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Abstract. A spatially localized initial condition for an energy-conserving wave equation with
periodic coefficients disperses (spatially spreads) and decays in amplitude as time advances. This
dispersion is associated with the continuous spectrum of the underlying differential operator and the
absence of discrete eigenvalues. The introduction of spatially localized perturbations in a periodic
medium leads to defect modes, states in which energy remains trapped and spatially localized. In this
paper we study weak, O(λ), 0<λ�1, localized perturbations of one-dimensional periodic Schrödinger
operators. Such perturbations give rise to such defect modes, and are associated with the emergence
of discrete eigenvalues from the continuous spectrum. Since these isolated eigenvalues are located near
a spectral band edge, there is strong scale-separation between the medium period (∼ order 1) and

the localization length of the defect mode (∼ order |defect eigenvalue|−
1
2 =λ−1�1). Bound states

therefore have a multi-scale structure: a “carrier Bloch wave” × a “wave envelope”, which is governed
by a homogenized Schrödinger operator with associated effective mass, depending on the spectral band
edge which is the site of the bifurcation. Our analysis is based on a reformulation of the eigenvalue
problem in Bloch quasi-momentum space, using the Gelfand-Bloch transform and a Lyapunov-Schmidt
reduction to a closed equation for the near-band-edge frequency components of the bound state. A
rescaling of the latter equation yields the homogenized effective equation for the wave envelope, and
approximations to bifurcating eigenvalues and eigenfunctions.
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1. Introduction
A spatially localized initial condition for an energy-conserving wave equation with

periodic coefficients disperses (spatially spreads) and decays in amplitude as time ad-
vances. This (Floquet-Bloch) dispersion is associated with the continuous spectrum
(extended states) of the underlying differential operator and the absence of discrete
eigenvalues (localized bound states) [31, 36]. The introduction of localized perturba-
tions in a periodic medium leads to defect modes, states in which energy remains trapped
and spatially localized. This phenomenon is of great importance in fundamental and
applied science - from the existence of stable states of matter in atomic systems to the
engineering of materials with desirable energy transport properties through localized
doping of ordered materials.

The process by which the system undergoes a transition from one with only propa-
gating delocalized states to one which supports both localized and propagating states is
associated with the emergence or bifurcation of discrete eigenvalues from the continuous
spectrum associated with the unperturbed periodic structure. In this paper, we discuss
this bifurcation phenomenon in detail for the Schrödinger operator

HQ=−∂2
x+Q(x), (1.1)
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where Q(x) is a continuous, real-valued, periodic potential:

Q(x+1) =Q(x). (1.2)

The spectrum, spec(HQ), of the Schrödinger operator is continuous and is the union
of closed intervals called spectral bands [36]. The complement of the spectrum is a union
of open intervals called spectral gaps. The spectrum is determined by the family of
self-adjoint eigenvalue problems parameterized by the quasi-momentum k∈ (−1/2,1/2]:

HQu(x;k) =E u(x;k), (1.3)

u(x+1;k) =e2πiku(x;k). (1.4)

That is, we seek k− pseudo-periodic solutions of the eigenvalue equation. For each
k∈ (−1/2,1/2], the self-adjoint eigenvalue problem (1.3)-(1.4) has discrete eigenvalue-
spectrum (listed with multiplicity):

E0(k)≤E1(k)≤···≤Eb(k)≤ .. . (1.5)

with corresponding k− pseudo-periodic eigenfunctions:

ub(x;k) =e2πikxpb(x;k), pb(x+1;k) =pb(x;k), b≥0. (1.6)

The bth spectral band is given by

Bb=
⋃

k∈(−1/2,1/2]

Eb(k). (1.7)

The spectrum of HQ is given by:

spec(HQ) =
⋃
b≥0

Bb=
⋃
b≥0

⋃
k∈(−1/2,1/2]

Eb(k). (1.8)

Since the boundary condition (1.4) is invariant with respect to k 7→k+1, the functions
Eb(k) can be extended to all R as periodic functions of k. The minima and maxima of
Eb(k) occur at k=k∗∈{0,1/2}; see Figure 1.1. In cases where extrema border spectral
gap, we have that ∂2

kEb(k∗) is either strictly positive or strictly negative [20, 36]; see
Lemma 2.2.

Consider now the perturbed operator HQ+V , where V (x) is sufficiently localized
in space. By Weyl’s theorem on the stability of the essential spectrum, one has
speccont(HQ+V ) = speccont(HQ) [36]. The effect of a localized perturbation is to pos-
sibly introduce discrete eigenvalues into the open spectral gaps. Note that in our set-
ting, HQ+V does not have discrete eigenvalues embedded in its continuous spectrum;
see [25, 37].

In this paper we present a detailed study of the bifurcation of localized bound states
into gaps of the continuous spectrum induced by a small and localized perturbation of
HQ:

HQ+λV ≡−∂2
x+Q(x)+λV (x), λ>0, (1.9)

where λ is taken sufficiently small. Here Q(x) is a continuous, 1−periodic function
defined on R and V (x) is spatially localized. We next turn to a summary of our results.
See Theorem 3.1 and Theorem 3.4 for detailed statements.
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Let E∗=Eb∗(k∗), k∗∈{0,1/2}, denote an endpoint (uppermost or lowermost) of
the (b∗)

th spectral band, bordering a spectral gap. We show that under the condition:

∂2
kEb∗(k∗)×

∫
R
|ub∗(x;k∗)|2V (x) dx<0, (1.10)

the following holds: there exists a positive number, λ0, such that for all 0<λ<λ0,
HQ+λV has a simple discrete eigenvalue

E(λ) =E∗+λ2µ+O(λ2+α), α>0. (1.11)

which bifurcates from the edge, E∗=Eb∗(k∗), of Bb∗ into a spectral gap.

1. If ∂2
kEb∗(k∗)>0 and

∫
R |ub∗(x;k∗)|2 V (x) dx<0, then µ<0 and E(λ) lies near

the lowermost edge of Bb∗ ; see the center panel of Figure 1.1.

2. If ∂2
kEb∗(k∗)<0 and

∫
R |ub∗(x;k∗)|2 V (x) dx>0, then µ>0 and E(λ) lies near

the uppermost edge of Bb∗ ; see the right panel of Figure 1.1.

For 0<λ<λ0, ψλ(x), the eigenstate corresponding to the eigenvalue, E(λ), is well-
approximated in L∞ by g0(λx), where g0(y) denotes the unique eigenstate of the ho-
mogenized operator

Hb∗,eff =− d

dy
Ab∗,eff

d

dy
+Bb∗,effδ(y), (1.12)

with constant effective parameters Ab∗,eff and Bb∗,eff . Here,

Ab∗,eff =
1

8π2
∂2
kEb∗(k∗) (1.13)

is the inverse effective mass associated to the spectral edge, E∗=Eb∗(k∗),

Bb∗,eff =

∫
R
|ub∗(x;k∗)|2V (x) dx, (1.14)

and δ(y) denotes the Dirac delta mass at y= 0. The unique discrete eigenvalue, µ?, of
the eigenvalue problem: Hb∗,effψ=µψ, is easily seen to be

µ?=−
B2
b∗,eff

4Ab∗,eff
. (1.15)

Remark 1.1. The notion of effective mass is well known in condensed matter physics [2].
The effective mass for an evolving wave-packet may be derived by multi-scale per-
turbation theory and is related to the general problem of homogenization of periodic
structures; see the very influential book of Bensoussan, Lions, & Papanicolaou [3]; see
also [1, 4, 5, 6, 7].

Remark 1.2. For the case Q≡0, HQ=H0 =−∂2
x and its spectrum consists of a semi-

infinite interval, spec(H0) = [0,∞), the union of touching bands with no finite length
gaps. Furthermore, pb(x;k)≡1 for all |k|≤1/2 and b≥0. The only band edge which
borders a gap is located at E∗=E0(0) = 0, where we have: k∗= 0, E0(k) = 4π2k2, and
∂2
kE0(k∗) = 8π2. In this case, our results describe the bifurcation of an eigenvalue from

the edge of the continuous spectrum ofH0 induced by a small and localized perturbation:
HλV =−∂2

x+λV , under the condition
∫
RV <0. The homogenized operator is

H0,eff =− d2

dy2
+λ

∫
R
V dx; (1.16)

see the discussion below of [38].
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Fig. 1.1. Sketch of spectra. Eigenvalues, Eb(k), k∈ (−1/2,1/2], b= 0,1,2, .. ., are displayed in
green. The continuous spectrum is in blue, and discrete eigenvalues are indicated through cross mark-
ers. The left panel corresponds to spec(HQ), Q periodic. The center (resp. right) panel corresponds
to spec(HQ+λV ), where λV is small, localized negative (resp. positive).

1.1. Previous related work. The case Q≡0, where HQ+λV =−∆+V (x),
was considered by Simon [38] in one and two spatial dimensions. In one dimension, it
is proven that if V is sufficiently localized and −∞<

∫
RV <0, then HλV has a small

negative eigenvalue E(λ) of order λ2; see the Corollary 3.3 and the discussion following
it. The case of perturbations of one-dimensional periodic Schrödinger operators (Q non-
trivial, 1−periodic) is treated by Gesztesy & Simon [25], where sufficient conditions are
given for the bifurcation of eigenvalues in the gaps of the continuous spectrum. Borisov
and Gadyl’shin [9] obtain results closely related to the current work, although using
very different methods. A formal asymptotic study, in terms of a Floquet-Bloch decom-
position, in one and two spatial dimensions was given in Wang et. al. [39]. Parzygnat
et. al. [34] formulate a variational principle for defect modes with frequencies in spectral
gaps. They use formal trial function arguments to show the existence of such defect
modes in spatial dimensions one and two. By formal asymptotic arguments, they obtain
the condition (1.10), for the case of the first spectral gap. Deift & Hempel [14] obtained
results on the existence and number of eigenstates in spectral gaps for operators of
the general type H−λW , where H has a band spectrum and W is bounded. Figotin
& Klein [22, 23] studied localized defect modes in the context of acoustic and electro-
magnetic waves. Results on bound states and scattering resonances of one-dimensional
Schrödinger operators with compactly supported potentials appear in work of Bron-
ski & Rapti [10] and Korotyaev [29, 30], respectively. Bifurcations of defect modes into
spectral gaps was considered in dimensions d= 1,2, and 3 by Hoefer & Weinstein [26] for
operators of the form −∆+Q(x)+ε2V (εx), where Q is periodic on Rd and V is spatially
localized. This scaling was motivated by work of Ilan & Weinstein [27] on the bifurca-
tion of nonlinear bound states from continuous spectra for the nonlinear Schrödinger/
Gross-Pitaevskii equation. The works [26, 27] employ the general Lyapunov-Schmidt
reduction strategy used in the present work; see also [15, 16, 35].

1.2. Outline, remarks on the proof, and future directions. In Section 2
we present background material concerning spectral properties of Schrödinger operators
with periodic potentials defined on R. In Section 3 we give precise technical statements
of our main results: Theorem 3.1 and Theorem 3.4.

Our strategy of proof is to transform the eigenvalue problem, using the appropriate



V. DUCHÊNE, I. VUKIĆEVIĆ, AND M.I. WEINSTEIN 781

spectral transform (Fourier or Floquet-Bloch), to a formulation in frequency (quasi-
momentum) space. Anticipating a bifurcation from the spectral edge, we express the
eigenvalue problem in terms of coupled equations governing the frequency components
located near the band edge and those which are far from the band edge. The precise
frequency cutoff depends on the small parameter, λ. We employ a Lyapunov-Schmidt
reduction strategy [33] in which we solve for the far-frequency components as a func-
tional of the near-frequency components. This yields a reduction to a closed bifurcation
equation for the near-frequency components. In contrast to classical applications of this
strategy, our reduced equation is infinite dimensional. For λ small, in an appropriate
scaled limit, the bifurcation equation is asymptotically exactly solvable; it is the eigen-
value problem for the homogenized/ effective operator Hb∗,eff . In Section 4, we prove a
general technical lemma, crucial to the analyses of sections 5 and 6, covering the kinds
of bifurcation equations which arise. Finally, appendices A and B contain the proof of
results stated in lemmas 2.2 and 2.3, and in Appendix C we give proofs, by a bootstrap
method, of Corollary 3.3 and Corollary 3.6 which contain more detailed expansions
and sharper error terms for the bifurcating eigenstates than those in Theorem 3.1 and
Theorem 3.4.

We conclude this section with several possible extensions of the present work.

1. The results of this paper describe the bifurcation of eigensolutions in the case
where the perturbing potential is small in the strong sense (in norm). What
of the case where the perturbing potential converges weakly to zero? This cor-
responds to the question of the effective behavior of high-contrast microstruc-
tures. In [18], the authors consider a class of problems, depending on a small
parameter, ε, including the case where the potential, q(ε)(x) = q(x,x/ε), con-
verges weakly as ε tends to zero. In particular, we considered the small ε
limit of the scattering and time-evolution properties for operators of the form
H(ε) =−∂2

x+q(x,x/ε), where y 7→ q(·,y) is oscillatory (including periodic and
certain almost periodic cases) and x 7→ q(x,·) is spatially localized. An impor-
tant subtlety arises in the case where qav(x) =

∫
Rq(x,y)dy≡0, i.e. qε tends

to zero weakly; see [19] for the case where qav(x) 6= 0 is generic. In this case,
classical homogenization theory breaks down at low energies. Indeed, the ho-
mogenized operator, obtained by averaging the potential over its fast varia-
tions, is H0 =−∂2

x, which does not capture key spectral and scattering infor-
mation. Among these are the low energy behavior of the transmission co-
efficient (related to the spectral measure) and the existence of a bifurcating
bound state at a very small negative energy. We show that the correct be-
havior is captured by an effective Hamiltonian with effective potential well:

H
(ε)
eff =−∂2

y−ε2Λeff(y), Λeff(y)>0. Using Theorem 3.1 and the results of [38],

we conclude that H(ε) has a bound state with negative energy of the order ε4,
with a precise expansion for ε small.

In [17], we use our approach in order to extend the results of the present
paper to families of potentials, qε, which converge weakly to a nontrivial periodic
potential, Q(x).

2. Further, in [18] there is a multi-scale local energy time-decay estimate, for
localized initial conditions orthogonal to the bound state, in which the different
dispersive time-dynamics on different time-scales is explicit. In particular, the
decay rate is O(t−

1
2 ) for times t�ε−2 and O(t−

3
2 ) for t≥ε−2. We believe

that our methods can be extended to give detailed properties of the resolvent
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−∂2

x+Q+λV −E
)−1

and therefore the spectral measure [36] near the band
edges. Such information could be used to derive the detailed dispersive time-
decay behavior. However, the decay estimates of the type obtained in [18] can
be expected to hold only for initial conditions which are spectrally localized
near band edges. Initial conditions with spectral components away from the
band edge can sample a regime where, forQ non-zero, the dispersion relation has
higher degeneracy, yielding different (slower) dispersive time-decay [11, 13, 24].

3. Finally, it would be of interest to extend the methods of the current paper
to the study of bifurcations of eigenvalues for multiplicatively small or weakly
convergent spatially localized perturbations of the higher-dimensional periodic
Schrödinger operator, −∆+Q. In spatial dimension n= 2 and the case Q= 0,
Simon [38] proved that the bound state generated by a multiplicatively small
perturbation is exponentially close to the edge of the continuous spectrum. Such
results have been extended by Borisov [8] in the periodic (Q nontrivial) case.
Formal asymptotics were obtained in Wang et. al. [39]. In spatial dimensions
n≥3, it is well known that for sufficiently small λ, −∆+λV does not have a
discrete spectrum, by the Cwikel-Lieb-Rozenblum bound. Finally, Parzygnat
et. al. [34] also treat the case of dimensions n≥3, where the defect potential,
V is localized along in one or two dimensions.

1.3. Definitions and notation. We denote by C a constant, which does not
depend on the small parameter, λ. It may depend on norms of Q(x) and V (x), which
are assumed finite. C(ζ1,ζ2,. ..) is a constant depending on ζ1, ζ2, .. .. We write A.B
if A≤CB, and A≈B if A.B and B.A.

χ and χ are the characteristic functions defined by

χ
δ
(ξ) =χ(|ξ|<δ)≡

{
1, |ξ|<δ
0, |ξ|≥ δ , χ

δ
(ξ) =χ(|ξ|<δ)≡1−χ(|ξ|<δ). (1.17)

For f,g∈L2(R), the Fourier transform and its inverse are given by

F{f}(ξ)≡ f̂(ξ) =

∫
R
e−2πixξf(x)dx, F−1{g}(x)≡ ǧ(x) =

∫
R
e2πixξg(ξ)dξ.

T and T −1 denote the Gelfand-Bloch transform and its inverse; see Section 2.
Lp,s(R) is the space of functions F :R→R such that (1+ | · |2)s/2F ∈Lp(R), endowed
with the norm

‖F‖Lp,s(R)≡‖(1+ | · |2)s/2F‖Lp(R)<∞, 1≤p≤∞. (1.18)

W k,p(R) is the space of functions F :R→R such that ∂jxF ∈Lp(R) for 0≤ j≤k, endowed
with the norm

‖F‖Wk,p(R)≡
k∑
j=0

‖∂jxF‖Lp(R)<∞, 1≤p≤∞.

Acknowledgements. I.V. and M.I.W. acknowledge the partial support of U.S. Na-
tional Science Foundation under U.S. NSF Grant DMS-10-08855, the Columbia Optics
and Quantum Electronics IGERT NSF Grant DGE-1069420 and NSF EMSW21- RTG:
Numerical Mathematics for Scientific Computing. This research was carried out while
V.D. was the Chu Assistant Professor of Applied Mathematics at Columbia University.
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2. Mathematical preliminaries
In this section we summarize basic results on the spectral theory of Schrödinger

operators with periodic potentials defined on R. For a detailed discussion, see for
example, [20, 32, 36].

