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Abstract

We investigate scattering, localization, and dispersive time decay properties for
the one-dimensional Schrödinger equation with a rapidly oscillating and spa-
tially localized potential q� D q.x; x=�/, where q.x; y/ is periodic and mean
zero with respect to y. Such potentials model a microstructured medium. Ho-
mogenization theory fails to capture the correct low-energy (k small) behav-
ior of scattering quantities, e.g., the transmission coefficient tq� .k/ as � tends
to zero. We derive an effective potential well ��eff.x/ D ��

2ƒeff.x/ such that
tq� .k/� t�

�
eff.k/ is small, uniformly for k 2 R as well as in any bounded subset

of a suitable complex strip. Within such a bounded subset, the scaled limit of the
transmission coefficient has a universal form, depending on a single parameter,
which is computable from the effective potential. A consequence is that if �,
the scale of oscillation of the microstructure potential, is sufficiently small, then
there is a pole of the transmission coefficient (and hence of the resolvent) in the
upper half-plane on the imaginary axis at a distance of order �2 from 0. It fol-
lows that the Schrödinger operator Hq� D �@

2
x C q�.x/ has an L2 bound state

with negative energy situated a distance O.�4/ from the edge of the continuous
spectrum. Finally, we use this detailed information to prove the local energy time
decay estimate:

j.1C j � j/�3e�itHq�Pc 0jL1 �

Ct�1=2
�
1C �4

�Z
R

ƒeff

�2
t

��1
j.1C j � j3/ 0jL1 ;

where Pc denotes the projection onto the continuous spectral part of Hq� .
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1 Introduction
We investigate scattering and localization phenomena for the one-dimensional

Schrödinger equation, i@t D .�@2x C V.x// , where V denotes a real-valued,
rapidly oscillating, and spatially localized potential. This equation governs the be-
havior of a quantum particle or, in the paraxial approximation of electromagnetics,
waves in a medium with strong and rapidly varying inhomogeneities. We find in-
teresting and subtle low-energy behavior and study its consequences for scattering,
localization, and dispersive time decay.

The scattering problem for the Schrödinger equation

.HV � k
2/u D 0; HV � �@

2
x C V.x/;(1.1)

is the question of the scattered field in response to an incoming plane wave eikx:

(1.2) u.xI k/ D

(
eikx C rV .k/e�ikx; x ! �1;

tV .k/eikx; x !C1:

tV .k/ and rV .k/ are called reflection and transmission coefficients for the po-
tential V ; see Section 2. Considered as a function of a complex variable k, the
transmission coefficient tV .k/ is meromorphic in the upper half k-plane, having
possibly simple poles located on the positive imaginary axis. If i�, � > 0, is a pole
of tV , then E D ��2 is a discrete eigenvalue of HV of multiplicity 1.

In this paper, we are interested in the case where V.x/ is spatially localized and
highly oscillatory. A class of potentials to which our results apply are potentials of
the form:

(1.3) V�.x/ D qav.x/C q.x; x=�/; � � 1:

Here qav.x/ denotes a spatially localized background average potential and q.x; y/
a potential that is spatially localized on the slow scale x and periodic and mean zero
on the fast scale y:

(1.4) q.x; y C 1/ D q.x; y/ and
Z 1

0

q.x; y/dy D 0:

Thus,

(1.5) q.x; y/ D
X
j¤0

qj .x/e
2�ijy :

More generally, our theory admits potentials that are aperiodic. For example, we
allow for real-valued potentials:

(1.6) q.x; y/ D
X
j¤0

qj .x/e
2�i�jy ;
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where f�j gj2Znf0g is a sequence of nonzero distinct frequencies for which there is
a constant � > 0 such that

(1.7) inf
j¤k
j�j � �kj � � > 0; inf

j2Znf0g
j�j j � � > 0:

That q is real-valued is imposed by

qj .x/ D q�j .x/; ��j D ��j ; j 2 Z n f0g:(1.8)

We ask the following:

What are the characteristics of solutions to the scattering prob-
lem (1.1)–(1.2) in the limit as � tends to 0?

For fixed k ¤ 0, this is the regime where averaging or homogenization theory
applies; the leading-order behavior in � is governed by the average of V� over its
fast variations. To simplify the present motivating discussion we consider the case
where V� is periodic on the fast scale with vanishing mean, satisfying (1.4). Then,
for any fixed k ¤ 0, as � ! 0, we have

tV� .k/! t0.k/ � 1; rV� .k/! r0.k/ � 0I

see [6], which contains very detailed asymptotic expansions of tV� .k/ for a general
class of V�, admitting singularities. Very generally, as k tends to infinity, tV .k/!
1; the large-k transmission behavior of V�.x/ and its average qav.x/ agree.

However, the low-energy, k � 0, comparison between the scattering behavior
for qav.x/ � 0 and V�.x/ is far more subtle. First of all, the potential V.x/ � 0

has nongeneric low-energy behavior! Indeed, for generic localized potentials V ,
limk!0 tV .k/ D 0; see the discussion of and references to genericity in Section 2.
Thus we expect (and our analysis implies for small and nonzero �) that tV� .k/! 0

as k ! 0; see Corollary 3.4.
It follows that the convergence of tV� .k/ as � tends to 0 to the homogenized

transmission coefficient tqav.k/ � t0.k/ � 1 is nonuniform in a neighborhood
of k D 0. Figure 1.1(c) displays plots of tV� .k/ for several successively smaller
values of �. Underlying this nonuniformity is a subtle behavior of tV� .k/ in the
complex plane and an interesting localization phenomenon, which we now explain.

To fix ideas, stick with the case qav.x/ � 0 and thus HV� D Hq� , with q�.x/ �
q.x; x=�/. We comment below on the case where qav is nonzero. We clarify the
nature of low-energy scattering by proving that there is an effective potential well

(1.9) ��eff.x/ D ��
2ƒeff.x/

such that

(1.10) tq� .k/ � t�
�
eff.k/! 0 as � ! 0 uniformly in k 2 RI

see Theorem 4.1, Corollary 4.4, and Theorem 3.3, proved by a “normal form” type
analysis in Section 6. Here ƒeff.x/ is a positive and localized function defined in
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FIGURE 1.1. Plots of (a) potentials V�.x/ and (b) the corresponding
effective potential ��eff.x/. Transmission coefficients (c) tV� .k/ and
(d) t�

�
eff.k/. Plots (e) and (f) show convergence of scaled transmis-

sion coefficients tV� .�2�/ and t�
�
eff.�2�/ to the transmission coefficent

tDirac.�/ D �=.� � i
2

R
ƒeff/ associated with the Dirac delta potential

well of mass
R
ƒeff. The cross markers in plots (e) and (f) correspond to

values of tDirac.�/.
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terms of the Fourier expansion of the two-scale potential q.x; y/:

(1.11) ƒeff.x/ D
1

.2�/2

X
j¤0

jqj .x/j
2

�2j
:

For the periodic case, q.x; y C 1/ D q.x; y/, �j D j; j ¤ 0, and ƒeff is given by

(1.12) ƒeff.x/ D
1

.2�/2

X
j¤0

jqj .x/j
2

j 2
D h�@�2y q.x; y/; q.x; y/iL2.S1y /:

This particular choice of effective potential well is anticipated by a formal two-
scale homogenization expansion. An example of a mean-zero potential V�.x/ D
q�.x/ D q.x; x=�/ and the associated effective potential is displayed in Fig-
ures 1.1(a) and 1.1(b). A clue to the source of nonuniformity in k is offered by
a result of Simon [14], applied to ��eff, which implies that for � small, the operator
H��eff

has a single negative eigenvalue:

(1.13) E�
�
eff D �

�4

4

�Z
R

ƒeff

�2
C O.�6/:

Since the eigenvalues of HV are associated with poles of tV .k/ located on the
positive imaginary axis (Section 2), the eigenvalueE�

�
eff is associated with a pole at

(1.14) k�
�
eff.�/ D i

�2

2

�Z
R

ƒeff

�
C O.�4/:

The estimates of Theorem 3.3 and Corollary 3.5, comparing tq� .k/ to t�
�
eff.k/, in a

complex neighborhood of k D 0 for small � enable us to conclude, via Rouché’s
theorem, that tq� .k/ has a pole kq� .�/ � k�

�
eff.�/. It follows that Hq� has a bound

state, uE
q�
.x/, with energy

(1.15) Eq� D �
�4

4

�Z
R

ƒeff

�2
C O.�5/:

Moreover, uE
q�
.x/ D O.e�

p
jEq� jjxj/ as jxj ! 1 (Corollary 3.7). Furthermore,

by Corollary 3.6, there is a universal scaled limit depending on a single parameter,R
Rƒeff:

tq� .�2�/! t?
�
�I

Z
R

ƒeff

�
�

�

� � i
2

R
Rƒeff

as � ! 0 for � ¤
i

2

Z
R

ƒeff:
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Note that t?
�
�I
R

Rƒeff
�

is the transmission coefficient for the Schrödinger opera-
tor with a Dirac distribution potential well of total mass

R
Rƒeff > 0:

H?
� �@2x �

�Z
R

ƒeff.�/d�

�
� ı.x/:

Figures 1.1(e) and 1.1(f), as well as Figure 1.2, illustrate this behavior.
A further consequence concerns the large-time dispersive character of solutions

to the time-dependent Schrödinger equation:

(1.16) i@t D �@
2
x C q.x; x=�/ ;  .0; x/ D  0:

We have the following time decay estimate (Theorem 5.1) for sufficiently localized
initial conditions  0 in the continuous spectral part of Hq� , i.e., uE

q�
?L2  0:

(1.17) .1C jxj3/�1j .x; t/j �
C

t1=2

1

1C �4.
R

Rƒeff/2t

Z
R

.1C j�j3/j 0.�/jdy:

Therefore the effect of the oscillatory perturbation on the rate of dispersion is only
seen on the time scale t & ��4.

The above results follow from the nongeneric low-energy behavior of the aver-
age potential V � 0. Thus we ask:

Are there nontrivial potentials V.x/ � qav.x/ with low-energy
behavior analogous to V � 0 such that V� D qav.x/ C q�.x/

exhibits similar behavior?

The answer is yes! Such examples need to exhibit the behavior

jtqav.k/j ! jtqav.0/j ¤ 0 as k ! 0:

How such nongeneric behavior arises is discussed in Section 3.2. The class of
reflectionless potentials, for which one has jt .k/j � 1 for all k 2 R, is a large
family of such examples. Our main Theorem 3.3 holds for general qav and shows
that the low-energy behavior is determined by the effective potential:

qav.x/C �
�
eff.x/ D qav.x/ � �

2ƒeff.x/:

Thus, if qav is a reflectionless potential, then tqavC�
�
eff.k/ has a pole kqavC�

�
eff.�/ sit-

uated on the positive imaginary axis and of size O.�2/. An application of Rouché’s
theorem yields that tqavCq� .k/ has a pole near kqavC�

�
eff.�/ and a bound state

EqavCq� .�/ � EqavC�
�
eff.�/ D ŒkqavC�

�
eff.�/�2 < 0

(see Corollary 3.8).
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FIGURE 1.2. Plots (a) and (b) are of two mean-zero potentials V1;� and
V2;� (left) and effective potentials ��1;eff and ��2;eff (right). Potentials are
chosen so that

R
ƒ1;eff D

R
ƒ2;eff. Plots (c) and (d) illustrate universality
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1.1 Outline of the Paper
In Section 2 we review the prerequisite one-dimensional scattering theory. Sec-

tion 3 contains statements of our main results and is structured as follows:

(1) Detailed hypotheses on the class of potentials V�.x/ D qav.x/Cq.x; x=�/

are given in Hypotheses (V) at the beginning of Section 3.
(2) We consider the case where qav is generic and the case where qav is non-

generic. As indicated above, the nongeneric case, i.e., qav � 0, is of great-
est interest and we emphasize this case.

(3) For nongeneric qav, Theorem 3.3 and Corollary 3.5 give precise estimates
on the difference tqavCq� .k/�tqavC�

�
eff.k/ for k in a complex neighborhood

of 0, and � ! 0.
(4) For qav D 0, Corollary 3.6 gives a universal form of the scaled limit of

tqavCq� .�2�/ as � ! 0. This limit depends on a single parameter, given by
the integral of the effective potential.

(5) For qav D 0, Corollary 3.7 states the potential qav C q� has a bound state
with negative energy� O.�4/ near the edge of the continuous spectrum.

(6) In Section 3.2 we present nontrivial (nonidentically zero) potentials qav,
which are nongeneric, for which the above results for qav � 0 also apply.
We work out the details for “one-soliton” potentials

qav;�.x/ D �2�
2 sech2.�.x � x0//;

for which Hqav;� has exactly one negative eigenvalue at E0.�/ D ��2 and
continuous spectrum extending from 0 to positive infinity. In this example,
our result shows that Hqav;�Cq� has an eigenvalue of order O.�4/, which
bifurcates from the edge of the continuous spectrum. Specifically,

(1.18) EqavCq� � �
�4

4

�Z
R

tanh2.y/ ƒeff.y/dy
�2
I

compare with (1.15). A second eigenvalue is O.�2/ distant from E0.�/.
(7) In Section 3.3 we deal with the relatively simple case of highly oscillatory

perturbations of a generic potential qav.

