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OSCILLATORY AND LOCALIZED PERTURBATIONS OF PERIODIC
STRUCTURES AND THE BIFURCATION OF DEFECT MODES*

V. DUCHENET, I. VUKICEVIC}, AND M. I. WEINSTEIN?

Abstract. Let Q(z) denote a periodic function on the real line. The Schrédinger operator,
Hg = —02 4+ Q(x), has L2(R)-spectrum equal to the union of closed real intervals separated by
open spectral gaps. In this article we study the bifurcation of discrete eigenvalues (point spectrum)
into the spectral gaps for the operator Hg, 4., where ge is spatially localized and highly oscillatory
in the sense that its Fourier transform, @., is concentrated at high frequencies. Our assumptions
imply that ge may be pointwise large but ge is small in an average sense. For the special case where
ge(z) = q(z, z/€) with g(z,y) smooth, real-valued, localized in z, and periodic or almost periodic in
y, the bifurcating eigenvalues are at a distance of order € from the lower edge of the spectral gap.
We obtain the leading order asymptotics of the bifurcating eigenvalues and eigenfunctions. Consider
the (bs)th spectral band (b« > 1) of Hg. Underlying this bifurcation is an effective Hamiltonian
associated with the lower spectral band edge: HSg = —0z Ay, cgOx —e2By, coff X0(x), where 6(z) is the
Dirac distribution, and effective-medium parameters Ay, og, By, g > 0 are explicit and independent
of e. The potentials we consider are a natural model for wave propagation in a medium with localized,
high-contrast, and rapid fluctuations in material parameters about a background periodic medium.
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1. Introduction. Let @Q(x) denote a one-periodic function on the real line:

(1.1) Q+1) = Q@), zeR.
The Schrodinger operator,
(1.2) Hq = —0; +Q(z),

has L?(R)-spectrum equal to the union of closed real intervals (spectral bands) sep-
arated by open spectral gaps. It is known that a spatially localized and small per-
turbation of Hg, say, Hg + €V, where V € L', induces the bifurcation of discrete
eigenvalues (point spectrum) from the edge of the continuous spectrum (zero energy)
into the spectral gaps at a distance of order €2 from the edge of spectral bands; see,
e.g., [23, 15, 9]. In this article we study the bifurcation of discrete spectrum for the
operator Hg + ¢c, where g, is localized in space and such that its Fourier transform
is concentrated at high frequencies. A special case we consider is ¢.(z) = q(z,z/¢),
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where ¢(x,y) is smooth, real-valued, localized in z, and periodic or almost periodic
in y. In this case, g. tends to zero weakly but not strongly.

Our motivation for considering such potentials is the wide interest in wave prop-
agation in media (i) whose material properties vary rapidly on the scale of a charac-
teristic wavelength of propagating waves and (ii) whose material contrasts are large.
We model rapid variation by assuming that the leading order component of the per-
turbation ¢. is supported at ever higher frequencies (asymptotically as € | 0), and
we allow for high-contrast media by not requiring smallness on the L norm of ¢..
Such potentials have some of the important features of high-contrast micro- and nano-
structures (see, e.g., [17], [22]) and, more generally, wave-guiding or confining media
with a multiple scale structure.

We obtain detailed leading order asymptotics of bifurcating eigenvalues and their
associated eigenfunctions, with error bounds, in the limit as € tends to zero. The
present article generalizes our earlier work [9, 10] for the case @ = 0 (homogeneous
background medium) and for Hg+ €V, where () is taken to be nontrivial and periodic
and €V is small and localized in space.

Standard homogenization theory (averaging, in this case), which often applies
in situations of strong scale-separation, does not capture the key bifurcation phe-
nomenon. This was discussed in detail in [10]. Underlying the bifurcation is an
effective Dirac distribution potential well; the bifurcation at the lower edge of the
b.th spectral band of Hg (b, > 1) is governed by an effective Hamiltonian HS; =
—03 Ay, o0y — €2By, ot X 0(x). Here, Ay, off, By, et > 0 are independent of e and
are given explicitly in terms of @, g.. This reveals the leading order location of the
bifurcating eigenvalue at a distance O(e*) from the spectral band edge.

1.1. Discussion of results. To describe our results in greater detail, we first
present a short review of the spectral theory of Hg; see, for example, [12, 20]. The
spectrum is determined by the family of self-adjoint k-pseudoperiodic eigenvalue prob-
lems, parametrized by the quasi-momentum k € (—1/2,1/2]:

(1.3) Hou(z; k) = E u(z; k),

(1.4) u(z +1;k) = ™% y(xsk) .

For each k € (—=1/2,1/2], (1.3)—(1.4) has discrete sequence of eigenvalues:
(1.5) Eo(k) < Ei(k) < < Eyp(k) < -+,

listed with multiplicity, and corresponding k-pseudoperiodic normalized eigenfunc-
tions:

(1.6) up(z3k) = ™ py(zk), po(z+1;k) = pp(w;k), b>0.

The bth spectral band is given by By = Uje(_1/2,1/2) Eb(k). The spectrum of Hq
is given by spec(Hq) = UysoBo = Upso Ure(—1/2,1/2) Eo(k). Since the boundary
condition (1.4) is invariant with respect to k — k + 1, the functions Ej(k) can be
extended to all R as periodic functions of k. The minima and maxima of Ej(k) occur
at k = k. € {0,1/2}; see Figure 1. If k. € {0,1/2} and E,(k.) is a spectral band
endpoint, bordering on a spectral gap, then Ej(k.) is a simple k,-pseudoperiodic
eigenvalue, 9y, Ey(k.) = 0, and 97 By (k) is either strictly positive or strictly negative;
see Lemma 2.2.

Consider now the perturbed operator Hgyy, where V(z) is sufficiently local-
ized in x. By Weyl’s theorem on the stability of the essential spectrum, one has
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SpeCess(Ho+v) = specqy(Hg) [20]. Therefore, the effect of a localized perturbation
is to possibly introduce discrete eigenvalues into the spectral gaps. Note that Hgiv
does not have discrete eigenvalues embedded in its continuous spectrum; see [21], [15].

Theorem 3.1 (Q = 0) and Theorem 3.2 (@) nontrivial periodic) are our main
results on bifurcation of discrete eigenvalues of Hgi,, from the left (lower) band
edge into spectral gaps of Hg. They apply to g. spatially localized and spectrally
supported at ever higher frequencies as ¢ | 0 (hence weakly convergent as € | 0).
In this introduction, we state for simplicity the results for the particular case of @
periodic and = +— ¢.(z) a two-scale function (spatially localized on R on the slow scale
and almost periodic on the fast scale) of the form

(1.7) qe(z) = ¢q (x %) = g(@)e?™ N T,
i#0

where the frequencies satisfy the nonclustering assumptions:

inf|/\j—)\[|26‘>0, 1Df|/\j|26‘>0
J#l J#0

for some fixed ¢ > 0. The constraint that ¢ be real-valued implies A_; = —A\;
and ¢_;(x) = m The particular case A\; = j corresponds to y — g¢(z,y) being
1-periodic.

Theorem 3.2 (@ nontrivial periodic) for the special case (1.7) is the following (see
Appendix C).

THEOREM 1.1. Let E, = Ey_(k.), k. € {0,1/2}, denote the lower edge of the
by th-spectral band and assume that this point borders a spectral gap; see the left panel
of Figure 1. Assume g is of the form (1.7) and g;(x) is sufficiently smooth and decays
sufficiently rapidly as © — oo and j — oo; see Lemma C.1 and Theorem 3.2.

Let Ay, o and By, o denote the effective-medium parameters

1
(1.8) Ap, o = @8,%&,*(/6*) (inverse effective mass),
1
L. By, ot = sk )[? —— g (z)]* da.
(19) bt = . (ask) S G I ds

Then, there exist constants eg > 0 and 01,09 > 0, such that for all 0 < € < ¢ the
following holds:

Hgyq. has a simple discrete eigenvalue, E€ < E, (see the right panel in Figure 1);
(1.10) E¢ = E, + 'Ey + O(e*o1);

with corresponding localized eigenfunction, 1)°¢:

(1.11) sup [0 (@) — . (3 k) go(*x)| < Ce™.
zeR
2
Here, £y = —% < 0 is the unique eigenvalue (simple) of the effective operator

d d

1.12 Hy oo = —-= Ay o — — By o X 0(y) ,
(1.12) b off gy et g b oft X 0(Y)
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Fi1G. 1. spec(Hgq) (left panel) and spec(Hg4q.) (Tight panel). Continuous spectra: thick
vertical lines (blue); discrete eigenvalues: cross marks (blue). Dispersion curves (thin, green),
ke (—1/2,1/2] — Ey(k),b > 0.

By, efr

where 6(y) denotes the Dirac delta mass at y =0, and go(y) = exp(—m|y|) is its
corresponding eigenfunction (unique up to a multiplicative constant).

Remark 1.2. Theorem 1.1 applies to the special case: @ = 0. Indeed, the spectrum
of Hy = —02 consists of a semi-infinite interval, spec(Hp) = [0,00), the union of
intersecting bands with no positive length gaps. The only band edge is located at
E, = FEy(0) = 0, where we have b, = 0, k., = 0, ug(z;0) = 1 for all z € R and
Eo(k) = 472k?, and therefore

1
A = 1, Beff:/ ——— |gi(2)]? da.
R J;ézo (27TA]‘)2 | ]( )l

Thus we recover the result of [10], where it was shown that the bifurcation at the lower
edge of the continuous spectrum of Hy is governed by the Hamiltonian corresponding
to a small effective potential well on the slow length-scale:

_ 2 2 _ 1 2
H_op, =-0;—¢ Acsi (), Ae(z) = j; W |L1j(33)| .

Consequently, classical results of, for example, [23, 9] apply and yield the effective
Hamiltonian with a Dirac mass (1.12) in the case @ = 0.

Remark 1.3. Notice that (1.9) yields By, et > 0 and thus bifurcation of eigenvalues
may occur only for Ap, ¢ > 0, that is, from the lower edge of spectral bands (see
Lemma 2.2 below). The same situation holds, by hypothesis, in the more general
situation of Theorems 3.1 and 3.2.

Remark 1.4 (examples of ¢., not of standard two-scale type). As mentioned earlier,
our results apply in more general situations than the two-scale perturbation presented
above. The assumptions of Theorems 3.1 and 3.2 imply that the leading order compo-
nent of the perturbation ¢, is supported at ever higher frequencies, asymptotically as
€ 1 0. The main difficulty in a specific situation is to check assumption (H2) in The-
orem 3.1 (resp., (H2') in Theorem 3.2) the existence of effective coupling coefficient,
Beg.
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Lemma C.1 in Appendix C is dedicated to the computation of Beg in the case
where ¢ = ¢(x,y) is a two-scale function as in Theorem 1.1. The computations of
Appendix C easily extend to perturbations of the form

Z q] 2771A (e)z

J#0
with, for example, the assumptions Ay1(e) ~ £ and [Ai(€) =\ (e)| > k/€, k>0, i #

7. This allows for dependence of ¢, on two, three etc., scales.
One further nonstandard example to which our theorems apply is obtained by

taking
x
si=a().

where (&) < [€]YY for |¢] small (N sufficiently large) and ¢(z) decaying sufficiently
rapidly as |z| — co. In this case,

Bogr = |up, (05 kx) ‘/ dy dac.

1.2. Motivation, method of proof, and relation to previous work. In
[3] and in [10] the case Q = 0, where H,, = —92 + q.(z), with ¢.(z) = q(z,z/€) is
considered under different hypotheses. Our analysis in [10] allows for almost periodic
dependence in the fast-scale variable, i.e., potentials of the type displayed in (1.7). In
this work we obtain details about eigenvalue asymptotics, and far more, by deriving
asymptotics of the transmission coefficient, k +— t9<(k), that are valid uniformly for
k € R and in a complex neighborhood of zero energy. This enables us to control the
spectral measure of Hy_, |t9(k)|? dk, leading to detailed dispersive energy transport
information (time-decay estimates) in addition to results on eigenvalue bifurcation.

The subtlety in this analysis stems from the behavior in a neighborhood of £ = 0.
Indeed, bounded away from k = 0, t% (k) — 1 uniformly; see [11]. The heart of the
matter is a proof that

k k

ta- (k) to(k)

(1.13)

can be made to converge to zero as € — 0 uniformly on R (and in a complex neighbor-
hood of k = 0) for the specific choice o(x) = —e?Aqg(7); see Remark 1.2. Since —e?Aog
is a small potential well, classical results [23] for the operator H,, = —8%+ o (x) apply,
and we conclude that t7 (k) and consequently % (k) have a simple pole of order O(¢?)
on the positive imaginary axis, from which the existence of a negative discrete eigen-
value, E¢, of order O(e?) is an immediate consequence. More precisely, the asymptotic
behavior of the eigenvalue corresponding to the small potential well, and therefore to
the original oscillatory potential, is predicted by the Schrodinger operator with Dirac
distribution potential with negative mass (see [9], consistently with [23, 5]):

o = —0; — (ez/RAeﬁ(x) dx) x 8(z).

Since perturbations of the periodic Hamiltonian by weak potentials are also known
to generate discrete eigenvalues, seeking an extension of the results in [10] to the case
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of a nontrivial and periodic background was a natural motivation for the current
article.

Indeed, it was proved in [5, 9], for the Hamiltonian Hoixy = —0% + Q + AV,
where @ is 1-periodic and 0 < A < 1, that if

O Ey, (k) X / lup, (23 k) |2V (z)dz < 0,
R

then an eigenvalue of order \? bifurcates from the edge of the (b.)th spectral band
of the unperturbed operator Hq. If 87 Ey, (ki) > 0 and [ [us, (23 k)|?V (2z)dz < 0,
this bifurcation is from the lower edge of the (b,)th band, while if 02 E, (k.) < 0 and
Sz lub. (@3 k)|?V (2)dz > 0 the bifurcation is from the upper edge of the (b,)th band.

Consistent with the case @ = 0, in this work we prove that the spectral properties
of the Hamiltonian Hg4 4, localized near the (b,)th band edge are related to those of
an effective Hamiltonian

d d
Hf, of = =7 Av. o7 = € By, e X 0(x).

dx
Upon rescaling by y = €2z gives the operator H,, o, displayed in (1.12).

In contrast to the case of a multiplicatively small perturbation, the eigenvalue
bifurcations of Hgiq are shown in the present work to occur only from the lower
band edge into the spectral gap below it. The mathematical reason for this is that the
bifurcation phenomena we study is an effect that occurs at second order in e. Making
this effect explicit requires iteration of our formulation of the eigenvalue problem,
leading to terms which are quadratic in g.. As in the case @ = 0, the dominant
(resonant /nonoscillatory) contribution has the distinguished sign of a potential well;
see Remark 1.3. This result was also observed in [1, Corollary 2.1].

