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SCATTERING, HOMOGENIZATION, AND INTERFACE EFFECTS
FOR OSCILLATORY POTENTIALS WITH STRONG SINGULARITIES®

VINCENT DUCHENE' axp MICHAEL 1. WEINSTEIN?

Abstract. We study one-dimensional scattering for a decaying potential with rapid periodic oscillations
and strong localized singularities. In particular, we consider the Schrédinger equation H ¢ = (—0d2 + V(z)+
q(z,z/€))y = K>y for k € R and € < 1. Here ¢(-, y + 1) = ¢(-, y) has mean zero and | V(z) + ¢(z,-)| — 0 as
|z| — co. The distorted plane waves of H, are solutions of the form ey (z; k) = e*™* + w3 (2; k), u}. outgoing
as |z| — oco. We derive their € small asymptotic behavior, from which the asymptotic behavior of scattering
quantities such as the transmission coefficient, (), follow. Let ¢2°™ (k) denote the homogenized transmission
coefficient associated with the average potential V. If the potential is smooth, then classical homogenization
theory gives asymptotic expansions of, for example, distorted plane waves and transmission and reflection coef-
ficients. Singularities of V, or discontinuities of ¢, are “interfaces” across which a solution must satisty interface
conditions (continuity or jump conditions). To satisfy these conditions it is necessary to introduce interface
correctors, which are highly oscillatory in €. Our theory admits potentials which have discontinuities in the
microstructure, g.(z), as well as strong singularities in the background potential, Vj(z). A consequence of
our main results is that (k) — t1°™(k), the error in the homogenized transmission coefficient, is (i) O(e?) if
¢c is continuous and (i) O(e) if ¢, has discontinuities. Moreover, in the discontinuous case, the correctors
are highly oscillatory in ¢, i.e., ~exp(2mi2) for € < 1. Thus a first order corrector is not well defined since
€1 (t¢(k) — th°™(k)) does not have a limit as € — 0. This expression may have limits which depend on the par-
ticular sequence through which e tends to zero. The analysis is based on a (preconditioned) Lippman-Schwinger
equation, introduced by S.E. Golowich and M.I. Weinstein [Multiscale Model. Simul., 3 (2005), pp. 477-521].
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1. Introduction. An important method for computing the effective properties of
highly oscillatory media is the method of homogenization. The goal of homogenization is
to approximate a highly oscillatory medium, described by a differential equation with
oscillatory coefficients, by an approximate and homogeneous medium, described by a
“homogenized” differential equation with constant or slowly varying coefficients. In its
regime of validity, the homogenized differential equation (i) predicts effective properties
which are approximately those of the heterogeneous medium and (ii) is, by comparison
with the full problem, much simpler to study either analytically or by numerical
simulation.

While the homogenized limit can often be obtained by a formal multiple scale ex-
pansion or by variational methods (see [3], [10], [1], and [17]), these expansions are ty-
pically valid in the bulk medium, away from boundaries, discontinuities, or more singular
sets of coefficients. Indeed, solutions to elliptic operators with oscillatory coefficients on
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1018 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

bounded domains have been shown to require boundary layer correctors, which are sen-
sitive to the manner in which the microstructure meets a boundary (see [13], [11], [2], [6],
and [7]) or interface [15]. Furthermore, the importance of correctors to homogenization
due to interface effects, boundary layers, etc. is explored analytically and computation-
ally in the context of accurate estimation of scattering resonances in [8] and [9].

In this article we study the scattering problem for the one-dimensional time-
independent Schréodinger equation

2

(1.1) (H, — )y = (—% + Vé(z) — k2>1ﬂ(x) =0.

The potential, V¢(z) = Vy(z) + ¢(z,z/€), is the sum of a slowly varying part with
smooth and singular components, V= Ve, + Vg, and a rapidly oscillatory part,
q.(z) = q(z,x /€), e < 1. V¢(x) is assumed to decay to zero as z tends to infinity.
We also assume V¢(z) > 0, a simple way to restrict to the case where H, has no discrete
eigenvalues (bound states) and has only continuous spectrum (extended/radiation
states). The wave number, £, is fixed, and we study the e— small behavior.

Many physically important scattering properties are not captured by leading order
homogenization. Line widths and imaginary parts of scattering resonances are key to
quantifying the lifetimes of metastable states in quantum systems or, in electromag-
netics, the leakage rates of energy from photonic structures; see [8], [9], and the refer-
ences therein. In [8] and [9] it was shown that inclusion of even the first nontrivial
correction due to microstructure can yield large improvements in the approximation
of such scattering quantities. Since, as we shall see, defects and singularities can be re-
sponsible for the dominant correctors and these contributions are not captured in a
smooth homogenization setting, we therefore seek a better understanding of homogeni-
zation for wave/scattering problems in their presence. In this article we ask the
following:

How are scattering properties, such as transmission and reflection coefficients, t.(k)
and r.(k), influenced by interfaces, defects, and singularities?

The heart of the matter is an asymptotic study of the distorted plane waves, solu-
tions of (H, — k?)y = 0 of the form

eyer (23 k) = €% + ui (2;k),  uf outgoing as|z| — oo  for esmall.

Consequences of our analysis include the following:

1. Theorem 5.1 provides a convergent expansion of the distorted plane waves of
Hy= —02 + V, + @, which is valid for a large class of perturbing potentials, Q,
which may be pointwise large but highly oscillatory (supported at high frequen-
cies although not necessarily periodic). Theorem 5.5 is the corresponding expan-
sion for the transmission coefficient t[k; Q]. By Proposition 5.3 we can apply
Theorems 5.1 and 5.5 to Q(z) = ¢.(z) = q(z, z /€), where ¢(z, y) is 1-periodic
in y, decaying as |z| — oo, and satisfies Hypotheses (V).

2. Theorem 2.1 implies that
(i) t¢(k) — thom(k) = O(€?) if ¢, is continuous, and
(ii) t¢ (k) — thom(k) = O(e) if ¢. has discontinuities.

For ¢, discontinuous interface correctors, which are highly oscillatory in e, enter the
expansion; see the discussion in section 4 concerning failure and restoration of interface
conditions at singularities of V| or discontinuities of ¢.. These correctors are related to
the asymptotics of boundary layers arising in work on homogenization of divergence
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SCATTERING, HOMOGENIZATION, AND INTERFACE EFFECTS 1019

form operators on bounded domains (see [13], [11], [2], [6], and [7]). Since these correctors
involve € dependence of the form: ~exp(27i2), e <1, 0# v € R, the expression
e 1(t(k) — thom(k)) does not have a limit as € — 0, and a correction to the value of
thom (k) is not well defined. However, there can be limits which depend on the particular
sequences through which e tends to zero. See the more detailed discussion after the
statement of Theorem 2.2.

Outline of the article. In section 2 we state detailed hypotheses and our main
theorems on transmission coefficients, Theorems 2.1 and 2.2, which depend on our ana-
lysis of distorted plane waves (Theorem 5.1). We also present the results of numerical
simulations designed to illustrate the relationship between regularity of the potential,
V¢, and e small asymptotics of the transmission coefficient, stated in Theorem 2.1. In
section 3 we present the technical background on one-dimensional scattering theory. In
section 4 we derive, by including interface correctors to an expansion derived by the
classical method of multiple scales, an expansion of the distorted plane waves and of
the transmission coefficient valid to all orders in the small parameter € . Section 5 con-
tains rigorous proofs of the expansion of the distorted plane waves (Theorem 5.1) and
transmission coefficients (Theorem 5.1 and 5.5) with error bounds. The proof is based on
the reformulation of the scattering problem as a preconditioned Lippman—Schwinger
equation, an approach introduced in [9]. Appendix A contains a brief discussion of
the numerical methods used in the simulations. Appendix C contains the technical proof
of operator bounds which are central to the proofs in section 5.

2. Mainresultsand discussion. Webegin with thekey hypotheses. Hypotheses (V)
make precise the decomposition of the potential, V', into regular, singular, and oscilla-
tory parts. Hypothesis (G) specifies, for the cases of generic and nongeneric potentials,
Vy, the admissible values of the wave number, k. We then state and discuss our main
results concerning the transmission coefficients in the small € limit.

Hypotheses (V).

Ve(z) = Vo(x) + ¢(z) (real-valued)
(2.1) = Viing(7) + Vieg(2) + ¢e(2),
z
(22 wo=a(al). V@0
where
1. The singular part of V¢, Vg,
N-1
(2.3) Vg (2) = Z c;6(z —z;), where c;,x; €R, z; <144.

J=0

2. The regular part of V¢: V., € L"*(R) with
(2.4) V] e E/ (14 |s)?| V(s)|ds < oo.
R

3. The rapidly varying part of V¢, q.(z) = q(z,%): The mapping (z, y) = q(z, y) is
(a) one-periodic, i.e., for each z € R, ¢(z,y+ 1) = ¢(y),
(b) mean zero with respect to y, i.e., for each z € R,
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1020 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

(2.5) [ atznas=o.

(c) qepCiL? ., theset of functions ¢: R x ST — R, such that there exists a

finite partition of R
—00=qyg < a; < ap < ... <ay < ayp =+00
with
Mtl
(26) D [ 16, 0 <
=

4. We shall work with the Fourier expansion of ¢(z,y), written as

(2.7) g(z.y) =Y _q;(z)em v, qj(x)Efle*Q””yQ(w, y)dy

i#0 0

and assume

(2.8 | [Nlawpavde =Y [ g, < o

l71>1

(2.9) / e Pdy = Slg@PR =0, o] - .

l7]>1

5. Proposition 5.3, which is a step in proving Theorem 2.1, requires more decay at
infinity for g.: there exists p > 8 such that

(210) (L+|-P)2q e’ |jl=1, and Y [I(1+]- )/ 2gll < oo,

lj]>1
d d
—((1+ [z]*)P/%q;(z)) € L* and sup||— ((1 + |2[*)*/2¢;(z))|| < oo.
dz jz1ll dz ©
(2.11)

Hypothesis (G). If V| is generic (see Definition 3.6), then the wave number, k € K,
which can be taken to be an arbitrary compact subset of R. If V|, is not generic, then the
compact set K must be such that 0 ¢ K.

Remark 2.1. If V is not generic (as, for example, V= 0), then the expansions we
present in Theorems 2.1 and 2.2 are not uniform in a neighborhood of ¥ = 0. This will be
the subject of a future paper.

The aim of this article is to understand the scattering properties for this class of
potentials. In particular, we are interested in the influence of combined microstructure
(ge) and singularities ( Vg, ) on the reflection and transmission coefficients and distorted
plane waves (see below). Formal application of classical homogenization theory (see, for
example, [3]) suggests that the leading order (in € — 0) scattering behavior is governed
by the averaged (homogenized) operator —d2 + V(z); see (2.1). For example, if V¢(z)
is smooth (in particular, Vg,, =0), then the transmission coefficient satisfies the
expansion
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SCATTERING, HOMOGENIZATION, AND INTERFACE EFFECTS 1021
(2.12) te(k) ~ thom (k) + ethom (k) + e2thom(k)+ - - -,

where t;“’“‘ are computed from the formal two-scale homogenization expansion. In par-
ticular, th°™ is the transmission coefficient associated with the averaged potential V().
However, homogenization is a theory valid only in the bulk, away from boundaries or
nonsmooth points of coefficients. For our class of potentials, this expansion must be
corrected.

Our main result is the small ¢ characterization of the distorted plane waves pre-
sented in Theorem 5.1. A key consequence of our analysis is the following theorem.

Tueorem 2.1. Let V(z) = V() + g.(z) with V and q.(z) = q(z, 7 /€) satisfying
Hypotheses (V), and k € K a compact subset of R satisfying Hypothesis (G). Denote by
ey, (z; k) the distorted plane waves associated with the wunperturbed operator
—02 + Vy(z); see section 3.

