2qj
dζ2

ðζÞeV 0þðζ; kÞeV 0−ðζ; kÞ þ
dqj
dζ

ðζÞ∂ζðeV 0þðζ; kÞeV 0−ðζ; kÞÞ

þ2qjðζÞ∂ζeV 0þðζ; kÞ∂ζeV 0−ðζ; kÞ
�
e2iπjðζ ∕ ϵÞdζ ¼ OðϵÞ:ð5:28Þ

For the fourth term, we use the fact that eV 0þ and eV 0− satisfy ð− d2

dx2
þ V 0 − k2Þu ¼ 0 so

that one has, with Ωj ¼ fx0; : : : ; xN−1g ∩ ðaj; ajþ1Þ,

tj;l1 ½qϵ� ¼
iϵ2

8kπ2j2

X
xi∈Ωj

2ciqjðxiÞeV 0þðxi; kÞeV 0−ðxi; kÞe
2iπjxi

ϵ þ bj;l1 þ bj;l2 þOðϵ3 ∕ j2Þ

¼ iϵ2

8kπ2j2

X
xi∈Ωj

½∂xðqjðxÞeV 0þðx; kÞeV 0−ðx; kÞÞ�aje
2iπjxi

ϵ þ bj;l1 þOðϵ3 ∕ j2Þ:

Finally we have t1½qϵ� ¼
P

M−1
l¼0

P
jjj≥1 t

j;l
1 ½qϵ� þOðϵ3Þ, and one immediately recovers

terms of the expansion of Theorem 2.1:

XM−1

l¼0

X
jjj≥1

bj;l1 ¼ ϵtϵ1 and

XM−1

l¼0

X
jjj≥1

iϵ2

8kπ2j2

X
xi∈Ωj

½∂xðqjðxÞeV 0þðx; kÞeV 0−ðx; kÞÞ�aje2iπjðxi ∕ ϵÞ ¼ ϵ2tϵ2 þOðϵ3Þ

so that t1½qϵ� ¼ ϵtϵ1ðkÞ þ ϵ2tϵ2ðkÞ þOðϵ3Þ.
The small ϵ asymptotics of t2�qϵ;qϵ�. Let us assume that ζ is fixed outside

suppV sing and outside the discontinuities of qj ∂xqj. (This particular case arises for a
finite number of values of ζ and therefore brings no contribution to the transmission
coefficient, when integrated.) Then integrating by part leads to the following expansion
for ϵ small:

I jl ðζÞ≡−eV 0þðζ; kÞ
Z

ζ

−∞
∂zðqjðzÞeV 0þðz; kÞeV 0−ðz; kÞÞ

ϵ

2iπj
e2iπjðz ∕ ϵÞdz

¼ ϵ2

4π2j2
eV 0þðζ; kÞ

�
−
Z

ζ

−∞
∂2zðqjðzÞeV 0þðz; kÞeV 0−ðz; kÞÞe2iπjðz ∕ ϵÞdz:

þ ½∂zðqjðzÞeV 0þðz; kÞeV 0−ðz; kÞÞe2iπjð:∕ ϵÞ�ζ−∞

�
:
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The first term, treated as previously and using the fact that the functions qj, eV 0þ, and
eV 0− are piecewise C3, brings a contribution of order Oðϵ3Þ.

Now, using the same analysis on I jrðζÞ and theWronskian identity (3.8), one obtains
the following expansion for the −dζ integrand of (5.22):

I jl ðζÞ þ I jrðζÞ ¼ ðeV 0þðζ; kÞ∂ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞÞ
− eV 0−ðζ; kÞ∂ζðqjðζÞeV 0þðζ; kÞeV 0−ðζ; kÞÞÞ þOðϵ3Þ

¼ −2ikthom0 qjðζÞeV 0þðζ; kÞe2iπjðζ ∕ ϵÞ þOðϵ3Þ:
Therefore, one has

t2½qϵ; qϵ� ¼
1

2ik

1

−2ikthom0

X
jjj≥1

ϵ2

4π2j2

Z þ∞

−∞

X
jmj≥1

qmðζÞe2iπmðζ ∕ ϵÞeV 0−ðζ; kÞ

ð−2ikthom0 qjðζÞeV 0þðζ; kÞe2iπjðζ ∕ ϵÞÞdζ þOðϵ3Þ

¼ ϵ2
i

8kπ2

Z þ∞

−∞

X
jjj≥1

q−jðζÞqjðζÞ
j2

eV 0−ðζ; kÞeV 0þðζ; kÞdζ þOðϵ3Þ:ð5:29Þ

One recovers finally t2½qϵ; qϵ� ¼ ϵ2thom2 þOðϵ3Þ.
Estimate of tϵrem: Using Proposition 5.3 with Theorem 5.5 yields the following

proposition.
PROPOSITION 5.6. Let K denote a compact subset of R, satisfying Hypothesis (G).

Introduce for k ∈ K

tϵremðkÞ≡ tϵðkÞ− thom0 ðkÞ− ϵtϵ1ðkÞ− ϵ2ðthom2 ðkÞ þ tϵ2ðkÞÞ:ð5:30Þ
Then we have the following:

1. If V has compact support, then tϵremðkÞ ¼ Oðϵ3Þ.
2. If V is exponentially decreasing, then tϵremðkÞ ¼ Oðϵ3−Þ.
3. If hxiρV 0 ∈ L1, ρ > 9, then there exists 2 < β < 3 such that tϵremðkÞ ¼ OðϵβÞ.
The proof of Theorem 2.1 is now complete.