Nonoscillatory perturbations of Schrodinger operators with periodic background
have been considered in a number of other works; see [8, 15, 16, 6]. For the acoustic
and Maxwell operators see [13, 14]. Finally, Borisov and Gadyl’shin [1, 3, 4] obtained
results which apply to our situation provided the perturbation ¢. is a two-scale po-
tential and has compact support (neither hypothesis is required in our analysis). In
[4], one-dimensional divergence-form operators are treated.

In two space dimensions, the operator —A + AV, where 0 < A < 1 and V is a
localized potential well, has a discrete negative eigenvalue of order exp(—aA™!), a >
0; see, for example, [23, 19]. In [2], Borisov proves that eigenvalues of the operator
—A+Q + \V, where Q is periodic on R?, bifurcate from the edges of the continuous
spectrum at a distance exp(—aA~1). It is natural to make the following conjecture.

Conjecture. In two space dimensions —A + @Q + ¢., where Q is periodic on R?
and ¢, is spatially localized and concentrated at ever higher frequencies as ¢ | 0 as
in (1.7), spawns eigenvalues from its lower spectral band edges into open gaps at a
distance ~ exp(—ae2), a > 0.

Finally, we remark on our method of analysis. We transform the eigenvalue
problem using the natural basis of eigenfunctions for the unperturbed operator and
study the eigenvalue problem in (quasi-) momentum space. The momentum space
formulation is natural in that one can very systematically pinpoint the key resonant
(nonoscillatory) terms which control the e — 0 limit. Using this approach one sees
clearly how to treat oscillatory perturbing potentials which are far more general than
a prescribed multiscale type (two-scale, three-scale, etc.). We explicitly, via localiza-
tion to energies near the bifurcation point and rescaling, re-express the Schrodinger
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eigenvalue problem with rapidly oscillatory coefficients as an approximately equivalent
eigenvalue problem for an effective Schrodinger operator, Heg, with coefficients which
do not oscillate rapidly. This effective Schrodinger Hamiltonian is determined by key
constants Aeg and Begr, which have natural physical meanings (inverse effective mass
and effective potential well couple parameter, respectively).

The main tool for re-expressing the eigenvalue problem is careful integration by
parts, which exploits oscillations of nonresonant (“irrelevant”) terms to show that
they are small in norm. Resonant (nonoscillatory) terms cannot be transformed to
terms of high order in the small parameter and it is these terms that contribute to
the effective operator, HS;. Thus our approach is somewhat akin to that taken in
Hamiltonian normal form theory and the method of averaging. See also [10].

1.3. Outline of the paper. In section 2 we present background material con-
cerning spectral properties of Schrédinger operators with periodic potentials defined
on R. In section 3 we give precise technical statements of our main results: Theo-
rems 3.1 and 3.2. Section 4 reviews general technical results on a class of band-limited
Schrédinger operators, derived in [9], and applied in sections 6 and 7. The strategy of
the proof is explained in section 5. Appendix A gives detailed proofs of bounds used in
section 7. Appendix B summarizes and proves bounds relating to the Floquet—Bloch
states used in section 7. Finally, Appendix C has a detailed analysis and calculation
of the effective potential for the particular case of the localized and oscillatory (almost
periodic) potential g.(z), defined in (1.7).

1.4. Definitions and notation. We denote by C' a constant, which does not
depend on the small parameter, e. It may depend on norms of Q(z) and ¢.(z), which
are assumed finite. C((1,(2,...) is a constant depending on the parameters (3, (o,
coo. Wewrite ASBIfA<C Band A~ Bif AS Band B S A

The methods of this paper employ spectral localization relative to the background
operator —92 + Q(z), where Q(z) is one-periodic. For the case, Q = 0, we use the
classical Fourier transform, and for @(x) a nontrivial periodic potential, we use the
spectral decomposition of L?(R) in terms of Floquet-Bloch states; see sections 1 and 2
below. The notation and conventions we use are similar to those used in [16].

1. For f,g € L?(R), the Fourier transform and its inverse are given by

~

FUHO = Fl) = / 2 f (@) dr,  FHgh(e) = gle) = / 27 g (¢)de.

R

2. 7 and 7! denote the Gelfand-Bloch transform and its inverse, defined
in (2.4) and (2.11), respectively. We use the following notation for the
Gelfand-Bloch transform of a function: 7{f}(z;k) = f(x;s); see section 2.
Note that we will also use the notation f(k) in section 7 to represent the

projection of f(x;s) onto a particular Bloch function p,(z; k) for fixed b.
3. x and Y are the characteristic functions defined for a parameter § > 0 by

we<a={y [3¢ xtag<o=1-wg<a={ [

We also use the notation

X5 (&) = x(€l <), Xs(8) =X(Ig] < 9).
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4. L%*(R) is the space of functions F' : R — R such that (1+]z|?)*/2F € L?(R,),
endowed with the norm

(114) ||FHL2,S(R) = H(l + |x|2)8/2FHL2(RZ) < 00.

5. Wk>(R) is the space of functions F' : R — R such that 0JF € L>(R) for
0 < j <k, endowed with the norm

k
[F| p———_— > [02F | o gy < 00
=0

2. Mathematical background. In this section we provide further mathemat-
ical background by summarizing basic results on the spectral theory of Schrédinger
operators with periodic potentials defined on R. Specifically, in section 2.1 we discuss
more detailed aspects of Floquet—Bloch theory and the spectral theory of periodic
Schrodinger operators, and in section 2.2 we introduce the Gelfand—Bloch transform
and discuss its properties. For a detailed discussion, see, for example, [12, 20, 18].

2.1. Floquet—Bloch theory. For ) continuous and one-periodic, consider the
family of pseudoperiodic eigenvalue problems

(2.1) (=02 + Q(2))u(z) = Eu(z) , u(z+1) = u(z),

parametrized by k € (—1/2,1/2], the Brillouin zone. Setting u(z;k) = e*™*%p(x; k),
this is equivalent to the family of periodic boundary value problems,

(2.2) (=(0x + 2mik)? + Q(z)) p(z; k) = E(k)p(w; k), plx+ 1;k) = p(z; k),

for each k € (—1/2,1/2].

The solutions py(z; k) may be chosen so that {py(z; k) }p>0 is, for each fixed k €
(—1/2,1/2], a complete orthonormal set in L?([0,1]). It can be shown that the set of
Floquet-Bloch states {u,(z; k) = e2"*p,(z; k), b € N, —1/2 < k < 1/2} is complete
in L?(R), i.e., for any f € L*(R),

1/2
flz) — Z / <Ub(y,/€),f>L2(Ry)ub(x;k) dk —0 as N 1 oo.

0<b<nN Y —1/2 L2@®,)

Recall that the spectrum of Hg = —92 + @ is the union of the spectral bands:

spec(Hg) = U By, = U U Ey(k).

b>0 b>0 ke(—1/2,1/2]

DEFINITION 2.1. We say there is a spectral gap between the bth and (b + 1)st
bands if

sup |Ep(k)] < inf |E k)| .
\k\§1/2| b (k)| |k|§1/2| b+1(k)]

Our analysis of eigenvalue bifurcation from the band edge E, = E, (k) into
a spectral gap requires detailed properties of Ey(k), e.g., regularity, near its edges.
These are summarized in the following two results; see, for example, [9] and [12].
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LEMMA 2.2. Assume Ey(ki) is an endpoint of a spectral band of —02 + Q(x),
which borders on a spectral gap. Then k. € {0,1/2} and the following results hold:

1. Ey(ks) is a simple eigenvalue of the eigenvalue problem (2.1).

2. b even: Ey(0) corresponds to the left (lowermost) endpoint of the band, Ey(1/2)
corresponds to the right (uppermost) endpoint.
b odd: Ey(0) corresponds to the right (uppermost) endpoint of the band,
Ey(1/2) corresponds to the left (lowermost) endpoint.

3. OuBy(k.) = 0.

4. b even: 07 E,(0) > 0, 02E,(1/2) < 0.
b odd: 92E,(0) < 0, O2E,(1/2) > 0.

5. 8 By(k,) = 0.

LEMMA 2.3. For k real, consider the Floquet-Bloch eigenpair (Ey(k),up(x;k)).
Assume Ey(ky), k. € {0,1/2}, is a simple eigenvalue. Then, there are analytic
mappings k — Eyp(k), k — up(x; k), with u, normalized, defined for k in a sufficiently
small complex neighborhood of k..

We conclude this section by recalling Weyl’s asymptotics (see [7, 12]).

LEMMA 2.4. There exists C1,Cy > 0 such that for anyb € N and k € (—1/2,1/2],

(2.3) 72b? — Cy < Ep(k) < 7%(b+1)% + Cy.
2.2. The Gelfand—Bloch transform. Let f € S(R), the Schwartz space. We

introduce the Gelfand-Bloch transform 7{f}(z;k) or f(x; k), as follows:
(24) T{fYa:k) = flask) = D f(k + ).
neZ

Note the following properties of 7. For any x, k € R, one has

(2.5) fle+1k) = f(a:k),
(2.6) flask+m) = e 2™ f(2:k), m e Z,
(2.7) Fl@ik) = (0y + 2mik) f(z: k).

Furthermore, for any m € Z we have T{e?™™f(2)}(z;k) =
Therefore, for any sufficiently regular one-periodic function V(z),

(2.8) TV (k) = V(@) T{f}Ha; k).

Now, recall the Poisson summation formula:

Z flz+v) = Z 2T (1),

2T { f}(w; k).

VEZ VEZ
One deduces the following identity for f € S(R):
(2.9) flak) = Z ™ f(k 4+ n) = Z e~ 2mk(n+T) £ 4 ),
neZ nez

This yields in particular the following formula for the Bloch transform of a product
of two functions.

ProrosiTiON 2.5. The Bloch transform of a product of two functions can be
written as a “Bloch convolution”:

__ /2 _
(2.10) (Fowik) = [ Flask~03ail) di

—1/2
Note that for |k — 1| > 1/2, the integrand is evaluated using (2.6).
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Proof. We have

/2 _
/ Flask — Dga 1) di

1/2
/ S e {14+ n) 3 2G4 m) dl by (2.4)
12 ez mez
:/ Z 6727ri(kfl)(n+ac)f(n+ {E) Z ef2m'l(m+w)g(m+ {E) dl by (29)
12 ez mez
. 1/2 .
= Z e 2mk(n+T) £ 4 ) Z g(m+x) / e~ 2millm=n) g by Fubini
nez mezZ -1/2
_ Z 672mk(n+z)f(n +2)g(n + ) Z e2mnmfg k4 n) by (2.9)
newz ne
=(fg)(z;k). O
Introduce the operator 7 —!:
~ 1/2 o
(211) @) =T HPa) = [ k.
—1/2

One can check that 7! is the inverse of 7, 7T 'T = Id.
For any Floquet—Bloch mode,

(2.12) uy(x; k) = 2™ *py (21 k),
we have, thanks to (2.9),
(213) <ub($v k)v f(x»LQ(Rl) = <pb($v k)v f(xv k)>

By completeness of the {py(z; k) }p>0, we deduce

(2.14) Flak) = > T {fHk)py(a; k).

b>0

0,1].) = Tol f (k).

Liex(

The above definitions and identities extend by density to f € L?(R), and one has in
particular for any f € L?(R),

(2.15)

1/2

<ub(y7 k)a f(y)>L2(Ry)ub(x; k)dk

ZfJMHuMM p=x

b>07~ b>07 —1/2

It will be natural to measure H*® (Sobolev) regularity in terms of the decay prop-
erties of a function’s Floquet—Bloch coefficients. Thus we introduce the X'* norm:

(2.16) 132

2 = l/’ ST (14 BP2)* [Td 0} (k) 2.

b>0

PROPOSITION 2.6. H?*(R) is isomorphic to X° for s > 0. Moreover, there
exist positive constants Cp, Co such that for all ¢ € H*(R), we have ClH¢||Hs(R) <

xs S C2H¢||HS(R)'
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Proof. Since Ey(0) = infspec(—92 + Q), then Lo = —92 + Q — Ep(0) is a non-
negative operator which defines an equivalent norm on H*(R): ||(Id + Lo)*/?¢||,, ~
|¢]| ;.- Using orthogonality, it follows that

1/2
16|, = [[(Td + Lo)*/2¢|%, = Z/ T {8} (k) 211 + By (k) — Eo(0)] dk
bso—1/2
. 1/2 . , .
~Y (1 k)[2dk = ,
STy [ meers =k,

where = indicates norm equivalence. The approximation in the last line follows from
the Weyl asymptotics Ey(k) ~ b?, stated in Lemma 2.4. This completes the proof of
Proposition 2.6. d

3. Bifurcation of defect states into gaps: Main results. In this section we
state our main results on the eigenvalue problem

(3.1) (=07 + Q(x) + qe(2)¥*(2) = EY(2), ¥ € L?

where Q(x) is one-periodic and ¢c(x) is real-valued, localized at high frequencies, and
decreasing at infinity (precise hypotheses are specified below).
Consider first the case where Q(z) = 0. The following result extends Corollary
3.7 of [10] to a larger class of localized and oscillatory potentials, g..
THEOREM 3.1. Assume that q.(x) is real-valued and satisfies the following, for e
sufficiently small:
(Hla) There exists 0 < Cy < 00, independent of €, such that

(3.2) 1Gell o+ Nell e + 116 e < Co-
(H1b) There exists N >4 and 0 < Cx < 00, independent of €, such that

(3.3) sup |g:(6)] < MCw.
¢€l5e,5:]
(H2) There exists 0 < Begt, Ceft, 0ot < 00, independent of €, such that
~ (2
4 -2 |q€(€)| de — Be < Ce Teff
(34) o [ B e - B < e

Then, there exist positive constants €y, C, depending only on the above parameters,
such that the following holds. For all 0 < € < €, there exists an eigenpair (E€, 1),
for the eigenvalue problem

(3.5) (=02 + qe(x)) ¥ (x) = EY(x), o€ L?

with B¢ strictly negative and of the order ¢*. Moreover, 1¢ € L™ and we have

4 D2

B
(3.6) ‘E n % < Cetto,

€ZBCH

(3.7) sup
R

¥ (@) — exp (— |x|)\ <ce,
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where 0 = min{l,ceg}. The eigenvalue E€ is unique in the neighborhood defined
by (3.6), and the corresponding eigenfunction, ¥, is unique up to a multiplicative
constant.

We now turn to the more general case where Q(z) may be a nontrivial periodic
background.