2.1. Floquet-Bloch states. We seek solutions of the k− pseudo-periodic
eigenvalue problem

(−∂2
x+Q(x))u(x) =Eu(x), u(x+1) =e2πiku(x), (2.1)

for k∈ (−1/2,1/2], the Brillouin zone. Setting u(x;k) =e2πikxp(x;k), we equivalently
seek eigensolutions (p(x;k),E) of the periodic elliptic boundary value problem:(

−(∂x+2πik)2 +Q(x)
)
p(x;k) =E(k)p(x;k), p(x+1;k) =p(x;k) (2.2)

for each k∈ (−1/2,1/2].
The eigenvalue problem (2.2) has a sequence of eigenpairs {(pb(x;k),Eb(k))}b≥0

satisfying (1.5) and (1.6). The functions pb(x;k) may be chosen so that {pb(x;k)}b≥0 is,
for each fixed k∈ (−1/2,1/2], a complete orthonormal set in L2

per([0,1]). It can be shown

that the set of Floquet-Bloch states {ub(x;k)≡e2πikxpb(x;k), b∈N, −1/2<k≤1/2} is
complete in L2(R), i.e. for any f ∈L2(R),

f(x)−
∑

0≤b≤N

∫ 1/2

−1/2

〈ub(·,k),f〉L2(R)ub(x;k)dk→ 0

in L2(R) as N ↑∞.
Recall further that the spectrum of −∂2

x+Q(x) is continuous, and equal to the
union of the closed intervals, the spectral bands; see (1.7), (1.8).

Definition 2.1. We say there is a spectral gap between the bth and (b+1)st bands if

sup
|k|<1/2

|Eb(k)|< inf
|k|<1/2

|Eb+1(k)|. (2.3)

Our study of eigenvalue bifurcation from the band edge E∗≡Eb∗(k∗) into a spectral
gap requires regularity and detailed properties of Eb(k) near its edges. These are sum-
marized in the following results (see a sketch of Eb(k) in Figure 1.1, left panel). Proofs
and references to proofs are given in appendices A and B.

Lemma 2.2. Assume Eb(k∗) is an endpoint of a spectral band of −∂2
x+Q(x), which

borders on a spectral gap; see (2.3). Then k∗∈{0,1/2} and the following results hold:

1. Eb(k∗) is a simple eigenvalue of the eigenvalue problem (2.1).

2. b even: Eb(0) corresponds to the left (lowermost) end point of the band,

Eb(1/2) corresponds to the right (uppermost) end point.

b odd: Eb(0) corresponds to the right (uppermost) end point of the band,
Eb(1/2) corresponds to the left (lowermost) end point.

3. ∂kEb(k∗) = 0, ∂3
kEb(k∗) = 0;

4. b even: ∂2
kEb(0)>0, ∂2

kEb(1/2)<0;

b odd: ∂2
kEb(0)<0, ∂2

kEb(1/2)>0;

Lemma 2.3. Let Eb(k1) denote a simple eigenvalue; thus k1 =k∗ as above applies.
Then, the mappings k 7→Eb(k), k 7→ub(x;k), with ub normalized, can be chosen to be
analytic for k in a sufficiently small complex neighborhood of k1. Moreover, for k real
and in this neighborhood, (Eb(k),ub(x;k)) are Floquet-Bloch eigenpairs.
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2.2. The Gelfand-Bloch transform. Given f ∈L2(R), we introduce the
Gelfand-Bloch transform T and its inverse as follows:

T {f(·)}= f̃(x;k) =
∑
n∈Z

e2πinxf̂(k+n), T −1{f̃(x; ·)}(x) =

∫ 1/2

−1/2

e2πixkf̃(x;k)dk.

One can check that T −1T = Id. Let

u(x;k) =e2πikxp(x;k) (2.4)

denote a Floquet-Bloch mode. Then, by the Poisson summation formula, we have that

〈u(·,k),f〉L2(R) = 〈p(·,k), f̃(·;k)〉L2
per([0,1]).

Define

Tb{f}(k)≡〈pb(·;k), f̃(·;k)〉L2
per([0,1])≡

∫ 1

0

pb(x;k)f̃(x;k)dx. (2.5)

By completeness of {pb(x;k)}b≥0, the spectral decomposition of f ∈L2(R) in terms of
Floquet-Bloch states is

f̃(x;k) =
∑
b≥0

Tb{f}(k)pb(x;k), f(x) =
∑
b≥0

∫ 1/2

−1/2

Tb{f}(k)ub(x;k)dk.

Recall the Sobolev space, Hs, the space of functions with square integrable deriva-
tives up to order s. It is natural to construct the following X s norm in terms of
Floquet-Bloch states:

‖φ̃‖2X s ≡
∫ 1/2

−1/2

∑
b≥0

(
1+ |b|2

)s |Tb{φ}(k)|2dk. (2.6)

Proposition 2.4. Hs(R) is isomorphic to X s for s≥0. Moreover, there exist positive
constants C1, C2 such that for all φ∈Hs(R), we have

C1‖φ‖Hs(R)≤‖φ̃‖X s ≤C2‖φ‖Hs(R).

Proof. Since E0(0) = inf spec(−∂2
x+Q), then L0≡−∂2

x+Q−E0(0) is a non-
negative operator and Hs(R) has the equivalent norm defined by ‖φ‖Hs ≈‖(I+
L0)s/2φ‖L2 . Using orthogonality, it follows that

‖φ‖2Hs ≈‖(I+L0)s/2φ‖2L2 =
∑
b≥0

∫ 1/2

−1/2

|Tb{φ}(k)|2|1+Eb(k)−E0(0)|sdk

≈
∑
b≥0

(
1+ |b|2

)s∫ 1/2

−1/2

|Tb{φ}(k)|2dk≡‖φ̃‖2X s .

The last line follows from the Weyl asymptotics Eb(k)∼ b2; see, for example, [12]. This
completes the proof of Proposition 2.4.
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We conclude this section with a Lemma, which gives various estimates on the
Floquet-Bloch states of HQ and the spectrum of HQ+λV , for a class of periodic po-
tentials, Q, and localized potentials, V . These estimates are used within the proof of
Theorem 3.4, in Section 6.

Lemma 2.5. Assume that Q is continuous, 1−periodic, and V is such that
(1+ | · |)V (·)∈L1. Let Ω be a small neighborhood of k1 a simple eigenvalue, such that
Lemma 2.3 applies. Then one has:

(a) sup
k∈(− 1

2 ,
1
2 ]

∥∥pb(·;k)
∥∥
L∞
≤ sup
k∈(− 1

2 ,
1
2 ]

∑
n∈Z

∣∣∣〈pb(·;k),e2πin·〉
L2([0,1])

∣∣∣<∞,
(b) sup

k∈Ω

∥∥∂kpb(·;k)
∥∥
L∞
≤ sup
k∈Ω

∑
n∈Z

∣∣∣〈∂kpb(·;k),e2πin·〉
L2([0,1])

∣∣∣<∞.
Proof. We begin by proving that pb(x;k) is uniformly bounded for x∈R and

k∈ (−1/2,1/2]. Since pb(·;k) is 1−periodic, it is bounded if its Fourier coefficients are
summable. Thus we study∑

n∈Z

∣∣〈pb(·;k),e2πin·〉L2([0,1])

∣∣=∑
n∈Z

∣∣∣∣∫ 1

0

pb(x;k)e−2πinx dx

∣∣∣∣ .
Since k∈ (−1/2,1/2], we can use integration by parts for n 6= 0, the Cauchy-Schwarz
inequality, and equation (2.2) for pb(x;k) to obtain∑

n∈Z

∣∣〈pb(·;k),e2πin·〉L2([0,1])

∣∣
≤
∥∥pb(x;k)

∥∥
L2([0,1])

∥∥1
∥∥
L2([0,1])

+
∑

n∈Z\{0}

∣∣∣∣∣
∫ 1

0

(Q(x)−Eb(k))pb(x;k)

(
1

2πi(n−k)

)2

e−2πinx dx

∣∣∣∣∣
≤1+

∑
n∈Z\{0}

1

4π2(n−k)2

∥∥(Q(·)−Eb(k))pb(·;k)
∥∥
L2([0,1])

.

Thus,

sup
k∈(−1/2,1/2]

∥∥pb(·;k)
∥∥
L∞
≤ sup
k∈(−1/2,1/2]

∑
n∈Z

∣∣〈pb(·;k),e2πin·〉L2([0,1])

∣∣<∞.
We now turn to the study of ∂kpb(x;k) in (b). Differentiating (2.2) with respect to

k yields (
−(∂x+2πik)2 +Q(x)

)
∂kpb(x;k)

=Eb(k)∂kpb(x;k)+
(
∂kEb(k)+4πi(∂x+2πik)

)
pb(x;k).

Following the same method as above yields∥∥∂kpb(·;k)
∥∥
L∞
≤
∑
n∈Z

∣∣〈∂kpb(·;k),e2πin·〉L2([0,1])

∣∣
≤C(

∥∥Q∥∥
L∞

,Eb(k))
∥∥∂kpb(x;k)

∥∥
L2([0,1])

+C(∂kEb(k),
∥∥Q∥∥

L∞
,Eb(k)).

The finiteness of
∥∥∂kpb(·;k)

∥∥
L2([0,1])

and ∂kEb(k) for k∈Ω is a consequence of

Lemma 2.3; thus (b) follows.
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3. Bifurcation of defect states into gaps; main results
Consider the eigenvalue problem:(

−∂2
x+Q(x)+λV (x)

)
ψλ=Eλψλ, ψ∈L2(R),

where Q(x) is continuous, 1−periodic, λ>0 is small, and V (x) is spatially localized.
Our first result concerns the case where Q≡0:

Theorem 3.1 (Q≡0). Let V be such that V̂ ∈W 1,∞(R); thus
∫
R(1+ |x|)|V (x)| dx<

∞ suffices. Assume V̂ (0) =
∫
RV <0. There exists positive constants λ0 and C(V,λ0),

such that for all 0<λ<λ0, there exists an eigenpair (Eλ,ψλ), solution of the eigenvalue
problem (

−∂2
x+λV (x)

)
ψλ(x) =Eλψλ(x), (3.1)

with negative eigenvalue of the order λ2. Specifically,∣∣∣∣∣Eλ−[− λ2

4

(∫
R
V

)2]∣∣∣∣∣≤Cλ5/2, (3.2)

sup
x∈R

∣∣∣∣ψλ(x)−exp

(
λ

2

(∫
R
V

)
|x|
)∣∣∣∣≤Cλ1/2. (3.3)

The eigenvalue, Eλ, is unique in the neighborhood defined by (3.2), and the correspond-
ing eigenfunction, ψ, is unique up to a multiplicative constant.

Remark 3.2. Theorem 3.1 shows, and is essentially proved by demonstrating, that
for small positive λ, the leading order behavior of the eigenstate

(
Eλ,ψλ(x)

)
is a scaling

of the unique eigenstate of the attractive Dirac delta potential:(
Eλ, ψλ(x)

)
≈
(
λ2θ2

0, g0(λx)
)
,

where θ0 =− 1
2

∫
RV >0 and g0(y) =e−θ0|y| satisfy[

−∂2
y +

∫
R
V ·δ(y)

]
g0(y) =−θ2

0g0(y). (3.4)

The error bounds in Theorem 3.1 are not optimal. However, the bootstrap argument
of Appendix C can be used to recover a higher order expansion on Eλ, similar to that
obtained in [38].

Corollary 3.3. Assume (1+ |x|2)V ∈L1, and V̂ (0) =
∫
RV (z) dz<0 . Then Eλ, as

defined in Theorem 3.1, satisfies Eλ=−λ2 [θ(λ)]
2
, with

θ(λ) =−1

2

∫
R
V − 1

4
λ

∫∫
R2

V (x)|x−y|V (y)dxdy+O(λ3/2). (3.5)

Simon [38] and Klaus [28] prove expansion (3.5), under the conditions: (1+
|x|)|V (x)∈L1(R) and

∫
RV ≤0, with the error term o(λ). Corollary 3.3 gives a sharper

error term under a more stringent decay condition on V . That Theorem 3.1 implies
Corollary 3.3 is proved in Appendix C.
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Theorem 3.4 (Q non-trivial, 1−periodic). Let Q be continuous, 1−periodic, and let
V be such that

∫
R(1+ |x|)V (x)dx<∞ and V ∈L∞. Let Eb∗ :k∈ (−1/2,1/2]→R denote

the band dispersion function associated with the (b∗)
th band of the continuous spectrum

of −∂2
x+Q(x). Fix a spectral band edge of the (b∗)

th band; thus E∗=Eb∗(k∗), where
k∗= 0 or k∗= 1/2 (see Lemma 2.2).

Assume either

∂2
kEb∗(k∗)>0 and

∫
R
|ub∗(x;k∗)|2V (x)dx<0, (3.6)

or

∂2
kEb∗(k∗)<0 and

∫
R
|ub∗(x;k∗)|2V (x)dx>0. (3.7)

Then, there are positive constants, λ0 and C=C(λ0,V,Q), such that for all λ<λ0, the
following assertions hold:

1. There exists an eigenpair
(
Eλ,ψλ(x)

)
of the eigenvalue problem(

−∂2
x+Q(x)+λV (x)

)
ψλ(x) =Eλψλ(x), ψλ∈L2(R). (3.8)

2. Define

α0≡
∫∞
−∞ |ub∗(x;k∗)|2V (x)dx

1
4π2 ∂2

kEb∗(k∗)
<0, (3.9)

where the inequality holds by (3.6) and (3.7). Then, Eλ and ψλ(x) satisfy the
following approximations: ∣∣Eλ−( Eb∗(k∗)+λ2E2

)∣∣≤Cλ2+1/4, (3.10)

sup
x∈R

∣∣ψλ(x)−ub∗(x;k∗)exp(λα0|x|)
∣∣≤Cλ1/4, (3.11)

where

E2 =−

∣∣∣∫∞−∞ |ub∗(x;k∗)|2V (x)dx
∣∣∣2

1
2π2 ∂2

kEb∗(k∗)
. (3.12)

Note that the direction of bifurcation of Eλ is given by:

sgn(E2) =−sgn
(
∂2
kEb∗(k∗)

)
.

3. The eigenstate, (Eλ,ψλ), is unique (up to a multiplicative constant for ψλ) in
the neighborhood defined by (3.10), (3.11).

Remark 3.5. By Theorem 3.4, the bifurcating eigenvalue Eλ lies in the spectral gap
of −∂2

x+Q(x) at a distance O(λ2) near the spectral edge E∗; see Figure 1.1. Moreover,
E2 is the unique eigenvalue and g0(y) =eα0|y| is the unique (up to multiplication by a
constant) eigenfunction of the effective (homogenized) Hamiltonian:

Heff =− d

dy

1

8π2
∂2
kEb∗(k∗)

d

dy
+

∫ ∞
−∞
|ub∗(x;k∗)|2V (x)dx×δ(y).

The following refinement of Theorem 3.4 can be proved via the bootstrap argument
presented in Appendix C.
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Corollary 3.6. Assume
∫
R(1+ |x|2)V (x)dx<∞ and that the hypotheses of Theo-

rem (3.4) hold. Then,

Eλ−Eb∗(k∗) =λ2(E2 +λE3)+O(λ3+1/4) =−λ2 8π2

∂2
kEb∗(k∗)

[Θ(λ)]
2
, (3.13)

where E2 is as in (3.12),

E3≡
−8π4

(∂2
kEb∗(k∗))

2

(∫ ∞
−∞
|ub∗(x;k∗)|2V (x) dx

)
×
(∫∫

R2

V (x)|ub∗(x;k∗)|2|x−y||ub∗(y;k∗)|2V (y) dx dy

)
,

and

Θ(λ) =− 1

2

∫
R
|ub∗(x;k∗)|2V (x) dx

− 1

4
λ

8π2

∂2
kEb∗(k∗)

∫∫
R2

V (x)|ub∗(x;k∗)|2|x−y||ub∗(y;k∗)|2V (y) dx dy

+O(λ1+1/4). (3.14)

Remark 3.7. For the case Q≡0, the spectrum consists of only one semi-infinite band
which we can label the b= 0 band. In this case, u0(x;k∗= 0) = 1 and E0(k) = 4π2k2.
Therefore, to leading order, relation (3.14) simplifies to the result of Corollary 3.3 and
the two results are consistent.

4. Key general technical results
In this section, we study the operator L̂0[θ], defined by:

L̂0[θ]f̂(ξ)≡
(
4π2Aξ2 +θ2

)
f̂(ξ)−Bχ

(
|ξ|<λ−β

)∫
R
χ
(
|η|<λ−β

)
f̂(η) dη. (4.1)

Here, A,B, and β are fixed positive constants. The operator L̂0[θ] appears in the
bifurcation equations we derived via the Lyapunov-Schmidt reduction; see Section 1.2.

In x− space, we have that L0[θ] is a rank one perturbation of −A∂2
y +θ2:

L0[θ]f ≡ (−A∂2
y +θ2)f(y)− 2B

λβ

〈
2

λβ
sinc

(
2π

λβ
·
)
,f(·)

〉
L2

sinc

(
2πy

λβ

)
, (4.2)

where sinc(z) = sin(z)/z. L0[θ] is a band-limited regularization of the operator:(
HA,B+θ2

)
f ≡

(
−A∂2

y−Bδ(y)+θ2
)
f, (4.3)

appearing in the effective equations governing the leading order behavior of bifurcating
eigenstates; see remarks 3.2 and 3.5.

4.1. The operator L̂0.
Lemma 4.1. Fix constants A>0, B>0, and β>0. Define, for θ2>0, the linear
operator L̂0[θ] with

L̂0[θ]f̂(ξ)≡
(
4π2Aξ2 +θ2

)
f̂(ξ)−Bχ

(
|ξ|<λ−β

)∫
R
χ
(
|η|<λ−β

)
f̂(η)dη. (4.4)

Note that L̂0[θ] :L1(R)→L1,−2(R); see (1.18).
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1. There exists a unique θ2
0>0 such that L̂0[θ0] has a non-trivial kernel.

2. The “eigenvalue” θ2
0 is the unique positive solution of

1−B
∫
R

χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

dξ= 0. (4.5)

3. The kernel of L̂0[θ0] is given by:

kernel
(
L̂0[θ0]

)
= span

{
f̂0(ξ)

}
, where f̂0(ξ)≡

χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

. (4.6)

4. θ0 =θ0(λ) can be approximated as follows:∣∣∣∣θ0−
B

2
√
A

∣∣∣∣≤ θ0

2π2

B

A
λβ . (4.7)

5. Define g(x) = exp(α0|x|), with α0 =− B
2A <0. Then one has

sup
x∈R

∣∣∣F−1
{
f̂0

}
(x)− 1

B
g(x)

∣∣∣≤C(A,B)λβ . (4.8)

Proof. First note, by rearranging terms in the equation L̂0[θ0]ĝ= 0, that any

element, ĝ(ξ), of the kernel of L̂0[θ], is a constant multiple of the function f̂λ(ξ;θ)≡
χ(|ξ|<λ−β)×(4π2Aξ2 +θ2)−1. Thus, if ĝ is non-trivial then it is strictly positive or
strictly negative and therefore

∫
R ĝ 6= 0. Next, note that a necessary condition for ĝ to

lie in the kernel of L̂0[θ] is that equation (4.5) holds. To see this, divide the equation

L̂0[θ0]ĝ= 0 by
(
4π2Aξ2 +θ0

2
)

and integrate dξ over R. This yields:∫ ∞
−∞

g(ξ)dξ×
[

1−B
∫ ∞
−∞

χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

dξ
]

= 0. (4.9)

By the above discussion, if ĝ is non-trivial then
∫
R ĝ 6= 0. Hence θ2 satisfies

J(θ2)≡1−B
∫ ∞
−∞

χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

dξ= 0.