Appendix A. The numerical computations. In this section we outline the nu-
merical method we used to obtain results displayed in Figures 2.1 and 2.2.

We approach the computation of tðkÞ, the transmission coefficient associated with
the potential V ðxÞ, by numerical approximation of the function

uðx; kÞ≡ 1

tðkÞ eV−ðx; kÞ;

where eV−ðx; kÞ denotes the distorted plane wave generated by an incoming wave from
positive infinity; see (3.7). We rewrite the equation�

−
d2

dx2
þV ðxÞ− k2

�
uðx; kÞ ¼ 0;

equivalently in terms of the variable U ðx; kÞ≡ ðuðx; kÞ; ∂xuðx; kÞÞT as the first order
system

d

dx
U ¼

�
0 1

V ðxÞ− k2 0

�
U:ðA:1Þ
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Note that if V is assumed to have compact support (suppV ⊂ ½−M;M � with M > 0),
then

Uðx; kÞ≡
�

e−ikx

−ike−ikx

�
for x < −M;ðA:2Þ

Uðx; kÞ≡

0
B@

rrðkÞ
tðkÞ e

ikx 1
tðkÞ e

−ikx

ikrrðkÞ
tðkÞ eikx ik

tðkÞ e
−ikx

1
CA for x > M:ðA:3Þ

Starting with the initial data given by (A.2), we numerically solve the system of first
order ODEs defined by (A.1) up to x > M , and (A.3) allows us to recover the desired
value of tðkÞ. At the location of the singularities x ¼ xj, the jump conditions (3.3) allow
us to obtain Uðxþ; kÞ from Uðx−; kÞ via a transfer matrix. Between the singularities,
one approximatively solves (A.1) using, for example, Runge–Kutta formulae. We used
the MATLAB solver ode45; see [14] for more information about the MATLAB
ODE Suite.

We conclude this section by stating the precise functions and parameters used to
obtain the plots displayed in Figures 2.1 and 2.2.

For the case when V 0 has singularities, as in the left and center panels of Figure 2.1,
we set

V 0 ¼ V singðxÞ≡ 40ðδðxÞ þ δðx− 0.5Þ þ δðx− 1ÞÞ:

Otherwise, we set

V 0 ¼ V regðxÞ≡ 40ðδρðxÞ þ δρðx− 0.5Þ þ δρðx− 1ÞÞ

with δρðxÞ≡ 1
ρ

ffiffiffi
π

p e−x2 ∕ ρ2
the smoothed out approximation. One has ρ ¼ 0.1 for the right

panels of Figures 2.1 and 2.2 and, respectively, ρ ¼ 0.01 and ρ ¼ 0.001 for the center
and left panels of Figure 2.2.

We set qϵðxÞ ¼ f ðxÞ sinð2πx ∕ ϵÞ, with f ðxÞ≡ 0 for x ∈ R \ ½−2 ∕ 3; 2 ∕ 3�, and
elsewhere�

f ðxÞ ¼ 40 in the discontinuous case ðleft panel of Figure 2.1Þ or

f ðxÞ ¼ 40e−
x2

ðx−2 ∕ 3Þðxþ2 ∕ 3Þ in the smooth cases ðall other panelsÞ:

Finally we set k ¼ 5.5 since it corresponds to a case where thom0 ðkÞ approaches unity
when V 0 ¼ V sing.

Appendix B. The Jost solutions. In this section, we provide a construction of
the Jost solutions and a rigorous derivation of their properties, including bounds that
are used in the proof of Proposition 5.4, Appendix C. We recall that, by Definition 3.2,
the Jost solutions are the unique solutions f�ðx; kÞ of

ðHW − k2Þu≡
�
−

d2

dx2
þW ðxÞ− k2

�
u ¼ 0ðB:1Þ

such that f�ðx; kÞ ¼ e�ikxm�ðx; kÞ and
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lim
x→�∞

m�ðx; kÞ ¼ 1:

The existence of Jost solutions for regular potentialsW ∈ L1;3 ∕ 2þðRÞ is established in [4].
The generalization to potentials allowing a singular component

W ¼ W reg þW sing with

W reg ∈ L1;3 ∕ 2þðRÞ;

W sing ¼
XN−1

j¼0

cjδðx− xjÞ; where cj; xj ∈ R; xj < xjþ1

can be found in [5].
As an intermediate step of the proof, one introduces an equivalent definition of the

Jost solution as solutions of integral equations. In the case where W is regular, one has

mþðx; kÞ ¼ 1þ
Z

∞

x
Dkðζ − xÞW ðζÞmþðζ; kÞdζ;

m−ðx; kÞ ¼ 1þ
Z

x

−∞
Dkðx− ζÞW ðζÞm−ðζ; kÞdζ; DkðxÞ ¼

Z
x

0
e2ikζdζ:ðB:2Þ

If W has regular and singular components, we work with a variant of (B.2):

mþðx; kÞ ¼ 1þ
Z

∞

x
Dkðζ − xÞW ðζÞmþðζ; kÞdζ þ

X
xj>x

Dkðxj − xÞcjmþðxj; kÞ;

m−ðx; kÞ ¼ 1þ
Z

x

−∞
Dkðx− ζÞW ðζÞm−ðζ; kÞdζ þ

X
xj<x

Dkðxj − xÞcjmþðxj; kÞ:

From these integral equations, one deduces

jmþðx; kÞ− 1j ≤ 1þmaxð−x; 0Þ
1þ jkj

Z
∞

x
ð1þ jsjÞjW ðsÞjds;

jm−ðx; kÞ− 1j ≤ 1þmaxð−x; 0Þ
1þ jkj

Z
−x

−∞
ð1þ jsjÞjW ðsÞjds:ðB:3Þ

Then, since mþ satisfies

∂xmþðx; kÞ ¼
Z

∞

x
e2ikðt−xÞW ðtÞmþðt; kÞ and

∂kmþðx; kÞ ¼
Z

∞

x
Dkðt− xÞW ðtÞ∂kmþðt; kÞ þ

Z
∞

x
∂kDkðt− xÞW ðtÞmþðt; kÞ;

one easily obtains the uniform bounds

jmþðx; kÞj ≤ Chxi; j∂xmþðx; kÞj ≤ C;
j∂kmþðx; kÞj ≤ Chxi2; j∂x∂kmþðx; kÞj ≤ Chxi;ðB:4Þ

where C is independent of k. The same bounds clearly hold for m−ðx; kÞ.
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Appendix C. Proof of Proposition 5.4. This section is dedicated to the proof
of Proposition 5.4, namely,

TRV0
ðkÞ≡ hD0iχRV 0

ðkÞχhD0i is a bounded operator fromL2 toL2:

This result has been proved in [9] for V 0 ≡ 0 and spatial dimensions n ¼ 1, 2, 3. We
generalize this result in the one-dimensional case for V 0 ¼ V reg þ V sing as in (2.1) so
that singularities in the potential are allowed.

Our proof requires the use of the generalized Fourier transform, described in terms
of the distorted plane waves. We introduce

Ψðx; ζÞ ¼ 1ffiffiffiffiffiffi
2π

p
�

eV 0þðx; ζÞ ζ ≥ 0;
eV 0−ðx;−ζÞ ζ < 0;

≡
1ffiffiffiffiffiffi
2π

p
�

tðζÞmþðx; ζÞeixζ ζ ≥ 0;
tð−ζÞm−ðx;−ζÞeixζ ζ < 0

with mþðx; ζÞ → 0 as x → ∞ and m−ðx; ζÞ → 0 as x → −∞.
Then F and F �, the distorted Fourier transform and its adjoint, are defined by

F∶
L2 → L2

ϕ ↦ F ½ϕ�ðξÞ≡ Rþ∞
−∞ ϕðxÞΨðx; ξÞdx;

F �∶
L2 → L2

Φ ↦
Rþ∞
−∞ ΦðξÞΨðx; ξÞdξ:

One has the property

Pcϕ ¼ F �Fϕ;

where Pc denotes the spectral projection onto the continuous spectral subspace asso-
ciated with the operator

H ≡−∂2x þ V 0:ðC:1Þ
To construct a smoothing operator which commutes with functions of H , it is

convenient to introduce, using the distorted plane wave spectral representation
of H ,

hDV 0
if ¼ ðI − Δþ V 0Þ1 ∕ 2f ¼

Z
R
hηiF ½f �ðηÞΨðx;ηÞdη.ðC:2Þ

Therefore, one has

TRV0
¼ hD0ihDV 0

i−1hDV 0
iχRV 0

ðkÞχhDV 0
ihDV 0

i−1hD0iðC:3Þ

≡ hD0ihDV 0
i−1 ∘ ~TRV0

∘ hDV 0
i−1hD0i:ðC:4Þ

There are thus three terms to estimate. In order to deal with hD0ihDV 0
i−1 and

hDV 0
i−1hD0i, we introduce the classical wave operator W and its adjoint W � defined

by

W ≡ s− lim
t→∞

eitHe−itH 0 ;ðC:5Þ

W � ≡ s− lim
t→∞

eitH 0e−itHPcðC:6Þ
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with H ≡−∂2x þ V 0 and H 0 ≡−∂2x. The wave operators have the property to intertwine
between the continuous part of H and H 0 so that, for any Borel function f ,

f ðHÞPc ¼ Wf ðH 0ÞW �:

Especially one has hDV 0
i ¼ W hD0iW � so that

hD0ihDV 0
i−1 ¼ hD0iW hD0i−1W �:ðC:7Þ

Let us state the following result that has been introduced in [18] and extended in [5]
to potentials V 0 ¼ V reg þ V sing as in (2.1), thus allowing Dirac delta functions.

LEMMA C.1. W and W � have extensions to bounded operators on Hk for
k ¼ −1; 0; 1.

Using this last result and the known fact that hD0is is bounded from Hk to Hk−s, we
obtain directly from (C.7) that

hD0ihDV 0
i−1 is bounded fromL2toL2:

Similarly,

hDV 0
i−1hD0i is bounded fromL2 toL2:

In order to deal with the last term of (C.4), we decompose ~TRV0
as a sum of four

operators, commuting hD0i.
~TRV0

≡hDV 0
iχRV 0

ðkÞχhDV 0
i

¼ðχhDV 0
i þ ½hDV 0

i;χ�ÞRV 0
ðkÞðhDV 0

iχþ ½χ; hDV 0
i�Þ

¼χhDV 0
iRV 0

ðkÞhDV 0
iχþ ð½hDV 0

i;χ�ÞðRV 0
ðkÞhDV 0

iχÞ
þ ðχhDV 0

iRV 0
ðkÞÞð½χ; hDV 0

i�Þ þ ð½hDV 0
i;χ�ÞðRV 0

ðkÞÞð½χ; hDV 0
i�Þ

¼AI þ A
ðaÞ
II þ A

ðbÞ
II þ AIII:

Each of these terms is proved to be bounded from L2 to L2. We treat each term sepa-
rately in Propositions C.2, C.4, C.5, and C.6.