THEOREM 3.2. Assume Q is real-valued and one-periodic and satisfies the fol-
lowing:

(HQ) Q € W2, so that one has (see Lemma B.1) the estimate

per

(3.8)
Vb >0, Yk € [<1/2,1/2], Vo e[-1/2,1/2], |0%p(a:k)| < (1+[b|%)Ca,

with « =0,...,6.
Set B, = Ey, (k) the lower endpoint of the (b )th band, and assume that the band
borders on a spectral gap. Thus k. =0 or 1/2 and 93 Ey, (ki) > 0; see Lemma 2.2.
Assume qe(x) is real-valued and localized at high frequencies in the sense that
(H1'a) there exists 0 < Cy < oo, independent of €, such that

(3.9) 1Gell o + Nl o < Cos
(H1'b) for all B such that 0 < < 6, there exists 0 < Cg < 00, independent of €,
such that
veo 1/2 ,
(3.10) [ a©pd) <ce
—1/(2¢)

Furthermore, assume q.(z) is such that
(H2") there exists 0 < By, oft, Cefr, Oei < 00, independent of €, such that

(3.11) < Cegp €71,

- / s, (@ ) 2 (2) Qe (2) da — By, et
R

where Qc(x) is real-valued and defined by @:(f) = W(ﬁ({)
Then there are positive constants €y, C, and o, depending only on the above pa-
rameters, such that the following assertions hold:
1. For all 0 < € < €, there exists an eigenpair (E€,¢¢(x)) of the eigenvalue

problem

(3.12) (=07 + Q(z) + ¢e(@)) ¥ (x) = E9P(x), ¥ € L*(R),

with eigenvalue E€ in the spectral gap, at a distance O(€*) from the band edge,
E,.

2. Specifically, for o = min{l1/6,ceg} where oo is defined in (3.11), E€ and
Ye(x) satisfy the following approzimations:
(3.13) |E€ — (Bv + ' Ey)| < Cett

(3.14) sup [ (z) — ue, (2; ki) exp(e”apla])| < Ce?,
R

where Fy < 0 and oy < 0 are given by the expressions

2

By, ot By, et
Fo=——F+—"— <0 and opg=——7-">——<0.
P 0. (k) P 0B (k)
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3. The eigenvalue, E€, is unique in the neighborhood defined in (3.13), and the
corresponding eigenfunction, ¥°, is unique up to a multiplicative constant.
Remark 3.3. Notice that (H2') is consistent with (H2) in the case @ = 0. Indeed,
the only band edge of spec(—92) = [0, 00) is located at E, = FEy(0) = 0, where we
have b, =0, k. = 0 and uo(z;0) = 1 for all z € R, and therefore

wp, (23 k)20 (2)Qc () da = (2)Qc () do = j\ex
/R|b*<,k>|q<>cz<>d /unczmd /Rq@cz(s)ds

Sy T
R 471'252 + ].
4. Key general technical results. In this section, we state results concerning
the operator L ([0], defined by

(4.1)
F©) = Lo l01f(€) = (4n2A€% +6%) f(€) - B x (|| < 7) /R x (Inl <€) f(n) dn.

Here, A, B, and j are fixed positive constants and #?> > 0. The operator 2076[9]
appears in the bifurcation equations we derive via the Lyapunov—-Schmidt reduction;
see section 5.

In 2-space, we have that Lo [0] is a rank one perturbation of —A9} + 6*:

(4.2)
where sinc(z) = sin(z)/z. Lo.[f] is a band-limited regularization of the operator,
(4.3) (HYP + 0%) f = (-A9) — Bo(y) + 6°) [,

appearing in the effective equations governing the leading order behavior of bifurcating
eigenstates. R

We now state two technical lemmata concerning the operator Lo ([6]. Lemma 4.1
is proved in [9, Lemma 4.1]. Lemma 4.2, which concerns solvability of the inhomoge-
neous equation (4.10) below, has the same conclusion as Lemma [9, Lemma 4.4] but
is stated with one more condition, (4.12), on R.. The arguments presented in [9] are
easily adapted to yield Lemma 4.2.

LEMMA 4.1. Fiz constants A > 0, B > 0, and 8 > 0. Define, for 8% > 0, the
linear operator

(4.4)
F(€) = Lo 0] () = (An*Ag? +6%) J(€)—B x (I&] < ¢77) /Rx (Inl < ) F(n) dn.

Note that Lo 0] : L,
following hold:

1. Lo.[0o.e] has a nontrivial kernel.

2. The “eigenvalue” 9(2),5 18 the unique positive solution of

x (€l <e”?

(R) — L

loc

(R). There exists a unique 05 . > 0 such that the
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3. The kernel of 20,5[90,5] is given by

(4.6)
5 B - = o xlél<e?)
kernel (5076[90,6]) = span{fo,e(i)}, where fo,(§) = I AE 102,

4. 0o, can be approzimated as follows:

1 2V A 1
(4.7) - X < — A
9076 B 7T2\/A
5. One has
~ 2 B
(4.8) ?é% F {f%} () Bexp( 2A|;zc|) ‘ < C(A, B)e”.

The following result concerns solutions to perturbations of /30,5. Let Z; and 25
denote Banach spaces with Z1, Zo C L] . Assume that for any (f,g) € 21 x 2o,
(4.9)
gzl SWFllzlollz, £9llz, S ANz, N9l e, and |0+ 5, S (142,

We seek a solution of the equation
(4.10) Lo l6)f = R6)F ,

where 2076(0) is the operator defined in (4.4) and the mapping 7 R [G]fis linear
and satisfies the following properties.
Assumptions on R.. There exist constants «, 5,t_,t4,Cr, > 0 such that for e
sufficiently small
o forany f € Zo,and 0 <t_ < 0? <t, < oo,

(4.11) R R R R
X (1] < € 7) (RJO1F ) (€) = (Re[O1F ) (&), and [[R[O1f |5, < Cr.e®||f]|,;

e for any fe Zy,and 0 < t_ < 07,03 <t, < oo,
(4.12) |Re[61)f = Rel0a) F || 5, < Cr.e®107 =031 F |5, -

In the above setting we have the following lemma. R

LEMMA 4.2, Let (6, fo,c(§)) be the solution of Loc[0]f = 0, as defined in
Lemma 4.1, where A, B, and 8 > 0 are fived. Let R[] : Z5 — Z1 be a linear mapping
satisfying the assumptions displayed in (4.11)—(4.12), where Z1, Z5 satisfy (4.9) and

fo,e € Z1 N Z3. Then there exists €9 > 0 such that for any 0 < € < €, the following
hold:
1. There exists a unique solution (0., f-(£)) € RT x Z5 of (4.10) such that

1= Fodlz e and [ RO - Fone)at = o

with C = C(A, B,Cr,_, 3), independent of e.
2. Moreover, one has

f© = x(lel <) Ju(e)  and |62 03] < Ce .
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Remark 4.3. To prove Theorem 3.1, respectively, Theorem 3.2, we shall apply
Lemma 4.2 with (21, 25) = (L™, L), respectively, (21, 22) = (L>~1, L>!), where
L?# is the space of locally integrable functions such that

1F] 2 = A+ EP)2F| o,y < oo
(Re)

It is straightforward to check that such a pair of spaces satisfies (4.9), and J?O,E €
Z1 N 2.

5. Strategy. The strategy we take in sections 6 and 7 is to reduce the eigenvalue
problem

(5.1) Hopq ) = B

to a homogenized and band-limited Schrédinger equation of the form (4.10). We
assume (F, 1) solves the eigenvalue problem (5.1) and show by a long, formal, and
reversible calculation that the rescaled near energy components of ¥ (x), EI;({“), and
rescaled energies of F, 62 satisfy an equation of the form (4.10), namely,

(5.2) Lo.c[0]® = R.[0]®.

We then apply Lemma 4.2 to construct solutions (62, ®.) to (5.2).

The reduction of (5.1) to (5.2) for the case @ = 0 is achieved in Proposition 6.4,
and that for @) #Z 0 is achieved in Proposition 7.7. In sections 6.4 and 7.4 the solution
of the original eigenvalue problem, (5.1), is reconstructed from the solutions to (5.2).

In particular, we find that the eigenvalue problems Hgi4 v = E¢ with Q =0
and @ # 0 have a bifurcating branch of eigenstates such that, for o > 0,

e By + O(e*™7)  for Q =0 and
€ By, 4 €'Ey + O(e7) for Q #0,

where Fy < 0 and Ej, is the lower edge of the (b.)th spectral band of the eigenvalue
problem Hou = Fu.

6. Proof of Theorem 3.1: Edge bifurcations for —82 + g.(x). In this
section we study the bifurcation of solutions to the eigenvalue problem

(6.1) (=02 + ae(@)) (@) = By (), ¥ € L*(R),

into the interval (—oo, 0), the semi-infinite spectral gap of Hy = —02, for ¢, localized
at high frequencies and decaying as |z| — co.

We prove Theorem 3.1, which may be seen as a particular case of our main result,
Theorem 3.2. In this case @ = 0 and thus the Floquet—Bloch eigenfunctions are
explicit exponentials, making calculations more straightforward and error bounds on
the approximations sharper. Section 7 will present a more general argument for the
Q@ # 0 case.

We will begin by transforming (6.1) into frequency space in section 6.1, which
we will divide into a coupled system of equations, one pertaining to energies near the
expected bifurcation point and the other to energies far from the bifurcating points.
Then, in sections 6.2 and 6.3 we will study each part of the system in detail to finally
complete the proof of Theorem 3.1 in section 6.4.
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6.1. Near and far energy components. Anticipating that the bifurcating
eigenvalue, E, will be real, negative, and of size ~ ¢* [10] we set

(6.2) =—e0?, 0<t_<#* <ty < oo,

where t_ and t; are independent of e. We expect, and eventually prove, 8 — . as
e — 0, with 0 < O < 0.
Taking the Fourier transform of (6.1) yields

(6.3) (4n%€% + 02 (¢) + /< G(€ — OB(Q)dC = 0.

We wish to study (6.3) as a coupled system of equations via the
near energy component: {1(¢) : €] < €'} and

far energy component: {12)\(5) 2 |€] > €} of .

Let r be a positive parameter, » > 0, to be specified. We denote x the cut-off
function:

x(§) =1, [§] <Tand x(§) =0, [¢| > 1.

We also set
X(§) =1—x(§) and x. (§) = x(e77¢).
We introduce notation for near and far energy components of 12:

(6.4) Unear(€) = X (E)0(E) and Prar(€) = Xer (E)V(E).

The eigenvalue equation (6.3) is equivalent to the following coupled system of equa-
tions for the near and far energy components:

(65)  (47€? + €6%) dnear(E) +X.0 (€) /< 06 = O) (Pnear (©) + Dian(0)) dC =0,
(6.6)  (477€ +€'6) ae(6) +Xer (6) /C 0.6 =€) (Pear(€) + Trar(0)) dC = 0.

The analysis of the far energy equation (6.6) and near energy equation (6.5) relies
heavily on some smallness induced by the assumption that ¢. is localized at high
frequencies and that we encapsulate in the following lemma.

LEMMA 6.1. For every € > 0, let fo,ge € LY(R) N L>®(¢] > i) Then, for
q. € L*(R), one has

(6.7) sup

le|< &

\ JIRGIGC C)dcdf‘ < 0 Ol oo

/ge(C)q?(é—C)dC‘ < sup (G (E)[gell 1 gy + Tell gy sUP l9e(Q)1,
R 1< 1>

= 4e

(68) + HZ]\EHLl(R) ( supl |f€(<)|Hg€||L1(R) + ||f€||L1(R) supl |gE(<)|> °
I<1Z4: I¢|>+

= 4e = 4e
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Proof. We start with the proof of estimate (6 7). Assume |§ | < 4. We decompose
the integration domain into |¢| < & and [¢| > £. For [¢| < £ and |£ | < =, we have
€ = ¢ < €] +[¢] € &, and therefore

_47

(6.9) sup / 9 QRE-OlC < sup  [3€— Olflgell .
lel<E JIKI<+

1€— ‘—25

The integral over || > 4 is estimated as follows:

(6.10) / 5 O8E = OlC < [l 1 s 1O
[¢|>4 [C]>

The bound (6.7) now follows from (6.9) and (6.10).
To prove estimate (6.8), we decompose the integration domain into

Di={(co. K-d< i) Da={Co. k-g> 1)

The contribution from D, is controlled by the bound

o[ s@aite- cdcdf} s 36 Ol

726

For (¢,&) € Ds, we have that either |[¢| > & or |¢| > L. Assume [¢| > L; the case
(| > 7 is treated symmetrically. One has

(6.12)

d(g. dé fe
/ch <<)/>_ LG E )

S llgellzs sup 1e€laclya-

€14

It follows that

‘/D fE(S)gE(C)qAE(&—C)dCd&‘ < ||é;HL1<HgEHL1 ‘S‘UP |fe(E)] + HfEHLl ‘S‘UP | fe(C )l)

The bound (6.8), and therefore Lemma 6.1, now follows from (6.11) and (6.12). O

. Analysis of the far energy component. We view (6.6) as an equation
for wfar dependlng on parameters (1/)noar, 2:¢). The following proposition studies
the mapplng (wneara 3 ) — ¢far [wnedra 2; 6]~ N

PROPOSITION 6.2. Fiz r € (0,2) and 0 € R. Let Yyear € L' and let q. sat-
isfy (3.2) and (3.3) of Theorem 3.1 with N > 2r. There exists €y such that for
0 <€ < € the following holds.

There is a unique solution Vfar[Vnear, 0%; €] of the far energy equation (6.6). More-
over, for any (0,¢) € R x (0,¢p), the mapping

wnear — wfar[¢near; 02; 6]

is a linear mapping from L*(R) to L'(R) and satisfies the bound

(6.13) [9arll 11 < CCo,Cx) (X2 + €77) [Dncar]| 1
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Proof. We seek to solve (6.6) for Jfar as a functional of &noar. First note that
since 6 € R, one has for |¢] > €, [472€2 + €10?| > 472€?" is bounded away from zero
for any fixed ¢ > 0. Dividing (6. 6) by 472¢% + €*6? and rearranging terms we obtain

YET (5)

Drar(€) = "I 1 e

[ 6= O (o) + B0 e
¢
Iterating the equation, we have

YET (5) ~ -~
m ~/]R d¢qe (5 - C) <wnear(g)

- ng%% Adn@ (C - 77) (Jnoar("]) + 1z)\far(n)) >7

’@Zfar (5) = -

which we can write as

(6.14) (1 =70 70) dtar = ~Tethucar + T © Tetbncar

Here 7, is the integral operator defined by

YET (f)

&)= /C K& QT and K60 = g5 2de(6 — 0.

We will show that the operator (I—7A; O’t) is invertible as an operator from L' to
itself, using that ||7c o 7c|| is small when e is small. Indeed, one has for h € L',

~ ~ €r ~ €’ (C)
[(Te o Te) hHLl /d§47rz)§2 492/ d¢]ge (€ — <)l 2>§2+6492

/ dnl@(¢ — n)|[h(m)]

~ [ [ agac LI EZ IO g ¢ gac.