Since J : (0,∞)→R is smooth, J ′(X)>0, lim
X→0

J(X) =−∞, and lim
X→∞

J(X) = 1, the

function J has a unique positive root, which we denote by θ2
0. One can check by

direct substitution and the condition J(θ2
0) = 0 that any multiple of

f̂0(ξ)≡ f̂λ(ξ;θ0) =χ(|ξ|<λ−β)×(4π2Aξ2 +θ2
0)−1 (4.10)

satisfies L̂0[θ0]f̂0(ξ) = 0 .
The approximation to θ0(λ), (4.7), is obtained as follows. Let θ2

0 denote the unique
solution of J(θ2

0) = 0 and θ0 its positive square root. Then,

1

B
=

∫
R

χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

dξ=

∫
R

1+(χ
(
|ξ|<λ−β

)
−1)

4π2 Aξ2 +θ2
0

dξ

=
1

2
√
A θ0

+

∫
R

χ
(
|ξ|<λ−β

)
−1

4π2Aξ2 +θ2
0

dξ. (4.11)
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The last term can be bounded as follows:∣∣∣∣∣
∫
R

1−χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

dξ

∣∣∣∣∣=
∫
|ξ|≥λ−β

dξ

4π2Aξ2 +θ2
0

≤ λβ

2π2A
. (4.12)

Relations (4.11), (4.12), after rearrangement of terms, yield (4.7).

Finally, we turn to the asymptotic expression for F−1
{
f̂0

}
(x) given in (4.8). By

residue computation, one has ĝ(ξ) =
−2α0

4π2|ξ|2 +α2
0

=
B

4π2A|ξ|2 + B2

4A

. It follows that

sup
x∈R

∣∣∣ F−1
{
f̂0

}
(x)− 1

B
g(x)

∣∣∣≤∥∥∥ f̂0−
1

B
ĝ
∥∥∥
L1

≤
∫
R

∣∣∣∣∣χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

− 1

4π2A|ξ|2 + B2

4A

∣∣∣∣∣dξ
≤
∫
R

∣∣∣∣∣χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

−
χ
(
|ξ|<λ−β

)
4π2A|ξ|2 + B2

4A

∣∣∣∣∣dξ+

∫
R

∣∣∣∣∣1−χ
(
|ξ|<λ−β

)
4π2Aξ2 + B2

4A

∣∣∣∣∣dξ.
A bound on the second term follows from (4.12). The first term is easily bounded,
using (4.7), by C(A,B)λβ , with some constant C(A,B)>0. Estimate (4.8) follows, and
the proof of Lemma 4.1 is now complete.

We shall also require a result on the solvability of the inhomogeneous equation(
L̂0[θ0]ϕ̂

)
(ξ) = ĥ(ξ), (4.13)

where L̂0[θ0] is defined in (4.4).

Lemma 4.2. The equation (4.13) is solvable if and only if ĥ is such that

χ
(
|ξ|<λ−β

)
ĥ(ξ) = ĥ(ξ) and satisfies the orthogonality condition〈

f̂0,ĥ
〉
L2(R)

= 0, (4.14)

where f̂0, displayed in (4.6), spans the kernel of L̂0[θ0]. In that case,

1. any solution of the inhomogeneous equation (4.13) is of the form

ϕ̂(ξ)≡ (C+ ĥ(ξ))f̂0(ξ)≡ (C+ ĥ(ξ))
χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

, (4.15)

for some constant C.
2. The unique solution of (4.13) such that

∫
R ϕ̂= 0 is obtained by choosing C= 0:

ϕ̂(ξ)≡ ĥ(ξ)f̂0(ξ). (4.16)

Proof. The solvability condition χ
(
|ξ|<λ−β

)
ĥ(ξ) = ĥ(ξ) is straightforward,

and (4.14) is obtained by taking the inner product of (4.13) with f̂0, and using that

L̂0[θ0] is symmetric and L̂0[θ0]f̂0 = 0.
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To show that (4.15) solves the inhomogeneous equation (4.13) we simply insert the

function (4.15) into (4.13) and use the properties: L̂0(θ0)f̂0 = 0 and
〈
f̂0,ĥ

〉
L2

= 0. This

gives(
L̂0[θ0]ϕ̂

)
(ξ) = (4π2Aξ2 +θ2

0)ĥ(ξ)f̂0(ξ)−Bχ
(
|ξ|<λ−β

)∫ ∞
−∞

ĥ(η)f̂0(η)dη

= (4π2Aξ2 +θ2
0)
χ
(
|ξ|<λ−β

)
ĥ(ξ)

4π2Aξ2 +θ2
0

−Bχ
(
|ξ|<λ−β

)〈
f̂0,ĥ

〉
L2(R)

= ĥ(ξ).

The converse clearly holds by Lemma 4.1, since the difference of solutions of the
inhomogeneous equation solves the homogeneous equation (4.4). Finally, using the

orthogonality condition
〈
f̂0,ĥ

〉
L2

= 0, one has that
∫
R ϕ̂=C

∫
R f̂0 = 0 if and only if C= 0.

4.2. A perturbation result for L̂0. As discussed in the introduction, our
strategy is to obtain a reduction of the eigenvalue problem for HQ+λV to an eigenvalue
problem (the bifurcation equation) for functions supported at energies near the band-
edge. These reduced equations have a general form which we study in this section.

Let Z1 and Z2 denote Banach spaces with Z1,Z2⊂L1
loc. Assume that for any

(f,g)∈Z1×Z2,

|〈f,g〉L2 |.
∥∥f∥∥Z2

∥∥g∥∥Z1
,
∥∥fg∥∥Z2

.
∥∥f∥∥Z2

∥∥g∥∥
L∞

, and
∥∥(1+ξ2)−1f

∥∥
Z2

.
∥∥f∥∥Z1

.

(4.17)

Furthermore, we also assume that f̂0∈Z1∩Z2, where
(
θ2

0, f̂0

)
is the unique normalized

solution of the homogeneous equation L̂0[θ]f̂ = 0; see Lemma 4.1.

Remark 4.3. In order to prove theorems 3.1 and 3.4, we shall apply Lemma 4.4,
below, with

• Case Q≡0: (Z1,Z2) =
(
L∞,L1

)
in the case Q= 0; and

• Q non-trivial, 1−periodic: (Z1,Z2) =
(
L2,−1,L2,1

)
, where L2,s is the space of

locally integrable functions such that∥∥F∥∥
L2,s ≡

∥∥(1+ |ξ|2)s/2F
∥∥
L2(Rξ)

<∞.

It is straightforward to check that such spaces satisfy (4.17), and f̂0∈Z1∩Z2.

We seek a solution of the equation:

L̂0[θ]f̂ =R
(
f̂
)
, (4.18)

where L̂0(θ) is the operator defined in (4.4) and the mapping f̂ 7→R
(
f̂
)

is linear and
satisfies the following properties:

Assumptions Rα,β: There exist constants α>0, β>0, and CR>0 such that for any

f̂ ∈Z2,

χ
(
|ξ|<λ−β

)
R
(
f̂
)
(ξ) =R

(
f̂
)
(ξ) and

∥∥∥R(f̂ )∥∥∥
Z1

≤CRλα
∥∥∥f̂∥∥∥

Z2

. (4.19)

In the above setting we have the following
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Lemma 4.4. Let (θ2
0, f̂0(ξ)) be the solution of L̂0(θ0)f̂0 = 0, as defined in Lemma 4.1,

where A, B and β>0 are fixed. Let R : f̂ ∈Z2→Z1 be a linear mapping satisfying
assumptions Rα,β displayed in (4.19), where Z1,Z2 satisfy (4.17). Then there exists
λ0>0 such that for any 0<λ<λ0, the following holds:

1. There exists a unique solution
(
θ,f̂(ξ)

)
∈R+×Z2 of the equation (4.18), such

that ∥∥∥f̂− f̂0

∥∥∥
Z2

≤Cλα,
∫ ∞
−∞

f̂(ξ)− f̂0(ξ) dξ= 0,

with C=C(A,B,CR,β), independent of λ.

2. Moreover, one has f̂(ξ) =χ
(
|ξ|<λ−β

)
f̂(ξ) and

∣∣θ2−θ2
0

∣∣≤Cλα.
Proof. Our strategy is to use a fixed point argument. We seek a solution (θ2,f)

to (4.18) of the form

θ2≡θ2
0 +θ2

1 and f̂ ≡ f̂0 + f̂1.

Clearly, any solution f̂ of (4.18) satisfies f̂(ξ) =χ
(
|ξ|<λ−β

)
f̂(ξ). Therefore, since one

has, by definition, f̂0(ξ) =χ
(
|ξ|<λ−β

)
f̂0(ξ), it follows that f̂1(ξ) =χ

(
|ξ|<λ−β

)
f̂1(ξ).

Substitution of these expressions into (4.18) yields

(4π2Aξ2 +θ2)χ
(
|ξ|<λ−β

)(
f̂0 + f̂1

)
(ξ)

−χ
(
|ξ|<λ−β

)
B

∫ ∞
−∞

χ
(
|η|<λ−β

)(
f̂0 + f̂1

)
(η)dη=R

(
f̂0 + f̂1

)
(ξ).

Rearranging terms yields the following equation for f̂1, in which θ2
1 is a parameter to

be determined: (
L̂0[θ0]f̂1

)
(ξ) =−θ2

1

(
f̂0 + f̂1

)
(ξ)+R

(
f̂0 + f̂1

)
(ξ). (4.20)

By Lemma 4.2, (4.20) is solvable in L2 only if the right hand side is L2- orthogonal to

f̂0: 〈
f̂0,−θ2

1

(
f̂0 + f̂1

)
+R

(
f̂0 + f̂1

)〉
L2

= 0.

Solving for θ2
1, we obtain

θ2
1 =

〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

. (4.21)

In summary, equation (4.18) can be rewritten equivalently as two coupled equations in

terms of f̂1 and θ2
1: (4.20)–(4.21).

Substitution of θ2
1 in (4.20), or equivalently projecting the right hand side of (4.20)

onto the orthogonal complement of span{f̂0}, yields the following closed equation for

f̂1:

(
L̂0[θ0]f̂1

)
(ξ) =−

〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

(
f̂0 + f̂1

)
(ξ)+R

(
f̂0 + f̂1

)
(ξ). (4.22)
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By Lemma 4.2, f̂1 is a solution of (4.22) with
∫
R f̂1 = 0 if and only if:

f̂1(ξ) =G(f̂1)(ξ), (4.23)

where

G(f̂1)(ξ)≡
χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

−
〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

(
f̂0 + f̂1

)
(ξ)+R

(
f̂0 + f̂1

)
(ξ)

 .
(4.24)

We solve the fixed point equation (4.23) by the contraction mapping principle. Once f̂1

has been obtained, θ2
1 is determined using (4.21).

Introduce

S=
{
f̂ ∈Z2 :

∥∥f̂∥∥Z2
≤CHλα

}
, for some fixed CH >0. (4.25)

Note that S is a closed subset of the Banach space Z2. We next show that there exists
λ0>0 such that for all 0<λ<λ0: G :S→S and G is a contraction mapping. As a
consequence, it will follow that for 0<λ<λ0, there is a unique solution f̂1∈S of the
equation f̂1 =G(f̂1), and therefore of (4.22). Moreover, ‖f̂1‖.λα by definition of S,
and one can check:∫

R
f̂1 =

∫
R
G(f̂1)

=

∫
R
f̂0(ξ)

−
〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

(
f̂0 + f̂1

)
(ξ)+R

(
f̂0 + f̂1

)
(ξ)

dξ= 0.

It then remains to obtain an estimate of θ1
2 =θ0

2−θ2. From (4.21), one has

∣∣θ2
1

∣∣≤ ∣∣∣〈f̂0,R
(
f̂0 + f̂1

)〉
L2

∣∣∣
∣∣∣∣∣∣ 1〈
f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

∣∣∣∣∣∣.λα,
where we used (4.17) and (4.19), and the fact that for λ sufficiently small,

〈
f̂0, f̂0

〉
L2
≥

c>0, where c is independent of λ. Lemma 4.4 is proved.

Proof that G :S→S is a contraction mapping: The result will follow from the two
following claims, proved below:

Claim 4.5. There exists CH =C
(
θ0,A,CR,

∥∥f̂0

∥∥
Z2

)
>0 such that

‖G(0)‖Z2
≤ 1

2
CHλ

α.

Claim 4.6. There exists λ0>0 such that if 0≤λ<λ0, then∥∥∥G(f̂1)−G(f̂2)
∥∥∥
Z2

≤ 1

2

∥∥∥f̂1− f̂2

∥∥∥
Z2

.

It follows that G maps S ≡
{
f ∈Z2 :

∥∥f̂∥∥Z2
≤CHλα

}
into S since

∥∥G(f)
∥∥
Z2
≤
∥∥G(f)−G(0)

∥∥
Z2

+
∥∥G(0)

∥∥
Z2
≤ 1

2

∥∥f−0
∥∥
Z2

+
1

2
CHλ

α≤CHλα.
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Therefore, by Claim 4.6, G :S→S is a contraction mapping.

Proof. (Proof of Claim 4.5.) By definition, one has

G(0)(ξ)≡
χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

(
−
〈
f̂0,R

(
f̂0

)〉
L2
f̂0(ξ)+R

(
f̂0

)
(ξ)
)
.

It follows, from our assumption (4.17) on functional spaces (Z1,Z2),

‖G(0)‖Z2
.

∥∥∥∥∥χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

∥∥∥∥∥
L∞

〈
f̂0,R

(
f̂0

)〉
L2

∥∥f̂0

∥∥
Z2

+

∥∥∥∥∥χ
(
|ξ|<λ−β

)
(1+ξ2)

4π2Aξ2 +θ2
0

∥∥∥∥∥
L∞

∥∥∥∥∥∥
R
(
f̂0

)
1+ | · |2

∥∥∥∥∥∥
Z2

.
∥∥∥R(f̂0

)∥∥∥
Z1

∥∥f̂0

∥∥2

Z2
+
∥∥∥R(f̂0

)∥∥∥
Z1

.

Claim 4.5 is now obvious, using the smallness hypothesis on the operator R, (4.19).

Proof. (Proof of Claim 4.6.) Let us decompose the mapping G as follows:

G(f̂1− f̂2) =
χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ2

0

(
−

〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

(
f̂0 + f̂1

)
(ξ)

+

〈
f̂0,R

(
f̂0 + f̂2

)〉
L2〈

f̂0, f̂0

〉
L2

+
〈
f̂0, f̂2

〉
L2

(
f̂0 + f̂2

)
(ξ)+R

(
f̂1− f̂2

)
(ξ)

)

≡ S1[f̂1](ξ)−S1[f̂2](ξ)

4π2Aξ2 +θ2
0

+
χ
(
|ξ|<λ−β

)
R
(
f̂1− f̂2

)
(ξ)

4π2Aξ2 +θ2
0

.

The following estimate follows from our assumption (4.17) on the spaces (Z1,Z2):∥∥∥G(f̂1− f̂2)
∥∥∥
Z2

≤

∥∥∥∥∥S1[f̂1](ξ)−S1[f̂2](ξ)

4π2Aξ2 +θ20

∥∥∥∥∥
Z2

+

∥∥∥∥∥∥
χ
(
|ξ|<λ−β

)
R
(
f̂1− f̂2

)
(ξ)

4π2Aξ2 +θ20

∥∥∥∥∥∥
Z2

.

∥∥∥∥∥χ
(
|ξ|<λ−β

)
4π2Aξ2 +θ20

∥∥∥∥∥
L∞

∥∥∥S1[f̂1]−S1[f̂2]
∥∥∥
Z2

+

∥∥∥∥∥χ
(
|ξ|<λ−β

)
(1+ξ2)

4π2Aξ2 +θ20

∥∥∥∥∥
L∞

∥∥∥∥∥∥
R
(
f̂1− f̂2

)
1+ | · |2

∥∥∥∥∥∥
Z2

.
∥∥∥S1[f̂1]−S1[f̂2]

∥∥∥
Z2

+
∥∥∥R(f̂1− f̂2)∥∥∥

Z1

. (4.26)

The second term in (4.26) is estimated using assumptions Rα,β , (4.19):∥∥∥R(f̂1− f̂2

)∥∥∥
Z1

≤CRλα
∥∥∥f̂1− f̂2

∥∥∥
Z2

. (4.27)

Let us now turn to the first term in (4.26),

S1[f̂1]−S1[f̂2] =−

〈
f̂0,R

(
f̂0 + f̂1

)〉
L2〈

f̂0, f̂0
〉
L2

+
〈
f̂0, f̂1

〉
L2

(
f̂0 + f̂1

)
+

〈
f̂0,R

(
f̂0 + f̂2

)〉
L2〈

f̂0, f̂0
〉
L2

+
〈
f̂0, f̂2

〉
L2

(
f̂0 + f̂2

)
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=−

〈
f̂0,R

(
f̂1− f̂2

)〉
L2

(
f̂0 + f̂1

)
〈
f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

−

〈
f̂0,R

(
f̂0 + f̂2

)〉
L2

(
f̂1− f̂2

)
〈
f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

−
〈
f̂0,R

(
f̂0 + f̂2

)〉
L2

(
f̂0 + f̂2

) 1〈
f̂0, f̂0

〉
L2

+
〈
f̂0, f̂1

〉
L2

− 1〈
f̂0, f̂0

〉
L2

+
〈
f̂0, f̂2

〉
L2


=I+II+III. (4.28)

The result is a consequence of the following estimates:〈
f̂0,g

〉
L2
≤C

∥∥f̂0

∥∥
Z1
‖g‖Z2

≤C1‖g‖Z2
,〈

f̂0,R(g)
〉
L2
≤C

∥∥f̂0

∥∥
Z2
‖R(g)‖Z1

≤C2λ
α‖g‖Z2

,

with C1 =C
(∥∥f̂0

∥∥
Z1

)
and C2 =C2

(∥∥f̂0

∥∥
Z2
,CR

)
. Using the above, one checks that for

sufficiently small λ,

‖I‖Z2
.C2λ

α
∥∥∥f̂1− f̂2

∥∥∥
Z2

(
∥∥f̂0

∥∥
Z2

+CHλ
α),

‖II‖Z2
.C2λ

α(
∥∥f̂0

∥∥
Z2

+CHλ
α)
∥∥∥f̂1− f̂2

∥∥∥
Z2

,

‖III‖Z2
.C1

∥∥∥f̂1− f̂2

∥∥∥
Z2

C2λ
α(
∥∥f̂0

∥∥
Z2

+CHλ
α)2.