PROPOSITION C.2. AI ≡ χhDV 0
iRV 0

ðkÞhDV 0
iχ is bounded L2 → L2, i.e.,

kχhDV 0
iRV 0

ðkÞhDV 0
iχgk

L2 ≤ CkgkL2 ; g ∈ L2ðRÞ.ðC:8Þ

First we commute hDV 0
i and RV 0

. It is obvious that R0 and hD0i commute so that, using
the wave operators introduced above (so that hDV 0

i ¼ W hD0iW � and RV 0
ðkÞ ¼

WR0ðkÞW � with W unitary),

AI ¼ χhDV 0
iRV 0

ðkÞhDV 0
iχ

¼ χW hD0iW �WR0ðkÞW �W hD0iW �χ

¼ χWR0ðkÞhD0i2W �χ

¼ χRV 0
ðkÞhDV 0

i2χ:

Then, applying the identity hDV 0
i2 ¼ I − ΔþV 0, one obtains
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AI ¼ ð1þ k2ÞχRV 0
ðkÞχþ χ2:

Finally, using (3.11) together with (B.4), one has the pointwise bound

jRV 0
ðx; y; kÞj ≤ Chxihyi

with C uniform in k. It follows that, for f ∈ L2,

jχRV 0
ðkÞχf j

L2 ¼
����χðxÞ

Z
ζ
RV 0

ðx; ζ; kÞχðζÞf ðζÞdζ
����
L2
x

≤ C jχðxÞhxij2
L2
x
jf jL2

so that AI is bounded from L2 to L2 with

kAIkL2→L2 ≤ CðjχðxÞhxij2
L2
x
þ jχjL∞Þ:ðC:9Þ

Before carrying on with estimating the term A
ðaÞ
I I , let us state the following lemma.

LEMMA C.3. Let K be defined for ðξ;ηÞ ∈ R× R by

Kðξ;ηÞ≡ ðhξi− hηiÞ
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ.ðC:10Þ

Then Kðξ;ηÞ satisfies the following upper bounds:

jKðξ;ηÞj ≤ Cχ

1þ jξ− ηj ;ðC:11Þ

j∂ηKðξ;ηÞj þ j∂ξKðξ;ηÞj ≤ C  0
χ

1þ jξ− ηjðC:12Þ

with the Cχ and C  0
χ constants depending on the function χ with

Cχ ≡ C

�X2
j¼0

khζij∂jζχkL1
ζ

þ khζi2χkL1
ζ
þ khζi2χkL∞

ζ

�
;

C  0
χ ≡ C

�X2
j¼0

khζijþ1∂jζχkL1
ζ

þ khζi3χkL1
ζ
þ khζi3χkL∞

ζ

�
.

Proof. We consider the case where ξ ≥ 0 and η ≥ 0. The other cases follow simi-
larly. Therefore, one has

ðξ;ηÞ ¼ ðhξi− hηiÞI ðξ;ηÞ with

I ðξ;ηÞ≡
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ ¼

Z
ζ
eiζðη−ξÞtðξÞmþðζ; ξÞtðηÞmþðζ;ηÞχðζÞdζ:

ðC:13Þ

Throughout the proof, we will use extensively the uniform bounds on mþ given
in (B.4).
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First, by the uniform boundedness of tðξÞ and hζi−1mþðζ; ξÞ in ζ and ξ, one has

jI ðξ;ηÞj ≤ jtðξÞjjtðηÞj
Z
ζ
jhζi−1mþðζ;ηÞhζi−1mþðζ; ξÞjhζi2jχðζÞjdζ ≤ Ckhζi2χkL1

ζ
:

ðC:14Þ

For jη− ξj ≥ 1 we write

I ðξ;ηÞ≡ 1

ðiðη− ξÞÞ2 tðξÞtðηÞ
Z
ζ

�
d2

dζ2
eiζðη−ξÞ

�
mþðζ;ηÞmþðζ; ξÞχðζÞdζðC:15Þ

¼ 1

ðiðη− ξÞÞ2 tðξÞtðηÞ
Z
ζ
eiζðη−ξÞ d2

dζ2
ðmþðζ;ηÞmþðζ; ξÞχðζÞÞdζ:ðC:16Þ

The most singular terms in the integrand of (C.16) are those containing ∂2ζmþ. In par-
ticular, recall the relation ∂2xmþ ¼ −2ik∂xmþ þ V 0mþ, where V 0 contains Dirac mass
singularities. Thus, for jξ− ηj ≥ 1, we have

jI ðξ;ηÞj ≤ C

�X2
j¼0

khζij∂jζχkL1
ζ

þ khζiχkL1
ζ
þ khζi2χkL∞

�
·

1

jξ− ηj2 .ðC:17Þ

Applying (C.14) for jη− ξj ≤ 1 and (C.17) for jη− ξj ≥ 1 yields

jI ðξ;ηÞj ≤ Cχ

1

1þ jξ− ηj2 :

Finally, since jKðξ;ηÞj ¼ jI ðξ;ηÞjjhξi− hηij ≤ C jI ðξ;ηÞjjξ− ηj, multiplication by
jξ− ηj implies (C.11).