In Section 4, we combine our precise analysis for bounded k with the relatively
simple analysis when k 2 R is bounded away from 0 and obtain control on the
difference tq� .k/ � t�

�
eff.k/, uniformly for k 2 R. In Section 5 our results on the

high- and low-energy behavior of tq� .k/ are used to prove the local energy time
decay estimate (1.17), Theorem 5.1. The proof of Theorem 3.3 and the emergence
of the effective potential ��eff.x/ are presented in Section 6 . Appendix A contains
detailed estimates on Jost solutions for general localized potentials in an appropri-
ate domain in the complex plane. Appendix B presents a discussion of the potential
qav.x/C �

�
eff.x/ D qav.x/ � �

2ƒeff.x/.
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1.2 Remarks on Related Work
(1) Detailed and rigorous asymptotic expansions of tqavCq� .k/ were derived

in [6] by a method developed in [8]. In this work, singular potentials were
also admitted. Potentials with singularities and, e.g., jump discontinuities
and Dirac delta singularities give rise to interface effects that require the
inclusion of interface correctors not captured by standard bulk homoge-
nization theory in the expansions. For generic potentials these expansions
hold for any fixed k 2 R and � # 0.

(2) As discussed, our results are related to those of Simon [14] on shallow-
depth potentials with negative or zero average. Our results can be viewed
as a generalization to a larger class of perturbations, admitting high-con-
trast and rapidly oscillatory potentials, i.e., potentials that converge only
weakly to their mean.

(3) We conjecture, motivated by [14], that in dimension 2 there is a discrete
eigenvalue which is exponentially small in �, and that in dimension 3 there
exists no bound state for � sufficiently small.

(4) E. Schrödinger meets P. Kapitza: There is an interesting connection be-
tween our results and a phenomenon in mechanics known as the Kapitza
pendulum. Very generally, this refers to the stabilization of an unsta-
ble equilibrium of a dynamical system through time-dependent parametric
forcing, i.e., the stabilization of the classical inverted pendulum [9, 10].

1.3 Notation, Norms, and Function Spaces

Various norms are introduced in the analysis of the transmission coefficient, Jost
solutions, etc. These norms involve spatial weights of the potential that are alge-
braic when we analyze scattering properties for k 2 R, and exponential when we
consider these properties for k 2 C. Our convention throughout is that spaces
with algebraic spatial weights are denoted with calligraphic uppercase letters, e.g.,
W k;p

 , and spaces with exponential spatial weights are denoted with ordinary up-

percase roman letters, e.g., W k;p

ˇ
. The parameters 
 and ˇ define the spatial

weight.
We denote by L 1


 .R/ the space of measurable functions g such thatˇ̌
g
ˇ̌
L 1


D

Z
R

jg.x/j.1C jxj/
 dx <1:

The space of functions g whose derivatives up to order n are in L 1

 is denoted

W n;1

 and the associated norm is

ˇ̌
g
ˇ̌
W n;1


�

nX
lD0

j@lgjL 1


:
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For a fixed ˇ > 0, we denote byL1
ˇ

the space of measurable functions g defined
on R such that

jgjL1
ˇ
� jeˇ j�jgjL1 � ess supx2R e

ˇ jxj
jg.x/j <1:

W
n;1
ˇ

denotes the space of the functions g defined on R whose derivatives up to
order n are in L1

ˇ
with associated norm

jgjW n;1
ˇ
�

nX
lD0

j@lgjL1
ˇ
:

For a function V of the form

V.x; y/ D qav.x/C q.x; y/ D qav.x/C
X

j2Znf0g

qj .x/ e
2�i�jy ;

we introduce the following norms:

exponentially weighted:
>>>V>>> � jqavjW 1;1

ˇ

C

X
j2Znf0g

jqj jW 3;1
ˇ

;

algebraically weighted:
>>>>>>V>>>>>> � ˇ̌qav

ˇ̌
W 1;1
2

C

X
j2Znf0g

ˇ̌
qj
ˇ̌
W 3;1
3

:

2 Review of One-Dimensional Scattering Theory
In this section we briefly review some of the basics of scattering theory for the

one-dimensional Schrödinger equation,

(2.1)
�
�
d2

dx2
C V.x/ � k2

�
u.xI k/ D 0

for localized potentials V.x/, assumed to satisfy

V 2 L 1
2 .R/ D fV W .1C jxj/

2V.x/ 2 L1.R/g:

In particular, in Section 2.1 we discuss the Jost solutions f V
˙
.xI k/ and the reflec-

tion and transmission coefficients, respectively, rV
˙
.k/ and tV .k/. An extensive

discussion can be found in [5, 11, 12]. Section 2.2 explains what is meant by a
generic potential. Finally, in Section 2.3 we introduce some important tools en-
abling us to compare the transmission coefficients of two different potentials. This
is based on the Volterra integral equation for the Jost solution for a potential V ,
viewed as a perturbation of a second potential W .

2.1 The Jost Solutions, and Reflection and Transmission Coefficients
For k 2 R, introduce f V

˙
.xI k/, the unique solutions of (2.1) with

(2.2) f V˙ .xI k/ � e
˙ikx as x !˙1:

Observe from the asymptotics as x !1 that we have

W Œf VC . � I k/; f
V
C . � I �k/� D 2ik;
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where W Œh1; h2� denotes the Wronskian of functions h1.x/ and h2.x/:

(2.3) W Œh1; h2� D h1.x/h
0
2.x/ � h2.x/h

0
1.x/:

Therefore, for k 2 Rnf0g, the set ff V
C
.xI k/; f V

C
.xI �k/g is a linearly independent

set of solutions of (2.1).
The transmission coefficients tV

˙
.k/ and the reflection coefficients rV

˙
.k/ are

defined via the algebraic relations among the Jost solutions f V
˙
.xI k/:

f VC .xI k/ �
rV
C
.k/

tV
C
.k/

f V� .xI k/C
1

tV
C
.k/

f V� .xI �k/;(2.4)

f V� .xI k/ �
rV� .k/

tV� .k/
f VC .xI k/C

1

tV� .k/
f VC .xI �k/:(2.5)

One can check that W Œf V
C
; f V� � D �2ikŒt

V
� .k/�

�1 D �2ikŒtV
C
.k/��1, and there-

fore we write

(2.6) W
�
f VC ; f

V
�

�
D �

2ik

tV .k/
;

with tV .k/ � tV� .k/ D t
V
C
.k/. Furthermore, one has

(2.7)
ˇ̌
tV .k/

ˇ̌2
C
ˇ̌
rV˙ .k/

ˇ̌2
D 1; k 2 R:

The Jost solutions, f V
˙

, and scattering coefficients, tV and rV
˙

, can be analyt-
ically extended into the upper half complex k-plane. Note that if k1 is a pole of
tV .k/, with =.k1/ > 0, then W Œf V

C
; f V� �.k1/ D 0. In this case, f V

C
.xI k1/ and

f V� .xI k1/ are proportional and therefore decay exponentially as x !˙1. Thus,
k21 is an L2-eigenvalue of HV .