Defining f. = %ﬁleg and g, = %, we can apply estimate (6.8) from

Lemma 6.1 and hypothesis (H1b), i.e., bound (3.3) on g, to conclude

—Lt

|7 0 TRl o < (12l s l 5B 10Ol fell 1y ey

l€]< =

Nl 0 ol 15, 0 1001

‘ ‘—45 —4e

(6.15) < C(Co,Cn)(N 2+ )| .-
The final inequality above comes from noting

sup 1£(Q)] < C2,||fe]l,0 < Ce

[C1>+
2

Kb‘up 19Ol < C([|e]| ) Ngell 12 < O[] e

746

-
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It follows that if » € (0,2) and N > 2r, there exists ¢y > 0 such that if € < €,
then one has ||7; o 7;HL1%L1 < % and thus (I — 7 o 7;) is invertible as an operator
from L' to L', with bound

H(I ~Teo 7\;)_1||L1%L1

We now estimate the right-hand side of (6.14) in L', which concludes the proof
of Proposition 6.2.
First, one has immediately from (6.15) that

(72 © To)tbnearllr < C(Co, Cn) (¥ + €277) [ thnea | 1.1
Then, since Jnear(g) = Xer (C)’lznear(g) one has

|7ebcaclys < [ dems e [ dclae = Ol (@ uen)

= [ 46 Olfnen(©)] [ de it - ol

Defining g = W%, we can apply estimate (6.7) from Lemma 6.1, hypothesis

<2

(H1b), i.e., bound (3.3) on g, and using that ¢" < ;- for e sufficiently small, we
conclude

S T P R e

|_2€ ‘ ‘ 4e
< C(Co,CN)(E T+ 62)||¢ncar||L1-
The final inequality above comes from noting

Sup, 9Ol <Ce, ge|| o < Ce
¢

Altogether, we proved

~

el < 0T =0T o (FTedncarll o+ 1172 0 To)mearl 1)
S C(CQ, CN)(6N72T + 627T) H{[J\nearHLr
This completes the proof of Proposition 6.2. O

_ 6.3. Analysis of the near energy component. By Proposition 6.2, we have
Year = Ytar[Vnears 62 €]. Substituting into the near energy equation (6.5), we obtain a
closed equation for near(§):

(6.16)

(47°€% + €6%) Pncar(€) + X, (6) /< 326 = ) (Pnear(€) + Drar [near, 0% €](0) ) dC = 0.
The following proposition reveals the leading order terms in (6.16).
PROPOSITION 6.3. Set r € (0,2). Assume that q. satisfies (3.2), (3.3), and (3.4)

of Theorem 3.1 with N >2,N > 2r, and 0 <t_ < 0% <t, < co. Then there exists
€0 > 0 such that for any 0 < € < €9 one can write (6.16) as

(6.17)
(47"252 + 646‘2) {p\near(@ = Xer (5)62363 /]R @Znear(n)dn ==X (&) (R[e]{p\near) ),

where R[0] : L* — L is a linear mapping satisfying
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(6.18) R 0] Pnear|| oo < CCo,Cn, Cotot—t1)||[ncar|| ;1 X Ke
with Ke —_ (6N_2 +62) (6N—2r _|_62—r) 1€ x (EN_2 +62) 4 €2N +62N_2 +62+Ueff.

Proof. Using (6.5) and (6.6) to iterate once the near energy equation (6.16) and
interchanging the order of integration, we obtain

(4m2¢* + 6402) Urnear &)
= ©) [ 6= O () + ()

= X.r (5) ~/C é\ﬁ(g - C) [#}fiw / @(C - 771) ({[J\near(nl) + {[J\far(nl)) dnl
m
+ 47‘(2?“%/ é;(c - 7]2) ({ﬁncar('f]Z) + {ﬁ\far('fh)) d’r]2:| dc
n2

)| [ ) [ g€~ QO i
n

~ 1 =N =N
o [ ueln) [ et ~ O~ i
We rewrite this equation as
(6.19) (4n°€* + €0V hnear(€) = (QU)thncar) (€) + (QUb)Prar) (£),

where we recall the mapping (@near, 0% €) — @Zfar [@near, 62; €], and denote

(Q019)©) = x.€) | ¥ [ (€~ O(C — mican

n

In what follows, we first show that the contribution of Q[G]ﬁfar is small and then
extract the leading order term from Q[0]¢near-
L*> bound of Q[f]1er. First note

e

-~ 1 N N ~ o~
| QUbYdtas]| o < sup /C i |8 =N I |[DrarlBacar, % ]

lel<erner J¢ 4m2C +

1bfaur [wneara
SUP,eRr [qe (C—m)] d
Im2C21eig?

Using €" < ﬁ for e sufficiently small, we can bound the factor multiplying |

62; €]|| L1 using estimate (6.7) of Lemma 6.1 with the choice g.(¢) =
applying hypothesis (H1b), i.e., bound (3.3) of ¢.. Noting that

oop 19¢(O)] < ClGell ), llgellpr < CUGeN )10,
¢I>4

one has the bound

||Q[0]$far“[,°° < C(Coch) (|0|_16N_2 + 62) H{ﬁfar[&;noar, 02; 6]HLl
(6.20) < C(CosCn,t-) (V72 4+ ) (N7 + €7 [ dnear | 1

where the last estimate follows from Proposition 6.2, and 0 < t_ < 6% < t, < cc.
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Leading order expansion of Q[G]Jmar. Let us first recall that Jncar(n) =
X.r (M) ¥near(n) and consequently rewrite

(6.21) (QI0)near) ( / Urnear(n) X X (€)X, (m)a(&,m)dn
with
1
06 = | mrrr o€~ 0T — e

Our aim is to expand the pointwise first order term (in €) of (&, n) for (§,7) €
[—€", €72, We write

(QUO]Prear) (€) = / AnBcar(n) X Xor ()X (1)a(0,0)
+ / acar(n) X X0 (€)X (1) [4(€,7) — (0, 0)]
/dn¢ncar )X Xe7 dC]

+ / nen(7) X Xor (E)x0 (1)

(6.22) [ [ St

7r2C2 +1

(6.23) + / e (1) % X, (€)x... (n) [a(€,m) — 9(0,0)]

We will now bound the last two terms in the above sum. First, using the mean value
theorem, one has

sup - [a(€§,m) —q(0,0)[ S€"  sup (' 2 ”)‘ “i]q(g,n)D.

(&me[—er,er]? (&m)€E[—er,em]?

Using the symmetry properties of q, it suffices to estimate

d 1 . .
o] < [ e - QIR - wldc

Using estimate (6.7) in Lemma 6.1 with g.(¢) = %7;:4)(;2, and hypothesis (H1b),

i.e., bound (3.3) on g., one obtains

d
‘d—q(f,n)} = sup |G (8)] ||96||L1 + HQEHLI(R) Sup 19¢(C)]
n |< [¢1>

I 725 745

< C(Co,Cn) (|0 TN 2+ €2),

where we note that

2

Slipl 19:(O)] < C( ||q6||L°°(R) HngLl(R) = C(HﬂHLw(R))(ﬂalil'

I<1> 7
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Therefore, term (6.23) can be bounded as

(6.24)

[ B % . (. ) o) - «xon'

< C(ConCn) & x (J017 V2 42|

o~
wncar
Lt

As a second step, we study term (6.22). In particular, we bound the integral

[ 0000 | oo — et

To do so, we consider the above integral under two domains: |¢| < & and [¢| > £
Notice that since g, satisfies hypothesis (H1b), i.e., bound (3.3), one has

! 1
G (—0)q@(¢)d¢ < =CR M,
/|C|§1/(4e) 4722 4+ 1 (=0)g(<) 5CN

! 1
— 30 (=) (Q)d¢ < SCR (07 N2
/|C|<1/(46) 422 + 102 (=0)ac( 9N

Furthermore,

/C>1/(46)

and we conclude

; dn{[]\near(n) X Xr (f)Xer (77) |:/ 47_‘_24-2 T e1p2 dC / qe 2(2 :| '
(625) < C(CO7CN) (62N + |9|_1€2N_2 + 0(6492)6 ) ‘ ¢near I

1 1
Am2C2 +1  Am2C2 + 4602

1Ge(—Q)@e(Q)|d¢ < C(*0*)e||Gel| 1| ] e

Altogether, plugging estimates (6.24) and (6.25) into Q[f]1near as defined in (6.21)
yields

(6.26)
(1) (€)= 3, (©) [ HEGE ) ¢ [ el 3, € (RAB1rear) €.
where the remainder R; satisfies the bound

HRl [H]Jncar I

< C(Co,Cn) (" x (10| 1eN 2+ ) + N 10|71V 2 4 C('0?)e) ‘

o~
wnear
L1

Furthermore, by hypothesis (H2), expression (3.4), we can write

2
[ Gt -

Therefore, we can rewrite (6.26) as

< CCH62+0eff .

6.27)  (Ql6]tnear) (€) = X (€)€* Begp /R Duear(M)d7 + X (€) (Ra[0tnear) (),
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where the remainder Ro now satisfies the bound
(6.28)
‘ ‘ RZ [9] 1L\neaur
L

< C(Co,CN,Cer, t—,t1) (€7 % (V72 +€%) + 2N + V72 4 e2Foer)

~
wncar

L’
where we used 0 < t_ < 6% < t, < cc.

We conclude the proof of Proposition 6.3 by plugging expression (6.27) and esti-
mates (6.20) and (6.28) into (6.19). O

Rescaling the equation. We now proceed with the analysis of the near equation

with the rescaling £ and e, in such a way as to balance both terms on the left-hand
side of (6.17). Thus we define

Note that
[Pneacll = (121

Equation (6.17) then becomes, after dividing out by €2,

(4n2€2 4 0) B(E') — x,_,(€)Buen / B(()dc

/

@) (ReH{ 5300 | ) @)

By estimate (6.18) and choosing carefully the parameters r and N, we can ensure
that the right-hand side is small. The following proposition summarizes our result
with N =4 and r = 1.

PROPOSITION 6.4. Assume that the assumptions of Proposition 6.3 hold with
r=1and N =4. Then one has

(629) (1€ +6°) B(E) ~x, () B [ BCIC =, (€) (RO €),
where 7%[9]@ D& = e, (E)(RIG) }2&)(6—2)})(625’) satisfies the bound, for o =
min{l, oest },

(6.30) |

X O RIOD) )] gy < € CCorCr,Cottot 1) B .

6.4. Conclusion of proof of Theorem 3.1. Proposition 6.4 is a formal reduc-
tion of the eigenvalue problem

(6.31) (=07 +qo)vt = EyS, y° e L*(R),

for (E<, 1)) to an equation for (2, ®.) of the form
(6.32) Lo [0]®c = (47267 + 02)P(€') — x (I€'] < €7') Besr / ®(¢)d¢!
R

= —x (I¢] < ) (RIBJ® ) (&)

(see (6.29)), where @, is the rescaled near-energy component of .. We now apply
Lemma 4.2 to obtain a solution of (6.32). We then construct the solution (E€,¢¢) of
the full eigenvalue problem (6.31). This will conclude the proof of Theorem 3.1.
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We apply Lemma 4.2 to (6.32) with A =1 and B = Beg > 0, and R, = R. By
Proposition 6.4, R, satisfies assumption (4.11) with 8 =1 and o« = 0 = min{1, oex}.
Following the steps of its proof, and using

1 B 1 - €*0? — 62
4T2C2 4 €407 Am2(2 + €403 (4m2C2 + €402)(4n2(2 + €463)
G-
- 03 Amw2(? + 63’

one easily checks that assumption (4.12) also holds.
By Lemma 4.2 there exists a solution (6%, ®.) of (6.32) satisfying

(6.33) 1@ — foll,. S ¢ and 02 -03] < €.
Here (9(2))6, J?o,e) is the solution of the homogeneous equation

z\0,6[9076]}5,6
= (47%€? + 02 ) fo. (€) — x (1€] < €71) Beg /R X (I < €Y fo.e(¢Hd¢ =0,

as described in Lemma 4.1. Specifically,

~ o x(gl<e™

2 B2ff
(634) fO,E(g) - 47_(_252 _'_9(2)’6 i

0, — 4 < €.

~

and

We next construct the eigenpair solution (E€, 1¢) of the Schrodinger equation (3.5).
Define, using Proposition 6.2,

€ __ € € € _ 4n2
Q/J - ncar+wfar7 Ef = —¢ 957

where 1z)\fleaur (f) = %65 <6£2) and {ﬁfar (f) = &)\far [{ﬁflear? EE; 6] (5)

€
Then (E€,¢°) is a solution of the eigenvalue problem (6.31). Indeed, the steps proceed-
ing from (6.31) to (6.32) are reversible solutions of ¢ € Z = {f € C(R), f € L*(R)}
of (6.31), respectively, solutions ®. € Z of (6.32).
We now prove the estimates (3.6) and (3.7). Estimate (3.6), the small ¢ expan-
sion of the eigenvalue E€, follows from (6.33), (6.34), and the triangle inequality.
Specifically, since we defined E€ = —¢*6?, we have

2
Beff

e, 4B B; -
‘E o Beir| _ ale B 9376__)564#

<t (\03—03,6\ +

The approximation, (3.7), of the corresponding eigenstate, ¢ = Ynear + Wtar, is
obtained as follows. One has, by the triangular inequality,

€ 2 2Beff
50) - g enp (~ el

sup
zeR
2 Boff
6.35 < € (z)— i H <l
( ) = ilelg wnear(m) Beff eXp < € 2 |ZIJ|>‘ + wfar Lo

We will look at the bounds in (6.35) separately.
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Recall

/{[J\fmar(g)e2ﬂm€ df = 1 EI\) <%) 627"”5 dé‘
R €

’@[Jnear(f) — A 6_2 .
= / (/156(77)6271'1'529517 d77
R
= / %,6(77)62“62“7 dn +/ (‘55(71) — ﬁ))e(n)) 62”52177 dn
R R
=L (z) + ().

For A =1 and B = Beg > 0, one has from estimate (4.8) in Lemma 4.2,

2 Be
Ii(x) — B exp <—62 2H |a:|)} Se.

(6.36)

Using the first bound in (6.33), one has

= sup

6.37)  ||I
zeR

[ (@ = o) 0 o] < 8~ ol 5

I

From estimate (6.36)—(6.37), we can write

(6.38) sup
z€R

2 Be
¢near($) — BCH exXp <—€2Tﬁlx|) ' 5 €.

To bound the second norm in (6.35), we note that from Proposition 6.2 with
N =4 and r = 1, one has

< e

(6:30) [t De P Bl

<

Lo

snce [ 1 = @l = ol S 1 a5 € 0)
Since 9¢ is a unique solution of (6.31) up to a multiplicative constant, we can
conclude from (6.35) and the estimates (6.38)—(6.39) that

sup
z€R

Be .
¥ (@) — exp (—ezTﬂ“m) \ < o= min{low).