Thus, if C1λ
α<1/2, one has∥∥∥S1[f̂1]−S1[f̂2]

∥∥∥
Z2

≤‖I‖Z2
+‖II‖Z2

+‖III‖Z2
.λα

∥∥∥f̂1− f̂2

∥∥∥
Z2

. (4.29)

Plugging (4.27) and (4.29) into (4.26), it follows the existence of a constant, C0>0,

such that ‖G(f̂1)−G(f̂2)‖Z2
≤C0λ

α‖f̂1− f̂2‖Z2
. Thus, for 0<λ<λ0≤C

− 1
α

0 , we obtain
a contraction and Claim 4.6 is proven.

5. Proof of Theorem 3.1; edge bifurcations for −∂2
x+λV (x)

In this section we prove Theorem 3.1, the special case: Q≡0 of our main result,
Theorem 3.4. In this case we study the bifurcation of solutions to the eigenvalue problem(

−∂2
x+λV (x)

)
ψλ(x) =Eλψλ(x),ψλ∈L2(R) (5.1)

into the interval (−∞,0), the semi-infinite spectral gap of H0≡−∂2
x, for V a spatially

localized potential, and λ>0 sufficiently small. Here, the Floquet-Bloch eigenfunctions
are exponentials. Hence, calculations are more straightforward and error bounds on the
approximations are sharper.

5.1. Near and far frequency decomposition. Taking the Fourier transform
of (5.1) yields (

4π2ξ2−Eλ
)
ψ̂λ(ξ)+λ

∫
R
V̂ (ξ−ζ)ψ̂λ(ζ)dζ= 0. (5.2)

We shall study (5.2) via the equivalent system for the

near frequency components: {ψ̂λ(ξ) : |ξ|<λr} and
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far frequency components: {ψ̂λ(ξ) : |ξ|≥λr} of ψλ.

Let r be a parameter, chosen to satisfy: 0<r<1. Recall the cutoff functions, χ
and χ, introduced in (1.17), and 1 =χ

λr
(ξ)+χ

λr
(ξ). Multiplying (5.2) by this identity

we get

0 =
(
4π2|ξ|2−Eλ

)(
χ
λr

+χ
λr

)
(ξ)ψ̂λ(ξ)

+λ

∫ ∞
−∞

(
χ
λr

+χ
λr

)
(ξ)V̂ (ξ−ζ)

(
χ
λr

+χ
λr

)
(ζ)ψ̂λ(ζ)dζ.

Introduce notation for the near and far frequency components of ψλ:

ψ̂near(ξ)≡χλr (ξ)ψ̂λ(ξ) and ψ̂far(ξ)≡χλr (ξ)ψ̂λ(ξ). (5.3)

Then, the eigenvalue equation is equivalent to the following coupled system:(
4π2|ξ|2−Eλ

)
ψ̂near(ξ)+λχλr (ξ)

∫ ∞
−∞

V̂ (ξ−ζ)
(
ψ̂near(ζ)+ ψ̂far(ζ)

)
dζ= 0, (5.4)

(
4π2|ξ|2−Eλ

)
ψ̂far(ξ)+λχ

λr
(ξ)

∫ ∞
−∞

V̂ (ξ−ζ)
(
ψ̂near(ζ)+ ψ̂far(ζ)

)
dζ= 0. (5.5)

In what follows we shall set Eλ=−λ2θ2, where θ=θ(λ) is expected to be O(1) as
λ↓0. This anticipates that the bifurcating eigenvalue, Eλ, will be real, negative and
O(λ2).

5.2. Analysis of the far frequency components. We view (5.5) as an equa-

tion for ψ̂far, depending on “parameters” (ψ̂near;λ). The following proposition studies

the mapping (ψ̂near;λ) 7→ ψ̂far.

Proposition 5.1. Let ψ̂near∈L1. There exists λ0>0, such that for 0<λ<λ0, the
following holds. Set Eλ≡−λ2θ2, with |θ|≤πλr−1, r∈ (0,1). There is a unique solu-

tion ψ̂far = ψ̂far

[
ψ̂near;λ

]
of the far frequency equation (5.5). The mapping (ψ̂near;λ) 7→

ψ̂far

[
ψ̂near;λ

]
maps L1(R)×R to L1(R) and satisfies the bound:∥∥ψ̂far

∥∥
L1 ≤C(‖V̂ ‖L∞)λ1−r‖ψ̂near‖L1 . (5.6)

Proof. We seek to solve (5.5) for ψ̂far as a functional of ψ̂near. Since |ξ|≥λr,
with 0<r<1, and |θ|≤πλr−1, we have

∣∣4π2ξ2−Eλ
∣∣= ∣∣4π2ξ2 +λ2θ2

∣∣≥3π2λ2r, which
is bounded away from zero for any fixed λ>0. Dividing (5.5) by 4π2ξ2−Eλ= 4π2ξ2 +
λ2θ2, we obtain that (5.5) is equivalent to the equation:(

I+ T̂λ
)
ψ̂far(ξ) =−

(
T̂λψ̂near

)
(ξ), (5.7)

where (
T̂λĝ
)

(ξ)≡
∫
ζ

Kλ(ξ,ζ)ĝ(ζ)dζ and Kλ(ξ,ζ)≡λ χλr (ξ)

4π2ξ2 +λ2θ2
V̂ (ξ−ζ).

We next show that the integral operator T̂λ, viewed as an operator from L1 to L1

has small norm, for λ small. This implies the invertibility of I+ T̂λ and the assertions
of Proposition 5.1. Let ĝ∈L1. One has∥∥T̂λĝ∥∥L1 ≤Cλ

∫
|ξ|≥λr

1

4π2ξ2 +λ2θ2
dξ
∥∥V̂ ∥∥

L∞

∥∥ĝ∥∥
L1 .λ

1−r∥∥V̂ ∥∥
L∞

∥∥ĝ∥∥
L1 .
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Thus, T̂λ is bounded from L1 to L1 with norm bound:
∥∥T̂λ∥∥L1→L1 .λ

1−r
∥∥V̂ ∥∥

L∞
. For

r∈ (0,1),
∥∥T̂λ∥∥L1→L1→0 as λ→0. Therefore I+ T̂λ is invertible, for λ sufficiently small.

Moreover,∥∥∥ψ̂far

∥∥∥
L1

=
∥∥∥(I+ T̂λ

)−1(T̂λψ̂near

)∥∥∥
L1
≤
∥∥(I+ T̂λ

)−1∥∥
L1→L1

∥∥T̂λ∥∥L1→L1

∥∥ψ̂near

∥∥
L1 ,

which implies the bound (5.6). Proposition 5.1 is proven.

5.3. Analysis of the near frequency components. Now that we have con-
structed ψ̂far as a functional of ψ̂near and λ (Proposition 5.1), it is possible to treat (5.4),

for λ small, as a closed equation for a low frequency projected eigenstate, ψ̂near(ξ;λ), and

corresponding eigenvalue Eλ. Substitution of ψ̂far = ψ̂far[ψ̂near,λ] into (5.4) yields:

(
4π2|ξ|2−Eλ

)
ψ̂near(ξ)+λχλr (ξ)

∫
ζ

V̂ (ξ−ζ)ψ̂near(ζ)dζ+λχλr (ξ)R̂(ξ) = 0, (5.8)

where R̂ is defined by

R̂(ξ)≡
∫
ζ

V̂ (ξ−ζ)ψ̂far[ψ̂near,λ](ζ)dζ. (5.9)

Recall that ψ̂far[ψ̂near,λ] is in L1, and of size O
(
λ1−r‖ψ̂near‖L1

)
by Proposition 5.1.

Our next goal is, via appropriate expansion, reorganization, and scaling, to re-
express (5.8) as a simple leading order asymptotic equation plus controllable corrections.
The terms in (5.8) are supported in the near (low) frequency regime. Note that for |ξ|<
λr and |ζ|<λr we have |ξ−ζ|≤ |ξ|+ |ζ|<2λr. Taylor expansion of V̂ (ξ−ζ) gives V̂ (ξ−
ζ) = V̂ (0)+(ξ−ζ)V̂ ′(η), for some η=η(ζ,ξ) such that |η|<2λr. Using this expansion
in the second term of (5.8) yields

(
4π2|ξ|2−Eλ

)
ψ̂near(ξ)+λχλr (ξ)V̂ (0)

∫
ζ

ψ̂near(ζ)dζ=λχλr (ξ)R
[
ψ̂near;λ

]
(ξ), (5.10)

where R
[
ψ̂near;λ

]
≡R1 +R2, with

R1(ξ)≡−R̂(ξ) =−
∫
ζ

V̂ (ξ−ζ)ψ̂far[ψ̂near,λ](ζ)dζ,

R2(ξ)≡−
∫
ζ

(ξ−ζ)V̂ ′(η)ψ̂near(ζ)dζ.

We now introduce the scaled near-frequency Fourier component, Φ̂λ, by

ψ̂near(ξ;λ) =
1

λ
Φ̂λ

(
ξ

λ

)
, (5.11)

Note that ∥∥∥ψ̂near(·;λ)
∥∥∥
L1

=

∥∥∥∥ 1

λ
Φ̂λ

( ·
λ

)∥∥∥∥
L1

=
∥∥∥Φ̂λ

∥∥∥
L1
. (5.12)
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We also denote Eλ=−λ2θ2, and restrict to θ=θ(λ) satisfying the constraint in the
hypotheses of Proposition 5.1. Substitution of (5.11) into (5.10), defining ξ′=λξ, and
dividing by λ yields the following rescaled near-frequency equation:

(
4π2|ξ′|2 +θ2

)
Φ̂λ(ξ′)+χλr−1(ξ′)V̂ (0)

∫
ζ′

Φ̂λ(ζ ′)dζ ′=χλr−1(ξ′)R′
(
Φ̂λ
)
(ξ′), (5.13)

where R′
(
Φ̂λ
)
(ξ′)≡R

[
ψ̂near;λ

]
(λξ′)≡R′1(ξ′)+R′2(ξ′), with

R′1(ξ′)≡−
∫
ζ

V̂ (λξ′−ζ) ψ̂far[ψ̂near,λ](ζ)dζ, (5.14)

R′2(ξ′)≡−
∫
ζ

(λξ′−ζ)V̂ ′(η)ψ̂near(ζ) dζ=−λ
∫
ζ

(ξ′−ζ ′)V̂ ′(η)Φ̂λ(ζ ′)dζ ′. (5.15)

Equation (5.13) is in the form of the class of equations to which Lemma 4.4 applies.

We shall use Lemma 4.4 to obtain a non-trivial eigenpair solution (Φ̂λ,θ(λ)) of (5.13).
Toward verification of the hypotheses of Lemma 4.4, we next bound the right hand side
of (5.13).

Proposition 5.2. Let V be such that
∥∥V̂ ∥∥

W 1,∞ ≡
∥∥V̂ ∥∥

L∞
+
∥∥V̂ ′∥∥

L∞
<∞. Then, the

right hand side of the rescaled near-frequency equation (5.13) satisfies the bound∥∥∥χλr−1(ξ)R′
(
Φ̂λ
)∥∥∥
L∞
≤C

(∥∥V̂ ∥∥
W 1,∞

)(
λ1−r+λr

)∥∥∥Φ̂λ

∥∥∥
L1
. (5.16)

Proof. We proceed by estimating each term individually.

Estimation of R′1(ξ′), given by (5.14): By Proposition 5.1, one has∥∥ψ̂far[ψ̂near,λ]
∥∥
L1(R)

≤C
(
‖V̂ ‖L∞

)
λ1−r∥∥ψ̂near

∥∥
L1(R)

. (5.17)

Plugging (5.17) into (5.14) and making use of (5.12), we have

‖R′1‖L∞ =

∥∥∥∥∫
R
V̂ (λξ′−ζ)ψ̂far[ψ̂near,λ](ζ)dζ

∥∥∥∥
L∞
ξ′

≤
∥∥V̂ ∥∥

L∞

∥∥ψ̂far[ψ̂near,λ]
∥∥
L1 ≤C(‖V̂ ‖L∞)λ1−r∥∥Φ̂λ

∥∥
L1 .

Estimation of R′2(ξ′), given by (5.15): We have the bound∥∥χλr−1(ξ′)R′2
∥∥
L∞

=
∥∥χλr−1(ξ′)

∫
ζ′
λ(ξ′−ζ ′)V̂ ′(η)Φ̂λ(ζ ′)dζ ′

∥∥
L∞
ξ′
≤2λr

∥∥V̂ ′∥∥
L∞

∥∥Φ̂λ
∥∥
L1 ,

using that Φ̂λ(ζ ′) =χλr−1(ζ ′)Φ̂λ(ζ ′), so that |ξ′−ζ ′|≤2λr−1. Proposition 5.2 is proven.

Remark 5.3. We expect that by using a higher order Taylor approximation of
V̂ (ξ−ζ) in the second term of equation (5.8), it should be possible to obtain a variant
of Proposition 5.2 with a bound which is higher order in λ. This would require a higher
order variant of Lemma 4.4.
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5.4. Completion of the proof. We now prove Theorem 3.1 by an application
of Lemma 4.4 to equation (5.13), using the remainder estimate of Proposition 5.2.

Proof. (Proof of Theorem 3.1.) We construct ψλ, solution to (5.2) as ψ̂λ=

ψ̂far + ψ̂near, where ψ̂far,ψ̂near satisfy (5.4)–(5.5). The far-frequency component, ψ̂far,

is uniquely determined by ψ̂near and λ sufficiently small; see Proposition 5.1. Now set

ψ̂near(ξ)≡ 1
λ Φ̂λ

(
ξ
λ

)
. Since V̂ ∈W 1,∞, Proposition 5.2 implies that the rescaled near-

frequency equation (5.13) can be written as(
4π2|ξ′|2 +θ2

)
Φ̂λ(ξ′)+χλr−1(ξ′)V̂ (0)

∫
ζ′

Φ̂λ(ζ ′)dζ ′=χλr−1(ξ′)R(Φ̂λ)(ξ′), (5.18)

with ‖R(u)‖L∞ ≤Cλα‖u‖L1 , where α= min(1−r,r) and C=C(‖V̂ ‖W 1,∞). From now
on, we set

r= 1/2 =α

as this yields optimal estimates. Applying Lemma 4.4 to (5.18) with A= 1, −B= V̂ (0) =∫
RV (assumed to be negative), we deduce that there exists a solution

(
θ2,Φ̂λ

)
of the

rescaled near-frequency equation (5.18), satisfying

‖Φ̂λ− f̂0‖L1 ≤Cλ 1
2 and |θ2−θ2

0|≤Cλ
1
2 . (5.19)

Here
(
θ2

0(λ), f̂0

)
is the unique (normalized) solution of the homogeneous equation

L̂0,λ

(
θ0, f̂0

)
= (4π2ξ2 +θ2)f̂0 +χ

(
|ξ|<λ− 1

2

)
V̂ (0)

∫
R
χ
(
|η|<λ− 1

2

)
f̂0(η)dη= 0,

as described in Lemma 4.1. Thus ψ̂near(ξ) = 1
λ Φ̂λ

(
ξ
λ

)
and Eλ=−λ2θ2(λ) are well-

defined.
In conclusion, the eigenpair solution to (5.2) (i.e. (3.1)) , (Eλ,ψλ), is uniquely

determined by

Eλ≡−λ2θ2(λ) and ψλ≡F−1(ψ̂near + ψ̂far).

Estimate (3.2), the small λ expansion of the eigenvalue Eλ, follows from (5.19). The
approximation, (3.3), of the corresponding eigenstate, ψλ=ψnear +ψfar, is obtained as
follows. First, by (5.19) we have∥∥∥∥ψ̂near(η)−λ χλ1/2(η)

4π2|η|2 +λ2θ2
0

∥∥∥∥
L1

=
∥∥∥Φ̂λ− f̂0

∥∥∥
L1

.λ1/2. (5.20)

The high frequency components are small, as is seen from the following calculation:∥∥∥∥∥λ χλ1/2(η)

4π2|η|2 +λ2V̂ (0)2

∥∥∥∥∥
L1

≤λ
∫
|η|≥λ1/2

dη

4π2|η|2
.λ1/2. (5.21)

Finally, from Proposition 5.1, one has (with r= 1/2)∥∥ψ̂far

∥∥
L1 ≤C(‖V̂ ‖L∞) λ1/2‖ψ̂near‖L1 , (5.22)
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and
∥∥ψ̂near

∥∥
L1 =

∥∥Φ̂λ
∥∥
L1→

∥∥f̂0

∥∥
L1 (as λ→0). Altogether, (5.20), (5.21) and (5.22) yield∥∥∥∥ψλ−F−1

{
λ

1

4π2| · |2 +λ2θ2
0

}∥∥∥∥
L∞
≤
∥∥∥∥ψ̂λ−λ 1

4π2| · |2 +λ2θ2
0

∥∥∥∥
L1

.λ1/2.

Note, by residue computation, that
F−1

{
(4π2| · |2 +λ2θ2

0)−1
}

= 1
2 (λθ0)−1 exp(−λθ0|x|), with θ0 =− 1

2

∫
RV >0 . Thus esti-

mate (3.3) holds. This completes the proof of Theorem 3.1.

6. Proof of Theorem 3.4; edge bifurcations of −∂2
x+Q+λV

Let Q(x) denote a non-trivial, continuous, 1−periodic function, Q(x+1) =Q(x). In
this section we study the bifurcation of solutions to the eigenvalue problem(

−∂2
x+Q(x)+λV (x)

)
ψλ(x) =Eλψλ(x), ψ∈L2(R) (6.1)

into the spectral gaps of −∂2
x+Q(x). We proceed by the same general approach of

Section 5. That is, by appropriate spectral localization, in this case by applying the
Gelfand-Bloch transform, we reduce (6.1) to an equivalent near-frequency eigenvalue
problem supported on frequencies lying near a spectral band edge of −∂2

x+Q(x).