Using the same method as used previously, one obtains similarly

j∂ηI ðξ;ηÞj ≤ C  0
χ

1

1þ jξ− ηj2 :

Finally one has j∂ηKðξ;ηÞj ≤ j∂ηI ðξ;ηÞjjhξi− hηij þ jI ðξ;ηÞj so that we deduce the first
part of (C.12). By symmetry, one obtains the same estimate for ∂ξKðξ;ηÞ, which con-
cludes the proof of Lemma C.3. ▯

PROPOSITION C.4. A
ðaÞ
I I ≡ ½hDV 0

i;χ�RV 0
hDV 0

iχ is bounded L2 → L2, i.e.,

k½hDV 0
i;χ�RV 0

hDV 0
iχgk

L2 ≤ CkgkL2 ; g ∈ L2ðRÞ:ðC:18Þ

Proof. Our strategy is as follows. We view the operatorAðaÞ
I I as a composition of two

operators

A
ðaÞ
I I ¼ ½hDV 0

i;χ� ∘ RV 0
hDV 0

iχ
and first find a representation of each operator with respect to the distorted Fourier
basis. We then directly prove the boundedness of AðaÞ

I I ∶ L2 ↦ L2 using this spectral
representation and an appropriate frequency localization argument.
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In terms of the distorted Fourier transform, one has

½hDV 0
i;χ�f ðxÞ ¼ ½hDV 0

i;χ�
�Z

η

Ψðx;ηÞF ½f �ðηÞdη
�

¼
Z
η

F ½f �ðηÞðhDV 0
iðχðxÞΨðx;ηÞÞ− χhDV 0

iΨðx;ηÞdη.ðC:19Þ

Now, since hDV 0
iΨðx;ηÞ ¼ hηiΨðx;ηÞ, one has

hDV 0
iðχðxÞΨðx;ηÞÞ ¼

Z
ξ

Ψðx; ξÞ
Z
ζ
hDV 0

iðχΨð·;ηÞÞðζÞΨðζ; ξÞdζdξ

¼
Z
ξ

Ψðx; ξÞ
Z
ζ
χðζÞΨðζ;ηÞhDV 0

iΨð·; ξÞðζÞdζdξ

¼
Z
ξ

Ψðx; ξÞ
Z
ζ
χðζÞΨðζ;ηÞhξiΨðζ; ξÞdζdξ:

Therefore, we finally deduce

½hDV 0
i;χ�fðxÞ ¼

Z
η

F ½f �ðηÞ
�Z

ξ

Ψðx; ξÞ
Z
ζ
Ψðζ;ηÞΨðζ; ξÞχðζÞðhξi− hηiÞdζdξ

�
dη

¼
Z
ξ

Ψðx; ξÞ
Z
η

ðhξi− hηiÞ
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞF ½f �ðηÞdηdξ:ðC:20Þ

To represent the operator RV 0
hDV 0

iχ in terms of the distorted Fourier basis, we
note the following:

F ½RV 0
hDV 0

iχg�ðηÞ ¼
Z
η

Ψðz;ηÞðRV 0
hDV 0

iχgÞðzÞdz

¼
Z
z
ðRV 0

hDV 0
iΨðz;ηÞÞχðzÞgðzdz

¼
Z
z

hηi
η2 − k2

Ψðz;ηÞχðzÞgðzÞdz

¼ hηi
η2 − k2

F ½χg�ðηÞ:ðC:21Þ

Combining (C.20) and (C.21), one has

½hDV 0
i;χ�RV 0

hDV 0
iχgðxÞ ¼

Z
ξ

Ψðx; ξÞ
Z
η

ðhξi− hηiÞ
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ

hηi
η2 − k2

F ½χg�ðηÞdηdξ

¼
Z
ξ

Ψðx; ξÞTII ½g�ðξÞdξ:ðC:22Þ

By the Plancherel theorem, the L2 estimate of AðaÞ
I I is equivalent to the bound

kTII ½g�kL2 ¼
����
Z
n

Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ ðhξi− hηiÞhηi

η2 − k2
F ½χg�dη

����
L2
ξ

≤ CkgkL2 .

ðC:23Þ
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We now proceed with a proof of (C.23). First we define φjκj<δ0
to be the positive

smooth function satisfying

φjκj<δ0
equal to one for jκj ≤ δ0 ∕ 2; zero for jκj > δ0; and symmetric about κ ¼ 0:

ðC:24Þ

We use φ to localize at frequencies near η ¼ �k and frequencies away from η ¼ �k,

TII ½g�≡ TII
near½g� þ TII

far½g�;ðC:25Þ

where

TII
far½g�ðξÞ≡

Z
η

Kðξ;ηÞ hηi
η2 − k2

½1− φjjηj−jkjj<δ0
ðηÞ�F ½χg�ðηÞdη;ðC:26Þ

TII
near½g�ðξÞ≡

Z
η

Kðξ;ηÞ hηi
η2 − k2

φjjηj−jkjj<δ0
ðηÞF ½χg�ðηÞdηðC:27Þ

with K defined as in (C.10) by

Kðξ;ηÞ≡ ðhξi− hηiÞ
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ:

Bound on TII
far�g��ξ�. We bound the expression

TII
far½g�ðξÞ≡

Z
η

Kðξ;ηÞ hηi
η2 − k2

½1− φjjηj−jkjj<δ0
ðηÞ�F ½χg�ðηÞdη:ðC:28Þ

By Lemma C.3, Kðξ;ηÞ satisfies the following pointwise bound, which is valid for all
ξ, η ∈ R:

jKðξ;ηÞj ≤ Cχ

1

1þ jξ− ηj :

Recall now the special case of Young’s inequality:

kh⋆gk2 ≤ khk2kgk1:

This, together with the pointwise bound of Kðξ;ηÞ, yields

kTII
far½g�k2 ¼

����
Z

Kðξ;ηÞ hηi
η2 − k2

½1− φjjηj−jkjj<δ0
ðηÞ�jF ½χg�ðηÞjdη

����
L2
ξ

≤ Cχ

���� 1

hηi
����
L2
η

���� hηi
η2 − k2

½1− φjjηj−jkjj<δ0
ðηÞ�F ½χg�ðηÞ

����
L1
η

≤ Cχ

���� 1

hηi
����2
L2
η

kF ½χg�kL2
η
≤ CχkχgkL2

η

≤ CχkχkL∞kgkL2 :
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Bound on TII
near�g��ξ�.