This completes the proof of Theorem 3.1. R
Remark 6.5. Note that above we conclude that v, ®. € Z2 = {f € C(R), f €
L(R)}, while we are in fact studying the eigenvalue problem (6.31) with ¢ € L?(R).

Notice that, by definition, ¢ is a solution to

(4n2€2 — BV (€) + /C G(6— O (QdC =0, T e L'(R),

and therefore satisfies the following inequality (recall E€ < 0):
AE 1 j AE
[P (§)] < quEHLwH‘/’ e

One deduces immediately ¢¢ € L?(R).
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7. Proof of Theorem 3.2: Edge bifurcations for —0? 4+ Q(z) + gc(z).
We now prove Theorem 3.2 concerning solutions of the eigenvalue problem

(7.1) (-2 +Q(2)) ¥(2) + ¢e(2)¥(2) = BY(z), o € L*(R).

Here @ is one-periodic and satisfies hypothesis (HQ), i.e., assumption (3.8), and g,
is localized at high frequencies, and decaying as |z| — oo in the sense of hypothe-
sis (H1'a)—(H1'b), i.e., assumptions (3.9) and (3.10), and satisfies additionally hypoth-
esis (H2'), i.e., assumption (3.11). Without loss of generality, we assume hereafter
Co<---<Cgand Cy <--- < Cs.

Following the analysis of section 6, we divide the problem into a coupled system
for a “far energy” component and a “near energy” component (here, “near” refers
to E being close to E, (k.) a lowermost endpoint of a spectral band of —92 + Q(x)
bordering a gap; see section 2.1). See our discussion of the strategy in section 5.

In order to spectrally localize we use the Gelfand—Bloch transform, introduced in
section 2.2. For fixed k, € {0,1/2} and b, € N, we define

(72) 1/’ - wncar + ¢far - T_l {{r/jnoar(k)pb* (ZIJ, k)} + T_l {Z {Efar,b(k)pb(x; k)}
b=0

with
Unear (k) = x (|k = ku| < ) T, {1} (k)
= x (k= k.| < ) (po. (@, h), Bl b)) ,

L3 ([0,1]2)
"/Jfar,b(k:) =X (|k - k*| 2 6T(Slkmb) 7;)* {¢}(k)

=X (k= k| > €0, p) <Pb(fcvk)’@;(x’ k)>L2 (0.11,)

per

and where 6; ; denotes Kronecker’s delta function. Equivalently, one has

1/2 . <
Wz) = / <1/)noar(k)ub*(x;k)+Z1/)far7b(k)ub(x;k)> dk.

—1/2 b=0

In section 7.1 we introduce the coupled system of equations, equivalent to (7.1),
in terms of Yp, and Yyear. In sections 7.2 and 7.3 we analyze the far and near energy
components, respectively, in more detail. Finally, in section 7.4 we complete the proof
of Theorem 3.2.

For clarity of presentation and without any loss of generality, we assume hence-
forth that we are localizing near the lowermost endpoint of the (b.)th band and that
ks« = 0. Thus, by Lemma 2.2,

b. is even, thus k, =0, and E;, (0) = E,.

For k., = 0, note that pp(z;ks) = up(x; ks) and we use these expressions inter-
changeably. For k. = 1/2 one has to distinguish between p,(z; k.) and wp(; ks ).

7.1. Near and far energy components. We first take the Gelfand-Bloch
transform of (7.1). By (2.7), we obtain

(7.3) — (8 + 2mik)* Y (w: k) + Q)0 (w: k) + (qev0)™ (23 k) = Ep(: k).
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Recall that {py(z; k)}p>0 form a complete orthonormal set in L2, ([0, 1],) and satisfy

(7.4)
(— (0 + 2m'k)2 + Q(a:)) po(x; k) = Ep(k)pp (x5 k), polx+ 1;k) = po(a; k), x €R.

Taking the inner product of (7.3) with py(z;k), and using self-adjointness of
— (8, 4 2mik)® + Q and (7.4), it follows that ¢ € L2(R) satisfies (7.1) if and only if

(7.5) )
(Ey(k) — E) <pb(33a k), (z, k)>L12mr({0)1]x) + <pb($7 k), (ge)™ (, k)>L2 (0,1]2) =0

per

for all b € N and k € (—1/2,1/2]. Equivalently, using notation (2.13),

(7.6) (Ev(k) — E) Ty {0} (k) + To{qetp} (k) =0 Vb e Nk € (-1/2,1/2].

We now decompose (7.6) into near and far energy equations relative to the band
edge Ep, (ks). In the notation introduced in (7.2),

(7.7)  (Ey. (k) — )'@Znear( k) +x (|k| <€) (To. {(Iewnear} (k) + T, {(Iewfar} (k)) =0,
(7.8) (Ey(k) — E) Gsar p (k) + X (|| > €0, 1) (T5 {gctnear} (k) + Ty {getrar} () = 0.

Equations (7.7) and (7.8) are, for the case of nontrivial periodic potentials, Q(x), the
analogue of (6.5)—(6.6).

7.2. Analysis of the far energy components. We view the system of equa-
tions (7.8) for {wfdr »(k)}p>0 as depending on “parameters” (wm,dr, E; €) and construct
the mapping (1/)noar, E;€) = Ygar[near, F; €] in the following proposition.

PROPOSITION 7.1. Assume b, is even and E, = Ej, (0) the lowermost edge of
the (b )th band is at the boundary of a spectral gap. Let E < E, vary over a subset of
the gap which is uniformly bounded away from the (b, — 1)st band (note that E may
be arbitrarily close to E, ). Assume q. € L?> N L> is bounded and localized at high fre-
quencies in the sense of (3.9), (3.10) with 8 > 2. Let Ypear = Tﬁl{Jmar(k)pb* (x; k)}

with wmar cL? where

near’

(7.9) Liear =1 € L2((-1/2,1/2)) = f(k) = x (k| <€) f(K)} .
Then for any 0 < r < 1/2, there exists eg > 0 such that for 0 < € < €q, the following
holds.

There is a unique solution {tfarp(k)}e>0 and g, = Tﬁl{szo Utar,p(k)pp
(z; k)} € L?(R) of the far-frequency system (7.8) . For any E, e as above, the map-
ping wmar — ¢far[1/)mar,E €| is a linear mapping from L2, to L*(R) and satisfies

the bound
(7.10) [¥ar [Gncars Bse] || 12 < C(Co,Ca, )™ [ ncarl

Moreover, for any s € (%, %), and for € sufficiently small, one has sqr wnmﬁ FE; e] €
H*(R) and

(711) H’@[Jfar |:¢near7 ) :| HHS — C(CO’CIB’ b*’ S)ez_maX{QnS}||1ZnearHL2'
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Proof. We begin by showing that there is a constant 0 < C; < oo, independent
of €, such that

(7.12) |Ey, (k) — E| > C1e®", € < |k| <1/2,
(7.13) |Ey(k) — E| >C1,  b#b., |kl <1/2.

Note first that (7.13) is an immediate consequence of the assumption on E. To
prove (7.12) recall by Lemma 2.2 that E, = E, (0), an eigenvalue at the edge of a
spectral gap, is simple, and k — E;, (k) — FE, is continuous. Therefore, for any k1,
such that 0 < k1 < 1/2,

(7.14) min | E

_E* > .
k1<[k|<1/2 (k) | > C(k1) >0

For |k| < k1, we approximate Ej, (k) by Taylor expansion. In particular, since Ej, (k)
is analytic for k near k., = 0, 0y Ep, (0) = 0, and 97E,, (0) # 0, we have |E,_ (k) —
Ey, (0) — 202 Ey, (0)k?| < C|k[3. Therefore, we can choose 0 < ki < o= |02E,, (0)| so
that for all €” < k7 we have

1

1 in |E — E,| > - |0}E ’r

(7.15) L min (B ()~ Bl = 3 [0}B,. ()]

Finally, notice that since E < E,, and F, is the lowermost edge of the (b,)th band, we

have |Ey(k) — E| > |Ep(k) — E4|, and therefore (7.13) follows from (7.14) and (7.15).
Thanks to the above, we can rewrite the far-frequency system, (7.8), as

(7.16)
~ X ([k| > €"0v, b)
wfanb(k) + W

To {qc (Ynear + Ytar)} (k) =0, b>0,k € (=1/2,1/2].
Multiplying (7.16) by uy(z; k) = pp(x; k)e? % summing over b > 0, and inte-
grating with respect to k € (—1/2,1/2] yields (by (2.15))

(717) (Id + ’Ce) ¢far($) = - (K6¢near) ({E),

where we define

V2 = x (k] > €6, )

Ey(k)— FE T {qeg} (K)po(x; k)™ dk.

(718)  (Keg) (2) = /

-1/2 >0

Thus we need to solve (7.17). As in Proposition 6.2, it is not clear that (Id + k) is
invertible. However, by bound (7.25) (with s = 0) of Lemma 7.2, stated and proved
just below, one has that for 0 < r < 1/2, one can chose € small enough so that the
operator norm || K. OICEHLz%L? < 1/2. Therefore, (Id — K¢ o KC¢) (as an operator from
L? to L?) is invertible.

The solution to (7.17) is therefore uniquely defined as

(7.19) Vpar(1) = — (Id — Ke 0 K) 7' (Id — Ke) (Kethnear) ().

Indeed, it is clear that, if it exists, 1., satisfying (7.17) is uniquely defined by (7.19)
(after multiplying the equation by (Id — IC.)). Conversely, when multiplying (7.19) by
(Id+ K.), and since (Id + K.) and (Id — K¢ o ICE)_1 commute, then ¢,,, as defined
by (7.19), solves (7.17).
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Thus t¢a; is uniquely defined from 9,car € L2, and therefore from Jnoar( k) e L?

(when E and e sufficiently small are given). Jfanb = Tp{ttar} is then easily seen to
satisfy (7.8), by (7.27). This concludes the first part of the proposition.

We now turn to estimates (7.10)—(7.11). By bound (7.25) of Lemma 7.2, for any
s € {0} U(3,3), one can choose 0 < € < ey small enough so that ||[Kc o Kc| ;.
1/2, and therefore

—Hs <

(7.20) | (Id —KeoK)™ || oy e < 2.

Moreover, by estimates (7.24) and (7.26) of Lemma 7.2, one has for any 0 < s < 2,
(7'21) chewnearuils S C (64_2S||wnear||ip} + 64_47‘“’(/11168-1‘"22) Y

(7.22) (Ko Kmearlir. <€ (€7 [near g0 + €27 [ncar e ) -

Finally, we remark that by definition (7.9) and Proposition 2.6, ¢ncar € L2 . implies

near

1/2 ~ ~
(723) Vs 2 0, HwnearHiIs ~ /_1/2(]— + |b*|2)s|wﬂear(k")|2 dk ~ ||wnear||i2'

It is now straightforward to obtain (7.10)—(7.11), applying the estimates (7.20)—(7.22)
and (7.23) to (7.19). This completes the proof of Proposition 7.1. O

To complete this argument we now prove the following lemma.

LEMMA 7.2. Let Q, qe, 7, €, and E be as in Proposition 7.1. Then, for 0 < s < %
the operator K. : H*(R) — H*(R), defined by

_ 1/2 (|k| > € 5b*7b) . 2mikx
K= [5G SR sl Wintash) T

satisfies the bounds

(r21)  [KegllZ < ¢ (2ol + e o) <5<,
(7.25)

||(IC€olCe)g||§{s SCe478T||gHiIS, s=0 07’% <s< %,
(7.26)

[0 o Kol <€ (& lgllh + 2 gl ) <5<

with C = C(Cy,Cs,b.) a constant.
Proof. In this proof, we will make repeated use of Proposition 2.6. We first note
that we can write, by (2.13) and since {py(x;k)}p>0 is orthonormal in L2([0,1]) for
each fixed k € (—1/2,1/2],
X (k] > € 5b*,b)

To {qcg} (K).

Therefore,

[l = [ S+ 7 (cab

b>0

1/2 e’ 2
- [T +b2>s% 175 {gea} (B)

-1/2 4,30
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Using bounds (7.12) and (7.13), as well as Weyl’s asymptotics (Lemma 2.4), we have
(7.28)

oy

b>0"7—1/

1/2 1 ) .\ 1/2 )
- gy () dE + 4T gy (k)? dk,
T et OF dk+ e [ 7 {ag) )

which will be used several times in the proof.
First we estimate the right-hand side of (7.28) as

(7.29) 1Keg||%. S e ¥ llaegl 5o

and use (A.2) in Lemma A.1 with § =2 — s > 1 to obtain

3
(7.30) 1Kegll e <C gl o, 0S5 <3

In order to obtain (7.25), we iterate (7.30) and deduce
3
(7.31) ||IC6 olCegHHS <c eZ_S_ZTHICEgHHQ,S <cC 62_47’Hg||H3, —<s< 7"

As for the case s = 0, we use first (7.30), then (7.29),

(732)  [[KeoKeg|| o < C 7 [[Kegll o < € 7 [0c8]| po < € 7 9] 2

since [[4eg]| o ~ [laed| 2 < llaell o 191l .-
Let us now turn to estimates (7.24) and (7.26). First we estimate the right-hand
side of (7.28) as

(7.33) Keoll. < 11680 ooy + €|l
Using (A.3) in Lemma A.1 on both terms of the right-hand side with (respectively)
§=2—s>1 and § =2 yields

3
@30 Kl <¢ (0 glt + gl 05 <D

This completes the proof of bound (7.24). Note that in order to estimate (7.33) when
s =2, we can use ||¢eg|| yo = [|¢eg]| 2 < ||¢e|| <]l - and (A.2) in Lemma A.1 with
0 = 2 to deduce

(7.35) IKellze <€ (llolza + €= llo3e) -

We now turn to the operator K. o .. We apply the now proven bound (7.24) to
get

736 (Koo kgl <€ (Cglb + al) . 0<s<

Using again (7.34) with s = 0 to bound ||IC€g||H0, and (7.35) to bound ||IC€g||H2, we
conclude

(7.37) [(keoKagl. <€ (2 + e )lgllpo + 2 g]722)

This proves bound (7.26) and completes the proof of Lemma 7.2. a
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7.3. Analysis of the near energy component. In this section we study the
near equation (7.7), which we recall here:

(By. (k) = E) tnear (k) + X (k] <€) (Tr. {detbucar} (k) + T {gctbrar} (k) = 0

with the aim of extracting its leading order expression. We also make the following
ansatz:

(7.38) E=FE, -9 0<t_ <6*<t,<oco, E,=F,/(0),
where t_ and ¢t are independent of €. Recall also that, by definition,
(739) 1bneaur""wfar = ¢ with Vb € N7 (Eb(k) - E) 77) {¢} (k)"‘% {qedj} (k) =

Therefore iterating (7.39) using (2.10) in Proposition 2.5, we can write

1

To. {qep}(k o (4 k) g (z; k) da

1 1/2 _
o, (7 / Ge(z; k — D(x;1) dl dx

1/2

I
c\c\%

1 1/2
@ / @k =Y palw DT 0} dl de

1/2 >0
= _/ *(Qf,k)
0
1/2 1
(z;k —1) paxl Tof{qe} (1) dl dex.
/. D> e A LR

We then use Fubini’s theorem and rewrite the near equation (7.7) as

(7.40)  (Ep. (k) = Bx + €*6”)thncar (k) + X(1k] < €") (3[0]hmear + I[0)rar) (k) = 0

with the notation

1/2 1
(7.41) (36l / > Tulact D) g —raige ladl(hi1)
a>0

where we define for a > 0, b > 0,

1
(7.42) I olge) (k1) = /0 pu(x; k) ge(x; k — Dpa(z;1) d.