6.1. Near and far frequency components. We take the Gelfand-Bloch trans-
form of (6.1) and get

−(∂x+2πik)
2
ψ̃λ(x;k)+Q(x)ψ̃λ(x;k)+λ

(
V ψλ

)∼
(x;k) =Eλψ̃λ(x;k), (6.2)

where (
V ψλ

)∼
(x;k) =

∑
n∈Z

e2πinx
(
V ψλ

)∧
(k+n) =

∑
n∈Z

e2πinx
(
V̂ ? ψ̂λ

)
(k+n).

Here, the quasi-momentum, k, varies over the interval (−1/2,1/2].
As in Section 5, we express ψ in terms of its near and far frequency components

around a band edge Eb∗(k∗), for fixed b∗ and k∗:

ψλ=ψnear +ψfar =T −1
{
ψ̃near(k)pb∗(x;k)

}
+T −1

{ ∞∑
b=0

ψ̃far,b(k)pb(x;k)

}
, (6.3)

where we define, for b= 0,1,. ..:

ψ̃near(k)≡χ(|k−k∗|<λr)Tb∗{ψ
λ}(k) =χ(|k−k∗|<λr)

〈
pb∗(·,k),ψ̃λ(·,k)

〉
L2([0,1])

,

ψ̃far,b(k)≡χ(|k−k∗|≥λrδb∗,b)Tb{ψ
λ}(k) =χ(|k−k∗|≥λrδb∗,b)

〈
pb(·,k),ψ̃λ(·,k)

〉
L2([0,1])

,

where δi,j denotes Kronecker’s delta function and r a parameter chosen to satisfy r>0.
Equivalently, one has

ψλ(x) =

∫ 1/2

−1/2

(
ψ̃near(k)ub∗(x;k)+

∞∑
b=0

ψ̃far,b(k)ub(x;k)

)
dk.

Recall that {pb(x;k)}b≥0 form a complete orthonormal set in L2
per([0,1]), and satisfy(

−(∂x+2πik)
2

+Q(x)
)
pb(x;k) =Eb(k)pb(x;k), x∈ [0,1],pb(x+1;k) =pb(x;k). (6.4)
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Therefore, taking the inner product of (6.2) with pb(x;k), and using self-adjointness

of the operator −(∂x+2πik)
2

+Q as well as the identity (6.4), yields(
Eb(k)−Eλ

)〈
pb(·,k),ψ̃λ(·,k)

〉
L2([0,1])

+λ
〈
pb(·,k),

(
V ψλ

)∼
(·,k)

〉
L2([0,1])

= 0. (6.5)

or equivalently, using notation (2.5),(
Eb(k)−Eλ

)
Tb
{
ψλ
}

(k)+λTb
{
V ψλ

}
(k) = 0. (6.6)

We can now decompose equation (6.5) into near and far frequency equations, around
Eb∗(k∗), the edge of the b∗-th band of the continuous spectrum. The coupled equations
for ψnear and ψfar read:(

Eb∗(k)−Eλ
)
χ(|k|<λr)

〈
pb∗(·,k),ψ̃λ(·,k)

〉
L2([0,1])

+λχ(|k|<λr)
〈
pb∗(·,k), [V (ψnear +ψfar)]

∼
(·,k)

〉
L2([0,1])

= 0, (6.7)

and for b∈N:(
Eb(k)−Eλ

)
χ(|k|≥λrδb∗,b)

〈
pb(·,k),ψ̃λ(·,k)

〉
L2([0,1])

+ λχ(|k|≥λrδb∗,b)
〈
pb(·,k), [V (ψnear +ψfar)]

∼
(·,k)

〉
L2([0,1])

= 0. (6.8)

Equivalently, we write the near and far frequency equations in the form(
Eb∗(k)−Eλ

)
ψ̃near(k)+λχ(|k|<λr)(Tb∗ {V ψnear}(k)+Tb∗ {V ψfar}(k)) = 0, (6.9)

(
Eb(k)−Eλ

)
ψ̃far,b(k)+λχ(|k|≥λrδb∗,b)(Tb{V ψnear}(k)+Tb{V ψfar}(k)) = 0. (6.10)

Equations (6.9) and (6.10) are, for the case of non-trivial periodic potentials, Q(x), the
analogues of (5.4)-(5.5).

6.2. Analysis of the far frequency Floquet-Bloch components. In this
section we study the far frequency equation (6.10). We will show that we can write it in
terms of the near frequency solution and will determine a bound on the far solution in
terms of the near solution. The next result is therefore the analogue of Proposition 5.1
and facilitates the reduction of the eigenvalue problem to a closed equation for the
near-frequency components of the eigenstate.

For clarity of presentation and without any loss of generality, we assume henceforth that
we are localizing near the lowermost end point of the b∗-th band and that k∗= 0. Thus,
by Lemma 2.2,

b∗ is even, k∗= 0, with Eb∗(0) =E∗.

N.B. For k∗= 0, note that pb(x;k∗) =ub(x;k∗) and we use these expressions interchange-
ably. For k∗= 1/2 one has to distinguish between pb(x;k∗) and ub(x;k∗).

Proposition 6.1. Assume b∗ is even and consider E∗=Eb∗(0) the lowermost edge of
the b∗-th band. There exists λ0>0, such that for 0<λ<λ0, the following holds. Set

Eλ=E∗−λ2θ2, θ≤λr−1 1

2
|∂2
kEb∗(0)|1/2, 0<r<

1

2
. (6.11)
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Then for any ψnear∈L2(R), there is a unique solution ψfar [ψnear,λ]∈L2(R) of the far-
frequency system (6.10). The mapping (ψnear;λ) 7→ψfar maps L2(R)×(0,λ0) to H2(R)
and ψfar satisfies the bound

‖ψfar [ψnear;λ]‖H2(R)≤C (‖V ‖L∞)λ1−2r ‖ψnear‖L2(R) . (6.12)

Remark 6.2. Recall that we have assumed (1+ |x|)V (x)∈L1(R) and V ∈L∞. It is
in the proof of the bound (6.12) that we have used V ∈L∞. We believe it possible to
work under the milder assumption (1+ |x|)V (x)∈L1(R). In this case, we would bound
ψfar in H1(R) and the analysis that would follow would be a bit more technical. We
leave this an exercise.

Proof. We begin by showing that there exists λ0>0 such that for all 0<λ<λ0,
there is a constant C1>0 such that

|Eb∗(k)−E∗|≥C1λ
2r, λr≤|k|≤1/2, (6.13)

|Eb(k)−E∗|≥C1, b 6= b∗, |k|≤1/2. (6.14)

Note first that (6.14) is an immediate consequence of E∗ being the endpoint of the (b∗)
th

spectral gap. To prove (6.13) recall, by Lemma 2.2, that E∗=Eb∗(0), an eigenvalue at
the edge of a spectral gap, is simple, and k 7→Eb∗(k)−E∗ is continuous. Therefore, for
any λ0, such that 0<λ0<1/2,

min
λ0≤|k|≤1/2

|Eb∗(k)−E∗|≥C(λ0)>0. (6.15)

For |k|≤λ0, we approximate Eb∗(k) by a Taylor expansion. In particular, since Eb∗(k)
is smooth for k near k∗= 0, ∂kEb∗(0) = 0, and ∂2

kEb∗(0) 6= 0, we have Eb∗(k)−Eb∗(0)−
1
2∂

2
kEb∗(0)k2 =O(|k|3). Therefore, we can choose λ0>0 sufficiently small so that for all

λ≤λ0, we have

|Eb∗(k)−Eb∗(0)|≥ 1

3

∣∣∂2
kEb∗(0)

∣∣λ2r, for all λ≤|k|≤λ0. (6.16)

It follows from (6.15) and (6.16) that for sufficiently small λ0>0,

1

2
≥|k|≥λ>0 =⇒ |Eb∗(k)−E∗|≥min

{
1

3

∣∣∂2
kEb∗(0)

∣∣λ2r,C(λ0)

}
.

Thus if Eλ=E∗−λ2θ2, θ≤λr−1 1
2 |∂

2
kEb∗(0)|1/2, then for 0<λ<λ0 sufficiently small,

there is a positive constant C1 such that

|Eb∗(k)−Eλ|≥C1λ
2r. (6.17)

By (6.13) and (6.14), the far-frequency system, (6.10), may be re-written as

ψ̃far,b(k)+λ
χ(|k|≥λrδb∗,b)
Eb(k)−Eλ

Tb{V ψfar}(k)

=−λχ(|k|≥λrδb∗,b)
Eb(k)−Eλ

Tb{V ψnear}(k), b≥0. (6.18)

We wish to rewrite this equation in terms of ψfar(x). In order to do so, we multiply (6.18)
by ub(x;k) =pb(x;k)e2πikx, sum over b≥0, and integrate with respect to k∈ (−1/2,1/2].
This yields

(I+Kλ)ψfar(x) =−(Kλψnear)(x), (6.19)
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where we define

(Kλg)(x)≡
∫ 1/2

−1/2

∑
b≥0

λ
χ(|k|≥λrδb∗,b)
Eb(k)−Eλ

Tb{V g}(k)pb(x;k)e2πikxdk.

We next show that the operator Kλ, viewed as an operator from L2 to H2, has
small norm, for λ small. Let g∈L2. Using Proposition 2.4, one has

‖Kλg‖2H2 .
∥∥∥K̃λg∥∥∥2

X 2
=

∫ 1/2

−1/2

∑
b≥0

(1+b2)2 |Tb{Kλg}(k)|2dk

=λ2

∫ 1/2

−1/2

∑
b≥0

(1+b2)2χ(|k|≥λrδb∗,b)
|Eb(k)−Eλ|2

|Tb{V g}(k)|2dk.

Now, by (6.17), for |k|≥λr one has
∣∣Eb∗(k)−Eλ

∣∣−1≤C1λ
−2r, and recall 0<r<1/2. For

b 6= b∗, we use Weyl asymptotics to write
∣∣(Eb(k)−Eλ)−1

∣∣∼ ∣∣(b2−E∗)−1
∣∣∼ (b2 +1)−1.

We therefore have

‖Kλg‖2H2 .λ2

∫ 1/2

−1/2

∑
b≥0

|Tb{V g}(k)|2dk

+λ2−4r

∫ 1/2

−1/2

(1+b∗
2)2χ(|k|≥λr)|Tb∗ {V g}(k)|2dk

.λ2−4r ‖(V g)
∼‖2X 0 .λ2−4r ‖V ‖2L∞ ‖g‖

2
L2 .

Thus, since r∈ (0,1/2), one can choose λ0>0 such that if 0<λ<λ0, then ‖Kλ‖L2→H2 <
1. In particular, Kλ is a contraction from L2 to L2, and therefore I+Kλ is invert-
ible. The existence and uniqueness of ψfar∈L2(R) solution to (6.10) is now given
through (6.19). Moreover, one has

‖ψfar‖H2 =
∥∥∥(I+Kλ)

−1
(Kλψnear)

∥∥∥
H2
≤‖(I+Kλ)

−1‖H2→H2 ‖Kλ‖L2→H2 ‖ψnear‖L2

.λ1−2r ‖V ‖L∞ ‖ψnear‖L2 ,

which implies the bound (6.12). The proof of Proposition 6.1 is complete.

6.3. Analysis of the near frequency Floquet-Bloch component. With
the properties of the map ψnear 7→ψfar[ψnear,λ] now understood via Proposition 6.1, we
now view and study (6.9) as a closed eigenvalue problem for (Eλ,ψnear):(

Eb∗(k)−Eλ
)
ψ̃near(k)+λχ

λr
(k)Tb∗ {V ψnear}(k)+λχ

λr
(k)Tb∗ {V ψfar [ψnear;λ]}(k) =0.

(6.20)

Equation (6.20) is localized in the region |k|<λr, 0<r<1/2. By careful expansion
and rescaling of (6.20) we shall obtain an equation, which, at leading order in λ, is a
perturbation of the general class of equations to which Lemma 4.1 applies. The size
of the perturbation is estimated in Proposition 6.6 and the perturbed equation is then
solved by applying Lemma 4.4.

In lemmas 6.3, 6.4, and 6.5 we expand the first two terms in (6.20) about k∗= 0
using Taylor’s Theorem, making explicit the leading and higher order contributions.
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Lemma 6.3. Denote Eλ=E∗−λ2θ2 =Eb∗(0)−λ2θ2, as in Proposition 6.1. There
exists k′ such that |k′|<λr, and

(
Eb∗(k)−Eλ

)
ψ̃near(k) =

(
1

2
∂2
kEb∗(0)k2 +λ2θ2

)
ψ̃near(k)+λR0

[
ψ̃near;λ

]
(k,k′),

where

R0

[
ψ̃near;λ

]
(k,k′) =

1

λ

1

4!
k4∂4

kEb∗(k
′)ψ̃near(k). (6.21)

Proof. Taylor expanding Eb∗(k) about k∗= 0 to fourth order and making
use of Eλ=Eb∗(0)−λ2θ2 and ∂jkEb∗(0) = 0 for j= 1,3, one obtains Eb∗(k)−Eλ=
1
2∂

2
kEb∗(0)k2 +λ2θ2 + 1

4!∂
4
kEb∗(k

′)k4, which is equivalent to (6.21).

Lemma 6.4. One can decompose

Tb∗ {V ψnear}(k) =
〈
pb∗(·;0),pb∗(·;0)T

{
V F−1

{
ψ̃near

}}
(·;k)

〉
L2([0,1])

+R1

[
ψ̃near;λ

]
(k),

with

R1

[
ψ̃near;λ

]
(k) = 〈pb∗(·;0),T {V E1}(·,k)〉L2([0,1])

+〈pb∗(·;k)−pb∗(·;0),T {V ψnear}(·,k)〉L2([0,1]) , (6.22)

where E1≡T −1
{
ψ̃near(k)

(
pb∗(x;k)−pb∗(x;0)

)}
.

Proof. Let us recall that by definition (6.3), one has

ψnear(x) =T −1
{
ψ̃near(·)pb∗(x;·)

}
. (6.23)

Since ψ̃near(k) =χ(|k|<λr)ψ̃near(k), we decompose:

ψnear(x) =T −1
{
ψ̃near(·)pb∗(x; ·)

}
(x) =pb∗(x;0)F−1{ψ̃near}+E1(x) (6.24)

where

E1(x)≡T −1
{
ψ̃near(·)

(
pb∗(x; ·)−pb∗(x;0)

)}
. (6.25)

Above, we used that T −1 commutes with multiplication by a 1−periodic function of x,
and that when acting on a function which is localized near k= 0, and which does not
depend on x, T −1 is equivalent to the standard inverse Fourier transform; see Section 2.

The proof of Lemma 6.4 is now straightforward.

We next give a precise expression of the leading order term in Lemma 6.4.

Lemma 6.5. One can decompose〈
pb∗(·;0),pb∗(·;0)T

{
V F−1{ψ̃near}

}
(·;k)

〉
L2([0,1])

=

(∫ ∞
−∞
|pb∗(x;0)|2V (x)dx

)∫ ∞
−∞

ψ̃near(l)dl+R2

[
ψ̃near

]
(k), (6.26)
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with

R2

[
ψ̃near

]
(k) =

∫ ∞
−∞

dx |pb∗(x;0)|2 V (x)

∫ ∞
−∞

(
e2iπ(l−k)x−1

)
ψ̃near(l) dl. (6.27)

Proof. By the definition of T , one has

T
{
V F−1{ψ̃near}

}
(x;k) =

∑
n∈Z

e2πinxF
{
V F−1{ψ̃near}

}
(k+n)

=
∑
n∈Z

e2πinx

∫ ∞
−∞

V̂ (k+n− l)ψ̃near(l) dl.

Since |k|<λr and ψ̃near(l) is localized on |l|<λr, the leading order term is obtained

when replacing V̂ (k+n− l) with V̂ (n). The first term of (6.26) now follows from the
identity:

∑
n∈Z

〈
pb∗(·;0),pb∗(·;0)e2πin·〉

L2([0,1])
V̂ (n) =

∫ 1

0

|pb∗(x;0)|2
∑
n∈Z

e2πinxV̂ (n)dx

=
∑
n∈Z

∫ 1

0

|pb∗(x;0)|2V (x+n)dx=

∫ ∞
−∞
|pb∗(x;0)|2V (x)dx.

Here, we used the Poisson summation formula and that x 7→pb∗(x;0) is 1−periodic.
Similarly, one has∑
n∈Z

〈
pb∗(·;0),pb∗(·;0)e2πin·〉

L2([0,1])
V̂ (n+k− l) =

∫ ∞
−∞
|pb∗(x;0)|2e2iπ(l−k)xV (x)dx.

This completes the proof of Lemma 6.5.

6.4. The rescaled closed equation. Using lemmas 6.3, 6.4, and 6.5, one can
express the near frequency equation (6.20) as follows:

(
1

2
∂2
kEb∗(0)k2 +λ2θ2)ψ̃near(k)+λχ(|k|<λr)

(∫ ∞
−∞
|pb∗(x;0)|2V (x)dx

)∫ ∞
−∞

ψ̃near(l)dl

(6.28)

=−λχ(|k|<λr)R [ψnear;λ](k), (6.29)

where R[ψnear;λ](k)≡Tb∗{V ψfar}+R0 +R1 +R2.
Seeking to extract the dominant and higher order terms in λ, we introduce the

scaled near-frequency components:

ψ̃near(k) =
1

λ
Φ̂λ

(
k

λ

)
=

1

λ
Φ̂λ (κ), where k=λ κ. (6.30)

Expressing (6.28) in terms of Φ̂λ and κ we obtain, after dividing out by λ,(
1

2
∂2
kEb∗(0)κ2 +θ2

)
χ
λr−1 (κ)Φ̂λ(κ)+

(∫
R
|pb∗(·;0)|2V

)
χ
λr−1 (κ)

∫
R
χ
λr−1 (η)Φ̂λ(η)dη
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=−χ
(
|κ|<λr−1)R[ψnear;λ](λκ)≡R(Φ̂λ). (6.31)

Equation (6.31) is of the form L̂0[θ]Φ̂λ(κ) =R(Φ̂λ), where L̂0[θ] is given by (4.1)
with parameters

A=
1

8π2
∂2
kEb∗(0), B=−

∫
R
|pb∗(x;0)|2V (x)dx, and β= 1−r.