Then there exists €y = €y(K), such that, for0 < e < €y, the transmission coefficient
t¢ = t°(k) (see 3.7) associated with V¢(x) satisfies the following expansion uniformly in
ke K:

(2.13) te(k) = 15 (k) + et (k) + (857 (k) + t5(k)) + trem (),

where 8" (k) denotes the transmission coefficient associated with the average (homo-
genized) potential Vi and

] 1 M EQMIG?J

(2.14) ti(k) = mz €v0+(%‘2’f)evr(@ﬁk)zwl]a] T
=1 1>1
(2.15) mon() = oL S / 14,(2)Pev, (2 K)evys (2 K)dz,
li1=1
e?iﬂl%
(2.16) 15 ( = 3% QZZ (evyr(mh)ey, (2 k)ql(iﬁ))]a7l—2,
T3 = :

(2.17) tem (k) = 0(e*T), more precisely quantified in Proposition5.6.

(a) t]}“’l“, j=0,2..., denote the expansion coefficients for the transmission coeffi-
cient obtained from the two-scale (bulk) homogenization expansion, valid for
smooth potentials,

(b) t§ arises due to discontinuities in x v+ ¢(z, -), and

(c) t5 arises due to both the singular part of the potential, V., and discontinuities
inze gz, ) orz- d.q(x, ).

1 and t§ are uniformly bounded for e small. Howewver, each is a sum over rapidly oscillat-
ing (as e — 0) terms of the form exp(i %), corresponding to discontinuity points of q. (17)
and points in the support of V. (15).

Theorem 2.1 is a consequence of the more general Theorem 2.2, stated below, which
follows from the asymptotic study of the convergent expansion of the distorted plane
waves, presented in Theorem 5.1. The proof of Theorem 5.1 is based on the construction
and asymptotic study of the scattering problem via a preconditioned Lippman—
Schwinger equation. This approach is quite general and applies to the perturbation
theory of Schrédinger operators of the form
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1022 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN
H=—-01+ Vy(z) + Q(z),

where Q is small in the sense that ||| Q||| ~||/(I — A)2Q(I — A)z||,2_, > is small. This
formulation was introduced in [9] to study the perturbation of scattering resonances due
to high contrast microstructure perturbations of a potential. If @ is a “microstructure,”
roughly meaning that it is supported at high frequencies, then ||| Q||| is small. Here we
apply this method and obtain a convergent expansion of Q +— ey, , o(z, k) for fixed k and
||| Q||| sufficiently small. The expansion of the transmission coefficient, @ = ty, | o(k), is
a direct consequence of the following theorem.

THEOREM 2.2. Let V(z) = Vo(z) + Q(z) with Vy satisfying Hypotheses (V) and
(14 |7?)*/2Q € L? for p > 8. We use the following norm on Q (see section 5.2):

QU= (Do) (1 + )74 Q(L + [*)? /(Do) ™| o -

Set k € K a compact subset of R satisfying Hypothesis (G), and denote by ey, . (x; k) the
distorted plane waves associated with the unperturbed operator —d>+ Vy(z); see
section 3. Denote by t = t(k, Q) = t(k) the transmission coefficient (see (3.7)) asso-
ciated with V(x). There exists vy = to(K) such that, for 0 < |||Q||| < to(K), we have
the following expansion which holds uniformly in k € K:

(2.18) t(k, Q) = t5°" (k) + t1[Q] + t2[ Q. Q) + trem (k).

with t8°"(k) the transmission coefficient, associated with the average (homogenized)
potential Vi, and the following:

(219) 610 =5 [ QW@er, (@ Rey, (@R

220) 600 =5 [ QRLMQEer, G R)e, EHL.

(2.21) tem (k) = O(J|| Q|I|*") and more precisely estimated in Theorem 5.5.

Here Ry (k), ey, (z: k), and ey, _(x; k) are defined in section 3.

Remark 2.2 (symmetry considerations). There is a class of potentials, g., whose
members are discontinuous, and yet the (oscillatory in €) correctors, t5, j = 1, vanish.
In subsection 2.1 we explore families of such structures. Indeed, let us apply Theorem 2.2
with V = V, satisfies Hypotheses (V) as well as the additional properties of V even and
q. “separable”:

Vo) = Vo(=2),  4:(8) = 00()apen (—)

€

One can easily see that V|, is even implies that ey . (-;k)ey,_(-; k) is even. Therefore,
if gy and gy, are of opposite parity, then z ~ ey . (z;k)ey, _(z;k)q.(2) is odd, and
therefore t[q.](k) =0 for any e > 0. It follows that, for such potentials and even if
gc is discontinuous, the leading order correction to ¢ (k) is t,[@Q, @] which is of order
O(€?) (see section 5.4). Moreover, in this special case, the second order corrector is well
defined:

hﬁ)l e2(te(k) — tgom(k)) _ tgom(k)'
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Fic. 2.1. Mustration of Theorem 2.1 via plot oflog |t — t°™| versuslog € for the case of q discontinuous
and V a sum of Dirac delta functions (left panel, average slope 1), q smooth, and Vi a sum of Dirac delta
functions (center panel, average slope 2). The right panel (slope 2) is for the case where V¢ = V is a smooth
approzimation of a finite sum of Dirac delta functions.

The three subplots of Figure 2.1 illustrate the results of Theorem 2.1 on the behavior
of t© — t, for several contrasting choices of potential V¢ = V| + ¢., where V|, is a finite
sum of Dirac delta functions, at equally spaced points.*

e The left panel of Figure 2.1 corresponds to the case where ¢, is discontinuous. It
shows that

t¢—thom=0(), €—0, andyet e }(t€— t1™)does not have a limit.

e The center panel of Figure 2.1 corresponds to the case where ¢, is a smooth
function and V) is a Dirac delta function. Here

¢ —thom = O(e?), €—0, andyet e 2(# — ") does not have a limit.

e The right panel of Figure 2.1 corresponds to the case where g, is a smooth func-
tion and Vj is a smoothed out Dirac delta function. Here we find

te —thom = O(e?), e€—0, and hrfé e2(t€ — thom) is well defined.
€.

This phenomenon of indeterminacy of higher order correctors due to boundary layer
effects is discussed in the context of a Dirichlet spectral problem [13], [11].

The transition between the cases of a regular potential and a potential containing
singularities is illustrated in Figure 2.2. The three panels show the behavior of t¢ — ¢,
with respect to €, where the potential V¢ = V| 4 ¢, satisfies g, is smooth and V| is a
sum of smoothed out Dirac delta functions. From right to left, V is an improving
approximation of Dirac delta functions.

2.1. Some specific structures. We now study in detail two natural and illustra-
tive classes of potentials.
1. We first consider a one-parameter family of structures, which are truncations of
a smooth potential, where, for certain parameter ranges, the manner of trunca-
tion causes a discontinuity. The latter corresponds to cleaving a periodic struc-
ture in a manner not commensurate with the background medium:

2
(2.22) V¢(2;0) = cos (g + 9) 1y (7).

"The precise functions and parameters used to obtain the plots displayed in Figures 2.1 and 2.2 are given in
Appendix A.
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Fic. 2.2. Plot oflog |t¢ — thom| versus log €' for the case of ¢ smooth and V, a sum of three approximate
Dirac delta functions 6 ,(x) Eﬁe’fz//Jz with p = 0.001, 0.01, 0.1.

We are obviously in the case related in Remark 2.2 with V; =0 (so that
eyi(m; k) = e and 2™ = 1). More precisely, it is easy to show that

eQz’rrlaTj

| M
ti(k;e)Emz€V0+(aj§k)evr(aﬁk)Z[QI]aj ]
=1

[7I>1

—1

. (27
= S cos(0) sin (7) .

In general, t{(k) # 0, but for @ =Z + mm, m € Z, q.(;0) is even; therefore, for
all k € R and € > 0, we have ¢,[¢.](k) = 0.

2. Our second example is a piecewise constant (discontinuous) structure which is
smoothly truncated,

(2.23) VE(2;0) = Ry <Z + 9> 67("_*&_-””1[—1,1] (z)

with hye (y) the one-periodic function such that h(y) = —1 for y € (=1 /2,1 /2]
and h(y) =1 for y € (1/2,3/2].

Since the slow-varying part of ¢.(z) is smooth and V|, has no singularity,
Theorem 2.1 predicts that

t¢ —thom = O(e?), e—0, and lirfé €72(t¢ — thom) = ¢hom is well defined,
€.

even though the function ¢.(z) has internal discontinuities. In Figure 2.3, we
plot log |t — ¢8| versus log €~! for the two potentials V§ and V%, setting k = 1

and 9 = 0.
10° 10°
-1
107" 10_2
107 — 1
§ § 10°
g o -3 o o -4
10 10 1
w w -5
i -4 10
£ 10 2~
. 107°
10 10—7
-6 -8
10 : 10
107 107 107" 10° 107 107 107" 10°
€ €

Fic. 2.3. Plot oflog |t¢ — t°| versus log €' for the case of the potentials Vi (z;0) in (2.22) (left panel,
slope 1) and Ve (xz;0) in (2.23) (right panel, slope 2). One has k=1 and 6 = 0.
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3. Background on one-dimensional scattering theory. For simplicity,
we consider potentials, W, which have no localized eigenstates, i.e., the spectrum of
—02 + W(z) is continuous. We further assume that W has the form

W= Wreg + Wsing with Wreg S L1Y3/2+(R)’ Wsing = C

where ¢, T € R, Ty < Tjgq-

We now introduce an appropriate notion of solution to the Schrédinger equation

d2
T
Let [U]; denote the jump in U at the point £, i.e.,
(3.2) [U]g = lim U(z) — lim U(z).

T—ET &

DermiTION 3.1. We say that u is a solution of the time-independent Schrodinger
equation (3.1) if wu is piecewise C* and satisfies (3.1) on R\supp Wy, =

R\ {xy, ..., zy_1} as well as the jump conditions
[u], =0, z € R,
(3.3) [d—i u] =0 if z € R\ supp Wy,
T

{% u] = c;u(zr;), where z; € supp W,.
T

J

Of special interest are the Jost solutions, defined below.
DErFINITION 3.2, The Jost solutions f4 (x; k) = my (x; k) e*™ ™ are the unique solutions
of (3.1) such that

lim my(z; k) = 1.
T—=+00

This definition is valid, as we see in Appendix B. We shall use some smoothness and
decay properties of these solutions, which are also postponed to Appendix B, for the sake
of readability.

With the help of the Jost solutions, we are able to define scattering quantities as the
transmission and reflection coefficients and the distorted plane waves.

Since f,(z; k) and f,(z; —k) are solutions of (3.1) and are independent for k # 0,
there exists unique functions ¢ (k) and r. (k) such that

f (k) = tg,’g Fo o)+ )
ook == s g ()

|
—

=
~

It is then easy to check that ¢, (k) = t_(k)

= t(k) and that ¢(k) and r (k) are continuous
at k= 0. The distorted plane waves ey (z;

k) are then defined.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1026 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

DerNTION 3.3. Given a potential W(zx), we define ey (x; k), the distorted plane
waves associated with Hy, by

(34) es(m k) = t(k)fo(a; k) = t(k)m, (z; k) e™*e,
(3.5) e_(z k) = t(k)f_(z; k) = t(k)ym_(x; k) e~ *e.

The distorted plane waves ey (z; k) play the role for H y, that the plane waves e*%?
play for Hy = —d2, as we see below. Let us first introduce the notion of outgoing radia-
tion as |z| — oo.

DerNiTION 3.4. U(x) is said to satisfy an outgoing radiation condition or to be
outgoing as |z| — oo if

(0, Fik)U =0 as T — £oo.

ProrosiTioN 3.5. Given a potential W(z), ewy(z;k), the distorted plane waves
ew+(z; k) are the unique solutions of (3.1) satisfying

(3.6) ews(m; k) = e + outgoing (z).

More precisely, they satisfy the following asymptotic relations [4]:

ewe(m k) — (e +r (k)e ™) -0 asz— —oo,

(3.7) ews(z k) — t(k)e 7k_T -0 asT — 400,
’ ew_(z; k) — t(k)e ™ — 0 asT — —00,
ew_(z;k) — (e7™* 4 r_(k)e'**) = 0 asz — +oo.