If the potential V.x/ is exponentially decaying as x tends to infinity, then the Jost
solutions can be analytically extended into the lower half complex k-plane. More
precisely, if V 2 L1

ˇ
(see Section 1.3), then f V

˙
.xI k/ are defined for =.k/ >

�ˇ=2 as the unique solutions of the Volterra integral equations:

f VC .xI k/ D e
ikx
C

Z 1
x

sin.k.y � x//
k

V.y/f VC .yI k/dy;

f V� .xI k/ D e
�ikx

�

Z x

�1

sin.k.y � x//
k

V.y/f V� .yI k/dy:
(2.8)

Detailed bounds on f V
˙
.xI k/ and their derivatives are presented in Appendix A.

Finally, note the following consequences of V.x/ being real-valued, the unique-
ness of the Jost solutions as defined above, and (2.4)–(2.5):

(2.9) f V˙ .xI �k/ D f
V
˙
.xI k/; tV .�k/ D tV .k/; rV˙ .�k/ D r

V
˙
.k/:

In particular, f V
˙
.xI 0/, tV .0/, rV

˙
.0/ are real.
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2.2 Generic and Nongeneric Potentials
Using the decay hypotheses of potential V 2 L1

ˇ
and the method of [5, p. 145],

one can check that the transmission and reflection coefficients are well-defined
by (2.4)–(2.5) for j=.k/j < ˇ=2 and satisfy the following important relations,
which follow from (2.6) and (2.8):

1

tV .k/
D 1 �

1

2ik
IV .k/I

thus
W
�
f VC ; f

V
�

�
.k/ D �2ik C IV .k/

where IV .k/ �
R1
�1

V.y/e�ikyf V
C
.yI k/dy. Equivalently, one has

(2.10) tV .k/ D �
2ik

W
�
f V
C
; f V�

�
.k/
D

2ik

2ik � IV .k/
:

Recall that if V.x/ � 0, then tV .k/ � 1. Moreover, if

(2.11) IV .0/ D W
�
f VC ; f

V
�

�
.0/ D

Z 1
�1

V.y/f VC .yI 0/dy ¤ 0;

then by continuity of tV .k/ and (2.10), one has

(2.12) tV .0/ D lim
k!0

tV .k/ D 0:

The case where (2.11) and therefore (2.12) holds is typical. Indeed, it has been
shown in appendix 2 of [15] that for a dense subset of L 1

1 , one has IV .0/ ¤ 0;
see also [5, 11]. Thus we say that (2.11) and (2.12) hold generically in the space
of potentials.

DEFINITION 2.1 (Generic Potentials). We say that a potential V is generic if one
has tV .0/ D 0. Equivalently, V is generic if and only if

k

tV .k/
�!
�IV .0/

2i
¤ 0 as k ! 0:

Note that in the nongeneric case, where W Œf V
C
; f V� �.0/ D 0, we have that Jost

solutions f V
˙
.xI k/ satisfy f V

˙
.xI 0/ � 1 as x ! ˙1 and are multiples of one

another. Thus, nongenericity is equivalent to the existence of a globally bounded
solution of the Schrödinger equation at zero energy. Such states are sometimes
referred to as zero energy resonances. The simplest example is V � 0 where
f 0
˙
.xI k/ D e˙ikx and f 0

˙
.xI 0/ � 1.

2.3 Relations Between f V
˙

and f W
˙

for General V andW
Our approach is based on associating with V�.x/ D qav.x/ C q�.x/ a more

accurate (than qav) minimal model or normal form, V�;eff.x/ D qav.x/C�
�
eff.x/, of

the asymptotic scattering properties for k bounded and � ! 0. An important tool
will then be to compare the Jost solutions associated with the potential, V D V�,
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with those of some family of potentials, W D qav C � , parametrized by � , which
is to be determined. This section develops the necessary tools for this comparison.

In the Volterra equation (2.8) we write f V
˙
.xI k/ as a perturbation of the states

e˙ikx , which lie in the kernel of �@2x � k
2. In the following proposition, we

generalize this formula by viewing f V
˙
.xI k/ as a perturbation of the Jost solutions

f W
˙
.xI k/ for the problem �

�
d2

dx2
CW � k2

�
u D 0:

PROPOSITION 2.2. Let V;W 2 L1
ˇ

and let f V
˙
; f W
˙

denote the associated Jost
solutions. Then for j=.k/j < ˇ=2, one has

(2.13)
f VC .xI k/ D ˛CŒV;W �f

W
C .xI k/C ˇCŒV;W �f

W
� .xI k/;

f V� .xI k/ D ˛�ŒV;W � f
W
C .xI k/C ˇ�ŒV;W �f

W
� .xI k/;

with ˛˙ŒV;W �.xI k/ and ˇ˙ŒV;W �.xI k/ defined by

˛CŒV;W � � 1C

Z 1
x

f W� .V �W /f V
C

W Œf W
C
; f W� �

dy;

ˇCŒV;W � � �

Z 1
x

f W
C
.V �W /f V

C

W Œf W
C
; f W� �

dy;

(2.14)

˛�ŒV;W � � �

Z x

�1

f W� .V �W /f V�

W Œf W
C
; f W� �

dy;

ˇ�ŒV;W � � 1C

Z x

�1

f W
C
.V �W /f V�

W Œf W
C
; f W� �

dy:

(2.15)

Equivalently, one has the Volterra equation

f VC .xI k/ D f
W
C .xI k/

C

Z 1
x

f W
C
.xI k/f W� .yI k/ � f W� .xI k/f W

C
.yI k/

W Œf W
C
; f W� �

.V �W /f VC .yI k/dy;

f V� .xI k/ D f
W
� .xI k/

�

Z x

�1

f W
C
.xI k/f W� .yI k/ � f W� .xI k/f W

C
.yI k/

W Œf W
C
; f W� �

.V �W /f V� .yI k/dy:

(2.16)

A very useful consequence is the following:

COROLLARY 2.3. Let V;W 2 L1
ˇ

and let f V
˙
; f W
˙

denote their respective asso-
ciated Jost solutions. Then for j=.k/j < ˇ=2, one has

(2.17) W
�
f VC ; f

V
�

�
.k/ DM ŒV;W �.k/W

�
f WC ; f W�

�
.k/;
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where M ŒV;W �.xI k/ is constant in x and given by

M ŒV;W �.k/ � ˛CŒV;W �.xI k/ˇ�ŒV;W �.xI k/

� ˛�ŒV;W �.xI k/ˇCŒV;W �.xI k/:
(2.18)

By (2.6) and by taking the limit as x ! �1 of (2.14) and (2.15) in (2.18), one
has

(2.19)
k

tV .k/
D

k

tW .k/
�
I ŒV;W �.k/

2i

with I ŒV;W �.k/ �
Z 1
�1

f W� .yI k/.V �W /.y/f VC .yI k/dy:

Remark 2.4. Relation (2.19) applied for V D V� and a judicious choice of W
provides the point of departure for the proofs of our main results.