In order to solve (6.31) via Lemma 4.4 we need a bound on R(Φ̂λ) of the form (4.19).

Proposition 6.6. Assume that V is such that (1+ | · |)V (·)∈L1 and V ∈L∞. Then

R(Φ̂λ), defined in (6.31), satisfies the bound∥∥∥R(Φ̂λ)
∥∥∥
L2,−1

=
∥∥χ(| · |<λr−1

)
R [ψnear;λ](λ·)

∥∥
L2,−1 ≤Cλα(r)

∥∥∥Φ̂λ

∥∥∥
L2,1

, (6.32)

where α(r) = max
{

1
2−2r,2r, r+1

2

}
. The constant C depends on∥∥(1+ | · |)V

∥∥
L1 ,
∥∥V ∥∥

L∞
as well as sup

|k|<λr
‖pb∗(·;k)‖L∞ , sup

|k|<λr

∑
n∈Z

∣∣〈pb∗(·;k),e2πin·
〉
L2([0,1])

∣∣,
sup|k|<λr

∣∣∂4
kEb∗(k)

∣∣, sup|k|<λr
∥∥∂kpb∗(·;k)

∥∥
L∞

, and is finite by lemmas 2.3 and 2.5.

Proof. Recall that R(λκ), the right hand side of (6.31), has the form

R [ψfar [ψnear;λ] ,ψnear;λ](λκ) =χ
(
|κ|<λr−1

)(
Tb∗ {V ψfar}(λκ)+R0

[
ψ̃near;λ

]
(λκ,k′)

+R1

[
ψ̃near;λ

]
(λκ)+R2

[
ψ̃near

]
(λκ)

)
≡ (I)+(II)+(III)+(IV ). (6.33)

We proceed by estimating each of the terms: (I), (II), (III) and (IV ).

(I) Estimation of χ
(
|κ|<λr−1

)
Tb∗ {V ψfar}(λκ): We have

∥∥χ(| · |<λr−1
)
Tb∗ {V ψfar}(λ·)

∥∥2

L2,−1 =

∫ ∞
−∞

χ
(
|κ|<λr−1

)
1+κ2

|Tb∗ {V ψfar}(λκ)|2dκ

≤‖Tb∗ {V ψfar}‖2L∞ .

We now consider Tb∗ {V ψfar}(·) in detail. By definition, one has

Tb∗ {V ψfar}(k) = 〈pb∗(·;k),T {V ψfar}(·,k)〉L2([0,1])

=

〈
pb∗(·;k),

∑
n∈Z

e2πin·
∫ ∞
−∞

V̂ (k+n− l)ψ̂far(l)dl

〉
L2([0,1])

=
∑
n∈Z

〈
pb∗(·;k),e2πin·〉

L2([0,1])

∫ ∞
−∞

V̂ (k+n− l)
(1+ |l|2)1/2

(1+ |l|2)1/2ψ̂far(l)dl.

Moreover,∣∣∣∣∣
∫ ∞
−∞

V̂ (k+n− l)
(1+ |l|2)1/2

(1+ |l|2)1/2ψ̂far(l)dl

∣∣∣∣∣≤∥∥V̂ ∥∥L∞ ‖ψfar‖H2 .λ1−2r ‖ψnear‖L2

.λ1−2r
∥∥∥ψ̃near

∥∥∥
L2

=λ1−2rλ−
1
2

∥∥∥Φ̂λ

∥∥∥
L2
,
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where we used Proposition 6.1, definition (6.30), and, by Proposition 2.4,

‖ψnear‖2L2 =
∥∥∥T −1

{
ψ̃near(k)pb∗(x;k)

}∥∥∥2

L2
.
∥∥∥ψ̃near(k)pb∗(x;k)

∥∥∥2

X 0

=

∫ 1/2

−1/2

|ψ̃near(k)|2dk=
∥∥ψ̃near

∥∥2

L2 . (6.34)

Finally, it follows

‖Tb∗ {V ψfar}‖L∞ ≤λ
1
2−2rC

∥∥∥Φ̂λ

∥∥∥
L2,1

. (6.35)

with C=C
(∥∥V̂ ∥∥

L∞
,
∥∥V ∥∥

L∞
,sup|k|<λr

∑
n∈Z

∣∣∣〈pb∗(·;k),e2πin·〉
L2([0,1])

∣∣∣).

(II) Estimation of χ
(
|κ|<λr−1

)
R0

[
ψ̃near;λ

]
(λκ,k′), given in (6.21): We have

(constants implicit)∥∥∥χ(| · |<λr−1
)
λ2(·)4Φ̂λ(·)

∥∥∥2

L2,−1(R)

=λ4

∫ ∞
−∞

κ8

1+κ2
χ
(
|κ|<λr−1

)∣∣∣Φ̂λ(κ)
∣∣∣2dκ

=λ4

∫ ∞
−∞

κ8

(1+κ2)2
χ
(
|κ|<λr−1

)
(1+κ2)

∣∣∣Φ̂λ(κ)
∣∣∣2dκ

.λ4 sup
|κ|<λr−1

∣∣∣∣ κ8

(1+κ2)2

∣∣∣∣∥∥∥Φ̂λ

∥∥∥2

L2,1
.λ4r

∥∥∥Φ̂λ

∥∥∥2

L2,1
.

Therefore, ∥∥∥χ(|κ|<λr−1
)
R0

[
ψ̃near;λ

]
(λκ,k′)

∥∥∥
L2,−1

≡
∥∥∥∥χ(|κ|<λr−1

) 1

4!
∂4
kEb∗(k

′)λ2κ4Φ̃λ(κ)

∥∥∥∥
L2,−1

.λ2r sup
|k′|<λr

|∂4
kEb∗(k

′)|
∥∥∥Φ̂λ

∥∥∥
L2,1

. (6.36)

(III) Estimation of χ
(
|κ|<λr−1

)
R1

[
ψ̃near;λ

]
(λκ), given in (6.22): Recall

R1

[
ψ̃near;λ

]
(k) = 〈pb∗(·;0),T {V E1}(·,k)〉L2([0,1])

+〈pb∗(·;k)−pb∗(·;0),T {V ψnear}(·,k)〉L2([0,1]) , (6.37)

where E1≡T −1
{
ψ̃near(k)

(
pb∗(x;k)−pb∗(x;0)

)}
.

Let us first obtain an estimate on E1. Using Taylor expansion of pb∗(x;·) around 0,
one has

|E1(x)|=

∣∣∣∣∣
∫ 1/2

−1/2

e2πikxψ̃near(k)
(
pb∗(x;k)−pb∗(x;0)

)
dk

∣∣∣∣∣
≤ sup
x∈R,|k′|<λr

|∂kpb∗(x;k′)|
∫ ∞
−∞
|kχ(|k|<λr)ψ̃near(k)|dk
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≤λ sup
|k′|<λr

‖∂kpb∗(·;k′)‖L∞
∫ ∞
−∞
|κχ
(
|κ|<λr−1

)
Φ̂λ(κ)| dκ

≤λ sup
|k′|<λr

‖∂kpb∗(·;k′)‖L∞
(∫
|κ|<λr−1

κ2

1+κ2
dκ

)1/2∥∥∥Φ̂λ

∥∥∥
L2,1

≤2λ
1+r
2 sup
|k′|<λr

‖∂kpb∗(·;k′)‖L∞
∥∥∥Φ̂λ

∥∥∥
L2,1

,

so that we deduce∥∥E1∥∥L∞ ≤ 2λ
1+r
2 sup
|k′|<λr

‖∂kpb∗(x;k′)‖L∞
∥∥∥Φ̂λ

∥∥∥
L2,1

. (6.38)

Estimation of the first term of (6.37) is as follows. One has∥∥∥χ(|κ|<λr−1
)
〈pb∗(·;0),T {V E1}(·,λκ)〉L2([0,1])

∥∥∥2

L2,−1
κ

=

∫ ∞
−∞

χ
(
|κ|<λr−1

)
1+κ2

∣∣∣〈pb∗(·;0),T {V E1}(·,λκ)〉L2([0,1])

∣∣∣2dκ.
Turning to the integrand of the above expression, we rewrite the inner product

〈pb∗(·;0),T {V E1}(·,λκ)〉L2([0,1]) =

∫ 1

0

T {pb∗(·;0)E1(·)V (·)}(x;λκ)

=

∫ 1

0

∑
n∈Z

e2πinxF {pb∗(·;0)E1(·)V (·)}(λκ+n)dx

=F {pb∗(·;0)E1(·)V (·)}(λκ),

where we used that pb∗(x;0) is 1−periodic, so that it commutes with T , and the Poisson
summation formula. It follows that∣∣∣〈pb∗(·;0),T {V E1}(·,λκ)〉L2([0,1])

∣∣∣≤∥∥pb∗(·;0)E1(·)V (·)
∥∥
L1

≤
∥∥E1∥∥L∞ ∫ |pb∗(x;0)||V (x)|dx.

Using (6.38), one deduces∥∥∥χ(|κ|<λr−1
)
〈pb∗(·;0),T {V E1}(·,λκ)〉L2([0,1])

∥∥∥
L2,−1
κ

≤Cλ
1+r
2

∥∥∥Φ̂λ

∥∥∥
L2,1

, (6.39)

with C=C(sup|k|<λr ‖∂kpb∗(·;k)‖L∞ ,
∫
|pb∗(x;0)||V (x)|dx).

The last term in (6.37) is estimated as follows. Note that∣∣∣〈pb∗(·;λκ)−pb∗(·;0),T {V ψnear}(·,λκ)〉L2([0,1])

∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
pb∗(x;λκ)−pb∗(x;0)

)∑
n∈Z

e2πinxF{V ψnear}(λκ+n)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
pb∗(x;λκ)−pb∗(x;0)

)∑
n∈Z

(V ψnear)(x+n)e−2πi(λκ+n)xdx

∣∣∣∣∣
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≤
∫ ∞
−∞

∣∣(pb∗(x;λκ)−pb∗(x;0)
)
V (x)ψnear(x)

∣∣ dx
≤λκ sup

|k′|<λr
‖∂kpb∗(·;k′)‖L∞‖ψnear‖L∞‖V ‖L1 ,

where we used the Poisson summation formula along with the periodicity of pb∗(x;λκ)−
pb∗(x;0) and its Taylor expansion as |λκ|<λr. Now, note that

‖ψnear‖L∞ =‖T −1
{
ψ̃near(k)pb∗(x;k)

}
‖L∞

≤ sup
|k|<λr

‖pb∗(·;k)‖L∞
∫ λr

−λr
|ψ̃near(l)| dl

and ∫ ∞
−∞
|ψ̃near(l)|dl=

∫ ∞
−∞
|Φ̂λ(η)|dη

=

∫ ∞
−∞

1

(1+η2)1/2
(1+η2)1/2|Φ̂λ(η)|dη≤C

∥∥∥Φ̂λ

∥∥∥
L2,1

.

It follows∥∥∥χ(|κ|<λr−1
)
〈pb∗(·;λκ)−pb∗(·;0),T {V ψnear}(·,λκ)〉L2([0,1])

∥∥∥
L2,−1
κ

≤Cλ
∥∥∥Φ̂λ

∥∥∥
L2,1

(∫
κ2χ

(
|κ|<λr−1

)
1+κ2

)1/2

.λ
1+r
2

∥∥∥Φ̂λ

∥∥∥
L2,1

, (6.40)

with C=C
(

sup|k|<λr ‖pb∗(·;k)‖L∞ ,sup|k′|<λr ‖∂kpb∗(·;k′)‖L∞ , ‖V ‖L1

)
.

Estimates (6.39) and (6.40) yield∥∥∥χ(|κ|<λr−1
)
R1[ψ̃near](λκ)

∥∥∥
L2,−1

≤C
∥∥∥Φ̂λ

∥∥∥
L2,1

λ
1+r
2 , (6.41)

with C=C
(

sup|k|<λr ‖pb∗(·;k)‖L∞ ,sup|k|<λr ‖∂kpb∗(·;k)‖L∞ , ‖V ‖L1

)
.

(IV ) Estimation of χ
(
|κ|<λr−1

)
R2[ψ̃near](λκ), given in (6.27): Recall

R2

[
ψ̃near

]
(k) =

∫ ∞
−∞

dx|pb∗(x;0)|2V (x)

∫ ∞
−∞

(
e2iπ(l−k)x−1

)
ψ̃near(l)dl.

We now use that
∣∣e2iπ(l−k)x−1

∣∣≤2π|l−k||x|. It follows∣∣∣R2

[
ψ̃near

]
(λκ)

∣∣∣≤2πλ

∫ ∞
−∞

dx|pb∗(x;0)|2|x V (x)|
∫ ∞
−∞
|κ−η||Φ̂λ(η)|dη.

We therefore define

I(κ) =−χ
(
|κ|<λr−1

)∫ ∞
−∞
|κ−η|χ

(
|η|<λr−1

)
|Φ̂λ(η)|dη. (6.42)

The integral, I(κ), is bounded in L2,−1(R) as follows:

‖I‖2L2,−1 ≤
∫ ∞
−∞

χ
(
|κ|<λr−1

)
1+κ2

∫
|η|<λr−1

|κ−η|2

1+η2
dηdκ

∥∥∥Φ̂λ

∥∥∥2

L2,1
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=
∥∥∥Φ̂λ

∥∥∥2

L2,1

∫
κ

∫
η

|κ−η|2

(1+κ2)(1+η2)
χ
(
|κ|<λr−1

)
χ
(
|η|<λr−1

)
dκdη.

One easily checks that∫
κ

∫
η

|κ−η|2

(1+κ2)(1+η2)
χ
(
|κ|<λr−1

)
χ
(
|η|<λr−1

)
dκdη.λr−1,

so that one obtains eventually∥∥∥χ(|κ|<λr−1
)
R2[ψ̃near](λκ)

∥∥∥
L2,−1

≤C
∥∥∥Φ̂λ

∥∥∥
L2,1

λ
r+1
2 , (6.43)

with C=C
(

sup|k|<λr ‖pb∗(·;k)‖L∞ ,
∥∥xV (x)

∥∥
L1
x

)
.

Altogether, (6.35), (6.36), (6.41), and (6.43) yield the estimate of Proposition 6.6.

6.5. Completion of the proof of Theorem 3.4. We now prove Theorem 3.4
by an application of Lemma 4.4 to equation (6.31), where the remainder is estimated
in Proposition 6.6.

Proof. (Proof of Theorem 3.4.) We seek Eλ≡Eb∗(0)−λ2θ2 and ψλ of the form

ψλ=ψnear +ψfar =T −1
{
ψ̃near(k)pb∗(x;k)

}
+T −1

{ ∞∑
b=0

ψ̃far,b(k)pb(x;k)

}

=

∫ 1/2

−1/2

(
ψ̃near(k)ub∗(x;k)+

∞∑
b=0

ψ̃far,b(k)ub(x;k)

)
dk,

where ψ̃near, ψ̃far satisfy equations (6.9)–(6.10); see Section 6.1.
By application of Proposition 6.1, one has that ψfar is uniquely defined as a func-

tion of ψnear and λ, and that
∥∥ψfar[ψnear;λ]

∥∥
H2 ≤λ1−2r

∥∥ψnear

∥∥
L2 . Then, defining Φ̂λ as

in (6.30), one has

ψ̃near(k) =
1

λ
Φ̂λ

(
k

λ

)
=

1

λ
Φ̂λ (κ) , k=λκ. (6.44)

By Proposition 6.6, the rescaled (from (6.9)) near-frequency equation (6.31) can be
written as(

1

2
∂2
kEb∗(0)κ2 +θ2

)
χ
λr−1 (κ)Φ̂λ(κ)+χ

λr−1 (κ)

(∫
R
|pb∗(·;0)|2V

)∫
R
χ
λr−1 (η)Φ̂λ(η)dη

=−χ
(
|κ|<λr−1)R(Φ̂λ

)
(κ), (6.45)

with
∥∥R(Φ̂λ)∥∥L2,−1 ≤Cλα(r)

∥∥Φ̂λ
∥∥
L2,1 , and α(r) = max( 1

2−2r,2r, r+1
2 ).