A consequence of the relations (3.7) is the Wronskian identity:
(3.8) Wron(ew, ( k), ew_(k)) = ewrdew_ — 0 ewrew_ = —2ikt(k).
In terms of the Jost solutions,

21k

(3.9) Wron(f, (&), f_(+ k) = ~) k#0.

By analyticity in W, potentials for which Wron(f,(-; %), f_(:;k))|—o = 0 are iso-
lated in the space of potentials.

DermaTion 3.6. A potential W is said to be generic if

Wron(f,(z;0), f_(2;0)) = Wron(m, (z;0), m_(z;0)) # 0.

Otherwise, the operator Hyy is said to have a zero-energy resonance, i.e., Hyyu = 0 has a
nontrivial solution that is bounded both as x — oo and as v — —oo.

Note that the potential W (z) = 0 is not generic since m_ (z; k) = m_(z; k)= 1. W
is generic, we have (see [4], [12], and [18])

2k
Wron(f.(-;0), f(20))
In particular, ¢(0) =0 and r,(0) = —1.

A simple calculation then yields the following expressions for the outgoing Green’s
function (resolvent kernel) and the outgoing resolvent, Ry (k), k # 0:

(3.10) t(k) = — +o(k)=0®k), |k —o.
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i ew- (s k) ewy (w k), y <,
(3.11) Ry (z,y; k) =
i ew- (@R ew (v k), y >z,

(312)  Ry(k)F(z) = (—d—2+ W(z) — k2> () = [ OO‘RW(x, &R F(O)AC.

da?

Remark 3.1. Note that these expressions, originally defined for k # 0, are easily ex-
tended to the point k = 0 for generic potentials. Indeed, one has, by Definition 3.6,

1 ‘ o Tk (k)
Soarn - W Rews (@ R) = e

In the generic case, this expression has a limit when ¥ — 0 by (3.9) and (3.10). In the
following, we work with the distorted plane waves, which sometimes lead to expressions
which are defined only for k # 0. By the above considerations, it is easy to check that, in
the case of a generic potential, these expressions have a well-defined finite limit when
k—0.

In particular, we have the following proposition.

ProposITION 3.7. Let F € L'(R). Assume W(z) satisfying Hypotheses (V) and
k € K satisfying Hypothesis (G). Then the inhomogeneous equation

(3.13) ( ¢ 4 W(z) — k2> U=F

- da?

has the unique outgoing solution U = Ry (k)F. Moreover, ||Ul|;~ < C||F|| 1 with a con-
stant, C(K).

Proof. Existence follows from the explicit integral representation (3.12). Note that
if W is generic, then Ry (k)F is defined for any k € R, whereas in the nongeneric case,
Wron(f,(z; k), f_(z;k)) — 0(k — 0) and f.(z, k) does not tend to zero as k — 0 [4], so
that Ry (k)F has a simple pole at k = 0.

To prove uniqueness, note that if the difference, d(z), of two solutions is nonzero,
then d(z) is a nontrivial solution of the scattering resonance problem, that is,
(Hy — k*)d =0, d(z) outgoing at |z| — oo with scattering resonance energy k? € R.
However, the scattering resonance energies must satisfy S(k?) < 0; see, for example,
[16]. Therefore, d(z) = 0. This completes the proof. O

4. Homogenization/multiple scale perturbation expansion.

4.1. Multiple scale expansion. In this section, our goal is to formally obtain
the expansion displayed in Theorem 2.1, using a systematic two-scale/homogenization
perturbation scheme. A proof (and derivation by other means) of this expansion is pre-
sented in section 5.

We seek a solution of

(4.1) ( ? 4 V() + q(xg) - k2)ew+(:p; k) =0

da?
in the form of a two-scale function, ey, (7; k) = U¢(x,%), which satisfies the jump con-

ditions (3.3) and the outgoing radiation condition of Definition 3.6. Treating = and y as
independent variables, we find that U¢(z, y) is a solution of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1028 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

(4.2) ( (;x + i;y)Q + Vo(z) + ¢z y) — k2) Ue(z,y) = 0.

We then formally expand U¢(z,y) as

o0

(4.3) U(z,y) =Y €Uz, y)

=0

and require that

Ui(z,y+1) = Uj(z,y), j=0,
Uy(z,y) — e, Uj(z,y), j=>1, outgoing as|z| — oo,
(4.4) Uj(z,y)|,_, . satisfies jump conditions (3.3).

The problem is solved by substituting the expansion (4.3) into (4.2) and imposing
the equation, jump conditions, and radiation condition at each order in €. The differ-
ential equation becomes

(4.5) ( <% + 26—2)2 + Vo(z) + q(z,y) — k2> Ue (:1: g) = i elr; =0,

j=—2
implying the following hierarchy of equations at each order in e:
r_g = —6% Uy=0,
ry=—05U; —20,0,U, =0,
) ro=—02Uy—20,0,U; — 02U+ (Vo + q) Uy — KUy =0,
) 1 =—05U3—20,0,Uy— 03U, + (Vo+ q U, — KU, =0,
O(€?) ry=—-02U,—20,0,U3 —05Us+ (Vo + q)Uy — KU, = 0,
(€”) (

ry=—03Us —20,0,U; —02Us + (Vo + q) Uy — k> U3 = 0,

(4.6g) O(e?) 1j=r;[Uj12, Ujsq, Uj] = 0.

For example, to construct an approximate solution of (4.2) satisfying (4.4) up to
the order 3, we solve simultaneously the equations r; =0 for j = -2, ..., 3. This will
determine the functions U, U, Uy, and Uz which make U¢ an approximate solution
through order O(e?). Since ey« (z; k) — e is to be outgoing, we require U, — e** and
each U;(i=1,...,3) to satisfy the outgoing condition. We now proceed with the
implementation.

Caveat lector! The formal expansion presented in the remainder of this section
yields terms involving spatial derivatives of ey . (z:k) and q;(z) of arbitrarily high
order. Now d ey, . (x;k) has jump discontinuities on supp Vg,,, and q;(z) has jump
discontinuities. Hence, the expansion must be viewed in a distributional sense, e.g., in-
volving terms such as 056(x — x;), etc. Furthermore, when we impose the jump condi-
tions (3.3) to the expansion, order by order in €, we shall throughout assign
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[056(x — x;)],_, = 0. Although seemingly risky, in section 5 we give a complete rigorous
“ ’]
proof of the expansion with error bounds.
Beginning at O(e~?), one has, from (4.6a),

(4.7) r9=0=02Uy=0= Uy(z y) = Uy(z).
Consequently, one has, from (4.6b),
(4.8) P =0= U, =—20,0,Us = 0= Uy(z.y) = Uy(a).
Recall that y — ¢(z,y) is one-periodic and [}q¢(z, y)dy = 0. Integration of (4.6¢)
with respect to y yields

(4.9) Al ro(z, y)dy =0 = —% Uy(z) + Vio(z)Uy(z) — K> Uy(x) = 0.

Furthermore, since U, — €’** is outgoing, one has, by Proposition 3.5,
(4.10) Un(x) = ey, (a3 k).

By (4.9) and (4.6¢), we have
(4.11) rg =0 —0; Us(z,y) + q(z. y)ev, 4 (z) = 0.

Thus, we decompose U, as
h
Uy = Uy)(a) + U (2.9)

with U(Zp >(x, y) a particular solution and U(Zh')(:v) a homogeneous solution to be
determined.
Again, since y — ¢(z, y) is one-periodic and [}¢(z, y)dy = 0 when, by (4.6d),
2

(4.12) Al Py (2, y)dy = 0 = f% U\(2) + Vo(@) U (x) — B2 U, () = 0.

Since U, is outgoing, we claim
(4.13) U,=0.

Indeed, in this case k? is a scattering resonance energy and U, its corresponding mode.
Scattering resonances necessarily satisfy Sk* < 0 [16]. However, k*> € R, and

hence U; =0.
Consequently,

In the same way as for U,, we decompose Uj as

Uy = U (@) + UP (2, )

with ng)(x, y) a particular solution and Ugh)(x) a homogeneous solution to be

determined.
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Integration of (4.6e) and (4.6f) with respect to y, respectively, yields

d? 1

@15)  —2z U@+ @U@+ [ e U ay - 0P @) <0
@ ) @ 2 ) L

@16)  — U0+ Valo) U 0) = R U @) = = [ 0P ot i

We now solve (4.11), (4.14), (4.15), and (4.16) to obtain a unique (approximate)
solution satisfying both outgoing and jump conditions, as we see in the following. First
we use the decomposition in the Fourier series of ¢(z,y) in y:

zy) =Y q;(x)e? v,
770
Consequently, (4.11) leads immediately to

€y (I’k) q(fl?) i
(4.17) U ay) = === D e,
lj1>1

From (4.14), one deduces

R U,(z.y) = @ Z 6z(€v0+($‘; k)q;(x)) iy

T J

A particular solution U gp )(l’, y) is therefore given by

k .
(4.18) ng (z,y) = 32 ev°+ % k)4;(2)) ey,

l1]=1

Then, using the Fourier series of ¢ and U (2p >, we obtain the following equations from
(4.15) and (4.16):

2

d e z; k)
(419) ——5 U3(2) + Vo(2) Uy () = U3 (2) Vﬂ* Z |q7 and
l71=1

U @)+ Vo) U (@) — 2He

= 711 U (2, y)g(x, y)dy = 4n3 Z L(evy+ (2 k)'gqj(x))Q—j(l’).

l71>1 J

(4.20)

By Proposition 3.7, (4.19) and (4.20) have unique outgoing solutions. We refer to the
expansion of U¢ obtained in this way as the bulk (homogenization) expansion.
Bulk (homogenization) expansion.

Ue(2,y) = e, (a3 k) + (UL (0, y) + U (2) + (U (@ y) + U (@) + -
(4.21)

It consists of a leading order average term (homogenization) plus correctors at each
order in € due to microstructure.
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Failure of jump conditions at interfaces. Recall that we seek a solution which
satisfies the jump conditions (3.3) on U¢(z, y) for all (z,y) = (=, z /€) at each order in .
The leading order term, ey, satisfies all jump conditions. Now consider the terms
U; (o) (z, y) + U; (#) (z), arising at order O(¢e’). By construction, U satisfies (3.3). How-
ever, U ; (x x / €) does not. Indeed, for the cases j = 2, 3, referrlng to expressions (4.17)
and (4.18), we observe violation of (3.3) in U;p)(x, z /e€) at discontinuities of ¢;(z) and
ey,+(z; k) and their derivatives.

More precisely, the jump conditions for U failat a; (I=1, ..., M) each point of
discontinuity of ¢(z, z/€) since one has

(422) |:U§p) <I’ Z>:| - F% a’

d T 1
(4.23) {% 2 (x g)] =G5, + 15,
with
22]‘[7(1/6
5: ZeVU+ a; k)| — 3
71=1
eQiﬂja/e
ZeV0+ a; k q] . s
Tz J
_ Qirrja/e
(4.24) oz 2 alevi (@ ) g ()], ——
121 J

In the same way, the jump conditions for U :(,,p ) fail at points of discontinuity of

the functions ¢(z,z/€) and d,q(z, z/€), and for x € {zy, ..., zy_1} the support of
Vg (recall that Vg, = >0 ¢;6(x — 7))

(4.25) {Ué” <x f)} = Fs,.
€ a '

d T 1
(4.26) {% vy (:v g)] =< G, + A5,

with F§ , and H§ , bounded highly oscillating functions and

eQiﬂja/s

(4.27) G5, == S ulev (@ R gy ()],

Fg ,and Hf , can be made explicit, but we omit these expressions as they contribute only
at O(e?).

Restoring the jump conditions at interfaces. In order to restore the jump con-
ditions (3.3), we must add to the expansion, at each point where the jump conditions are
not satisfied, an appropriate corrector. These correctors each solve a nonhomogeneous
equation, driven by the jumps in the bulk expansion (4.21).
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To see this, first note that [-£ U;p)]a =0(e7!), j =2, 3. Since U;p) contributes at
order €/, this suggests adding a corrector at order e/~!. Thus, we introduce the following.