PROOF OF COROLLARY 2.3. Equation (2.17) follows from substituting the ex-
pressions (2.13) into the definition of W Œf V

C
; f V� � and using that ˛CŒV;W � and

ˇCŒV;W � satisfy the identity .˛˙/0f WC C .ˇ˙/
0f W� D 0; see (2.21) below.

To prove (2.19), we begin by making use of relation (2.6). One has

k

tV .k/
D �

W Œf V
C
; f V� �.k/

2i
:

We next relate W Œf V
C
; f V� � to W Œf W

C
; f W� � by substituting the expressions (2.13)

into the definition of W Œf V
C
; f V� � and using (2.14) and (2.15) to obtain

k

tV .k/
D �M ŒV;W �.x; k/

W Œf W
C
; f W� �.k/

2i
DM ŒV;W �.x; k/

k

tW .k/
:

Now, since V;W 2 L1
ˇ

, the estimates of Lemma A.2 yield

lim
x!�1

ˇCŒV;W �.x/ <1; lim
x!�1

˛�ŒV;W �.x/ D 0;

lim
x!�1

ˇ�ŒV;W �.x/ D 1:

Therefore,
M ŒV;W �.k/ D lim

x!�1
˛CŒV;W �.x/:

Therefore, one deduces from Proposition 2.2 that

k

tV .k/
D

k

tW .k/
lim

x!�1
˛CŒV;W � D

k

tW .k/

�
1C

I ŒV;W �.k/

W
�
f W
C
; f W�

�
.k/

�
D

k

tW .k/
�
I ŒV;W �.k/

2i
;

where I ŒV;W �.k/ is given in (2.19). The proof of Corollary 2.3 is complete. �
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PROOF OF PROPOSITION 2.2. The integral equation governing a Jost solution
for the potential V may be written relative to the potentialW as follows. Start with
the equation for u˙ D f V˙ written in the form

(2.20) .HW � k
2/ u D

�
�
d2

dx2
CW � k2

�
u D .W � V /u:

Treating the right-hand side of (2.20) as an inhomogeneous term, we now derive
equivalent integral equations for the Jost solutions. Thus, we seek solutions u˙
of (2.20) such that u˙.xI k/ � f V˙ .xI k/, x !˙1, of the form

u.x; k/ � ˛.x; k/f WC .x; k/C ˇ.x; k/f W� .x; k/

with ˛0f WC C ˇ
0f W� D 0:

We obtain u0 D ˛f W
C

0
C ˇf W�

0
, u00 D ˛0f W

C

0
C ˇ0f W�

0
C .W � k2/u, and

eventually the following system for .˛0; ˇ0/:

(2.21)

(
˛0f W
C
C ˇ0f W� D 0;

˛0f W
C

0
C ˇ0f W�

0
D �.�@2x CW � k

2/u D .V �W /u:

Solving for ˛0 and ˇ0 we have

˛0 D
�f W� .x; k/.V .x/ �W.x//u.x; k/

W Œf W
C
; f W� �.k/

;

ˇ0 D
f W
C
.x; k/.V .x/ �W.x//u.x; k/

W Œf W
C
; f W� �.k/

:

The expressions for ˛˙ and ˇ˙ in (2.14) and (2.15) follow by integrating and
imposing the asymptotic behavior of u˙ � f V

˙
as x ! ˙1. In particular, one

has f V
C
.xI k/ � f W

C
.xI k/ � eikx when x ! 1 and f V� .xI k/ � f

W
� .xI k/ �

e�ikx when x ! �1. This completes the proof of Proposition 2.2. �

3 Convergence of tq�.k/ for k 2 C and Bifurcation of Eigenvalues
from the Edge of the Continuous Spectrum

In this section we state our main results for the Schrödinger equation (1.1) with
potential of the form

(3.1) V�.x/ D V.x; x=�/:

Recall the exponentially weighted norms jgjW n;1
ˇ

introduced in Section 1.3.
The potential V.x; y/ is assumed to satisfy the following precise hypotheses:
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Hypotheses (V)
V.x; y/ is real-valued and of the form

(3.2) V.x; y/ D qav.x/C q.x; y/ D qav.x/C
X
j¤0

qj .x/ e
2�i�jy :

There exist positive constants � > 0 and ˇ > 0 such that the sequence of nonzero
(distinct) frequencies f�j gj2Znf0g satisfies

(3.3) inf
j¤k
j�j � �kj � � > 0; inf

j2Znf0g
j�j j � � > 0;

and the coefficients fqj .x/gj2Z satisfy the decay and regularity assumptions

(3.4)
>>>V>>> � ˇ̌qav

ˇ̌
W
1;1
ˇ

C

X
j2Znf0g

ˇ̌
qj
ˇ̌
W
3;1
ˇ

<1:

Remark 3.1. If V satisfies Hypotheses (V) and ��eff is defined in (1.9) and (1.11),
then V� 2 L1ˇ , qav C �

�
eff 2 W

1;1
ˇ

and ��eff 2 W
3;1
ˇ

, and there exists C.
>>>V>>>/,

independent of �, such that

jV�jL1
ˇ
� C.

>>>V>>>/; jqav C �
�
effjW 1;1

ˇ

� C.
>>>V>>>/;

j��effjW 3;1
ˇ

� �2C.
>>>V>>>/:

Our approach is to study the Jost solutions f V� .xI k/ and scattering coefficients
tV� .k/; r

V�
˙
.k/ for � sufficiently small, � 2 Œ0; �0/, and for k in a complex neigh-

borhood of 0. More precisely, we assume the following:

Hypotheses (K)
We assume that the wave number k varies inK, a compact subset of C such that
� K � fk; j=.k/j < ˛g, with 0 < ˛ < ˇ=2, and ˇ is as in Hypotheses (V);
� K does not contain any pole of the transmission coefficient tqav.k/.

It follows that tqav.k/ is bounded, uniformly for k 2 K, and we define

(3.5) MK � max
�
1; sup
k2K

jtqav.k/j
�
<1:

Moreover, if K � R, then MK D 1; see (2.7).