TII ;ε
near½g�ðξÞ≡

Z
η

Kðξ;ηÞ hηi
η2 − k2

φε≤jjηj−jkjj<δ0
ðηÞF ½χg�ðηÞdη

¼ 1

2k

Z
η

Kðξ;ηÞhηiφε≤jjηj−jkjj<δ0
ðηÞ

�
F ½χg�ðηÞ
η− k

−
F ½χg�ðηÞ
ηþ k

�
dη

≡
Z

Λεðξ;ηÞF ½χg�ðηÞ
η− k

dηþ
Z

Λεðξ;ηÞF ½χg�ðηÞ
ηþ k

dη;

where

Λεðξ;ηÞ≡ 1

2k
hηiφε≤jjηj−jkjj<δ0

ðηÞKðξ;ηÞðC:29Þ

and Kðξ;ηÞ is displayed in (C.10). Note that by Lemma C.3,

jΛεðξ;ηÞj ≤ Cχ

1

1þ jξ− ηjφε≤jjηj−jkjj<δ0
ðηÞ:ðC:30Þ

We bound the first term in the above expansion of TII ;ε
near. The second term is treated

similarly. We have

Z
Λεðξ;ηÞF ½χg�ðηÞ

η− k
dη ¼ SεðξÞ þ EεðξÞ þRεðξÞ; where

SεðξÞ≡ Λεðξ; kÞ
Z

F ½χg�ðηÞ
η− k

1ε≤jη−kj≤δ0 ∕ 4dη;

EεðξÞ≡
Z

ðΛεðξ;ηÞ− Λεðξ; kÞÞF ½χg�ðηÞ
η− k

1ε≤jη−kj≤δ0 ∕ 4dη;

RεðξÞ≡
Z

Λεðξ;ηÞF ½χg�ðηÞ
η− k

1jη−kj≥δ0 ∕ 4dη:

One bounds Rε using (C.30) by

kRεkL2 ≤
4Cχ

δ0

���� 1

1þ jηj
����
L2
η

kφε≤jjηj−jkjj<δ0ðηÞF ½χg�ðηÞk
L1

≤
4Cχ

δ0

kφε≤jjηj−jkjj<δ0
k
L2
η
kχkL∞kgkL2 :ðC:31Þ

Moreover, we have

����Λεðξ;ηÞ− Λεðξ; kÞ
η− k

���� ≤ j∂ηΛεðξ;ηÞj
η¼ ~η∈fε≤jη−kj≤δ0 ∕ 4gj

≤ 1jη−kj≤δ0
ðj∂ηKðξ;ηÞjhηi þ jKðξ;ηÞjÞ:ðC:32Þ

From the estimates of Lemma C.3 and using Young’s inequality, one deduces

kEεkL2 ≤ C  0
χkχkL∞kgkL2 :ðC:33Þ
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We treat the singular integral Sε as follows. By antisymmetry of the function
ðη− kÞ−11ε≤jη−kj≤δ0 ∕ 4ðηÞ, we haveZ

1ε≤jη−kj≤δ0 ∕ 4
1

η− k
F ½χg�ðηÞdη ¼

Z
1ε≤jη−kj≤δ0 ∕ 4

F ½χg�ðηÞ− F ½χg�ðkÞ
η− k

dη:

Moreover, we have����F ½χg�ðηÞ− F ½χg�ðkÞ
η− k

���� ≤ j∂ηF ½χg�ðηÞj
η¼ ~η∈fε≤jη−kj≤δ0 ∕ 4gj:ðC:34Þ

By the uniform boundedness of hζi−2∂ηmþðζ;ηÞ and hζi−2∂ηm−ðζ;ηÞ in R× R, we have
that

j∂ηðF ½χg�ðηÞÞj ¼
����
Z
ζ
∂ηΨðζ;ηÞχðζÞgðζÞdζ

����
≤ sup

ðζ;ηÞ∈R×R
jhζi−2∂ηΨðζ;ηÞjkhζi2χkL2

ζ
kgkL2 ≤ Ckhζi2χkL2

ζ
kgkL2 :

Therefore, ����
Z

1ε≤jη−kj≤δ0 ∕ 4ðηÞ
1

η− k
F ½χg�ðηÞdη

���� ≤ Ckhζi2χkL2
ζ
kgkL2 ;

from which it follows that

jSεðξÞj ≤ Ckhζi2χkL2
ζ
kgkL2 jΛεðξ; kÞj ≤ Cχ

1

1þ jξ− kj kgkL2 :ðC:35Þ

Thus we have, from (C.31), (C.33), and (C.35),

kTII
near½g�k2 ≤ C  0

χkgk2:

Using the estimates of TII
far½g� and TII

near½g� yields (C.23). Therefore, AðaÞ
I I is bounded

from L2 to L2. This completes the proof of Proposition C.4. ▯
PROPOSITION C.5. A

ðbÞ
I I ≡ χhDV 0

iRV 0
ðkÞÞð½χ; hDV 0

i�Þ is bounded from L2 to L2.This
follows from Proposition C.4 and duality.