Bulk expansion with corrector terms.

US(2,y) = ey, (2:k) + el () + (U (2, y) + U (2) + Us())
(4.28) +(UY (wy) + U () + U (2)+ -

The interface correctors L{;(z) are to be determined so that, at each order in €, the ex-
pansion (4.28) satisfies the jump conditions (3.3), the differential equation (4.1), and the
outgoing radiation condition.

We construct L[;(:zr), j=1,2, below. The general construction uses the follow-
ing lemma.

Lemma 4.1. Let Fy, Fy € R and V= Vg + Vi as in (2.1). Then there ewists
U(z), an outgoing piecewise C? solution of

2
(4.29) (—ij—i— Vo(z) — k2>u =0 for z<a and z> a,

which also satisfies the following jump conditions at the point T = a:

U = Fro || - aia) = Fa

a

Here U(a—) = lim,4,U(x), and the constant

0 if Vsings
(430 c={ o al

Jo Jo smg»
recall Vg, () = YN ¢;6(x — ).

U(x) has the form

S aey, (k) if z < a,
(4.31) U(z) = {,Bevz+(x; k) ifz>a

for appropriate choice of a and B, namely,

Faey,_(ask) — Fro,ey,_(a+; k)

o Fyey, i (ark) — Fiozey, (at: k)
20k (1)

d =
2iktho™ (k) and f

(4.32)

Before giving the proof, we explain why choosing U/§ as in Lemma 4.1 does not
change the bulk expansion (4.21) constructed above. Therefore, our approach, which
first computes the bulk expansion and then the correctors, is consistent.

As pointed out the expressions in the bulk expansion (4.21

(4.33) U(z,y) = Uljﬁ_ulk(x, y) = Ui_p)(% z/e) + Ugh)(x)
do not satisfy jump conditions (3.3). Suppose now that we replace the functions

Uj(z,y) = UM(xz, y) by Uj(x,y) = UP(z, y) + U (x) and that we seek U (x) so as
to ensure jump conditions (3.3). (Assume only one corrector is required.) Note that since
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U () lies in the kernel of 9, adding such a term has no effect on the equations deter-
mining U§p )(;z:, y). Further, we want to preserve the form of Ug-h)(:c), which has pre-
viously been constructed. Thus,

ri[Ujsas Ujprs UM +US) =75 Ujig, Uy, U]
(4.34) + (=05 + V() — UG (2) + q(z. y)U(2).

The equation for U Eh)(x) is obtained by averaging (4.34) with respect to y. Since ¢(z, y)

has mean zero with respect to y, this gives
! bulk 2 2
(4.35) /0 il Ujr20 Ujpr, U, y)dy + (=03 + Vo(z) — B2)U5(2) =0

Thus, if we choose U5 () to satisfy (4.29), then the second term in (4.35) vanishes and
the equation for U §h>(a:) is preserved. Therefore, if Lemma 4.1 is used to determine the
jump-driven correctors at each order in ¢, then the corrected bulk expansion (4.28) is the
solution we seek.

Proof of Lemma 4.1. The piecewise form of U (4.31) satisfies the outgoing radiation
condition by construction. The constants o and S are determined by the jump
conditions.

Using the fact that ey ,(z;k) and ey, _(x;k) satisfy the jump conditions (3.3),
one has

U(z)],= Bey,(a:k) —aey,_(ask),
l:éitu(x)] - Cu(a_) = ﬂaz:eVo+(a+; k) - aa;pevo—(a_; k’) — CO[CVO_(a—; k‘)
= Boey,(at+:ik) —adsey,_(ati k).

Solving this inhomogeneous system, using the value of the Wronskian, given in (3.8),
leads immediately to (4.32). This completes the proof of Lemma 4.1. a

We now proceed to apply Lemma 4.1 to determine the correctors associated with
U<2p) and ng). Using (4.22)—(4.23) and (4.25)—(4.26), the jump conditions (3.3) applied
to el + e2US + 2 UYL + 3 UL read

(4.36) eluts], + e*(Fg,, + Ug],) = O(e?),

d
(Gra+ [ ] - anan)) +e(m, - 0P+ s,

4

(4.37) + [ dzu;} - cug(a—)> = O(e%).

a

Equations (4.36) and (4.37) imply jump conditions at order € and order €. There-
fore, we construct U5 ,, 7 = 1,2, solving the two inhomogeneous problems at each point,
a, of nonsmoothness.
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System for corrector UJ ,.

d2

(4.38) <ﬁ+ Vo(z) — k2>L{§_ﬂ =0, T # a,
d
(1.39) i, =0 || - e = -6,
a
System for corrector U ,.

d2

(440) <_W+ V()(w) — k2>2/l§7a = 0, T ;é a,
€ € d € € — € € ()

(4.41) [UZ,a]a =-F, %Z/{Q,a(z) - Cu2,a(a*) =-H5,—- G3,a +cUy" (a—).

Lemma 4.1, applied to (4.38)—(4.39) and (4.40)—(4.41) defines the unique correctors
Ug , and Us ,: Uf , is given by (4.31), i.e.,

. ~ Jafey,(zk) ifz<a,
(4.42) us ,(z) = { Cep(mhk) ifz>a

with af , and B{ , given by

€
G?.a

G5,
: )6v0+(a;k)v Pl = 7)61/07(&;%),

443 € = — -
(4.43) HLa = T ikthon (1 2ikthon

where G, is given in (4.24). Then U5 , is given by (4.31) with a5, and B9, @ and B
given by

1 ,
@0 = gy (H5a = Ghat eV (a))ev, (aih) + F dreviy (i h).
0
1
(4.44) B3, = m((—H%a — G5+ cUY (a-)) ey, (a:k) + FS 0,ev, (at+: k),
0

where HS ,, I ,, and G, are given in (4.24) and (4.27).
Therefore, at O(e), we define the corrector U as

M
(4.45) us=>"us,
j=1

where a;, j =1, ..., M denote the points of discontinuity of ¢(z,z/e) .
At order O(e?), we have a violation of the jump conditions (3.3) due to
(i) points of “discontinuity” of ¢;(z), i.e., a;(j = 1, ..., M) for which [g;], # 0 or
[0,4;], # 0, and
(ii) the singular set supp Vgye = {2, .... Zy_1}.
Thus we construct, U5 ,, for all a in the set, Q, of nonsmooth points of V¢(z)

(446) Q:{.’L'(),...,$N,1}U{—OO<G/1 <L e < GM,1<OO}
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and define the corrector U by

(4.47) Uy =>Us,.

aeQ

We summarize the preceding calculation in the following proposition.
ProrosiTION 4.2.

eyer(z3k) =U(z,2/€) = ey, (1:k) + U ()
(4.48) + (U () + UP (2, 2 /€) + Us(z)) + O(e¥)

gives a formal construction of the distorted plane wave ey« (x; k) through O(€?) with
error of size O(e%). The correctors US(z) and US(x) are given by (4.38)—(4.39) and
(4.40)(4.41).

Finally, U;m(x, y) and Ug-h')(x) are given by

e T, k 2171’]J
UY (z,y) = — Vﬁ Zq] —,
71>1
@ (h) @V +(z; k’ |q (h)
( s ——+ Volz) - 2) Uy'(z) = —* Z ] Us” outgoing,
lj1=1
e?m]y
U (0 ) = o5 Do 0(ew,s (5 By (2) S
i J
& h ~— Oz(ev, (7 k)q;())q_;(w) h .
( 2 Vo(z) - 2) U:(; /(z) = ZZ = 4713;3 -, Uy outgoing.
[71>1

4.2. Expansion of the transmission coefficient, #¢(k). The results of the pre-
vious section can now be used to derive expansion (2.13) for the transmission coefficient,
t¢(k), associated with the potential V¢(z). t¢(k), through order €?, is derived by isolating
appropriate terms in the expansion (4.48). The sense in which the remainder is small is
proved, by entirely different means, in section 5.

O(€"): The only term at order one is ey,+, which gives the leading order transmission
coefficient, 1™ (k), corresponding to the average potential V.

O(e'): At order €, we seek the contribution to t.(k) from US. From (4.31) we have, since
ey, (z; k) ~ 10" (k)™ as z — +o0, that the contribution of U , to the transmission
coefficient is given by

627,71]0,/5

o = BLA™E) = p evpe(@ Rer, (1) Y lg)],

=1 J

Finally, summing over all contributions from points of discontinuity of ¢;, one obtains
the complete first order contribution from :

M : . il
. . ey (aik)ey _(a;k) ik
(449) tl = E tl.a} = § o+ \%j yos 0 J E [Ql]aj T
J J=1

7>1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

(a) No contribution to (k) from €? Uép):
We estimate Uy pointwise.

. Ig:(x 1/2
‘Uép) (I_)‘ = 4x? v+ (2 k)l Z ]j S C<Zj>1|qj(x)2) —0

l71>1

|z| = oo.

Here we have used the umform bound (B.3) on ey, for 2 >0 and the
hypothesis (2.9). Since U >( Z) — 0 as z — oo, it does not contribute
to the transmission coeff1c1ent

(b) Contribution of €? Uéh)(m) to t¢(k):
From (4.19), one has

= 7

Using expression (3.12) for the outgoing resolvent,we have

e (s )2
00) =y (1) (2D 5 1920 )

li[=1

__ 1 S C k) lq;(¢
- 2ikthom (k) /,O0 %;1 _(&k)ey, (2 k)d

1 frena @GR - @F |
+2ikt80m(k)l A2 %;1 72 evy+ (G k) ey, (z: k)dS.

Therefore, since ¢; € L? for all j € Z and ev,+ € L, one has, when
T — 00,

—ey, (73 k) lq;(O)I?
th ( ) — ( AZ 72 ey,— (& k)ey,+ (& k)d§>

250 Sikw? (i (k) Je o

It follows that the contribution of U}(z) to the transmission coefficient is

(4.50) B (k) = — oo — A Z‘% ev,- (& k) ey, (& k)dL.

ljl>1

(c) Contribution of €U to t¢(k):
We study U$ as above. From (4.31) we have, since ey, | (3 k) ~ tho" (k) e’
as ¥ — +00, that the contribution of U5 , to the transmission coefficient is
given by #§ = thom(k)Bs .
From (4. 44) (4.24), and (4.26), we have
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15,4 () = B5 15" (k)

—ey _(a; k) eQinja/e
=5 (ceve (@ k) g (a=) + [9u(ev, 4 (z: R g;(2)],) —
8m*ik =1 j
k)[ ] a ( k) 2m]a/e
g e a; k)| q; e at+i k) ———
87[ Zk\7\>1 vt J Vo~ 52

Using the easily verified identity

[q;(w)0 ey, (2 k)], = dyey,—(ats k)[q;(2)], + cev,—(as k)g;(a—),

(4.51)
we obtain
-1
t5.(k) == Z([dz(evo+($; k)a;(z))],ev,-(ask)
8mik =1
eQmj(z/e
+ [gj(2)0.ev, (w3 k)] e v, (a; k))T
22'7rja/€
87T2]§Z eVo CC k eV(.+('T k)q/( ))] j2
71=1

Finally, summing over all contributions of all singular and/or discontinu-
ity points of V¢, we obtain the simple expression

2inla/s

= 35,0 = g 2 Y Dulev, (xRev,. (K@), 5

acQ acQ |I|>1

(4.52)

O(e*): By snnllar considerations to the above discussion of U " and U <2p ), the terms
Ug = Ué + Ug) in the expansion of ey give a correction to t°(k) of order €
and is therefore subsumed by the error term in the expansion (2.13).

In summary, we have an expansion of t(k), agreeing with the expansion (2.13) in

Theorem 2.1.

ProposiTioN 4.3 (formal corrected homogenization expansion).

(4.53) t(k) = o (k) + et (k) + 215" (k) + t5(k)) + O(e),

where the leading order term, t2°"(k), is the transmission coefficient associated with the
homogenized (average with respect to the fast scale) potential V), t2"(k) is a classical
homogenization theory corrector given by (4.50), and 5,7 =12, are interface correc-
tors given by (4.49) and (4.52).