From now on, we set r= 1/8, α= 1/4, which yield optimal estimates. Applying
Lemma 4.4 with β= 1−r= 7/8,

A=
1

8π2
∂2
kEb∗(0), and B=−

∫ ∞
−∞
|ub∗(x;0)|2V (x)dx

(
assumed to be positive

)
,

(6.46)
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we deduce that there exists a solution
(
θ2,Φ̂λ

)
of the rescaled near-frequency equa-

tion (6.45), satisfying

‖Φ̂λ− f̂0‖L2,1 ≤Cλ 1
4 and |θ2−θ2

0|≤Cλ
1
4 . (6.47)

Here
(
θ2

0, f̂0

)
is a solution of the homogeneous equation

L̂0,λ

(
θ0, f̂0

)
= (4π2Aξ2 +θ2)f̂0−Bχ

(
|ξ|<λ− 7

8

)∫ ∞
−∞

χ
(
|η|<λ− 7

8

)
f̂0(η)dη= 0,

as described in Lemma 4.1. Thus ψ̃near(ξ) = 1
λ Φ̂λ

(
ξ
λ

)
and Eλ=Eb∗(0)−λ2θ2(λ) are

well-defined (and satisfy the ansatz of Lemma 6.3), and ψ̃far is uniquely determined as
the solution of (6.10); see Lemma 6.1. It follows that

ψλ(x)≡ψfar +ψnear≡ψfar +

∫ 1/2

−1/2

ψ̃near(k)ub∗(x;k)dk (6.48)

is well-defined.
There remains to prove estimates (3.10) and (3.11). Recalling that Eλ=

Eb∗(0)−λ2θ2, (6.47) implies
∣∣Eλ−(Eb∗(0)−λ2θ2

0)
∣∣≤Cλ2+1/4. By Lemma 4.1, one has∣∣∣θ0(λ)− B

2
√
A

∣∣∣≤C(A,B)λ
7
8 , so that one can set

E2≡−
B2

4A
=−

∣∣∣∫∞−∞ |ub∗(x;k∗)|2V (x)dx
∣∣∣2

1
2π2 ∂2

kEb∗(k∗)
;

and estimate (3.10) follows.
We now turn to a proof of the eigenfunction approximation (3.11). Recall

ψnear(x)≡
∫ 1/2

−1/2

ψ̃near(k)ub∗(x;k) =

∫ 1/2

−1/2

1

λ
Φ̂λ

(
k

λ

)
e2πikxpb∗(x;k)dk

=

∫ 1/2λ

−1/2λ

χ
(
|ξ|<λ− 7

8

)
Φ̂λ (ξ)e2πiλξxpb∗(x;λξ)dξ

=

∫
R
χ
(
|ξ|<λ− 7

8

)
Φ̂λ (ξ)e2πiλξxpb∗(x;0)dξ

+

∫
R
χ
(
|ξ|<λ− 7

8

)
Φ̂λ (ξ)e2πiλξx(λξ)∂kpb∗(x;k′)dξ

=ub∗(x;0)

∫
R
χ
(
|ξ|<λ− 7

8

)
f̂0(ξ)e2πiλξxdξ

+ub∗(x;0)

∫
R
χ
(
|ξ|<λ− 7

8

)(
Φ̂λ− f̂0

)
(ξ)e2πiλξxdξ

+

∫
R
χ
(
|ξ|<λ− 7

8

)
Φ̂λ (ξ)e2πiλξx(λξ)∂kpb∗(x;k′)dξ

= I1(x)+I2(x)+I3(x),

with |k′|= |k′(λξ)|<λ 1
8 . Now, since χ

(
|ξ|<λ− 7

8

)
f̂0(ξ) = f̂0(ξ), one has

I1(x)≡ub∗(x;0)F−1
{
f̂0

}
(λx).
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By (4.8) in Lemma 4.1, one has

sup
x∈R

∣∣∣∣ I1(x)− 1

B
ub∗(x;0)exp

(
−λB

2A
|x|
)∣∣∣∣

=sup
x∈R

∣∣∣∣ub∗(x;0)

{
F−1

{
f̂0

}
(λx)− 1

B
exp

(
−λB

2A
|x|
)}∣∣∣∣≤C‖pb∗(·;0)‖L∞λ7/8, (6.49)

and ‖pb∗(·;0)‖L∞ is bounded; see Lemma 2.5.
Let us now estimate I2(x) and I3(x). One has

|I2(x)|≡
∣∣∣∣ub∗(x;0)

∫
R
χ
(
|ξ|<λ− 7

8

)(
Φ̂λ− f̂0

)
(ξ)e2πiλξxdξ

∣∣∣∣
≤|pb∗(x;0)|

∫
R

χ
(
|ξ|<λ− 7

8

)
(1+ |ξ|2)1/2

(1+ |ξ|2)1/2
∣∣∣Φ̂λ(ξ)− f̂0(ξ)

∣∣∣ dξ
≤C‖pb∗(·;0)‖L∞

∥∥∥Φ̂λ− f̂0

∥∥∥
L2,1
≤C(A,B)‖pb∗(·;0)‖L∞λ1/4, (6.50)

where the last inequality comes from (6.47). Similarly,

|I3(x)|≡
∣∣∣∣∫

R
χ
(
|ξ|<λ− 7

8

)
Φ̂λ (ξ)e2πiλξx(λξ)∂kpb∗(x;k′)dξ

∣∣∣∣
≤λ sup
|k′|<λ1−7/8

‖∂kpb∗(·;k′)‖L∞
∫
R
χ
(
|ξ|<λ− 7

8

)
|ξ|
∣∣∣Φ̂λ(ξ)

∣∣∣dξ
≤C sup

|k′|<λ1/8

‖∂kpb∗(·;k′)‖L∞
∥∥∥Φ̂λ

∥∥∥
L2,1

λ. (6.51)

By (6.49), (6.50), and (6.51), one has

ψnear = I1(x)+I2(x)+I3(x) =
2

B
ub∗(x;0)exp

(
−λB
2A
|x|
)

+ψrem(x),

with ‖ψrem‖L∞ .λ1/4.
Finally, let us note that by Sobolev embeddings, one has

‖ψfar‖L∞ ≤‖ψfar‖H2 ≤Cλ1−1/4‖ψnear‖L2 =Cλ1/2−1/4‖Φ̂λ‖L2 ≤Cλ1/4,

where we use Proposition 6.1 with r= 1/8, and (6.34).
It follows that ψλ=ψnear +ψfar satisfies

sup
x∈R

∣∣∣∣ ψλ(x)− 1

B
ub∗(x;0)exp(λα0|x|)

∣∣∣∣≤Cλ1/4, with α0 =− B

2A
.

Since ψλ is defined up to a multiplicative constant, (3.11) holds. This completes the
proof of Theorem 3.4.

Appendix A. General properties of Eb(k) and derivatives ∂jkEb(k∗), where
Eb(k∗) is the endpoint of a spectral band. To make our discussion more self-
contained, we prove Lemma 2.2, which concerns the spectrum of the eigenvalue problem,
for E fixed, (

−∂2
x+Q(x)

)
ψ(x;E) =Eψ(x;E), Q(x+1) =Q(x), (A.1)
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with solutions which satisfy

ψ(x+1;E) =ρψ(x;E) ρ∈C.

Let φ1(x;E) and φ2(x;E) be two linearly independent solutions of (A.1) such that

φ1(0;E) = 1, φ2(0;E) = 0,

φ′1(0;E) = 0, φ′2(0;E) = 1.

The functions φ1(x+1;E) and φ2(x+1;E) are two other linearly independent solutions
to (A.1), so that we can write

φ1(x+1;E) =A11φ1(x;E)+A12φ2(x;E), (A.2)

φ2(x+1;E) =A21φ1(x;E)+A22φ2(x;E). (A.3)

Note that the matrix (Aij) is nonsingular. In general, every solution of (A.1) has the
form

ψ(x;E) = c1φ1(x;E)+c2φ2(x;E). (A.4)

As we are specifically interested in solutions which satisfy ψ(x+1;E) =ρψ(x;E), one
has the following identity

ψ(x+1;E) =ρψ(x;E)⇔c1(φ1(x+1;E)−ρφ1(x;E))+c2(φ2(x+1;E)−ρφ2(x;E)) =0

⇔(c1 (A11−ρ)+c2A21)φ1(x;E)+(c1A12 +c2 (A22−ρ))φ2(x;E) =0

⇒

{
c1 (A11−ρ)+c2A21 = 0,

c1A12 +c2 (A22−ρ) =0.
(A.5)

The solvability condition (A.5) is satisfied for nontrivial c1 and c2 if

det(A−ρI) = 0, i.e. ρ2−(A11 +A22)ρ+det(A) = 0. (A.6)

Using that the Wronskian, W [φ1,φ2](x;E)≡φ1(x;E)φ′2(x;E)−φ′1(x;E)φ2(x;E), is con-
stant with respect to x, one has

det(A) =W [φ1,φ2](1;E) =W [φ1,φ2](0;E) = 1.

Therefore ρ must satisfy ρ2−D(E)ρ+1 = 0, where we define the discriminant

D(E)≡A11 +A22 =φ1(1;E)+φ′2(1;E). (A.7)

We note that the two solutions of the equation ρ2−D(E)ρ+1 = 0 satisfy |ρ|≤1 if
and only if the discriminant |D(E)|≤2. In that case, one can write ρ=e±2πik, with
k∈ (−1/2,1/2], and

D(E) = 2cos(2πk). (A.8)

As |ρ|= 1, ψ(x;E) is a bounded solution to (A.1), and E=Eb(k) is in the continuous

spectrum of HQ≡− d2

dx2 +Q. More precisely, for E=Eb(k), one has

ψ(x;Eb(k)) =ub(x;k) =e2πikxpb(x;k), pb(x+1;k) =pb(x;k),

where {Eb(k),pb(x;k)}b≥0 is the eigenpair solution to (2.2), as defined in Section 2.
Let us now rewrite Lemma 2.2 which states some of the properties associated with

the stability bands.

Lemma A.1 (Lemma 2.2). Assume Eb(k∗) is an endpoint of a spectral band of −∂2
x+

Q(x), which borders on a spectral gap; see (2.3). Then k∗∈{0,1/2}, and the following
results hold:
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1. Eb(k∗) is a simple eigenvalue of the eigenvalue problem (2.1).

2. b even: Eb(0) corresponds to the left (lowermost) end point of the band,

Eb(1/2) corresponds to the right (uppermost) end point.

b odd: Eb(0) corresponds to the right (uppermost) end point of the band,

Eb(1/2) corresponds to the left (lowermost) end point.

3. ∂kEb(k∗) = 0, ∂3
kEb(k∗) = 0;

4. b even: ∂2
kEb(0)>0, ∂2

kEb(1/2)<0;

b odd: ∂2
kEb(0)<0, ∂2

kEb(1/2)>0;

The proof of Lemma A.1 is a consequence of the following result, concerning the
problem (A.1), and which is proved in the first two chapters of [20] and part I of [32].

Fig. A.1. Sketch of the discriminant, D(E), and stability bands Bb= [Gb,Fb].

Theorem A.2. Consider the equation (A.1), and define D(E) with (A.7). Denote the
edges of the stability bands as

G0<F0≤F1<G1≤G2<F2≤F3<G3 .. .

Then the following facts hold (see Figure A.1 for an illustration):

I In the interval [G2m,F2m], D(E) decreases from 2 to −2.

I′ In the interval (G2m,F2m), D′(E)<0.

II In the interval [F2m+1,G2m+1], D(E) increases from −2 to 2.

II′ In the interval (F2m+1,G2m+1), D′(E)>0.

III In (−∞,G0) and (G2m+1,G2m+2), D(E)>2.

IV In (F2m,F2m+1), D(F )<−2.

V D(E) =±2 and D′(E) = 0 if and only if E is a double eigenvalue. Furthermore,
D′′(E)<0 if D(E) = 2 and D′′(E)>0 if D(E) =−2.

Proof. (Proof of Lemma A.1.) Let us recall that one has from (A.8) that the
discriminant satisfies D(Eb(k)) = 2cos(2πk). It follows that as k increases continuously
from 0 to 1/2, D(E) decreases continuously from 2 to -2. Therefore by I and II, E2m(k)
increases continuously from G2m to F2m as k increases continuously from 0 to 1/2, and
as k decreases continuously from 0 to −1/2. Similarly, E2m+1(k) decreases continuously
from G2m+1 to F2m+1 as k increases continuously from 0 to 1/2, and as k decreases
continuously from 0 to −1/2. This proves claim 2 .
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We now turn to part 1 . Let Eb(k∗) correspond to a band edge, that is if there
exists a gap between the bth band and the closest consecutive one. Without loss of
generality, we assume Eb(k∗) to be the lowermost edge of an even band, for example
G2m in Figure A.1. Therefore, for any δ>0 sufficiently small,

D(Eb(k∗)−δ)>2 and D(Eb(k∗)+δ)<2. (A.9)

Assume for the sake of contradiction that Eb(k∗) is a double eigenvalue, which means, by
part V of Theorem A.2, that D′(Eb(k∗)) = 0 and D′′(Eb(k∗))<0. Now, Taylor expand
the discriminant about Eb(k∗),

D(E) =D(Eb(k∗))+D′(Eb(k∗))(E−Eb(k∗))

+
1

2
D′′(Eb(k∗))(E−Eb(k∗))2 +O

(
(E−Eb(k∗))3

)
=−2+

1

2
D′′(Eb(k∗))(E−Eb(k∗))2 +O

(
(E−Eb(k∗))3

)
.

Since D′′(Eb(k∗))<0, we have D(Eb(k∗)−δ)≈2+(1/2)D′′(Eb(k∗))δ
2<2, which is a

contradiction of (A.9). Therefore part 1 is proven and we have that at the band edges,
Eb(k∗), the derivative of the discriminant is nonzero,

dD

dE
(Eb(k∗)) 6= 0. (A.10)

To see the first identity in part 3 , note that differentiating D(Eb(k)) = 2cos(2πk)
with respect to k yields −4π sin(2πk) = dD

dE (Eb(k))× dEb
dk (k). Using (A.10), we conclude

that dEb
dk (k) = 0 if and only if k= 0 or k= 1/2.

To prove part 4 , we differentiate D(Eb(k)) twice with respect to k and evaluate at
k∗:

−8π2 cos(2πk∗) =
d2

dk2
(D◦Eb)(k∗) =D′′(Eb(k∗))

(
dEb
dk

)2

(k∗)+D′(Eb(k∗))
d2Eb
dk2

(k∗).

Therefore, by I′, II′, and (A.10) we conclude 4 .
Similarly, to show the second identity of part 3 , we differentiate once more D(Eb(k))

with respect to k:

16π3 sin(2πk) =D′(Eb(k))
d3Eb
dk3

(k)+3D′′(Eb(k))
d2Eb
dk2

d Eb
dk

(k)+D′′′(Eb(k))

(
dEb
dk

)3

(k).

Evaluated at k∗, we have 0 =D′(Eb(k))d
3Eb
dk3 (k), which concludes the proof of

Lemma A.1 once we again note (A.10).

Appendix B. Regularity of k 7→Eb(k) and k 7→ub(x;k). In this section we
give a self-contained discussion of the regularity with respect to k of the Floquet-Bloch
eigenvalues and eigenstates.

Consider the k− pseudo-periodic eigenvalue problem for each k∈ (−1/2,1/2]:(
−∂2

x+Q(x)
)
u(x;k) =Eu(x;k), u(x+1;k) =e2πiku(x;k). (B.1)

Introducing the Floquet-Bloch phase explicitly via u(x;k) =e2πikx p(x;k), we obtain the
equivalent formulation

HQ(k)p(x;k) =
(
−(∂x+2πik)2 +Q(x)

)
p(x;k) =Ep(x;k), p(x+1;k) =p(x;k). (B.2)
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For each k∈ (−1/2,1/2], the eigenvalue problem (B.2) (equivalently (B.1)) has a discrete
sequence of eigenvalues E0(k)≤E1(k)≤E2(k)≤···≤En(k)≤··· .

It can be proved, using the min-max characterization of eigenvalues of a self-adjoint
operator, that the maps k 7→Eb(k), b= 0,1,. .., are locally Lipschitz continuous. A proof
based on standard perturbation follows from results in [36]. An elementary proof is given
in Appendix A of [21].

In the present paper, we require a Taylor expansion of the Eb(k) near k=k∗, for
which Eb(k∗) is the endpoint of a spectral band, which borders on a spectral gap. By
part 5 of Lemma A.1, the eigenvalue Eb(k∗) is simple. We prove the following:

Theorem B.1. Suppose E∗ is the endpoint of a spectral band of −∂2
x+Q(x), which

borders on a gap. Thus, E∗=Eb(k∗) for k∗∈{0,1/2} and the corresponding eigenspace
of solutions to (B.2) has dimension equal to 1. We denote the normalized eigenfunction
by p(x;k∗); ∫ 1

0

|p(y;k∗)|2dy= 1.

Then, there exists ρ>0 such that for all complex k in a complex disc centered at k∗,
Bρ(k∗) ={k∈C : |k−k∗|<ρ}, the following holds:

1. k 7→Eb(k) is analytic on Bρ.

2. There is a map k 7→pb(x;k), such that any eigenvector corresponding to Eb(k)
is a multiple of pb(x;k), where HQ(k)pb(x;k) =Eb(k)pb(x;k).

3. Moreover, we can choose k 7→pb(x;k), k∈Bρ, to be analytic and such that∫ 1

0

|pb(x;k)|2dx= 1.

Proof. Let k=k∗+κ, where κ will be chosen to be sufficiently small. The periodic
eigenvalue problem (B.2) may be rewritten as

HQ(k∗)p(x;k∗+κ)−
(
4πiκ(∂x+2πik∗)−4π2κ2

)
p(x;k∗+κ) =E p(x;k∗+κ), (B.3)

p(x+1;k∗+κ) =p(x;k∗+κ), x∈R. (B.4)

We seek an eigen-solution of (B.3)-(B.4) in the form

p(x;k∗+κ) =p(x;k∗)+η(x;κ), (B.5)

E(k∗+κ) =E∗+µ(κ), (B.6)

where we assume that η(·;κ)⊥p(·;κ). Substitution into (B.3)-(B.4) yields the following
equation for η(x;µ,κ):

(HQ(k∗)−E∗)η−
(
4πiκ(∂x+2πik?)−4π2κ2 +µ

)
η

=
(
4πiκ(∂x+2πik?)−4π2κ2 +µ

)
p(·;k∗). (B.7)

Now, introduce the projection operators

Πf = 〈p(·;k∗),f〉p(x;k∗), and Π⊥= I−Π.

Applying Π⊥ to (B.7) yields

(HQ(k∗)−E∗)η−Π⊥
(
4πiκ(∂x+2πik?)−4π2κ2 +µ

)
η
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=4πiκΠ⊥∂xp(·;k∗) = 4πiκ∂xp(·;k∗). (B.8)

Next, applying Π to (B.7), i.e. taking the inner product of (B.7) with p(·;k∗), yields

µ−8π2k∗κ−4π2κ2 +4πiκ〈p(·;k∗),∂xη(·;µ,κ)〉= 0. (B.9)

We shall now solve (B.7) for η, substitute the result into (B.9), and obtain a closed
equation for the eigenvalue correction µ=µ(κ). Let

µ=κµ1, η= κη1. (B.10)

Equations (B.8) and (B.9) become

(HQ(k∗)−E∗)η1−κΠ⊥
(
4πi(∂x+2πik?)−4π2κ+µ1

)
η1 = 4πiΠ⊥∂xp(·;k∗), (B.11)

µ1−8π2k∗−4π2κ+4πiκ〈p(·;k∗),∂xη1(·)〉= 0. (B.12)

Let R(E∗)Π⊥= (HQ(k∗)−E∗)−1Π⊥. Then,

η1(x;µ1,κ) = 4πi
(
I−κR(E∗)Π⊥

(
4πi(∂x+2πik?)−4π2κ+µ1

))−1

R(E∗)Π⊥∂xp(·;k∗),
(B.13)

where we take |κ|<ρ, with ρ chosen so that the Neumann series for the operator on the
right hand side of (B.13) converges. Note that the mapping

(µ1,κ) 7→η1(x;µ1,κ)

is an analytic map from {(µ1,κ) : |µ1|<1, |κ|<ρ′} to H2
per(R).