Note that (7.40) is the analogue of (6.19) for the case @ = 0.
PROPOSITION 7.3. Let q. be such that g. € L'NL>™ and assume q. is concentrated
at high frequencies in the sense of (3.10). Assume Q € W with N sufficiently

large, so that (3.8) applies. Then for e sufficiently small we can write the near energy
equation (7.40) as

~ /2
(7.43) (Ey. (k) — By 4 €'0®)Ynear(k) — x(|k| < €")e? By, o ¥ Unear(s) ds
—1/2

= X('kl < er) (R[Q]Jnear) (k)7
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where By, of is as defined in Hypothesis (H2'), (3.11), and R[0] : L2, — L> (recall
definition (7.9)) is a linear mapping satisfying the bound

(744) HR[G]JTLEGTHLOO < C€2+0'neaT Jnear”Ll + C€3+O'fm ~

wnearHLT

Here, Opeqr = min{1,7,0cg}, with oex defined in (3.11), opr = 1/2 =27, and C =
C(Cs,Cs,Co,bs) is a constant.

Proof. Adding and subtracting the anticipated dominant contribution to J[0]tnear
we may rewrite the near energy equation (7.40) as

~ /2
(Eb* (k) - E* + 6402)wncar(k) - X(|k| < €T)€2Bb*,cff X / 1pnoar(s) ds
~1/2
1/2 -
—x(|k] <€) 62317*,05 X Ynear(s) ds + (j[o]wncar) (k)]
—1/2

—x(|k| <€) (3[0]brar) (k)
= X([k| < €") (R1[0]¥near) (k) + X(|k| <€) (Ra[0]¥nmear) (k)

(7.45) = X(|k] < €") (RO vnear) (k).
The proof of the bound (7.44) follows from Lemmata 7.4, 7.5, and 7.6 below and the
triangular inequality. O

LEMMA 7.4. Under the assumptions of Proposition 7.3, there exists €9 > 0 such
that for e € (0,¢€p), one has

HX('kl < er) (R2[6‘]Jnear])(k)||Loo(Rk) = ||X(|k| < er)(j[a]’gbfar) (k)HLm(Rk)

< C€2+3/2_2T||Jnear“L2

with C = C(Cg, Cs, Co, b*).
LEMMA 7.5. Under the assumptions of Proposition 7.3, one has

(7.46)
1/2 1/2
j 9 near k d neaT dl I e * € l;
| (nar) 49+ [ ds D) [ = o QI Dl [l
<€ €||dnear]| 11
where
(7.47) Q(§) = #ﬁﬂgp

Here C = C(Cy,Cy4,Co, by) is a constant.
LEMMA 7.6. Under the assumptions of Proposition 7.3, one has

1/2
(7.48) sup / A>T, a[Qc (B3 1) Iap, [qc] (15 5) — € By, cfr
|k|<er,|s|<e™ |J—1/2 a>0

< C(Ca, Co, by) (217 4 2Hoeiny,

Here, By, o is defined in (3.11) and C(Cq,Co,b.) is a constant.
The proofs of Lemmata 7.4, 7.5, and 7.6 appear at the end of this section.
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Rescaling the equation. The next step consists in rescaling the equation so as
to balance terms on the left-hand side of (7.43). We therefore define

€

(7.49) k= Dne(k) = 2B (%) = (k] < B (n).
€ €

Note also that one has the following estimates:

(750)  [[vncarll e SI®f e and el S €MD o

These follow from the definition HEI;H2L21 = [ 1+ |K|2)|®(x)|? dr and the following
bounds:

[l = [ bl < )] = [

— 00

o0
(k] < € 2)B()| dic S [|]] 2
” 2 = N 2 2|52 2|52
el = [ XM < et = 2B < 2B
—0o0

The next proposition extracts the leading order terms in (7.43), in terms of the
variable x and unknown ®.

PROPOSITION 7.7. Assume the hypotheses of Proposition 7.3 hold. Then, the
rescaled near energy component solves the equation

(7.51)
(502800062 +6) 806 = x(lel < 2B x [~ 86) s = (D))

— 00

where Ry[0] : L*' — L%~ is a linear mapping satisfying the estimate

(7.52) [R[01® ] oy < C (2 + € 4 €0} ||| s

Here C = C(Cs, Cs, Co, b, SUD | < |El§f)(k’)|) is a constant, and we recall that o peqr =
min{1/2,7,0ex} and o = 1/2 — 21 (see Proposition 7.3).
Proof. Substituting the rescalings (7.49) into (7.43) and dividing by € yields

(7.53) € 4By, (k) — B, 4 €'6%)® (k) — x(|5| < € ) By, o X / (&)de

— 00

= x(|k] < €7)e 2 (R[] Ynear) (€2K).

The estimate on R[G]{/)vnoar in (7.44), together with (7.50), yields immediately

(754) 672 (R[G]Jnear) (625)‘ P < C||672R[9]Jnear||[/oo
< QeTren /lZnear I =+ Cel+ofar 'QljnearHLz
(7.55) <C (e e 2] e

There remains to expand e ~*(Ep, (e2k) — By +€6?). Since Eéz) (0)=0forj=1,3
(by Lemma 2.2), Taylor expansion of Ej, (¢2k) about x = 0 to fourth order yields
! Sl

2
(7.56) By, (k) — B, + €49? = T”ng) (0) + €162 + 62—4Eb* (K),
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where k' is such that |k'| < |e2k| < €”. Therefore, provided SUp| s Eéf)(k’) < 00,

|<em
one has

(7.57) H <e—4(Eb* (k) — By + €*0%) — (%2 EP(0) + 92)> D)

L2,71(RN)

8 1/2
< &P < 27| B
~ € H(bHL2,1 (KE[ super 2 (1+|/€| ) > ~ € H(b‘|L2v1'

Plugging estimates (7.55) and (7.57) into (7.53) immediately yields (7.51) with
bound (7.52) on R, [9]5 This completes the proof of Proposition 7.7. O

We now give the proofs of Lemmata 7.4, 7.5, and 7.6.

Proof of Lemma 7.4. Using the Cauchy—Schwarz inequality in (7.41), one has

1/2
”2 Ib alad (ks |°
7.58 Y| (K / ralde dl
( ) | [ f: 1/2 = E +6492
1/2
1/2
/ Z ‘T{qe 1bfour ‘
a>0

The second factor of (7.58) is estimated as follows, using Proposition 7.1 and hypoth-
esis (H1'a), estimate (3.9),

1/2

1/2
/ Z |771{q6 ¢far}(l)|2 dl

1/2 ;>0
~ [lactrar| o < [ldell oo [ 950rll 12 S Co® ™ [[thnear]| o

As for the first term of (7.58), we treat differently the cases a = b, a # by, and
a < af and a > af, where a = max{a > 0 such that \/E,(k) < 7/(3¢)}. By Weyl’s
asymptotics (Lemma 2.4), one has \/E,(k) = a and therefore a ~ 1/e.

Case a = b.. By (7.38), | Ey, (k)—E,+€*0?| > t_e*. Together with estimate (A.12)
of Lemma A.3 with a = b,, we can bound

1/2
L.
Case 0 < a < af, a # b,. By Weyl’s asymptotics (Lemma 2.4), one has m <
1/(a® 4+ 1) for a # b,. Therefore, applying estimate (A.13) of Lemma A.3, one has

the bound
1/2
L.
1

1/2
S Y e/ bedadtsora
~ 2 2

0<a<a$§,a#b. (CL +1) 1/

(1 + [be|?)2.

2 1/2

dl < Ce8 Iy, b, [qe) (ks D))* dl < C(1 + [by| V)22V 8,
-1/2

Iy, vl (k; 1)
Eo(l) — E, + €462

2

Ib*,a[qf](k;l) dl

E.() — E, + 402

0<a<as,a#b.
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Case a > a&, a # b,. In this case, one has m < €2, and therefore
1/2
Z/ dl<4Z/ |Io. alge] (ks D) dl S €,
asas /—1/2

a>as

Iv. alge] (k; 1)
Ea(l) E +6492

where we used estimate (A.9) of Lemma A.2.
Thus

k] < ) (MO0t B)| ) S > (N5 4

Choosing N = 11/2 and defining o¢,, = 1/2 — 2r, we obtain

‘X(lkl < er)(Rz[H]@Znear)(k)’ = |x (k] <€) (3[0]bear) ()| < CE¥7o] |3,

" e

¢near ‘ ’ L2

with C = C(Cs, Cs, Co, bs) which completes the proof of Lemma 7.4. O

Proof of Lemma 7.5. Let us first manipulate J[0]1pear. Using Proposition 2.5 and

definition Ypear(z) = 71/2 627Tiysiznear S)py, (x; s)ds, one has
1/2

- (j[e]wnear) (k)
1/2 .
= /_1/2 dlaZN)T{Qe Ynear } (1 ) E.()— B, + 492]1,*)(1[%](]@7[)
1/2 o )
— /1/2 allgJ </ dy pa yJ) / e ds qe(y;1 — s)pe., (y,s)¢near(s)>

Ib*7a[QE](k71)
Ea(l) - E* + 6492

1/2 . 1/2 Ib [q ](k' Z)
= d near dl g e d
/—1/2 s ¥ (S) /—1/2 Ea(l) — E, + €162

a>0

(/01 dy pa(y; DGc(y; 1 = s)po. (v; S)>

2 1/2 Iy, alqe) (k3 D) 1ap, [qc)(L; s
(7.59) :/ ds wnoar(s)/ dry | b*’E[aq(]l()_)E*i%g 3

—1/2 -1/2 %o

Note that (7.59) is the analogue of (6.21) in the case @ = 0.
Our aim is now to prove that, to leading order, as € — 0,

Iy, alqel(k; D) 1ap, [g](1; 5)
E, (1) — E, + €*6?

~ Ib*,a[QE](k; Z)Ia,b* [QE](L S)v @\E(g) = %552182

To this end, we proceed in a manner similar to the proof of Lemma 7.4. Decompose
the sum over a into the cases a = by, a # by, and a < af, and a > a$, where

a$ = max{a > 0 such that \/E, (k) < 7/(3¢)}

By Weyl’s asymptotics (Lemma 2.4), one has \/E, (k) ~ a and therefore a ~ 1/e.

Let us first notice that Q. € L? and clearly satisfies (3.10). Therefore, the bounds
of Lemma A.3 apply with ¢ replaced by Q.. Moreover, one has HQ€||H2 < HqEHLQ,
thus (A.14), in particular, applies.
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Case a = b,. We use that m < tZ'e=*. By the Cauchy Schwarz in-

equality, the triangle inequality, and (A.12) (noting that I, . [q](I; k) = Tn, v, [qe] (K; 1)),
one has

S CEQN_4

1/2 .
(7.60) /_ b dzHEbff(J;),b*_[qu]*(i ?492 — I, . [Qe](k;l)] I p.[ac] (; 5)

with C = C(Cn+1/2,Cnt1/2, qu||L2’b*)7 uniformly with k,s € (—1/2,1/2].
Case a < a, a # b.. We now use estimate (A.13) for the contribution of
Iy, .alqc](k; 1) and estimate (A.14) for the contribution of I, ,[Qc](k;1): It follows that

1/2
/meAmwm\ﬂ<a@£ummm ,

1/2
/’|ma&mmﬁm<aaxﬂ@humé
—1/2

Similar estimates apply of course to I, [qe](l s) = Iy, alge](s;1). By Weyl’s asymp-
totics (Lemma 2.4), one has \Ea(ll)—E\ < 1+|a|2 and a$ =~ 1/e. Using the triangle
inequality and the Cauchy—Schwarz inequality, it follows that

< Cé,

1/2 )
I S I e TR A pARAIL

a#b.,a<ac -1/2 a(l) -, + €402

with C = C(Cy,Cy, HqEHLz,b*), uniformly with k,s € (—=1/2,1/2].
Case a > af. Let us study in detail

I, o[Qe)(K;1) = / <Z 2mina = 47:;(; l_': j—) )2> Da(x; 1) da.

By Lemma B.2, there exists B, (x;k,l) and B, (x;k,1) such that

P @ R0 = B2, @ik De=VED 1 B, (ask DemioVED),

and Bib* (z; k, 1) satisfies

uBsfb*<-;k,z>||Wg§e<cucz||wgegm D end[9.B%, (kD]
Q)

uniformly with respect to a, k, [.
After integrating twice by parts, one has (here and hereafter, we abuse notation
and write Fy for F + F_)

Ge(k —1+mn) -
2 Bi 2mi(n+k—1)zx Qe( +izy/Eq(l) )
/03 { ap. (T 5 1) (Z 14+4n2(k—1+n)? ‘ d

nez
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We then make use of the identity
BE zik,l e2mi(ntk—l)z
- 03 el ) = Bib (3 k1)
1+4n2(k -1+ n)? a,bx

By, + 03By, (wik. 1) + dmi(n + k — D0, B, (w:k,1) itk Da
1+4n2(k—1+n)?

and deduce from the above estimates

fal@(s0) = 2D L [T k0~ ) o
¢ neEZ

with
(7.62)

kD),

@ e o) % e+ 1
por 1+4n%(k —1+n) E,()(1+ 27|k —1+n]|)

uniformly with respect to a, k, [, and n.