Note that if V is generic, then since using that ty, (k) and ey (. k) are O(k) as
k— 0, we see the expansion is formally valid for any k € R. However, if V is not
generic, then we must exclude k = 0; see the discussion of Remark 3.1.

5. Rigorous analysis of the scattering problem. In the preceding section, we
applied the classical method of multiple scales to derive a formal expansion for the dis-
torted plane wave ey« (; k) and transmission coefficient t¢(k); see section 3. For suffi-
ciently smooth potentials, this expansion satisfies, at each order in €, all necessary
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continuity conditions as well as the radiation condition at infinity; see Definitions 3.1
and 3.4.

We found, however, that if the potential is nonsmooth, this expansion, while valid in
the bulk, violates continuity conditions (i) at discontinuities and (ii) at strong singula-
rities of the background, unperturbed potential, Vi(z) = Vieg(2) + Vigye(z). We found,
in section 4 that we can, “by hand,” construct interface correctors for each point of non-
smoothness, thereby giving a corrected expansion (bulk expansion plus interface correc-
tors) which is a valid solution to any finite order in €. The expansion of Proposition 4.3 is
explicit through order € with order € correctors.

Question. Does the procedure of section 4 yield a valid expansion with an error
term satisfying an appropriate higher order error bound?

It turns out that the formal expansion is correct with an appropriate error estimate.
However, we obtain this result not by expansion in scalar ¢ but rather in the function
q.(z), with respect to which there is an analytic perturbation theory in an appropriate
function space. Smallness required for control of the perturbation expansion derives
from ¢.(z, z/€) being supported at high frequencies if € is small. The principle terms,
displayed in the expansion of Proposition 4.3 (and, indeed, the terms at any finite order
in the small parameter, ¢), are obtained via small e asymptotics of the leading
order terms in the ¢, expansion. The approach we use was introduced by Golowich
and Weinstein in [9].

5.1. Formulation of the problem. We consider the general one-dimensional
scattering problem

(- Vo) + Q) ) ey =0,

da?
(5.1) eyt (k) — e* — 0, T — —00,
where V;(z) as hypothesized in section 1 and @ is a spatially localized perturbing po-
tential, which we think of as being spectrally supported at high frequencies. ) may be
large in L. As a model, we have in mind Q(z) = ¢.(z) = ¢(z, z/€) with € small.
We introduce the scattered field, ug, via

(5.2) evi (k) = ey, (5 k) + ug(z: k),

where u, is outgoing as x — Foo. Therefore, u, is the solution of
d2
(53) (=t (Vo Q@) = 12 (i) =~ Qe i)

with outgoing conditions (0, Fik)u, — 0, x — foo.
Applying the outgoing resolvent, Ry, (k), to (5.3) and rearranging terms, we obtain
the Lippman—Schwinger equation

ug = —(I+ Ry, (k) Q)" Ry, (k) Qev, (k)
(5.4) = ey (k) = ey, (2:k) — (I + Ry, (k) Q) 'Ry, (k) Qey, (3 k).

Consider now the formal Neumann expansion, obtained from (5.4):
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evi(z:k) = ey i (z k) — Ry, (F)(Qevy,.(z: k) + Ry, (k) QRy, (k) (Qevy, . (z: k)4 -

(5.5) = er (@R + 3[Ry, (@) ey (5 ).

m=0

In this section we show, for a class of @), which include high-contrast (pointwise large)
microstructure (highly oscillatory) potentials, that the expansion (5.5) converges in an
appropriate sense and that any truncation satisfies an error bound.

5.2. Reformulation of the Lippman—Schwinger equation and the norm
[11Q]]]. We seek a reformulation of the Lippman—Schwinger equation (5.4) in which
it is explicitly clear that if @ is highly oscillatory, then the terms of the Neumann series
are successively smaller. Introduce, via the Fourier transform, the operator (Dj)?,

J s/2 1 oo iak 2\s /27
(5.6) (Do)'g=(I—-A)g=o e (1+8%)/25(5)dé
T J-
and the localized function y,
(5.7) x(z) = (z)7° = (1 + 2?)7%, o> 4.

Now introduce the spatially and frequency weighted distorted plane wave, Ev_ (z; k),
given by

(5.8) Byy(a: k) = (Do) xev)(x: k).
With the operator definitions

(5.9) Tp,, (k) = (Do) x Ry, (K)x (Dy).

(510)  To= (Do) x 1 Qx M Do) = (Dy) (&) - Q- (a)°(Dy) ",

Ev, (z; k) can be seen to satisfy
(5.11)  (I+ T, TQ) (B (k) — By, (58)) = —(Dohx Ry, (B)Qev, (2 1)

Here is the motivation for our strategy. Note that T'¢ has the operator (Dy)~t as
both a pre- and postmultiplier. This has the effect of a high frequency cutoff. Therefore,
for highly oscillatory @, T, is expected to be of small operator norm. If the norm of
T Ry, ° T is small, then I + TRV0 o Tg is invertible and we have the preconditioned
Lippman—Schwinger equation

(512)  Byi(:k) = By, (<) — (I + Ty, To) {(Dohx Ry, () Qev, (x: k).

We proceed now to construct a norm, |||Q|||, such that if |||@Q]||| is small, then
Tg,, Tq is bounded and of small norm as an operator norm from L? to I2.

The norm we choose for the perturbing potential is defined as follows:
(5.13) QI =Tl e = I{Do) (2)? Q)7 (Do) Ml ppspze 0 >4

The next result establishes the expansion of the distorted plane waves ey, (z; k) in a
HY(R; x(z)dz) and, therefore, by the Sobolev inequality, an L*(R; x (z)dx) convergent
expansion for ||| Q||| sufficiently small.
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TureoreMm 5.1. Let V satisfy Hypotheses (V) and k € K a compact subset of R,
satisfying Hypothesis (G). Define

1
= maxerl Ty (0]

79(K) > 0.

-7

IFQlll < to(K), then the following are true for all k € K:
o The preconditioned Lippman—Schwinger equation (5.12) has a unique spatially
and spectrally weighted distorted plane solution, Ev . (z; k).
o This solution can be expressed as a series, which converges in L*(R), uniformly
mkeK:

By (zk) = By, (75k) + f: (=Tr,, (k) Tq)"[{Do) x Ry, (k) Qev,(z: k)

m

= By, (z:k) — (Do) xRy, (k) Qey, 1 (k)
+ Ty, (k) To{Do) x Ry, (k) Qev, 1 (w: k) — -

i
o

e [t follows that the distorted plane wave, ey ¢ (z;k), satisfies the approxima-
tion for any M > 1

< QM+
LA(R)

519 oo (usn+ S (R (@) ey (- )

m=0

with u,(z; k) = ey o4 (23 k) — ey (13 k).

Remark 5.1. In the proof of Theorem 5.1, the distinction between generic and non-
generic cases arises through the properties of the unperturbed resolvent, Ry, (k), as
k — 0; see Proposition 3.7.

In the following, we prove that both T Ry, and T are well-defined operators,
bounded in L?. Then Theorem 5.1 follows immediately if @ satisfies the smallness
condition

(5.15) 1Tl < minl Ta,, (Bl )™ = (k).

ProposiTioN 5.2. Let (2)*° Q(z) € L*(R). Then Ty, as defined in (5.10), is a
Hilbert—Schmidt operator and is therefore compact.
ProrosiTionN 5.3. Let q.(x) satisfy the conditions in Hypotheses (V). Then, for e

small,

(5.16) ”TqFHLZ_)LZ = O(G)'

ProposiTion 5.4. Ty, (k) is a bounded operator from L? to L?.

Propositions 5.2 and 5.3 are proved below. The proof of Proposition 5.4 is somewhat
more technical and is found in Appendix C.

We now prove Proposition 5.2. The proof of Proposition 5.3 then follows.

Proof of Proposition 5.2. We begin by introducing the notation

(5.17) Q= x'ox
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Then one uses the following calculation:

(00 @D 1) =00 00 (55 [ e<Ferae)

% (Do) ™' QH(Dy) e dg
Z(i)( ) 1Qﬂ€iz§(1+g2)fl/2ds
Z(i) (1+€2) 1/2%1} eizn(l+n2)’1/QQ@’§dnd§
/sﬁ (/g e_iysf(e“)dé"> / ((€) ()2 QF (¢ — n)dndé
]
S EGLE
¢

with the kernel
518) KO =g [ [ e 0y e 9 g - mands
We want to prove that [|K(z,¢)|*dzd{ < 400, i.e., K € L*(R?). One has

IA((S, 2) :/ K(z,{)e "™ e e2dadl
RZ

=1/ 4/ : (6)7 ) e o6 QA — )z
x, n,

1 Qes—2)
_8n3(1+52)1/2(1+z2)1/2'

Therefore, we deduce

ﬁ
// |K (z,¢)2dad¢ = // |K (s, z|dsdz——/1+8 |Qlj-+22)| dzds.

Since @F € L*(R), one has immediately [, K (z, ¢)|?dzd¢ < oo and

1K (2. )l ey < CllQ | 2w)

Therefore, T is a Hilbert-Schmidt integral operator and is therefore bounded, with
IToll 2 < Cll Q2w

This completes the proof of Proposition 5.2. |
Proof of Proposition 5.3. Consider T Where Q = q.(z) = q(z,%) asin (2.2). From

the proof below, one has 7', f(z =/ ¢ f(O) K (z,$)dE, with the kernel K (z,¢) satisfying
— 1 qg(fs —2)
K (s,2)=

87T (1+52)1/2(1+22)1/2'

Using the decomposition in the Fourier series of ¢.(z) = ¢(z,%), one has

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1042 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

ﬁ( ) X~ qe 1 Zq 227{] r/e

[71>1

and therefore

it (27
YT T

[7]>1 l71>1

One then deduces

/ (s + 2+ @mj /e))

// |K sz|dsdz-8 5||Z>1 ) dsdz
|q] +(2nj/€))]
“we L [t

Iq] n+(2ﬂj/€))|
/d/ T+ - )+ 2)

2
¢+ @ui/e)
J>1/dz/’ll<’” (I+(n—2) )(1+z2):[1 + 1o

Estimation of I;.

2
dz/ dnz(/ dz+/ dz)/ dn
/ iz (14 (0 = 2)? )(1 +27) R p<g /) i

=14+ 11 p with

~ o i

ILA:/ dz/ dn <C’ qﬁ(n—i—ﬂ)
|21>5¢ n]>% 7 =% €

J

€ 2 T
SC’j—gllqglle; and as i — 2 > 27

€ 1
Iy— dz/ dgo,_/ _dz/
b /7<ﬂ In|>2L 1 7P <zl + 2 >

< 2||qj

2/ ! dzd
T e dzan
‘le%l + (’7 - Z)2

2 oforld <3 27

T 2my
€

7U

||L2

Now, summing on j, one obtains I;(e) = O(e?).

Estimation of I,. We first show that if we assume only that 2:|]|>1||¢]]||L2 < 00,
then I5(e) — 0 as € — 0, and therefore, || T, |12, , ;. = o(1) + O(e?) = o(1) as € — with
no specified rate.

We then show that if g, is as in hypotheses (V), then || T, ||,. ,,» = O(€) as € — 0.
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2
Assume Zmzlllqﬁuy < 00. Then

2
|qj + (27 /€))
MH/ o et ey
1
<o 2 ol + 2 /e
< CZ/ \q] o) dr.

[71>1

Note that Z|j‘>1fR|q | dr = ZU|>1HQJ||L9 < oo, implying I, = o(1) as € — 0.

We now turn to the case where ¢, satisfies the condition in Hypotheses (V) in order
to establish that || T, || . O(e) as € = 0. The estimate for I,(¢) is as above:
I,(e) = O(e?).

Now we estimate I,(€) using the fact that, since q] € L? and (q ) € L?