Finally we consider the operator AIII ≡ ½hDV 0
i;χ� ∘ RV 0

ðkÞ ∘ ½χ; hDV 0
i�.

PROPOSITION C.6. The operator AIII is bounded from L2 to L2.
Proof. By (C.19), one has

AIII ½g�ðxÞ ¼
Z
ξ

Ψðx; ξÞ
Z
η

ðhξi− hηiÞ
Z
ζ
Ψðζ; ξÞΨðζ;ηÞχðζÞdζ

1

η2 − k2
F ½½hDV 0

i;χ�g�ðηÞdηdξ

¼
Z
ξ

Ψðx; ξÞ
Z
η

Kðξ;ηÞ 1

η2 − k2
F ½½hDV 0

i;χ�g�ðηÞdηdξ

¼
Z
ξ

Ψðx; ξÞ
Z
η

Kðξ;ηÞ 1

η2 − k2

Z
θ
Kðη; θÞF ½g�ðθÞdθdηdξ.ðC:36Þ
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By the Plancherel theorem, the L2 estimate of AIII is equivalent to the bound

kT III½g�kL2 ¼
����
Z
η

Kðξ;ηÞ 1

η2 − k2

Z
θ
Kðη; θÞF ½g�ðθÞdθdη

����
L2
ξ

≤ CkgkL2 :ðC:37Þ

We now proceed with a proof of (C.37). We use φjκj<δ0
, defined as in (C.24), to

localize at frequencies near η ¼ �k and frequencies away from η ¼ �k,

T III½g�≡ T III
near½g� þ T III

far½g�;ðC:38Þ

where

T III
far½g�ðξÞ≡

Z
η

Kðξ;ηÞð1− φjjηj−jkjj<δ0
ðηÞÞ 1

η2 − k2

Z
θ
Kðη; θÞF ½g�ðθÞdθdη;ðC:39Þ

T III
near½g�ðξÞ≡

Z
η

Kðξ;ηÞφjjηj−jkjj<δ0
ðηÞ 1

η2 − k2

Z
θ
Kðη; θÞF ½g�ðθÞdθdη.ðC:40Þ

Bound on TIII
far �g��ξ�. We recall Lemma C.3, stating that Kðξ;ηÞ satisfies the fol-

lowing upper bound:

jKðξ;ηÞj ≤ Cχ

1

1þ jξ− ηj

withCχ ≡ CðP2
j¼0 khζij∂jζχkL1

ζ

þ khζi2χkL1
ζ
þ khζi2χkL∞Þ. Therefore, one has the point-

wise estimate����
Z
θ
Kðη; θÞF ½g�ðθÞdθ

���� ≤
���� 1

1þ jη− θj
����
L2
θ

kF ½g�kL2 ≤
���� 1

1þ j · j
����
L2
θ

kgkL2 :

Moreover, for jjηj− jkjj > δ0, one has ð1− φjjηj−jkjj<δ0
ðηÞÞjη2 − k2j−1 ∈ L1. Therefore, by

Young’s inequality,

kT III
far½g�kL2 ≤ C

���� 1

1þ j · j
����2
L2

����ð1− φjjηj−jkjj<δ0
ðηÞÞ 1

jη2 − k2j
����
L1

kgkL2 ≤ CχkgkL2 :

Bound on TIII
near�g��ξ�.

T III;ε
near½g�ðξÞ≡

Z
η

Kðξ;ηÞφjjηj−jkjj<δ0
ðηÞ 1

η2 − k2

Z
θ
Kðη; θÞF ½g�ðθÞdθdη

≡
Z

Λεðξ;ηÞ 1

η− k

Z
θ
Kðη; θÞF ½g�ðθÞdθdη

þ Λεðξ;ηÞ 1

ηþ k

Z
θ
Kðη; θÞF ½g�ðθÞdθdη

with Λεðξ;ηÞ≡ 1
2k Kðξ;ηÞφε≤jjηj−jkjj<δ0

ðηÞ.
Note that by Lemma C.3,

jΛεðξ;ηÞj ≤ Cχ

1

1þ jξ− ηjφε≤jjηj−jkjj<δ0
ðηÞ:ðC:41Þ
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We bound the first term in the above expansion of T III;ε
near. The second term is treated

similarly. We haveZ
Λεðξ;ηÞF ½χg�ðηÞ

η− k
dη ¼ SεðξÞ þ EεðξÞ þRεðξÞ; where

SεðξÞ≡Λεðξ; kÞ
Z

1

η− k

Z
θ
Kðη; θÞF ½g�ðθÞdθ1ε≤jη−kj≤δ0 ∕ 4dη;

EεðξÞ≡
Z

Λεðξ;ηÞ− Λεðξ; kÞ
η− k

Z
θ
Kðη; θÞF ½g�ðθÞdθ1ε≤jη−kj≤δ0 ∕ 4dη;

RεðξÞ≡
Z

Λεðξ;ηÞ 1

η− k

Z
θ
Kðη; θÞF ½g�ðθÞdθ1jη−kj≥δ0 ∕ 4dη:

As in the proof of Proposition C.4, the kernel of the integral operators defining Eε

and Rε are nonsingular, and we have uniformly in ϵ,

kEεkL2 þ kRεkL2 ≤ C  0
χkgkL2 :

We treat the singular integral Sε as follows. By antisymmetry of the function
ðη− kÞ−11ε≤jη−kj≤δ0 ∕ 4ðηÞ, we have