In order to estimate the latter, we decompose the sum over |n| < 1/(3¢), and
[n| > 1/(3¢). For the former, we have, thanks to assumption (3.10) and the Cauchy—
Schwarz inequality,

2

1/2 1 1
k—1+ dl
/1/2 |n<1/(36)(1+4ﬂ-2( —l+n \/ 1+27T|k:—l+n|)) ( n)
1/2
/ @k — 1+ )2 < (Cpe®)2.
1/2 |n\<1/(3e)
For the latter, one has
1/2 :
1 1
+ k—1+ dl
/1/2 (1+47r2(k —1+n)? Eo()(1 + 27k —l+n|)) %l ™)

In|>1/(3€)

<ol [

Altogether, we conclude that

/1/2 Ib*,a[QE](kﬂ)
—1/2

E.(l) — E, + €162
with C = C(Cg, HQHW};S"’b*)'
Finally, summing over a > a$ (and recalling that, by Weyl’s asymptotics, a$ ~ 1/e
and E,(l) ~ |a|?), one has

1/2
>/

€
a>as

2

1 1
Sl (¢ + 555 )

_|_
1+ dm?n? Ea()(1 + 27[n])

1/2 \n|>1/ 3¢)

2
2 € —1
- Ib»”a[QE](k; l) = Ea(l)z (C’BE ’ Ea(l) Ea(l)z)

2

Iy, alqc)(F; 1) dl < Cé®

Eo(l) — By + 402

- Ib*,a[Qé](k; Z)
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with C = O/(Ca, ||Q||W1‘°°’b*)’ uniformly with k& € [~1/2,1/2]. Using the Cauchy—
Schwarz inequality and (A.11) of Lemma A.3, we have

1/2 .
N ‘( f ol ?492_Ib*7a[Qe]<k;z>)fa,b*[qem;s)

a>ac 1/2

< Ccé.

Bounds (7.60) with N = 7/2, (7.61), and (7.63) imply (7.46) and complete the
proof of Lemma 7.5. d
Proof of Lemma 7.6. Using the identity (A.7) of Lemma A.2, one can write

1/2
/ A1y T, Q) DLy a1 5)

/2 a>o0

1/2
— [ @Y Tl GRRW) Tadw. ().}

-1/2 339

Expanding the term T,{up, (-; £)Q(-)} via the definition (2.13), one has

1/2
[ @y Tl GRRO W) Talun. (3 )} 0

—1/2 a0

1/2
:/ dzZ/Rdxua(x;l)ub*(x;k)Qe(xm{Ub*(-;S)qe(-)}(l)

-1/2 330

Finally, using the completeness of the Bloch functions, (2.15), one has

1/2 -
/ dlZ/Rdx“a@”)“b*(x;k>Qe<x>7;{ub*<-;s>q€<->}m

-1/2 a>0
_ / drup, (23 B)up, (2 8)Qe () e ().

Since ¢, is real-valued, so is Q.. Therefore, we can write

1/2
(7.64) / Ay " To, alQe) (ks D) Iap, (g (1 5) / dxlup, (2; 0)]* Qe (x) e ()

/2 >0
+ [ Z A Qu(w)ac(e) [, (& B, (259 — . (750}, (250)]

Recalling that {/)Vnoar(s) = Jncar(s)xér(s), we bound the term (7.64) by Taylor
expanding about s = 0 and k = 0. From Lemma B.1, one has for any k, s € [—€", €"],

[ e w)an (o) T, 01) — 0. (550)
< C(Qlly, b) [ del@@la.tal
One checks using hypothesis (H1’b), (3.10), that

J sl @) < ol . < fcen]al.
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to write

1/2 0o
[ Y ha@inha ) — [ dedu @0)PQu @] S 3

/2 3o

Lemma 7.6 is now an immediate consequence of the definition of Beg in hypothesis
(H2'), (3.11). |

7.4. Conclusion of the proof of Theorem 3.2. Proposition 7.7 is a formal
reduction of the eigenvalue problem

(7.65) (=02 + Q(x) + qe(2)y = B, ¢ € HX(R),
for (E€,1°) to an equation for (6%, ®.) of the form
(7.66)
(éaﬁEb* (0)s° + 93) e() = X(|5] <€) By, e x / Z (§) dE = Ry [0)De(r)

(see (7.51)), where @, is the rescaled near energy component of ¢*. We now apply
Lemma 4.2 to obtain a solution of (7.66). We then construct the solution (E€, ) of
the full eigenvalue problem (7.65). This will conclude the proof of Theorem 3.2.

We apply Lemma 4.2 to (7.66), with A = £507E;_(k.) and B = By, e and
R. = R,. By Proposition 7.7, R, satisfies assumption (4.11) with 8 =2—r, a =01 =
min{oes,r, 1/2 — 2r}. Following the steps of its proof, and using

1 - 1 _ €']0f — 03]
Eall) — B+ 00 Eall) — Bu+ 3| (Ball) — Be 1 @) (Eall) — Br + A07)
103 — 03] 1
<

62 E,)- E,+¢€'0%

one easily checks that assumption (4.12) also holds.
Thus by Lemma 4.2 there exists a solution (62, ®.) of (7.66), satisfying

(7.67) 1@ — foelljon S € and 02 62| < .

Here (67 ., f076) is the solution of the homogeneous equation

Lo.lon Fo® = (302BL (0 43, ) Foul®

4 x (IEl < €72) By en / x (1l < €72) Foc(m)dn =0,

as described in Lemma 4.1. Specifically,

2
92 Bb*,off
0,€

5 0i B, (k)

x(l¢] < e2)

and
T2, ()€ 1 R,

2—r

(7.68)  fo. () =

€

~

We next construct the eigenpair solution (E€, 1)¢) of the Schrédinger equation (3.12).
Define, using Proposition 7.1,

wé = Ielcar + wfara EE = Eb* (k*) — 6493,
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~161car(£) = lgé\)é (%) ) Ielcar = Til {{Efmar(k)pb* (x; k)} ) and

Yfar (§) = Vtar meara E<; 6] (€)-

Then (E€,1¢°) is a solution of the eigenvalue problem (7.65). Indeed, the steps
proceeding from (7.65) to (7.66) are reversible for solutions 1 € H!(R) of (7.65),
respectively, solutions ®, € H!(R) of (7.66).

We now prove the estimates (3.13) and (3.14). By (4.7) in Lemma 4.1, (7.67), and
recalling B¢ = Ey, (k.) — €*62, one has

B2
E¢— | By (ky) — el beell )b 4
( b*( ) #aleb* (k*)

2
Bb*,cf‘f 2
_ 05

#aleb* (k*)

2
Bb*,cff

#aleb* (k*)

4401
<e .

<e4

> - 9(2),5 + 64 |0(2J,e - 93‘

This shows estimate (3.13), the small e expansion of the eigenvalue E€.
The approximation, (3.14), of the corresponding eigenstate, )¢ = 5., + ¥f,,, is
obtained as follows. For A = c1;02E, (k.) and B = By, cqr, one has

(7.69) }

2 B
@) = un a:0) 5 xp (€ 1ol

Lo

S ‘

€ . 2 2 B
near(x) — Up, (x70)B eXp < € 2A|x|)

We look at each of the terms in (7.69) separately.
Recall

1/2 _
o) = / X< € (. (5:4)
—1/2

1/2 1~ k )
[ xim <), <—) 2k, (5k) di
€ €

—1/2

= [ xllel < e (i) de
= . (@0) [ (¢l < o) de
. r—2 EI\)E 7 . 2mie?tx d
+un@30) [ €l < ) (Bl ~ Forle)) e g
N /RX(IEI < )R (py, (23 €°€) — p. (2:0)) dE

= Ii(x) + Iy(z) + I3(x).

We study each of these pieces in more detail. By (7.68), x(|¢] < eT*2)f0,€(§) =
fo,(€). Therefore, for A = 502 By, (k.) and B = By, o, one has from estimate (4.8)

82
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in Lemma 4.1,

(7.70)

2 B
Ii(z) — ub*(x;O)E exp <—e2ﬂ|x|>‘ < e

Using the first bound of (7.67), one has

ub, (x;O)/RX(IéI <€) (Be(&) — foulg)) e2mictes dg‘

(7.71) S N, (23 0) || oo ) || @ — forel| o S €7

12| g = sup

Similarly,
2] = s \ [ el < B9 o (3179 — . 2300 df\

< e S [ Okps. (3 k) || L (r.0) /}RX(|§| <€ DlelRe©)] dg

(772) §€2||§)6||L2,17

where we used that Jipyp, (z; k") is well-defined and bounded by Lemma 2.3. Finally,
notice that ||EI\>E||L211 — ||J/%76||L211 as € — 0, and HJ?QEHLM is bounded uniformly with
respect to €. Therefore, from estimates (7.70)—(7.72), and noting that min{oy,2,2 —
r} = o1, we can write

(7.73) < C €%t

Sl

B
Ielcar ((E) — Up, (x; 0) exXp <_62ﬂ |$|>

The second term in (7.69) can be bound using (7.11) in Proposition 7.1 and (7.50):

(7.74) ‘

T o Pl e e X

§ 61—max{s,21”}

for 1/2 < s < 3/2, where we again note that ||(T)6||L2,1 — H]?O)EHH,1 as € — 0, and

||f075HL2J is bounded uniformly with respect to e.
Since ¢ is a unique solution of (7.65) up to a multiplicative constant, we can
conclude from (7.69) and the estimates (7.73)—(7.74) that

This completes the proof of Theorem 3.2 with the choice r = 1/6 and s = 2/3.

< €72 o9 = min{oeg, , 1| — max{s,2r}}.

~ Y

24"~

(@) = un ax0)exp (5l

Appendix A. Bounds used in section 7. To study the near and far energy
equations (7.7) and (7.8), we will make use of the following lemmata.

LEMMA A.1. Let q. € L2NL> and assume q. is concentrated at high frequencies
in the sense of (3.10). There exists B > 2 and a constant Cg such that

N 1/2
(A1) </_L 3.(6)? d{) <Cpe? for 0 <ex 1.

2e
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Then, for any 1 € H® with % < 0 <2, we have

(A.2) el -5 < Clllacll oo el e Co) 1411

If, moreover, v € H?, then we have

A3) (el < OUel oo llaell s Co) (1930 + € 10]152)

Proof. The norm X* is defined in (2.16). By Proposition 2.6, one has

I
it < lactlio % | i

— 2
0 (@) de.

Bound the above by estimating the integral separately over the ranges: |¢| > - and

4e
€] < . For [¢] > 1, one has

(A4)

/|5|>41

For |¢| < 4, we begin with a pointwise bound of @(f)

b
(1+1517)°

— 2 —
4 (€)| ‘ de S @||qb(©)]72 S llacvle S e llacly Il

(€)= /C & - D) d¢

- / G- D) d¢ + / G(C— D) de.
[¢]<1/(4¢€) [C]>1/(4€)

Since ¢, satisfies (A.1), one has for any v € [0, 2]

/5\ < P . é\E(C_g) 1 2\v/27) d
Ei‘ii‘q VO < <ell. + /<>1/<4e> (1+|<I2)7/2( FlPeie a

< & Col[ 0o + € llacll o [141] -

Since > 2 and § > %, one deduces

1
A5 —_—
(4.5) /g 1+ €y
S i, 4P S Cllaell 2 Co) (X[ 72 + [l 5)-

4e

g ()| | de

‘ 2

Estimate (A.2) follows from (A.4) and (A.5) with v = ¢. Estimate (A.3) follows
from (A.4) and (A.5) with v = 2. Lemma A.1 is proved. O
We now turn to the study of

(A.6) Toplad)(k; 1) = /0 Da(m; k) qe (s k — Dpp (5 1) de.

LEMMA A.2. Letq. € L*(R) and Q be continuous. Then for any k,l € (—1/2,1/2],
one has

(A7) Laplgel (k1) = Ta{un(1)ge()}(K) = To{ua(:; )ge()}(1)-
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For each fired b > 0, we have the bounds

1/2
(A8) S [ Maslads0 dk < el ol
a>07~1/2 .
and
1/2 5
(A.9) Z/ Dalad (ks dt < C|Q o llacl 3
a>0

Note that the order of (a, b) with respect to the variable of integration is important.
Proof. Note that, by definition (2.4), we can write

Gk — 1) = T{qe(x)} (z:k — 1) = T {¥"qc(2) } (2 k).
Furthermore, by (2.8), one has
Ge(xyk — Dpy(a;1) = T {e>™ ™ qe() } (a5 k)py (1)

= T {2 py (2 D) } (25 K)
=T {un(w: Dge(2)} (23 k).

Therefore,

Iap[qe]( k)qe(z;k — Dpy(x; 1) do

)T {up (23 1)ge ()} (23 k) da

(A.10) T b(2; 1)ge(2)} (k)

which implies (A.7).
We now complete the proofs of the bounds (A.8)—(A.9). On the one hand,

2
Iz2-

(2 D () o, S sp un s D lael | < < Ol )

where we used Lemma B.1. On the other hand, by Proposition 2.6,
s Dae(@) 12y 2 1T L5 D ()} o

1/2
—Z/ 0k | Tafun (- Z/ 0k |l (s D

a>07 —1/2 a>0

where we used (A.10). This implies (A.8). The bound (A.9) follows by applying
similar arguments to I, 4[qe](k; 1) = To{up(; k)ge(-)}(1). O
LEMMA A.3. Set N > 0. Assume that qc € L? and assume q. is concentrated at
high frequencies in the sense of (3.10) with 8 > N+1/2. Assume Q is such that (3.8)
holds with o € Ny > N +1/2. Let k € (=1/2,1/2], and a,b > 0. Then we have the
following:
1.

1/2
(A1) / T alac (kDI dl < C(Colac]] )

—1/2
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and
1/2
(A.12) / [y algd) (B 1))° dl < €N (14 |a>*)(1 + [b]*),
—1/2
where C = C(Cg, Ca, ||q€HL2).
2. If a is such that \/E,(k) < /(3¢) (a < e t), then

1/2
(A.13) / algd] (ks D)2 dl < CE(1+ [blY),

—1/2

where C = C(Ca, Ca, |q€HL2).
Furthermore, if g € H?, then

1/2
(A14) [ Malads v < v o)
—~1/2

where C = C(Cy, Cy, ||quH2)'

All these estimates are uniform in a,b,k,e and hold, symmetrically, for

S5 o plac (s D) di.

Proof. Estimate (A.11) is a straightforward consequence of Lemma A.2.

Let us turn to (A.12). Fix k € (—1/2,1/2]. We recall that g.(z;k — 1) =
> ez €T qe(k — 1 4 n); therefore

1
Ip.alqel (ks 1) =/ po(x; k) <Z e e g (k —l+n)> pala;1) dz

ne”z

1
=/pb(x;k) ST TGk~ 1+ n) | pa(w;l) de
0

In|<1/(3¢)

1
+/ pu(x; k) Z 2™ (b — 14+ n) | pa(z;l) do
0

[n|=>1/(3¢)

= I lad (ks 1) + 18 [ae) (k3 ).

We now bound [, |76 [a.] 1)’ dl.