/ 1 ﬁ —imdl,

1 A1 . . .
Ly ( [ @ @e s - danye o+ q§<al+>e“l)\
a

=

<o (n(qﬁ-)’uz +§é[q§<wﬂ%> = O@'

Therefore, one has
) 2
oy faf |q] +(2n5/e)
\J|>1 |<% L+ (n—2)*) (1 +2%)

C/ 1+Z>dzlz>:1/</(ﬂ€])21+( dn<0'22

|J|>1

2

14 (0)] =

22 = | Kell @2y = I + Iy = O(e). This completes the
proof of Proposition 5.3.

5.3. Application to the transmission coefficient, (k) = ¢[k; @]. This section
is devoted to the proof of Theorem 2.2. The heart of the matter is to view t(k) as a
functional of the perturbing microstructure potential Q(z),

(5.19) Q@]

and to use the Lippman—Schwinger expansion of Theorem 5.1 to expand [ Q)] for small

el
(5.20) Q] = 1" + 6[Q) + [Q. Q1 + 6,[Q. Q. Q1+

where ¢;(Q, Q. ..., Q] is j-linear in @. The transmission coefficient expansion of
Theorem 2.2 is recovered from the small ||| Q||| asymptotics of the first several terms
of the expansion of ¢[g.]. Finally, the error terms are estimated.
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Recall that, from (3.7), the transmission coefficient, ¢y, (k), associated with the dis-
torted plane wave ey, (z; k), is given by

b (k) = lim e ey, (z; k).

We denote the transmission coefficients of ey, ,(z;k) and ey, ¢ 4 (z: k), respectively,
by (K) = tok) = thom (),
ty(k) =t(k) = $Elfme’ikzevo+@+(:c; k) = thom(k) + lim e "y (z; k).

To obtain the desired leading order expansion of #(k) of Theorem 2.2, we now derive the
small ||| Q||| asymptotics of the linear and quadratic terms in @ of (5.14).
Calculation of #;[Q]. One has, from (3.11), that

z ;k
—Rvo(k)QeVU+(m;k):[ Q) ev,+ (¢ k)evu_(c;k)dée;“T(ﬁf,m)
k
/ Q¢ 3V0+(Zf k)eV0+(Z: k)d¢g 6;Zk§1im)
~ t[Qe™* as T — oo,
where
(5.21) tl 2Zk/ Q)ev, (& k)ey, (&5 k)dE.

Calculation of #,[Q,0]. One has, from (3.11), that

Ry, (F)QRy, (k) Q) ey, (z: k)

ik
- [ a@rne D) er,. (€ Re, (¢ Rz B0
LRy
oo _ ;k'
[ @(c)Rvo<k><Q<¢>evo+<c;k>>evo+<c;k>dce;;k—girﬁ
~ tQ[Q’ Q]eikx7
where
6lQ. Q=55 [ QR (NQE)ev,, (G ke, (G
= st g | Q€)ev, GR +10)a with
©= [ Qv hen, by, (6
(5.22) 1) = ;“‘ QDev, . (5 Wev, (= Key, (& k)dz

Estimation of the error terms. The final step for the proof of Theorem 2.2 con-
sists of a bound on the contribution to the transmission coefficient from the remainder
term in expansion (5.20). This is given by the following theorem.
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TureorREM 5.5. Let K denote a compact subset of R, satisfying Hypothesis (G).
Introduce for k € K

(5.23) trem (K Q) = t(k; Q) — 15°" (k) — 1,[Q] — 1,[Q. Q).

Then we have the following, uniformly in k € K:
1. If V has compact support, then t...,(k) = O(]||Q|||*).
2. If V is exponentially decreasing, then t..,(k) = O(|||Q|||*7).
3. If (x)p* Vy(x) € LY(R) and (z)? Q(z) € L*(R), p > 8, then there exists
2 < B <3 such tht (k) = O(|| Q).
Proof. Tt is convenient to first introduce

(5.24) vem = —(I+ Tr, To) " (Tr, Tq)*(Do)xev, (z;k)

= (Do) xus + (Do) x Ry, (k) Q(z) ey, (z; k)
(5.25) — (Do) x Ry, (k) QRy, (k) Q(z)ey, (73 k).

Using (B.4), one deduces that (Dy)xey,(z;k) € L2 with

KDo) x evy+ i = Im)xevys(m Bl
<lx@ev, (@ k) + [10:(x (@) ey, (w R)I 2 < lx (@) (@) -

Therefore, thanks to Propositions 5.2 and 5.4 and using (5.24), one has, for ||| Q||| small
enough,

(5.26) from € L2 and  ||frenllz2 < CyllIQIIP.

The following pointwise bound can also be deduced:
(D0 oo < | / o) < 1)l el

which implies
(5.27) X (@)(Do) ™ frem(@)] < Crx M@l Q.
From (5.25) we have that t.,,(k) is the complex number for which

T—00

We now use the decay properties of the potential V to estimate the magnitude of
trem (K) for [[| Q|| small.

Case 1 (V has compact support). Assume suppV C [-M, M], M > 0. Using the
explicit representation of Ry, , (3.12), for 2 > M we have
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1 z
Ry (8) Qe () = g [ a@en @ hen, @ hen, (ke

1 +00
+Wg‘>m . QQ)ev, (G k)ev . (G R)ey, (z:k)dd
1 +00
~ 2ikthom | Q) ev, (Gik)ey, (Ck)ey,y (23 k)dS

_ Q)]

fhom ey (1 k) = t[Qlette.
0

Similarly, for the quadratic in @-term, we have

Ry, (k) QRy, (k) Qey, (z:k) = Q. Q™.
Therefore,

us = 1[Qe™ + 5[Q. Qle™ + toy ™,
where, for z > M,
X Do) frem(7) = trom (k)™

Therefore, using the pointwise bound (5.27), we have

[trem (B)] < CxTADIIQIIP = O QIIP).

Case 2 (V is exponentially decreasing). Assume |V (z)| +|Q(z)] < Ce " for

some C, @ >0 and > M. As in the first case, the formula for the resolvent (3.12)
leads to

Ry, (k) Qey,, (z: k) = t,[Qle™ + t;h[og] (ev, s (a: k) — thom gikr)
0

1 0
+WA+ Q)ev,+ (& k)(ev, 4 (i k)ey, (x3k) — ey 4 (z k) ey, (5 k))dS.

Using (B.4), one can easily bound for z > M

1 +00
2iktgo™ J.

Q) ev, (& k) ey (G k) ey,—(z: k) — ey (zs k) ey, —($5 k))dS
<c / " Ceelligyde < e 2,
Now we use the estimate (B.3),

ma(ah) 1] < 20

< [T s Vat s,

so that |ey, (23 k) — thome™®| < Ce /2" for z > M. Finally one obtains

|Ry, (k) Qey,, (m: k) — t,[Q]e™*| < Ceo/?,
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A similar estimate holds for u, = ey (z; k) — ey, . (7; k) and for the quadratic term
Ry, (k)QRy, (k) Qey, (5 k). Therefore, for x > M, we have

X Do) ™ frem () = trem (R)e'™] < Ceme/2e.
Again the pointwise bound (5.27) implies, for z > M, that
|t (B)] < Cox @I QI + Ceme/>e.
Finally, choosing z = — & In|||Q|||, one has, for |||Q]|| small enough,

e (B)] < CIQIP A+ (I [l[QIN) < CHIQIP

Case 3 ((z)*™1 Vy(z) € L}(R) and (z)? Q(x) € L*(R) with p > 8). We use again the
formula of the resolvent (3.12):

! Q m ik
R, (R) Qe () = 1]Qe + A (e ) — homei)
0

1 +00
_|_ R
2iktg™ Jo

QQ)ev, (& k) (ev,+ (G R)ey, (23 k) — ey, (z k) ey, (¢ F))dC.

Using the estimate (B.3) leads to
hom tkx > 1 +1 1
lev,+ (@3 k) — (" (k) e™| < C ; W(l + s Vi(s)|ds < Cw” Vol o

s|)

Therefore, one has

s | QEen R er, € Rer, (@)~ ey, (s Ry, (@ R)]
0 x
0 (2 o< O 2 |
<cf W@%VQW+Mﬂ“<Mﬂ@V1J“mW
from which we deduce
Ry, () Qey WMnmw“<‘7QVﬂmﬂ+H:anw)
‘ ot ~(z)r (ol 77

Similar estimates hold for u, = ey (2:k) — ey, (2;k) and for the quadratic term
Ry, (k)QRy, (k) Qey . (z; k). Therefore, for > M, one has

o C
|X71<D0>71frem(m) - trem(k)e”w' < W || V0||L1~/’“'

Since x(z) = (z)7® with « > 4, the pointwise bound (5.27) yields

1
3
tem(F) < Cy(@)*[[| QIII° + O
so that choosing z = ||| Q||| ~3/("*%), which tends to infinity as ||| Q||| tends to 0, one has
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[t ()| < CI1 QI

It follows that with @ > 4 and p > 2«, one has

3p
— B —
[ tem (R)] = O QIIIF), 2<ﬂ_p+a.

This completes the proof. O

5.4. Completion of the proof of Theorem 2.1. In this section, we show how to
derive the corrected multiscale /homogenization expansion of section 4 from the rigorous
results of the previous section with a potential V = V| + ¢, satisfying Hypotheses (V)
and using Proposition 5.3. Theorem 2.1 follows then as a direct consequence.

The small € asymptotics of #{[¢q.]. We use the decomposition of ¢, in Fourier
series in y

ge(z) = ( > > gj(@)erinile/)

[71>1

that we plug into #[¢.], given in (5.21):

. . +00 9
lad =5 Sotlad with lad = [ g @en, @ Rey, (@R

lj1>1 o

We assume that g¢; is piecewise C® so that there exists —oo = ay < a; <
. < ay < ayyy = oo such that ¢; € C3(ay, agy1). Then one has

j 1 @141
t{'l[Qe] = / q;(Q)ey,+ (G k)ey,— (ke 2inj(C/e) ¢

2ik J,
N -1 a1
20k,

:ﬁ/)amOE(QJ(C)6VU+(C,I€)6VU (C k))(

8¢(qj(é,')evo+(é,' k)EVO (Z: ]{,‘)) ;[J 21]‘[] £ /e) dé’_|_b]l

2
2inj(¢ /e) pil o piid
2171]) ‘ EH bt by

with the following boundary terms:

7.l —€ — . . imj(a €
1 :m(%(am)evoﬂam,k)evr(am,k)€2 i /e)
— q;(a)) ey, (a k) ey, (a; k)e*mila/),
-2
il —1€ . . inj(a €
by :W(Ors(%(f)evoﬂg,/f)evr(é“sk)|c=a;+1€2 e /e)

= 9(;(0) ev,+ (& k) ey, (& F)|o—y; (/).

Now one has
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(g (D)ev, s (mR)ey, (k) = %<x>evn+<x; Pev, (:h)

(x) e, (zk)ey, (z:k)
+2qj(x) drev, i (23 k)9, ev, (k)
+¢;(2)((FFev,. (2 k) ey, (z: k)
+ ey, (wh)dey, (z:k)).

The first three terms are piecewise C! so that oscillatory integrals predict that

(8] d2q]~ d
[ (G ©en @ @0 + 5 @0l Ghen, &)

(528) +2q](é’)8§ev0+(§, k)dgevn,(éj, k))) 62“”@/5)(15 = 0(6)

For the fourth term, we use the fact that ey, ;. and ey, _ satisfy (— dd—; + Vy—k)u=0s0
that one has, with Q; = {z, ....zy_1} N (a;, aj;1),

Hlad = 8kn2j2 > 2¢i0(w) vy (i ke, (zi: k) e T+ 6+ 0/ 2)

T;€Q;

8]”72] Z z)ey, (T k)ey, - (z; k))]

T, €Q;

sz

+ b+ O /52).

Finally we have #[q.] = > 15" 37551 '1g.] + O(€%), and one immediately recovers
terms of the expansion of Theorem 2.1:

M-1 ‘
Z Z bt = ett and

=0 ]jl=1

M-1
Z Z 8k7‘[2 ) Z EVU+ T, k)evo (33; k‘))]a7 e?inj(z;/e) — €2t§ + 0(63)
=0 |j> ;

so that t;[q.] = et (k) + €*t5(k) + O(€?).