Remark 3.2. We can relax the spatial decay assumptions of Hypotheses (V) if we
restrict Hypotheses (K) to the upper half-plane =.k/ � 0. Our methods apply and
only require sufficient algebraic decay of V.x/. Results of this kind for k 2 R are
presented in Section 4.

We now state our main theorem and its important consequences.

THEOREM 3.3 (Convergence of the Transmission Coefficient). Assume V�.x/ D
V.x; x=�/ satisfies Hypotheses (V) and k 2 K satisfies Hypotheses (K). Then there
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exists �0 > 0 such that for all j�j < �0, tqavCq� .k/, the transmission coefficient of
the scattering problem (1.1)–(1.2) with

V�.x/ D qav.x/C q�.x/ D qav.x/C q.x; x=�/

is uniformly approximated by the transmission coefficient tqavC�
�
eff.k/ for

V �eff.x/ D qav.x/C �
�
eff.x/;

where ��eff.x/ denotes the effective potential well,

(3.6) ��eff.x/ � ��
2 ƒeff.x/ � �

�2

.2�/2

X
j2Znf0g

jqj .x/j
2

�j
2

:

Specifically, we have the estimate

(3.7) sup
k2K

ˇ̌̌̌
k

tqavC�
�
eff.k/

�
k

tqavCq� .k/

ˇ̌̌̌
� �3MKC.

>>>V>>> ; sup
k2K

jkj/;

with C.
>>>V>>>/ a constant, independent of �.

The proof of Theorem 3.3 is given in Section 6; we first present its conse-
quences. A simple outcome of (3.7) and the genericity of qav C �

�
eff for � suffi-

ciently small (which holds for qav generic and nongeneric; see Corollary B.21) is
the following:

COROLLARY 3.4. Assume V� D qav C q� satisfies Hypotheses (V). We allow qav
to be either generic or nongeneric in the sense of Definition 2.1. Then there exists
�0 > 0 such that for any 0 < � < �0, V� is generic.

Theorem 3.3 holds for both generic and nongeneric potentials qav. In the fol-
lowing section we explore consequences for the nongeneric potential, qav.x/ � 0,
i.e., V�.x/ D q.x; x=�/; with

R 1
0 q.x; y/dy D 0. In particular, we explain the

nonuniformity and localization phenomena discussed in the Introduction. Results
for nontrivial qav.x/ are developed in Sections 3.2 and 3.3.

3.1 Results for Mean-Zero Oscillatory Potentials: qav.x/ � 0

The following corollary, comparing tq� .k/ and t�
�
eff.k/, is a consequence of The-

orem 3.3 and Lemma B.1.

COROLLARY 3.5. Let qav � 0 so that V�.x/ D q�.x/ D q.x; x=�/. Let K denote
the compact set of Hypotheses (K). There exists �0 > 0 such that if

(3.8)
ˇ̌̌̌
k �

i�2

2

Z 1
�1

ƒeff

ˇ̌̌̌
� C�� ; � < 3; k 2 K; 0 < � < �0;

1 Note that in the nongeneric case, the condition
R

Rƒeff.y/.f
qav
� .yI 0//2 dy ¤ 0 is always satis-

fied. Indeed, f qav
� . � I 0/ 2 R by (2.9) and is nonzero almost everywhere on the support of ƒeff.
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then one has for 0 < � < �0,

(3.9)
ˇ̌̌̌
t�
�
eff.k/

tq� .k/
� 1

ˇ̌̌̌
D O.�3�� /:

If in addition to (3.8), the following condition holds:

(3.10)
ˇ̌̌̌
k �

i�2

2

Z 1
�1

ƒeff

ˇ̌̌̌
� C jkj; k 2 K; 0 < � < �0;

then one has for 0 < � < �0ˇ̌
t�
�
eff.k/ � tq� .k/

ˇ̌
D O.�3�� / and

ˇ̌̌̌
tq� .k/ �

k

k � i�2

2

R1
�1

ƒeff

ˇ̌̌̌
D O.�3�� /:

In particular, if k D �2�, with � ¤ �? � � 1
2i

R
ƒeff, then for 0 < � < �0,

(3.11)

ˇ̌
t�
�
eff.�2�/ � tq� .�2�/

ˇ̌
D O

�
� j�j

j� � �?j2

�
D O.�/;ˇ̌̌̌

tq� .�2�/ �
�

� � i
2

R1
�1

ƒeff

ˇ̌̌̌
D O.�/:

PROOF. Corollary B.2 of Appendix B gives

(3.12)
k

t�
�
eff.k/

D k �
i�2

2

Z 1
�1

ƒeff.y/ dy C O.�4/; � ! 0;

uniformly for k 2 K. By Theorem 3.3, one has

(3.13)
k

tq� .k/
D k �

i�2

2

Z 1
�1

ƒeff.y/dy C O.�3/; uniformly for k 2 K:

Expansions (3.12) and (3.13) imply straightforwardly (3.9)–(3.11). �

A direct consequence of Corollary 3.5 and the expansion of t�
�
eff implied by

Lemma B.1 is the following result showing a universal scaled limit of tq� , depend-
ing on the single parameter

R
Rƒeff.

COROLLARY 3.6 (Scaled Limit of tq� ). Let k D �2�, with � ¤ i
2

R
Rƒeff. Then

one has

(3.14) tq� .�2�/! t?
�
�I

Z
R

ƒeff

�
�

�

� � i
2

R
Rƒeff

as � ! 0:

Here, t?.�Im/ is the transmission coefficient associated with the Schrödinger op-
erator with attractive ı-function potential well of total mass m > 0:

H�mı D �@
2
X �mı.X/:
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As observed in Section 2, the poles of the transmission coefficient in the upper
half k-plane, which must lie on the imaginary axis, correspond to the L2 point
eigenvalues. From our estimates on the transmission coefficient tq� .k/, we fur-
ther deduce the existence of a discrete eigenvalue near the edge of the continuous
spectrum.

COROLLARY 3.7 (Edge Bifurcation of Point Spectrum from the Continuum). If �
is sufficiently small, then the transmission coefficient tq� .k/ has a pole in the upper
half-plane at

k� D i
�2

2

�Z
R

ƒeff

�
C O.�3/; � ! 0;

and therefore Hq� has the simple eigenpair

Eq� D k2� D �
�4

4

�Z
R

ƒeff

�2
C O.�5/; � ! 0;

uEq� .x/ D O
�
e�
p
jEq� jjxj

�
; jxj � 1:

PROOF OF COROLLARY 3.7: Let us recall Rouché’s theorem: Let f and g de-
note analytic functions defined on an open set A � C. Let 
 denote a simple loop
within A that is homotopic to a point. If jg.k/�f .k/j < jf .k/j for all k 2 
 , then
f and g have the same number of roots inside 
 .