/ | lad kl)‘ di
1/2
2

12 | p1
:/ / (3 k) Z 2™ (k — 14 n) | pa(z;1) do| di
—1/2 170 In|<1/(3€)
2

1/2
(wk)paxl‘/ Yo G@k—1+n)| d.

12 | 1n1<1/(3¢)

< sup

By the Cauchy—Schwarz inequality, one has
2

Z 1xq(k—1+n) §(£+1> Z g (k — 1 +n)]>.

In|<1/(3e€) In|<1/(3e€)
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Therefore, by assumption (3.10), one has

Y2 2 ; v )
/ D adksn| @< et Y / Gk —l+n)d [ =n—1]
—1/2 In|<1/(3¢)” —1/2
1/(2¢)
§C’(Co)e_1/ lGe(k+ )2 dl" < C(Co,Cp)ePE,
—1/(2¢)

which concludes the first part of the estimate.

1/2

Turning to [~ L2

2
P D —

/ 155 L) 0 Z)‘ di
1/2
2

1/2 1
_ / / k) (> TGk~ 14 n) | pa:l) da| dl
—1/21J0 [n|>1/(3€)

2

1/2 1 .
:/ Z qe(k_l+n)/0 W e 81 (pb(ft;k)pa(fv;l)) dx| dl.

/2 | jn|>1/(3¢)

By the Cauchy—Schwarz inequality, one has for o > 1,

2
1 . 1 . 2
3 X Gk —1+n) < P S @k —1+n)|
In|>1/(3¢) In|>1/(3¢) In|>1/(3¢)
SET N @k —1+n).

In|=1/(3¢)

It follows, using (3.8), that

/ ‘ﬂ“) 1(k; Z)‘ dl
1/2
1/2

< C2(1 4 |al?)2(1 + [b|) 220 Z/ k—l+n)Pd [ =n—]

[n|>1/(3¢) 1/2

C2(1+ [al®)2(1 + [b]%) 22 |ge [

Estimate (A.12) follows with «, 5 > N + 1/2.

In order to obtain (A.13), we shall use the above estimate concerning

_1{32 |Il51¢)1 [q](k;1)|? dl (with 3 = 2) and the refined analysis of Lemma B.2 below
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1/2
1/2

[ o]
~1/2

for | ‘Ibl;) 1 (k; l)‘ dl. More precisely,

2

1/2 1
:/ /pb(x;k) Z 2™ (k —1+n) | po(w;l) do| dl
—1/z |0 n1>1/(3¢)
1/2 1
— [ pEE Y ak-ten
—1/z2]70 In|>1/(3¢)

2

(Al-l-(x;l)eiz(\/Ea(l)—Qﬂ'l—i-Qﬂ'n) + A;(x;l)e—iz(\/Ea(l)—Q—Qﬂ'l—Zﬂn)) dzl dl.

One deduces, after integrating by parts twice and using Lemma B.2 (since @ €

Wi (R)),
1/2 1/2 2
(ii) 2 2 212 ~ 1
[P0 dr < 2+ pP) / Glh—l+n)— | a
/1/2 ‘ b a ‘ : —-1/2 n>12/%36) (2mn — no)?

with ng = /FEa.(l) — 27l < 7(1/(3¢) + 1). Once again, by the Cauchy—Schwarz in-
equality, and since |n| > 1/(3¢), one deduces

/1/2 ‘Ibl;) qe) (F; l)‘ dl < ECH(1+ |b|2)2qu||iza

and (A.13) is proved.
Estimate (A.14) is proved similarly, but using that ¢. € H? implies

2

1/2 1
/ Y Glk—l+n) )| dl

71/2 nZl/(Se) (27TTL - no)z

1/2 1
= 1+ k—=l+nHq(k—1+n) dl
L. R (T o= T+ nP) @ — o)

2
S € llaelle-
Estimate (A.14) follows as above, and Lemma A.3 is proved. O
Appendix B. Detailed information on the Floquet—Bloch states. In
this section, we collect some information on the Floquet—Bloch states, as defined in
section 2 and that are used in section 7.

These results will be based on the following identity, which follows from the
variations of constants formula (see [12]):

(B.1) up(; k) = up(0; k) cos(v/ Ep(k) x) + Opup(0; k) sin(y/Ey(k) )

N /”” sin(y/ Ey(k) (x — y))Q(y)ub(,’%k) dy.
0

Ey(k)
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Of course, this identity makes sense only for Ey(k) > 0. However, since Q € Lg%,
one can always introduce a large enough constant C' such that @ + C > 1 and there-
fore spec(Hg1c) C [1,+00), and the above identity holds replacing +/Ep(k) with

Ey(k) + C and Q with Q+ C. In this section, without loss of generality, we assume
inf spec(Hg) > 1. In particular, we have

Ey(k)>1, ke(-1/2,1/2], b>0.

LeMMA B.1. Assume that Q is continuous and one-periodic. Then,

(B.2) sup |y (23 k) HLOO(RI) = (HQHL«;,) ’
ke(—3,3] °
(B.3)
ke(sup (H@ up(; k) ||L°° R,) T |0z un (a3 k) ||L2 (10,1]s )) < C (HQHL;;;) (1+ol)
%3

uniformly for b > 0.
If moreover Q € WX -2°(R) with N > 2, then one has

per

(B.4) sup (H@ up(w; k) ||L°° R,) T ||8Nub (2 k) HL2 (10,1] ))

ke(—§,§

= C(HQHW;Zﬁ’”) (1+|b|N) :

Proof. We first bound |uy(0; k)| and |0,up(0; k)|. We will use these bounds to
prove the estimate claimed in Lemma B.1 by applying them to u,(z; k) as expressed
n (B.1).

First, integrate (B.1) against cos(y/Eyp(k) x) over the integration domain

[0,7/\/Ep(K)].

/W VEs (k) 2)us(z; k) do

k)/\/m cos2(

Ey(k) z) dx

+ 0pup(0; k) /O Ve cos(y/Ey (k) 2:22)( Ey(k) @)
VE,®) ? sin(/E,(F) (z —y))
+/0 cos(v/ Eu(k) x)/o \/m

Since 7/+/Ep(k) <1 and |sin(z)/z| < 1 for any = € R, we deduce

(B.5) |up(0; k) < CU1Q gz, ) lus(@; F)l L2 (go,11,.) -

per

Q(y)us(y; k) dyda.

Similarly, integrate (B.1) against sin(/Ey(k) x) over x € [0, 7/+/Ey(k)] and deduce

(B.6) 10zub (0 k)| S v Ep(k)C([|Qll Lee,)

Plugging (B.5)—(B.6) back into (B.1) yields (B.2).

un (5 k)| p2((0,11.)
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Differentiating (B.1) yields

Ozup(x; k) = —/ Ep(k)up(0; k) sin(/ Ep(k) x) + 0zup(0; k) cos(v/ Ep(k) )
+ [ eos VB (@ - 1) QUuus(y: ) do.
0

Estimate (B.3) then follows from the bounds (B.5)—(B.6) as well as Weyl’s asymptotics
(see Lemma 2.4): \/Ey(k) ~ b.

Estimate (B.5) is then obtained by induction on N and differentiating N —2 times
the identity

—(ﬁub(x; k) + Q(x)up(x; k) = Ep(k)up(x; k).

This completes the proof of Lemma B.1. d

We now give more precise asymptotics for up(x; k) when b is large.

LEMMA B.2. Assume that Q is continuous and one-periodic and Q € W1 (R).
Then one can write py(z; k) = e~ 2%y (25 k) as

pb(x;k) _ AZ_({L k)eim(\/Eb(k)f%rk) + Ab—(x;k)eiw(fy/Eb(k)f%rk)

with
sup (4@ e oy < € ([ @lwaee )
ke(— 2’2

(B.1) 0, AZ (2 k) !
58 AT oy € (l0lis) T

uniformly for b > 0.
Proof. Following (B.1), we set

A?(x;k)Z%Ub(O;k)Jriamub(O;k)+ - )/ e IWVERQ(y)uy(y; k) dy,
0

21 Ey(k)
A (25K) = Sup(0:8) — ;f“;ﬁk’;) —— [ VEOQuuy: ) dy.

Using Weyl’s asymptotics (Lemma 2.4), we can approximate \/ Ey(k) ~ b. There-
fore, by bounds (B.5)-(B.6),

A:I: -k < C.
ke(—sllig,l/Z] H o )HLOO(OH "

Differentiating A (; k) once with respect to = € [0, 1] yields

Bz Ay (k) = + Tb(k) FVEWOQ(x)up (3 k).

By Weyl’s asymptotics and result (B.2) of Lemma B.1, one has

1
0B onry < € (1Q0) o
ke(_sl%),l/z] | (= HL (011 191z, 1+ b|
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Furthermore, differentiating once more the above identity yields

2 4% (k) — o FVEE [ _ L 0w (2 Q' (z)up(x: k) + Q(x)Iyup(x: k)
O Ay (w3 k) = e¥ ( 5; Q(@)up(z; k) + 2 By () )

Once more, using Weyl’s asymptotics along with results (B.2)—(B.3) from Lemma B.1,
one has

O2AFE (z;k) ,<C w ).
ke(flll/1;)71/2 I @ k)| L 0,1, (”Q”W1 )

This concludes the estimates in (B.7) and the proof of Lemma B.2 is now
complete. O

Appendix C. Proof of Theorem 1.1. In Theorems 3.1 and 3.2, we have shown
that the bifurcation of localized states into the spectral gaps is determined by effective
parameters, Aeg and Beg. The former depends only on the background potential, @,
while the latter represents a dominant (resonant/nonoscillatory) contribution from g,
through hypothesis (H2) or (H2'), i.e., assumption (3.4) or (3.11).

In this section we compute Beg for the particular case of two-scale functions
ge(x) = q(x,x/¢) that is almost periodic and mean zero in the fast variable:

2mir; Z . : o . 4
(C1) ge(x) = #Zoqj(a:)e with ;I;fl [A; — | >0 >0, jl% |A;| > 6 >0,
where # > 0 is a constant. This immediately yields the result claimed in Theorem 1.1.
LEmma  C.1. Assume  that q. s as defined in (C.1) with
sup;so (1 + €)@ (€)oo me) < € < 00 and 3,0 11+ €)@ (E)ll 2y < € < o0
and is real-valued. Recall that Q.(x) is defined with Q &) = ﬁ, Then for any
f € Wh(R), one has

(C.2) ‘/ f(x)ge(x QE()dx_€2Z4ﬂ-2m2/ (@) |gm|?(z) dz| < €.

In particular, assumption (H2) in Theorem 3.1 (resp., (H2") in Theorem 3.2) hold
with geg = 1 and Beg = Zm;éo ﬁff}o g |*(x) dx (resp., Beg = Zm;é() ﬁ
Sl (@3 k) Plam[* () dz).

Proof. Our first aim is to prove the following estimate:

2177)\jr/e < 3
(C.3) Zwu (@) <é
L2
Since ge(x) = 3,4 qj(z)e?™ /¢ one has g, (&) = > j20 i (§ — Aj/€), and therefore
~ Q€= N /e
Qc(§) = J1(+ 47T2j€/2 )
J#0

Similarly, denoting QI (z) = €, fjrg‘i) 2midie/€ one has

_622 2)\2qu Aj/€).

J#O
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Defining R.(z) = Q! (z) — Q.(x), one has by Parseval’s identity,

IRz = |

2 > ~ €2 1
2 / qu(f —A/e) l47r2/\? 1+ 4772521 de

o |j#0

e[S e ni/0
J

0 |j#0

2
1+472(€2 — \2/€?)
1+ 47r252j ] .

We consider the above integral over two domains: || < 6/(2¢) and |£] > 6/(2¢). For
€] SAG/(Ze), one has [1 4 47%(6* — X\3/€%)| < Aj/€*. By assumption, sup;_ [|(1 +
[E12)35 ()]l L re) < C < 00. Therefore,

2
1+4m2(&2 — N2 /€?)
1+ 4#252J 1 8

1
“f (€~ 2,70
l€1<6/(2¢) ; AT

2
1 2
SJ/ 14 472e2 G (&= N/e)| dg
[€]<0/(2¢) 1+47T2€2 j; J j
2
< sup |(1 + ¢1*)G (©)? / 1 P LI
™~ j#0 J L>(R¢) 1£1<6/(26) 1+ 4m2€2 1+|£_)\j/€|3

#0

Since |Aj| > 0|j|, one has [£ — \; /€| > 0]j|/(2¢) for |£] < 6/(2¢) and thus Z#O%
J
m < é Z#O |7]72. Tt follows that

2
1 144722 — \2/€?)
64/ ——Gi(E =)\ /e J dé
‘f‘gl/(Zé) ‘; 4772)\? j( J/ ) 1 + 477252
(C.4) S & sup |1+ )G () 3~ (re -
J#0

For |¢] > 6/(2¢), one has |1 + 472£2| > €2 and therefore

2
20¢2 _ \2/.2
L+4m2 (6% — \j/e )1 d&ges/
[€1>1/(2€)

1+ 4n2¢2

1
¢ | (€~ A /e)
I€1>1/(26) Z‘W’A? ! ’

J#0

14 472(€2 — A2/e?) ng,
L+ €= Aj/el?

3 o (14 4%E — Ay eI~ A/
70 J

Now, one has

1+4m2(&2 - A?/€2)
14+4m21E — \j/€l?

Aj
€

+ 1.

- ‘1 + (€= N/)E+A/e)
~ 14+4m2E — Xj/€l?
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Therefore, one obtains

2
4 1+4m2(€2 — \2/€?)
‘ /5>1/<2e> Z 47T2A2 GE= X/ 1 +47r2€2j d
2
(©5) <& S+ EPT Oz
Jj#0

Bounds (C.4) and (C.5) complete the proof of estimate (C.3).
Estimate (C.2) is deduced as follows. Notice first that by (C.2) and the Cauchy—
Schwarz inequality, one has

[ @ @) = Q)| S 15l - @l <€

Let us now consider

/ f (Ie QT ZZ 2)\2/ f q] ( ) Ziﬂ(Aj—Al)E/E’

J#0 1#0

where we used that since g, is real-valued, A\_; = —X\; and q_;(z) = @ (z).
If j # [, then one has

€

W [m d;vf(fv)qj (x)m(x)€2iﬂ-()‘j7>\l)w/e

€3

<<
~ 8T (N — )

¥

00 dz0, (f(x)qj (95)@(96)) 2im (g =)z /e

g5l wr.z [,
S o g

Since lg;llyyns S |0+ EDGO]2qe,, and by assumption, T, [|(1 + [62)G

(§)||L2(R§) < 00, it follows that

e 1
[ et (a@@le) - &Y ol )| £ ¢
—00 m#£0 m
The above estimates and triangular inequality immediately yield (C.2), and the proof
is complete. O
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