The small € asymptotics of #,[q.,q.]. Let us assume that ¢ is fixed outside
supp Vg, and outside the discontinuities of ¢; d,¢;. (This particular case arises for a
finite number of values of { and therefore brings no contribution to the transmission
coefficient, when integrated.) Then integrating by part leads to the following expansion
for € small:

Zinj(z/e)dz

QO ==en &) [* o Der,. (Ren, () 31—

o €
- 47.[2]'2

T 0,(gy (evs (2 B)ev (2 B)) e2mi /e oc)

¢
ev,+(C: k) (/ 0§(qj(z)evo+(z;k)evo (2 k))e2imi (2/€)q 4.
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The first term, treated as previously and using the fact that the functions g;, ey, ,, and
ey, are piecewise C%, brings a contribution of order O(e?).

Now, using the same analysis on I}(¢) and the Wronskian identity (3.8), one obtains
the following expansion for the —d¢ integrand of (5.22):

L) + THE) = (ev, (&R (g;(E) v, (G ) ey, (& F))
— ey, (E5 k)9 (g;(O)ev,+ (& k) ey,—($3K))) + O(€?)
= —Ziktgomqj(é’)eVUJr(C; k)e*mi€/e) 1 O(e?).
Therefore, one has

1
t , 2urm {/6 k
[Qe Qe] 2Zk 2Zl€thom E 47_[ ] / E qm( (é’ )

X m|>1

(—mkthmqj(c)emc' k) 2/} + O(c?)

(5.29) / ]((”V) ev,—(Csk) ey, (§ k) + O().
o0 [il>1

8l<:7r

One recovers finally t;[q., ¢.| = €t5°™ + O(e?).

Estimate of ¢¢.,: Using Proposition 5.3 with Theorem 5.5 yields the following
proposition.

ProposiTioN 5.6. Let K denote a compact subset of R, satisfying Hypothesis (G).
Introduce for k € K

(5.30) teom (k) = t6(k) — thom (k) — et§ (k) — e2(thom (k) + t5(k)).

Then we have the following:
1. If V has compact support, then t&.,, (k) = O(e?).
2. If V is exponentially decreasing, then t&, (k) = O(e?7).
3. If ()P Vo € L', p > 9, then there exists 2 < B < 3 such that i, (k) = O(eP).
The proof of Theorem 2.1 is now complete.

Appendix A. The numerical computations. In this section we outline the nu-
merical method we used to obtain results displayed in Figures 2.1 and 2.2.

We approach the computation of ¢(k), the transmission coefficient associated with
the potential V(z), by numerical approximation of the function

u(z; k) = ey_(z; k),

1
t(k)
where ey _(x; k) denotes the distorted plane wave generated by an incoming wave from
positive infinity; see (3.7). We rewrite the equation

(_ di; + V() - k2) u(w k) = 0,

equivalently in terms of the variable U(x;k) = (u(z; k), d,u(z; k)T as the first order
system

(A.1) LU= ( V(x)o_ . é) U,
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Note that if V is assumed to have compact support (suppV C [-M, M] with M > 0),
then

—ikx
A2 Ulx; k) = (.3 o for z < —M,
—ike ikx
Tg((]»k)) eikx ﬁ efzkz
(A.3) Ul k)= . forz > M
ik r(k'l> eik’x i_ke—ilmc
t(k) t(k)

Starting with the initial data given by (A.2), we numerically solve the system of first
order ODEs defined by (A.1) up to z > M, and (A.3) allows us to recover the desired
value of (k). At the location of the singularities z = z;, the jump conditions (3.3) allow
us to obtain U(z+; k) from U(z—;k) via a transfer matrix. Between the singularities,
one approximatively solves (A.1) using, for example, Runge-Kutta formulae. We used
the MATLAB solver ode45; see [14] for more information about the MATLAB
ODE Suite.

We conclude this section by stating the precise functions and parameters used to
obtain the plots displayed in Figures 2.1 and 2.2.

For the case when V|, has singularities, as in the left and center panels of Figure 2.1,
we set

Vo = Vng(z) =40(6(z) + 6(x — 0.5) + 8(x — 1)).
Otherwise, we set
Vo= Vie(®) =40(8,(2) + 6,(z—0.5) + 6,(z — 1))

with 6, (z) = Lﬂe"’?2 /P* the smoothed out approximation. One has p = 0.1 for the right
panels of Figures 2.1 and 2.2 and, respectively, p = 0.01 and p = 0.001 for the center
and left panels of Figure 2.2.

We set ¢.(z) = f(z)sin(2mz /e), with f(z)=0 for z€ R\[-2/3;2/3], and
elsewhere

{ f(z) =40 in the discontinuous case (left panel of Figure2.1) or

2
f(x) = 40e” @2AE27 in the smooth cases (all other panels).

Finally we set k= 5.5 since it corresponds to a case where t(})‘om(k) approaches unity
when VO = Vsing‘

Appendix B. The Jost solutions. In this section, we provide a construction of
the Jost solutions and a rigorous derivation of their properties, including bounds that
are used in the proof of Proposition 5.4, Appendix C. We recall that, by Definition 3.2,
the Jost solutions are the unique solutions f, (z; k) of

2

(B.1) (Hy — )u= (_d

ot W(z) — k2>u =0

such that f. (7 k) = e*™**m (2; k) and
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lim my (z; k) = 1.
r—+00

The existence of Jost solutions for regular potentials W € L'3/2%(R) is established in [4].
The generalization to potentials allowing a singular component

W - Wreg + Wsing Wlth
W »G L1‘3/2+(R)

Wing E c;0( z;), where ¢;,z; €R, z; < x4y

can be found in [5].
As an intermediate step of the proof, one introduces an equivalent definition of the
Jost solution as solutions of integral equations. In the case where W is regular, one has

my(zk) =1+ / " Dy(C — 1) W()ma (& R)de,

B.2)  m_(zk) =1+ / Die— OWEOm_(&:K)Ae,  Dy(a) = / 20k qg.
—00 0
If W has regular and singular components, we work with a variant of (B.2):

my(z; k) =1+ /oo D¢ — ) W(O)m, (& k) + ZDk(xj —z)c;my (x5 k),

,’L‘j>,’1)

m_(x k) =1+ /j Di(x =) W()m_( k)dS + ZDk(xj —x)c;my(z; k).

Ij<:I

From these integral equations, one deduces

i 1+ max(—z,0) [
|m+(95’k)*1| §1+|/€|L (1 + [s])[ W(s)|ds,
) 1+ max(—z,0) [-=
(B.3) m_ (a3 k) — 1] < lel/m (14 [s)| W(s)|ds.

Then, since m_ satisfies
a,m,(z k) = /Oo D W (tym, (k)  and

o (wih) = [ Dilt = ) W(oam, (60 + [ 0Dyt ) W(om. (80),

-
one easily obtains the uniform bounds

[m. (k)| < C(a), |0am (23 k)| < C,

<
(B4) Oy (22 K)| < C{z)?. |0,00m (2:K)| < Cla).

where C is independent of k. The same bounds clearly hold for m_(z; k).
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Appendix C. Proof of Proposition 5.4. This section is dedicated to the proof
of Proposition 5.4, namely,

Tg,, (k) = (Do)x Ry, (k)x(Dy) is a bounded operator from L?to L*.

This result has been proved in [9] for V; = 0 and spatial dimensions n = 1, 2, 3. We
generalize this result in the one-dimensional case for Vi = Ve + Ve as in (2.1) so
that singularities in the potential are allowed.

Our proof requires the use of the generalized Fourier transform, described in terms
of the distorted plane waves. We introduce

w-o:i{ evpe() 20, :;{ HOym (z:0)e™  £>0,
s \/ﬁ evof(x; _Z_:) C <0, — \/ﬂ t(—ﬁf)m,(az; _C)emj C <0

with m_ (2;¢{) — 0 as  — oo and m_(z;¢{) — 0 as z — —oc.
Then F and F*, the distorted Fourier transform and its adjoint, are defined by

2 > I?
F: -

¢ Flpl&) = [T ¢p(x)¥(z, §)dx,
P I? - 1?2

D [1 ()P (x. £)dE.
One has the property
P.¢p=F"F¢,

where P, denotes the spectral projection onto the continuous spectral subspace asso-
ciated with the operator

To construct a smoothing operator which commutes with functions of H, it is
convenient to introduce, using the distorted plane wave spectral representation
of H,

(©2) (Dy)f = (=8 Vi) 2 = [ @ F ¥ n)an
Therefore, one has
(C.3) Tr,, = (Do){Dy,) " (Dy,) xRy, (k) x(Dv,){(Dv,) (Do)
(C.4) = (Do)(Dv,) " o Ty, © (Dy,) " (D).
There are thus three terms to estimate. In order to deal with (Dy)(Dy,)~! and

(Dy,) *(Dy), we introduce the classical wave operator W and its adjoint W* defined
by

(C.5) W =s— lim eitH g—itHo,
t—o00

(C.6) W* =5 — lime!Hoe i p,
t—00
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with H = —02 + V, and H, = —0d2. The wave operators have the property to intertwine
between the continuous part of H and H, so that, for any Borel function f,

fH)P, = Wf(Hy) W
Especially one has (Dy, ) = W(D,) W* so that
(C.7) (Do)(Dv,)~" = (Do) W(Dg) ™' W*.

Let us state the following result that has been introduced in [18] and extended in [5]
to potentials Viy = Ve + Ve as in (2.1), thus allowing Dirac delta functions.

Lemva C.1. W and W* have extensions to bounded operators on H* for
k=-1,0,1.

Using this last result and the known fact that {D;)* is bounded from H* to H*~*, we
obtain directly from (C.7) that

(Do)(Dy,) 'is bounded from L*to L?.

Similarly,

Dy V71{D,)is bounded from L? to L?.
(Dy, )

In order to deal with the last term of (C.4), we decompose TRVU as a sum of four
operators, commuting (D).

TRVOE<DV0>XRVU(k)X<DVU>
=(x(Dv,) + [(Dy,). x) By, (F)((Dv, ) x + [x- (Dv,)])
=x(Dv,) By, (){Dy,) x + ((Dv,), xD)(Ry, (k) (Dv,)x)
+ (X(Dvy ) By, (B)([x- (D)) + ((Dv, ) xD (R, (B))([x- (Dv,)])
A+ AP + AY + A
Each of these terms is proved to be bounded from L? to L?. We treat each term sepa-

rately in Propositions C.2, C.4, C.5, and C.6.
Proposition C.2. A; = x(Dy, )Ry, (k)(Dy,)x is bounded L* — L?, i.e.,

(C.8) IX{Dv,) Ry, (E)(Dy,)xgll 2 < Cligll 2. g€ L*(R).

First we commute (Dy, ) and Ry, . It is obvious that R, and (D) commute so that, using
the wave operators introduced above (so that (Dy, )= W(Dy) W* and Ry (k)=
W Ry (k) W* with W unitary),

Ar = x(Dy,) Ry, (k)(Dy,)x
= x W{(Dy) W* W Ry(k) W* W (Do) W x
= X WRy(k){Dg)> W*x
= xRy, (k)(Dy,)*x.

Then, applying the identity (Dy,)? = I — A + V), one obtains
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A= (1+F)xRy, (k)x + x>
Finally, using (3.11) together with (B.4), one has the pointwise bound
[ Ry, (. y: k)| < Cl)(y)

with C uniform in k. It follows that, for f € L?,

DSl = [ [ R G @s@as < O
so that A; is bounded from L? to L? with
(C.9) ALl 22 < Clx(@){@)32 + [x]2e)-

Before carrying on with estimating the term Ag‘}), let us state the following lemma.
Levma C.3. Let K be defined for (§,n) € R x R by

(C.10) K(En) = () — () /C FGEWE )0,

Then K(&,n) satisfies the following upper bounds:

(C.11) |K(&.m)

)

|S7X
1+&—n

!