Now let

f .k/ � k �
i�2

2

Z 1
�1

ƒeff.y/dy;

g1.k/ D
k

t�
�
eff.k/

; g2.k/ D
k

tq� .k/
;

and 
 D fk W jk � i�2

2

R
ƒeffj D C�3g � K: These functions are analytic in k;

see [5] and our previous discussion. Theorem 3.3 and Corollary B.2 imply, respec-
tively,

g2.k/ D f .k/C O.�3/ and g1.k/ D f .k/C O.�4/:

Therefore, there exist constants aK and bK such that for k 2 
 :

jf .k/ � g1.k/
ˇ̌
� aK�

4;
ˇ̌
f .k/ � g2.k/

ˇ̌
� bK�

3; and jf .k/j D C�3:

Taking � sufficiently small and choosing C sufficiently large, Rouché’s theorem
implies that both g1 and g2 have unique roots, poles of t�

�
eff and tq� , in the set

fk W jk � i�2

2

R
ƒeffj � C�

3g. By self-adjointness, these poles lie on the positive
imaginary axis. Corollary 3.7 now follows. �
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3.2 Nongeneric and Nonzero qav; Example of an Oscillatory Perturbation
of a Reflectionless Potential

As seen above, for the case where qav � 0 the transmission coefficient tq� .k/
does not converge to t0.k/ � 1 uniformly in a neighborhood of k D 0, and the
obstruction to uniform convergence is the approach, as � ! 0, of a pole of tq� .k/
toward k D 0. Such nonuniform convergence will occur whenever tqav.0/ ¤ 0.
By (2.10) and (2.11), we can have tqav.0/ ¤ 0 if and only if W Œf

qav
C
; f qav
� �.0/ D 0,

the case where qav is nongeneric; see Section 2.2.
One may construct nongeneric potentials as follows: Let v.x/ denote a potential

well, v.x/ � 0, say a square well, having one eigenstate and which is generic, i.e.,
W Œf v

C
; f v� �.0/ ¤ 0 and therefore tv.0/ D 0. Consider the one-parameter family

of Schrödinger operators defined as h.g/ D �@2x C gv.x/; g � 1. As g increases,
new eigenvalues of hg appear as g traverses discrete values g1 < g2 < � � � . These
eigenvalues appear via the crossing of a pole of tgv.k/ in the lower half k-plane,
for g < gN , into the upper half-plane for g > gN . For g equal to one of these
transition values gN , one has tgN v.0/ ¤ 0. Thus gN v.x/ is a nongeneric potential.
Our analysis gives, for qav taken to be any such nongeneric potential, a precise
description of the motion of the pole of tqavCq� as it approaches k D 0 for � small.

The following corollary, the analogue of Corollaries 3.5 and 3.6, follows as in
the case qav � 0 from Theorem 3.3 and Lemma B.1.

COROLLARY 3.8 (Oscillatory Perturbation of a Reflectionless Potential).
Let V�.x/ D qav C q�.x/ D qav C q.x; x=�/ satisfy Hypotheses (V), let qav be
reflectionless, and finally let k 2 K satisfy Hypotheses (K). Assume in addition
that the following condition holds:

(3.15)
ˇ̌̌̌

k

tqav.k/
�
i�2

2

Z 1
�1

f qav
� .yI k/ƒeff.y/ f

qav
C
.yI k/dy

ˇ̌̌̌
�

C min.jkj; �� /; � < 3;

then one has for � sufficiently small

(3.16)
ˇ̌
tqavC�

�
eff.k/ � tqavCq� .k/

ˇ̌
D O.�3�� /:

In particular, k D �2� satisfies (3.15), and therefore by Lemma B.1 there is a
universal scaled limit of tqavCq� .�2�/,

tqavCq� .�2�/!
tqav.0/�

� � i
2
tqav.0/

R
R f

qav
� .yI 0/ƒeff.y/f

qav
C
.yI 0/dy

D
tqav.0/�

� � i
2
.1C rqav

� .0//
R

R.f
qav
� .yI 0//2ƒeff.y/dy

as � ! 0;(3.17)
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provided � ¤ �? � i
2
tqav.0/

R
R f

qav
� .yI 0/ƒeff.y/f

qav
C
.yI 0/dy.2 The last equality

in (3.17) follows from (2.4).
The transmission coefficient tqavC�

�
eff.k/ has a pole in the upper half-plane at

kqavC�
�
eff

, the solution of the implicit equation

(3.18) k D i
�2

2
tqav.k/

Z 1
�1

f qav
� .yI k/ƒeff.y/f

qav
C
.yI k/dy C O.�4/:

It follows that HqavC�
�
eff

has an eigenvalue at E�
�
eff D .kqavC�

�
eff
.�//2 < 0. Finally,

Lemma B.1 and an application of Rouché’s theorem imply that tqavCq� .k/ has a
pole near kqavC�

�
eff.�/ on the positive imaginary axis, and a bound state

EqavCq� .�/ � EqavC�
�
eff.�/ D ŒkqavC�

�
eff.�/�2 < 0:

We now consider this result in the context of a particular family of potentials.
Consider the family of operators h.g/ D �@2x�g sech2.x/. Let gN D N.N C 1/,
N D 0; 1; 2; : : : . For gN � g < gNC1, the operator h.g/ has precisely N
bound states. At the transition values, h.gN / has a zero energy resonance and
th.gN /.0/ ¤ 0. The family of potentials for the values gN , N D 0; 1; 2; : : : , are
called reflectionless potentials since jt .k/j � 1 and r˙.k/ � 0, k 2 R; see [1].
These potentials are well-known for their role as soliton solutions of the Korteweg–
de Vries equation.