Substitution of (B.13) into (B.12) gives the scalar equation

G(µ1,κ) = 0, (B.14)

where

G(µ1,κ) =µ1−8π2k∗−4π2κ+4πiκ〈p(·;k∗),∂xη1(·;µ1,κ)〉. (B.15)

We now claim that (B.14) can be solved for µ1 =µ1(κ), which is defined and analytic
for |κ|<ρ′, where 0<ρ′≤ρ. If this claim is valid, then η1(x;µ1(κ),κ) is well-defined
and analytic in κ for |κ|<ρ′, and finally

p(x;k∗+κ) =p(x;k∗)+κη1(x;µ1(κ),κ) (B.16)

E(k∗+κ) =E∗+κµ1(κ) (B.17)

are defined and analytic Floquet-Bloch eigensolutions for |κ|<ρ′.
Now (B.14) is easily solved for µ1 =µ1(κ) via the Implicit Function Theorem. In-

deed, we have G(8π2k∗,0) = 0 and ∂µ1G(µ1,κ)|(8π2k∗,0) = 1 6= 0. This completes the proof

of Theorem B.1.

Appendix C. The bootstrap: proof of Corollary 3.6. We give the proof of
Corollary 3.6, on the refined expansion of the bifurcation of eigenvalues of HQ+λV =
−∂2

x+Q(x)+λV (x), forQ(x) periodic. Corollary 3.3, in the case ofQ(x)≡0, is obtained
along the same lines, using p(x;k) = 1, E(k)≡4π2k2 for k∈R, etc.

Proof. (Proof of Corollary 3.6.) We know, by Theorem 3.4, that there exists
(ψλ,Eλ), a solution of the eigenvalue problem (HQ+λV )ψλ=Eλψλ. Moreover, Eλ
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is in the gap of the continuous spectrum of spec(HQ) = spec(HQ+λV ), near an edge
E∗=Eb∗(k∗). In the following, we assume that k∗= 0 (the case where k∗= 1/2 can be
treated using the same method).

We next seek an integral equation for ψλ by applying the resolvent RQ(Eλ) to the
differential equation for ψλ. A construction of the resolvent kernel, RQ(x,y;Eλ), pro-
ceeds as follows. Recall the discriminant, D(E), introduced in Appendix A as the trace
of the monodromy matrix defined by the linearly independent solutions φj(x;E), j= 1,2:
D(E) =φ1(1;E)+φ′2(1;E).

Since E∗ is a band edge and Eλ is in a gap, we have D(E∗) = 2 and D(Eλ)>2.
Therefore, there exists κ=κ(λ)>0 with

Eλ=E(iλκ) =E(−iλκ), D(Eλ) =e2πλκ+e−2πλκ>2.

Additionally, we define ψ±≡ψ±(x;Eλ), the solutions of(
−∂2

x+Q(x)
)
ψ±=Eλψ±, ψ±(x+1;Eλ) =e±2πλκψ±(x;Eλ).

More precisely, ψ± are defined as

ψ±(x)≡pb∗(x;∓iκ)e±2πλκx, with (C.1)(
−(∂x−2πλκ)2 +Q(x)

)
pb∗(x;iκ) =Eλpb∗(x;iκ), pb∗(x+1;iκ) =pb∗(x;iκ), (C.2)

which is well-defined for λ small enough, by Theorem B.1.
With those definitions, the resolvent operator RQ(Eλ) = (−∂2

x+Q−Eλ)−1 has ker-
nel

RQ(x,y;Eλ) =


ψ+(x)ψ−(y)

W [ψ±]
if y>x,

ψ+(y)ψ−(x)

W [ψ±]
if y<x,

where W [ψ±]≡ψ′+(x)ψ−(x)−ψ+(x)ψ′−(x). Thus, for any bounded function f and

RQ[f ](x;Eλ) =

∫ ∞
−∞

RQ(x,y;Eλ)f(y)dy,

we have (−∂2
x+Q−Eλ)RQ[f ](x;Eλ) =f . It follows that ψλ satisfies the integral equa-

tion

ψλ(x)+λ

∫
R
RQ(x,y;Eλ)V (y)ψλ(y) dy= 0.

Multiplying by ub∗(x;0)V (x) and integrating along x yields∫
R
V (x)ub∗(x;0)ψλ(x)dx+λ

∫∫
R2

ub∗(x;0)V (x)RQ(x,y;Eλ)V (y)ψλ(y) dx dy= 0. (C.3)

We will deduce from (C.3) the precise behavior of κ (and therefore Eλ−Eb∗(0)) as λ
tends to zero, using the following

Lemma C.1. Let E∗=Eb∗(0) be an edge of the continuous spectrum, and let the
hypotheses of Theorem 3.4 be satisfied, so that Eλ exists. Define RQ(x,y;Eλ) as above.
Then for λ>0 small enough, one has

RQ(x,y;Eλ) =
ub∗(x;0)ub∗(y;0)

2λκ
∂2
kE(0)

4π

e−2πλκ|x−y|+R
(0)
Q (x,y)+λκR

(1)
Q (x,y), (C.4)
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where R
(0)
Q is skew-symmetric: R

(0)
Q (x,y) =−R(0)

Q (y,x); and R
(0)
Q ,R

(1)
Q are bounded:

|R(0)
Q (x,y)|+ |R(1)

Q (x,y)|≤Ce−2πλκ|x−y|≤C,

where C is a constant, uniform with respect to λκ.

In order to ease the reading, we postpone the proof of this result to the end of this
section, and carry on with the proof of Corollary 3.6. By Lemma C.1, and since ub∗(x;0)
is uniformly bounded (see Lemma 2.5), one has the low-order estimate∣∣∣∣RQ(x,y;Eλ)− 4π

∂2
kE(0)

ub∗(x;0)ub∗(y;0)

2λκ

∣∣∣∣≤C(1+ |x−y|+λκ), (C.5)

where we used
∣∣e−λκ|x−y|−1

∣∣≤Cλκ|x−y|.
Plugging (C.5) into (C.3) and using (1+ |x|)V ∈L1, yields∣∣∣∫
R
V (x)ub∗(x;0)ψλ(x)dx+

2π

κ∂2
kE(0)

∫∫
R2

ub∗(x;0)2V (x)ub∗(y;0)V (y)ψλ(y) dx dy
∣∣∣

≤Cλ(1+λκ). (C.6)

Now we use the fact that, by Theorem 3.4, one has∥∥ψλ(x)−ub∗(x;0)exp
(
λα0|x|

)∥∥
L∞

.λ1/4, so that lim
λ→0

∫
V (x)ub∗(x;0)ψλ(x)dx=∫

V (x)ub∗(x;0)2 6= 0. It follows that, for λ sufficiently small, one can divide out∫
V (x)ub∗(x;0)ψλ(x)dx, and deduce from (C.6)∣∣∣κ+

2π

∂2
kE(0)

∫
R
ub∗(x;0)2V (x) dx

∣∣∣≤Cλκ(1+λκ),

from which it follows the low-order estimate of κ:∣∣∣κ+
2π

∂2
kE(0)

∫
R
ub∗(x;0)2V (x) dx

∣∣∣≤Cλ. (C.7)

Let us now derive higher order estimates. For any x,y∈R2,∣∣∣e−2πλκ|x−y|−1+2πλκ|x−y|
∣∣∣≤4π2λ2κ2|x−y|2,

so that one has from Lemma C.1,∣∣∣∣RQ(x,y;Eλ)− 2π

∂2
kE(0)

ub∗(x;0)ub∗(y;0)(1−2πλκ|x−y|)
λκ

−R(0)
Q (x,y)

∣∣∣∣
≤Cλ(1+ |x|2 + |y|2). (C.8)

Plugging (C.8) into (C.3), and using (1+ |x|)V ∈L1, yields∣∣∣∫ ub∗(x;0)V (x)ψλ(x)dx

+
2π

∂2
kE(0)

1

κ

∫∫
V (x)ub∗(x;0)2(1−2πλκ|x−y|)ub∗(y;0)V (y)ψλ(y) dx dy

+
λ

2

∫∫
V (x)ub∗(x;0)R

(0)
Q (x,y)V (y)ψλ(y) dx dy

∣∣∣≤Cλ2. (C.9)
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Let us now use that by Theorem 3.4, supx∈R |ψλ(x)−ub∗(x;0)exp
(
λα0|x|

)
|.λ1/4,

so |ψλ(x)−ub∗(x;0)|≤C(λ1/4 +λ|x|). Thus (C.9) becomes

∣∣∣(∫ ub∗(·;0)V ψλ
)(

1+
1

κ

2π

∂2
kE(0)

∫
V (x)ub∗(x;0)2 dx

)
−λ 4π2

∂2
kE(0)

∫∫
V (x)ub∗(x;0)2|x−y|ub∗(y;0)2V (y)dx dy

+
λ

2

∫∫
V (x)ub∗(x;0)R

(0)
Q (x,y)V (y)ub∗(y;0) dx dy

∣∣∣≤Cλ1+1/4, (C.10)

and one deduces from (C.7) that
∣∣∣κ(∫ ub∗(·;0)V ψλ

)−1
+2π(∂2

kE(0))−1
∣∣∣≤Cλ1/4. There-

fore, multiplying (C.10) by κ
(∫
ub∗(·;0)V ψλ

)−1
yields

∣∣∣κ+
2π

∂2
kE(0)

∫
V (x)ub∗(x;0)2dx

+λ
8π3

(∂2
kE(0))2

∫∫
V (x)ub∗(x;0)2|x−y|ub∗(y;0)2V (y)dx dy

− λ
4

∫∫
V (x)ub∗(x;0)R

(0)
Q (x,y)V (y)ub∗(y;0) dx dy

∣∣∣≤Cλ1+1/4. (C.11)

Finally, we note that since R
(0)
Q (x,y) =−R(0)

Q (y,x) by Lemma C.1, the last term in (C.11)
vanishes. Thus the above estimate, together with the following Lemma, completes the
proof of Corollary 3.6.

Lemma C.2. Let E∗=Eb∗(0) be an edge of the continuous spectrum, and let the hy-
potheses of Theorem 3.4 be satisfied, so that Eλ exists. Then for λ small enough, one
has Eλ=E(iλκ), and Eλ−E∗=− 1

2λ
2κ2∂2

kEb∗(0)+O(λ4).

Proof. We Taylor expand D(E) about E∗=Eb∗(0),

D(E) =D(E∗)+D′(E∗)(E−E∗)+O
(
(E−E∗)2

)
= 2+D′(E∗)(E−E∗)+O

(
(E−E∗)2

)
.

(C.12)

Let’s first apply (C.12) to E=Eb∗(k) in the spectral band. One has D(Eb∗(k)) =e2πik+
e−2πik = 2−4π2k2 +O

(
k3
)
. Finally, since ∂kEb∗(0) =∂3

kEb∗(0) = 0, one has Eb∗(k) =

E∗+ 1
2∂

2
kE(0)k2 +O

(
k4
)
. Identifying with (C.12), it follows D′(E∗)

(
1
2∂

2
kE(0)

)
=−4π2,

thus D′(E∗) = −8π2

∂2
kEb∗ (0)

.

Next let’s apply (C.12) to E=Eλ, recallingD(Eλ) =e2πλκ+e−2πλκ= 2+4π2λ2κ2 +
O
(
λ4κ4

)
. One has from (3.10) in Theorem 3.4 that Eλ−E∗=O(λ2), and from (C.7)

that κ=O(1). Consequently, (C.12) yields

4π2λ2κ2 =D′(E∗)(E
λ−E∗)+O(λ4) =

−8π2

∂2
kEb∗(0)

(Eλ−Eb∗(0))+O(λ4).

Finally, we deduce Eλ−E∗=− 1
2λ

2κ2∂2
kEb∗(0)+O(λ4), and the lemma is proven.

We conclude this section by the proof of Lemma C.1.
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Proof. (Proof of Lemma C.1.) Let us Taylor-expand ψ±, as defined by (C.1)–(C.2).
One has ψ±(x)e∓2πλκx≡pb∗(x;∓iλκ), thus

ψ+(x)e−2πλκx=pb∗(x;0)− iλκ∂kpb∗(x;0)− (λκ)2

2
∂2
κp(x;0)+ i

(λκ)3

6
∂3
κp(x;iγ+),

(C.13)

ψ−(x)e2πλκx=pb∗(x;0)+ iλκ∂kpb∗(x;0)− (λκ)2

2
∂2
κp(x;0)− i (λκ)3

6
∂3
κp(x;iγ−),

(C.14)

with −λκ≤γ+≤0≤γ−≤λκ.

Remark C.3. Note that κ 7→pb(x;k∗+κ)∈L2(R) is analytic in a complex neighbor-
hood |κ|<κ1. By the equation for pb, κ 7→pb(x;k∗+κ)∈H2(R) is analytic, and thus
∂3
kpb(x;k) and ∂x∂

3
kpb(x;k) are well-defined and uniformly bounded for k near k∗ and x

in any compact set.

Since pb∗(x;0) =ub∗(x;0), it follows

W [ψ±]RQ(x,y;Eλ)

=


(
ub∗(x;0)ub∗(y;0)+ iλκr(0)(x,y;λκ)+(λκ)2r

(1)
+ (x,y)

)
e2πλκ(x−y) if y>x,(

ub∗(y;0)ub∗(x;0)+ iλκr(0)(y,x;λκ)+(λκ)2r
(1)
− (x,y)

)
e2πλκ(y−x) if y<x.

(C.15)

with

r(0)(x,y;λκ)≡pb∗(x;0)∂kpb∗(y;0)−∂kpb∗(x;0)pb∗(y;0) =−r(0)(y,x;λκ),

and r
(1)
± (x,y) is bounded, uniformly with respect to λκ.

Let us now turn to W [ψ±]≡ψ′+(x)ψ−(x)−ψ+(x)ψ′−(x). From (C.13)–(C.14), one
has

W [ψ±] = 2λκ
(

2πpb∗(x;0)2− ipb∗(x;0)∂x∂kpb∗(x;0)+ i
(
∂xpb∗(x;0)

)(
∂kpb∗(x;0)

))
+(λκ)3wr(x;λκ),

with wr(x) uniformly bounded, independently of x and λκ.

Since W [ψ±] is independent of x, one has W [ψ±] =
∫ 1

0
W [ψ±] dx, and thus

W [ψ±] = 2λκ

∫ 1

0

(
2πpb∗(x;0)2− ipb∗(x;0)∂x∂kpb∗(x;0)

+ i
(
∂xpb∗(x;0)

)(
∂kpb∗(x;0)

))
dx+(λκ)3

∫ 1

0

wr(x;λκ) dx.

Using that
∫ 1

0
pb∗(x;0)2 dx=

∫ 1

0
ub∗(x;0)2 dx= 1, one deduces

W [ψ±] = 2λκ
(

2π+2i

∫ 1

0

p(x;0)∂x∂kp(x;0) dx
)

+O
(
(λκ)3

)
. (C.16)

Now, let us recall that pb∗(x;iκ) satisfies (C.2). Deriving twice with respect to k= iκ,
one obtains
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−(∂x−2πκ)2 +Q(x)−E(iκ)

)
∂2
kp(x;iκ)

= 2∂kE(iκ)∂kp(x;iκ)+∂2
kE(iκ)p(x;iκ)−8πi(∂x−2πκ)∂kp(x;iκ)−8π2p(x;iκ).

We now apply this identity at κ= 0, and take the inner product with pb∗(x;0). It follows

0 =∂2
kE(0)−8πi

∫ 1

0
p(x;0)∂x∂kp(x;0) dx−8π2. Therefore, (C.16) becomes

W [ψ±] = 2λκ
∂2
kE(0)

4π
+O

(
(λκ)3

)
. (C.17)

Finally, (C.15) and (C.17) clearly imply (C.4), and Lemma C.1 is proven.
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[17] V. Duchêne, I. Vukićević, and M.I. Weinstein, Oscillatory and localized perturbations of periodic
structures and the bifurcation of defect modes, preprint arXiv:1407.8403v1.
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V. DUCHÊNE, I. VUKIĆEVIĆ, AND M.I. WEINSTEIN 823

[22] A. Figotin and A. Klein, Localized classical waves created by defects, J. Stat. Phys., 86(1/2),
165–177, 1997.

[23] A. Figotin and A. Klein, Midgap defect modes in dielectric and acoustic media, SIAM J. Appl.
Math., 58(6), 1748–1773, 1998.

[24] N. Firsova, On the time decay of a wave packet in a one-dimensional finite band periodic lattice,
J. Math. Phys., 37, 1171-1181, 1996.

[25] F. Gesztesy and B. Simon, A short proof of Zheludev’s theorem, Trans. Amer. Math. Soc., 335,
329–340, 1993.

[26] M.A. Hoefer and M.I. Weinstein, Defect modes and homogenization of periodic Schrödinger op-
erators, SIAM J. Math. Anal., 43, 971–996, 2011.

[27] B. Ilan and M.I. Weinstein, Band-edge solitons, nonlinear Schrödinger/Gross-Pitaevskii equa-
tions, and effective media, Multiscale Model. Simul., 8(4), 1055–1101, 2010.

[28] M. Klaus, On the bound state of Schrödinger operators in one dimension, Annal. Phys., 108,
288–300, 1977.

[29] E. Korotyaev, 1d Schrödinger operator with periodic plus compactly supported potentials, preprint
arXiv:0904.2871v1.

[30] E. Korotyaev, Resonance theory for perturbed Hill operator, Asymptot. Anal., 74, 199–227, 2011.
[31] P. Kuchment, The mathematics of photonic crystals, in Mathematical Modeling in Optical Sci-

ence, Frontiers Appl. Math., SIAM, Philadelphia, PA, 22, 207–272, 2001.
[32] W. Magnus and S. Winkler, Hill’s Equation, Dover Publications, Inc, New York, 1979.
[33] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Lecture Notes, Ameri-

can Mathematical Society, Providence, Rhode Island, 6, 2001.
[34] A. Parzygnat, K. Lee, Y. Avniel, and S. Johnson, Sufficient conditions for two-dimensional

localization by arbitrarily weak defects in periodic potentials with band gaps, Phys. Rev. B,
81(15), 2010.

[35] D.E. Pelinovsky and G. Schneider, Justification of the the coupled-mode approximation for a
nonlinear elliptic problem with a periodic potential, Appl. Anal., 86(8), 1017–1036, 2007.

[36] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of operators,
Academic Press, New York, 1978.

[37] F.S. Rofe-Beketov, A test for finiteness of the number of discrete levels introduced into the gaps of
a continuous spectrum by perturbation of a periodic potential, Soviet Math. Dokl., 5, 689–692,
1964.

[38] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions,
Annal. Phys., 97(2), 279–288, 1976.

[39] J. Wang, J. Yang, and Z. Chen, Two-dimensional defect modes in optically induced photonic
lattices, Phys. Rev. A, 76, 013828, 2007.