(C.12) |0, K (&, )| + [9: K (&) SWX—UI

with the C, and C' constants depending on the function x with

2 .
0, = c(Z 14eyatxll,, + 1€)Xl e + ||<c>2x|L?>,
=0 ’

2 .
¢y = c(z 1€ 10lxl, + Xy + ||<¢>3x||Lgo).

j=0

Proof. We consider the case where £ > 0 and n > 0. The other cases follow simi-
larly. Therefore, one has

& n) =& —m)IEmn)  with

Ig.n) = / BEEW(E: )3 ()AL = / - HEN (G BV (n) me (¢ ) (2L
¢ ¢
(C.13)

Throughout the proof, we will use extensively the uniform bounds on m, given
in (B.4).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1056 VINCENT DUCHENE AND MICHAEL I. WEINSTEIN

First, by the uniform boundedness of #(§) and ({)~'m_ (£, €) in ¢ and &, one has

[1(&.m)] < |¢(&)|[t(n I/I iy (GO T m (GENOD (OIS < CIE* X -
(C.14)

For |n —&| > 1 we write

(C19) I = ot M) / (%em f>> TEnm. (G Ex (0

_ v .= it T s
(C16) gy ) [ e G, (GO

The most singular terms in the integrand of (C.16) are those containing 0gm+. In par-
ticular, recall the relation 0?2m, = —2ikd,m, + Vym,, where V| contains Dirac mass
singularities. Thus, for |§ — n| > 1, we have

2 .
©1n il < (Y1l + el + 1€l )
i=0 ’

Applying (C.14) for |n — &| <1 and (C.17) for |n —&| > 1 yields

1
[1(&.n)] < me-

Finally, since [K(£n)| = [I(&mI|(&) — (n)] < ClI(Em)||e — nl, multiplication by
|€ — n| implies (C.11).
Using the same method as used previously, one obtains similarly

1
o, 1(&, ¢ —.
‘n (E ’7)| X1+|g_~ n|2

Finally one has |0, K(&.7)| < [9,1(&,n)||(§) — (n)| 4 [1(£.n)| so that we deduce the first
part of (C.12). By symmetry, one obtains the same estimate for d; K(&,7), which con-
cludes the proof of Lemma C.3. 0

Proposition C.4. AV = [(Dy,). x]Ry,(Dy,)x is bounded L? — L?, i.e

(C.18) 1Dy, ). XIRv,(Dv)xgll 2 < Cligllzz. g€ LX(R).

Proof. Our strategy is as follows. We view the operator A(I(? as a composition of two
operators

AW =[(Dv,). 1] » Rv,(Dv,)x

and first find a representation of each operator with respect to the distorted Fourier
basis. We then directly prove the boundedness of Al H . I’ » I? using this spectral
representation and an appropriate frequency localization argument.
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In terms of the distorted Fourier transform, one has

{Dy). x1f(@) = (D) x] ( / ‘P(fc;n)f[f](n)dn)

n

(C.19) / FUIM Dy, ) (X (@)% (1)) — x(Dy, (s 1)dn.
Now, since (Dy, )¥(z;n) = (n)¥(x;7n), one has
(Do) ()% ) = /S () /C (Dy, ) (¥( ) (O B(E BN AL de
= [@) [ 2@ Dy, FEE s
4 4
- / W(a:£) / X (W) (& FEEALdE.
& ¢

Therefore, we finally deduce

Dy x / FIf ( / / W) PEE () ((E) — <n>)dCd€> an
(C.20) - /é W(a:£) / (&) — () /C W(EEW(C: ) x () FIf)(n)dnds.

To represent the operator Ry (Dy,)x in terms of the distorted Fourier basis, we
note the following:

FIRy (Dy)xgl() = / Wz m)(Ry, (Dy,)x9)(2)dz

B A(RV°<DVU>W)X(Z)g(zdz

- /z 7}2<i>k2 lP(ZQ U)X(Z)g(z)dz

(C21) A Flag.

Combining (C.20) and (C.21), one has

(D). IRy, (D) xo(z) = /s () / (&) — (n)) / FEOW(E ) ()

¢

n2<i>k2 Flxgl(n)dndé

(C.22) - /E W £) T [g) (£)de.

By the Plancherel theorem, the L? estimate of A(I‘}) is equivalent to the bound

/ GOV )y (<§> <>)<n>f[xg]dn

1T gl 2 =

< Cligll -
L

(C.23)
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We now proceed with a proof of (C.23). First we define ¢, to be the positive
smooth function satisfying

@«-s, equal to one for [k| < &, /2, zero for k| > §), and symmetric aboutx = 0.
(C.24)

We use ¢ to localize at frequencies near n = +k and frequencies away from n = +k,

(C.25) TI[g) =TI [g] + TI[g).

where

(C.26) Ti[g] / KEm) s 11— 0, DI Xl (n)en.
(027) Trllg“u /Ké TI kQ (pHn\ [k||< 50(7])‘7:[)(9](77)(171

with K defined as in (C.10) by
K€1) = (&) — (n) /{ B mx ().

I1
Bound on Ty,

[2](€). We bound the expression
(C29) Tl = [ K(en) 1= oo (Il ).

By Lemma C.3, K (£, n) satisfies the following pointwise bound, which is valid for all
&nelR:

1

|K(&.n)] < me~

Recall now the special case of Young’s inequality:

[Bxglly < [|Allllgll:-

This, together with the pointwise bound of K(&,7), yields

7i2lalla = | [ ) sl = oy s Il

2
LE

1

(m)

1 2
sl weteatnie < oo
(n) 2

(n) 1= @15, MIF x gl (n)

<C —_
= Yy n”— i

L L

< Cyllxllz<ligl -
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Bound on Tlléar[g](g)'
Tﬁﬁﬁ.[g}(s)E/K(é n)Lw <Inl=tkl<8, (MF [x gl (n)dn
# R 0) T Peslnl- i<ty

F F
=5t | KEn oo (T - L LI ay

n—=k n+k
[ e Flxgl(n) . Flxgl(n)
:/A (é,n)ﬁdTH/A (E,U)ﬂdﬂ,
where
(C29) N €)= 5 @i -0, (DK E 1)

and K(&,n) is displayed in (C.10). Note that by Lemma C.3,

1

(C.30) IA®(&,n)| < C, m‘/’eguq|—\ku<ﬁn(n)-

We bound the first term in the above expansion of T{lggfr. The second term is treated
similarly. We have

/As(évﬁ)wdn = S°(&) + E°(&) + Re(§), where

S(E) =A°(§, k)/wlxnkquﬂdm
e©= [ en-aen Z
Re)= [ e XAy an,

One bounds R? using (C.30) by

4C 1
IRe|l < 2 —H 1@t i1-s0MFx G
L 8o || 1+1n] p e<|ln|—&] L
4C
(C.31) < ool ol

Moreover, we have

A (&) — A°(&. k) ‘
‘ n—k < 10y A€ <o <py-ri<a, /23]

(C.32) < Lpyp<s, ([0, K (&) [(n) + |K (&, 1))
From the estimates of Lemma C.3 and using Young’s inequality, one deduces

(C.33) 1€ < Cylix < gl z2-
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We treat the singular integral &° as follows. By antisymmetry of the function
(n = k)" Locpy k<o, /4(n), we have

Flxgl(n) — Flxgl(k)

1
/lsS\W—kIS&)Mm]:[xg](n)dn = / Le<jy—ti<o, /4 n—k dn.
Moreover, we have
Flxgl(n) — Flxgl(k)
(C.34) — < |0nf[Xg](77)|n:;,e{gg|n7k\g50/4}|-

By the uniform boundedness of () ~%d,m_ (¢, n) and (£) 29, m_({,n) in R x R, we have
that

10, (Flxslm)] = ] / an—‘P(C;n)x(C)g(é“)dC‘

< sup {720, P& Xz llgll 2 < CIE xlizllgll 2
(¢:n)ERXR :

Therefore,

1
[ 1wz, ) s Flralnidn] < €GNl

from which it follows that

(C.35) S E] < CIUO x izl gll 2 A° (€. B)] < Cxﬁ”QHL%

Thus we have, from (C.31), (C.33), and (C.35),

I Theacl)ll < Cllgll-
Using the estimates of 7% [g] and TZZ [g] yields (C.23). Therefore, A(I(}) is bounded

from L? to L?. This completes the proof of Proposition C.4. O
Proposition C.5. Al = (Dy,)Ry,(k))([x.(Dv,)]) is bounded from L* to L*.This
follows from Proposition C.4 and duality.
Finally we consider the operator Ap = [(Dy,). x] e Ry, (k) o [x.{Dy,)].
ProprosiTioN C.6. The operator Ay is bounded from L? to L?.
Proof. By (C.19), one has

Agpilgl(a) = /E W(a:£) / (&) — () /g BT )X ()AL

1
772—k'2

= [ ¥ [ K o FIUDw). ol mands

FI(Dv,)» x1gl(n)dndé

(C.36) - /S (2 ) / K(En) s | K(n.0)Fls)0)d6ande.
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By the Plancherel theorem, the L? estimate of Ay is equivalent to the bound

©37) 17|l H/Kg n) /K 0, 0)F[g](0)d6dn

< Cligll -
L

We now proceed with a proof of (C.37). We use ¢, defined as in (C.24), to
localize at frequencies near n = +k and frequencies away from n = %k,

(C.38) T g] = Thiulg) + TH[9),

where

(C.39)  Tildl /KE (L = @p—jr<5, (M kg/K n,0)F[g](0)dodn,
(C.40) Thearl9] /KS 1)@ in|— k|6, (1 kg/K n,0)F[g](0)dodn.

Bound on T}{![g](€). We recall Lemma C.3, stating that K (&, n) satisfies the fol-

far
lowing upper bound:

1

|K(&.n)] < me

with C, = C(3% ||<C>j02XHL1 + H(C)QX”Q + 1{&)? x|| 1 )- Therefore, one has the point-
wise estimate ‘

[ xooFao] < | g ol

Moreover, for ||| — |k|| > 8y, one has (1 — @_ s, (1)) In* = k*|~" € L. Therefore, by
Young’s inequality,

1
5” []HL 1+|‘ LZ

1 2

L+ [ llg

1

) (1- <Pun\7|ku<ao(77))m L1||9||L2 < Cyllgllp-

far

I TE 9l < CH

Bound on Ty [2](®).
Thes(g) /KS 1)@ 1141 <6, (71 kz/K n.0)F1g](0)d6dn
E/m@mmtlemme@wm
) 1
+A@WE:EAKW@fM@MM
with A (&,1) = 57 K (&, 1)@ o<y —pi]-8, (1)-

Note that by Lemma C.3,

1

C.41 ANED < Cp—— g s ().
(C.41) IA®(&, )] < KT = ] Pesinl-H 5,(1)
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We bound the first term in the above expansion of ngﬁ The second term is treated
similarly. We have

[re n>%dn =S +EEQ TR, where
—Af(E.k / / K(1.0)F(g)(0)d01, ),y <5, ud.
£ ()= /”“” ’“Ek/K' (001, s, jacn.

Re(£)= / AS(E. ) / K(1.0)F[g)(0)d01, o5, udl.

As in the proof of Proposition C.4, the kernel of the integral operators defining £°
and R are nonsingular, and we have uniformly in e,

1€ 2 + IR N 2 < gl -

We treat the singular integral S° as follows. By antisymmetry of the function
(n — k)M ocpy—g<s, 11(n), we have

S(é) = A(E, k)/ e<|n— k\<60/4 /K (6)dodn

— [ teci sty [ FEO=EE ")ﬂ J(6)aoa.

Moreover, Lemma C.3 leads to

(C.42) ' Km.6) — kK(k’ 6)‘ —

< 10y K Ol eip-nzo, /0] = Oy o

Therefore, by Cauchy—Schwarz inequality,

K(
[FO=EED ig0)a0] < gl

from which it follows that

1

(C.43) S (E) < A& ) Me<iy—ri<o, /all 191l < C&mllglln

Thus we have || ThL,[g]ll, < C%lglls- Using the estimates of TH[g] and TM,,[g]
yields (C.37). Therefore, Ay is bounded from L? to L2. This completes the proof of Pro-
position C.6 and hence the proof of Proposition 5.4. 0
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