SðξÞ ¼ Λðξ; kÞ
Z

1ε≤jη−kj≤δ0 ∕ 4ðηÞ
Z
θ

Kðη; θÞ
η− k

F ½g�ðθÞdθdη

¼
Z

1ε≤jη−kj≤δ0 ∕ 4ðηÞ
Z
θ

Kðη; θÞ−Kðk; θÞ
η− k

F ½g�ðθÞdθdη:

Moreover, Lemma C.3 leads to����Kðη; θÞ−Kðk; θÞ
η− k

���� ≤ j∂ηKðη; θÞj
η¼ ~η∈fε≤jη−kj≤δ0 ∕ 4gj ≤ C  0

χ

1

1þ jη− θj :ðC:42Þ

Therefore, by Cauchy–Schwarz inequality,����
Z
θ

Kðη; θÞ−Kðk; θÞ
η− k

F ½g�ðθÞdθ
���� ≤ C  0

χkgkL2 ;

from which it follows that

jSεðξÞj ≤ jΛεðξ; kÞjk1ε≤jη−kj≤δ0 ∕ 4kL1
η
kgkL2 ≤ C  0

χ

1

1þ jξ− kj kgkL2 :ðC:43Þ

Thus we have kT III
near½g�k2 ≤ C  0

χkgk2: Using the estimates of T III
far½g� and T III

near½g�
yields (C.37). Therefore, AIII is bounded from L2 to L2. This completes the proof of Pro-
position C.6 and hence the proof of Proposition 5.4. ▯

Acknowledgments. The authors wish to thank R.V. Kohn and J. Marzuola for
fruitful discussions. M.I.W. would also like to acknowledge the hospitality of the
Courant Institute of Mathematical Sciences, where he was on sabbatical during the pre-
paration of this article. V.D. would like to thank the Department of Applied Physics and
Applied Mathematics (APAM) at Columbia University for its hospitality during the
spring of 2008 when this work was initiated.

1062 VINCENT DUCHÊNE AND MICHAEL I. WEINSTEIN

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



REFERENCES

[1] G. ALLAIRE, Periodic homogenization and effective mass theorems for the Schrödinger equation, in Quan-
tum Transport, Lecture Notes in Math. 1946, Springer, Berlin, 2008, pp. 1–44.

[2] G. ALLAIRE AND M. AMAR, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc.
Var., 4 (1999), pp. 209–243.

[3] A. BENSOUSSAN, J.-L. LIONS, AND G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structures, Stud.
Math. Appl. 5, North-Holland, Amsterdam, 1978.

[4] P. DEIFT AND E. TRUBOWITZ, Inverse scattering on the line, Comm. Pure Appl. Math., 32 (1979),
pp. 121-251.

[5] V. DUCHÊNE, J. L. MARZUOLA, AND M. I. WEINSTEIN,Wave operator bounds for 1-dimensional Schrödinger
operators with singular potentials and applications, J. Math. Phys., 52 (2011), pp. 013505:1–
013505:17.

[6] D. GÉRARD-VARET AND N. MASMOUDI, Homogenization in polygonal domains, J. Eur. Math. Soc. (JEMS),
to appear.

[7] D. GÉRARD-VARET AND N. MASMOUDI, Homogenization and Boundary Layer, preprint, Courant Institute
of Mathematical Sciences, New York, 2010. Available online at http://www.math.nyu.edu/faculty/
masmoudi/homog_Varet3.pdf.

[8] S. E. GOLOWICH AND M. I. WEINSTEIN, Homogenization expansion for resonances of microstructured
photonic waveguides, J. Opt. Soc. Amer. B Opt. Phys., 20 (2003), pp. 633–647.

[9] S. E. GOLOWICH AND M. I. WEINSTEIN, Scattering resonances of microstructures and homogenization the-
ory, Multiscale Model. Simul., 3 (2005), pp. 477–521.

[10] V. V. JIKOV, S. M. KOZLOV, AND O. A. OLEINIK, Homogenization of Differential Operators and Integral
Functionals, Springer, New York, 1994.

[11] S. MOSKOW AND M. VOGELIUS, First-order corrections to the homogenised eigenvalues of a periodic com-
posite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), pp. 1263–1299.

[12] R. G. NEWTON, Low-energy scattering for medium range potentials, J. Math. Phys., 27 (1986),
pp. 2720–2730.

[13] F. SANTOSA AND M. VOGELIUS, First-order corrections to the homogenized eigenvalues of a periodic com-
posite medium, SIAM J. Appl. Math., 53 (1993), pp. 1636–1668.

[14] L. F. SHAMPINE AND M. W. REICHELT, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1997),
pp. 1–22.

[15] H.-P. SHEN, Two PDE Problems from Electromagnetics, Ph.D. thesis, New York University, New York,
NY, 2007.

[16] S. H. TANG AND M. ZWORSKI, Potential Scattering on the Real Line, Lecture notes. Available online at
http://math.berkeley.edu/~zworski/tz1.pdf.

[17] L. TARTAR, The General Theory of Homogenization, Lect. Notes Mat. Unione Ital. 7, Springer, Berlin,
2009.

[18] R. WEDER, The Wk;p-continuity of the Schrödinger wave operators on the line, Commun. Math. Phys.,
208 (1999), pp. 507–520.

SCATTERING, HOMOGENIZATION, AND INTERFACE EFFECTS 1063

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf
http://math.berkeley.edu/~zworski/tz1.pdf
http://math.berkeley.edu/~zworski/tz1.pdf
http://math.berkeley.edu/~zworski/tz1.pdf
http://math.berkeley.edu/~zworski/tz1.pdf