Consider the case of the one-soliton potential, corresponding to N D 1. Here,

V1.x/ D �2�
2 sech2.�.x � x0// where x0 satisfies C D 2� exp.2�x0/:

In this case, the transmission coefficient satisfies
1

tV1.k/
D lim
x!�1

f
V1
C
.xI k/e�ikx D

k � i�

k C i�
:

As for the Jost solutions, one has (setting x0 D 0 for simplicity)

f
V1
C
.xI k/ D eikx

�
1 �

2i�

k C i�

e�x

ex C e�x

�
:

Since the V1 is reflectionless, one has by (2.5)

f V1� .xI k/ D 0C
1

tV1.k/
f
V1
C
.xI �k/ D

1

tV1.k/
e�ikx

�
1 �

2i�

�k C i�

e�x

ex C e�x

�
:

In this case, there exists a pole of tV1C�
�
eff.k/, and similarly a pole of tV1Cq� .k/,

located around

k D i
�2

2

Z 1
�1

tV1.0/f V1� .yI 0/ƒeff.y/f
V1
C
.yI 0/dy C O.�3/;

D i
�2

2

Z 1
�1

tanh2.y/ƒeff.y/dy C O.�3/; � ! 0:

2 Note that �? lies in the positive imaginary axis. Indeed, f qav
� . � I 0/ 2 R and r�.0/ 2 R by (2.9),

and one has r�.0/C 1 � 0, since jr�.0/j � 1; see (2.7).
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Finally, HV1Cq� and HV1C��eff
have a bound state with energy

E D �
�4

4

�Z
R

tanh2.y/ƒeff.y/dy
�2
C O.�5/; � ! 0:

3.3 Results for Generic Potentials qav and Their Highly Oscillatory Pertur-
bations

In this section, we study the case where qav is a generic potential in the sense of
Section 2. In this case tqavCq� .k/ converges uniformly to tqav.k/ in a neighborhood
of k D 0 [6]. More precise information is contained in the following corollary, a
direct consequence of Lemma B.1, and Theorem 3.3.

COROLLARY 3.9. Let V�.x/ D qav.x/ C q�.x/ D qav.x/ C q.x; x=�/ satisfy
Hypotheses (V) with qav generic in the sense of Definition 2.1, and k 2 K satisfy
Hypotheses (K). Then for k and � small enough, one hasˇ̌

tqavC�
�
eff.k/

ˇ̌
� C0jkj;(3.19) ˇ̌

tqavCq� .k/
ˇ̌
� C0jkj;(3.20) ˇ̌

tqavCq� .k/ � tqavC�
�
eff.k/

ˇ̌
� C0�

3
jkj;(3.21)

with C0 D C0.MK/, MK D max.1; supk2K jt
qav.k/j/.

PROOF. In the case of generic potentials qav, we know from [5] that there exists
a constant aqav such that

tqav.k/ D aqavk C o.k/ as k ! 0:

It follows that for k sufficiently small, there exists a positive constant C0 such
that jk.tqav.k//�1j � C0 > 0. Estimate (3.19) follows then straightforwardly from
Lemma B.1 when � is sufficiently small. Now, applying Theorem 3.3, one hasˇ̌
tqavC�

�
eff.k/ � tqavCq� .k/

ˇ̌
D

ˇ̌̌̌
k

tqavC�
�
eff.k/

�
k

tqavCq� .k/

ˇ̌̌̌ ˇ̌̌̌
tqavC�

�
eff.k/tqavCq� .k/

k

ˇ̌̌̌
� C0�

3
jtqavCq� .k/j:

Estimate (3.20) and then (3.21) follow easily. This concludes the proof. �

4 Behavior of the Transmission Coefficient, Uniformly in k 2 R

In this section we focus on the properties of tq� .k/, which hold uniformly in
k 2 R. The results presented in Section 2 are valid for k 2 R, and under the less
stringent condition V 2 L 1

2 .R/ D fV W .1C jxj/
2V.x/ 2 L1.R/g. Most of these

results can be found in [5]. Our required bounds on the Jost solutions f V
˙

are given
in Lemma A.1.

Since k is constrained to the real axis, we find that we can relax the assumption
of exponential decay on the potential V� D V.x; x=�/.
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Hypotheses (V0)
V.x; y/ is a real-valued potential of the form

V.x; y/ D qav.x/C q.x; y/ D qav.x/C
X
j¤0

qj .x/e
2�i�jy

such that the sequence of nonzero (distinct) frequencies f�j gj2Znf0g satisfies (3.3),
and the coefficients fqj .x/gj2Znf0g satisfy the decay and regularity assumptions

(4.1)
>>>>>>V>>>>>> � jqavjW 1;1

2

C

X
j2Znf0g

jqj jW 3;1
3

<1:

We first investigate the difference between the transmission coefficients tqavCq� .k/

and tqavC�
�
eff.k/, where ��eff is defined as in Theorem 3.3. The proof of the following

theorem is analogous to that of Theorem 3.3 (Section 6). We omit the proof for the
sake of brevity.

THEOREM 4.1 (Transmission Coefficient tV� .k/ for k 2 R). Assume V�.x/ D
V.x; x=�/ satisfies Hypotheses (V0). Assume k 2 R, jkj � 1. Then the following
holds:

(1) There exists �0 > 0 such that for all j�j < �0, tqavCq� .k/ is uniformly ap-
proximated by the transmission coefficient tqavC�

�
eff.k/ for HqavC�

�
eff

. Here
��eff.x/ denotes the effective potential well defined in (3.6).

Moreover, there is a constant C.
>>>>>>V>>>>>>/, independent of � and k, such

that

sup
k2R;jkj�1

ˇ̌̌̌
k

tqavC�
�
eff.k/

�
k

tqavCq� .k/

ˇ̌̌̌
� �3C.

>>>>>>V>>>>>>/:(4.2)

(2) Assume qav � 0 so that HV� D �@
2
x C q.x; x=�/, where y 7! q.x; y/ has

mean zero. Then, applying (4.2) and Corollary B.2, we have

(4.3) tq� .k/ D
k

k � i
2
�2
R

Rƒeff C O.�3/
:

In the following, we are able to control the difference between tqavCq� .k/ and
tqavC�

�
eff.k/ for large real wave number, jkj � 1. This allows, in particular, control

of the difference between tqavCq� .k/ and tqavC�
�
eff.k/ when the averaged potential

qav � 0, uniformly in k 2 R.

PROPOSITION 4.2. Let V� � V.x; x=�/ � qav C q� with V satisfying Hypotheses
(V0), and let ��.x/ denote any potential for whichZ

j��.y/j.1C jyj/dy � �2C� :

Then, for k 2 R n f0g, one has

(4.4)
ˇ̌
tqavCq� .k/ � tqavC�

�

.k/
ˇ̌
� �2jkj�1C.

>>>>>>V>>>>>> ; C� /;
where

>>>>>>V>>>>>> is defined in (4.1).
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Remark 4.3. We shall apply this proposition to ��.x/ D ��eff.x/, defined in (3.6),
for which one has C� D O.

>>>>>>V>>>>>>/.
PROOF. Recall the identity (2.19), relating the transmission coefficients of any

potentials V;W 2 L 1
2 :

(4.5)
k

tV .k/
D

k

tW .k/
�
I ŒV;W �.k/

2i

with I ŒV;W �.k/ �
Z 1
�1

f W� .yI k/.V �W /.y/f VC .yI k/dy:

Since tqavCq� � tqavC�
�

D ŒtqavCq� � tqav �C Œtqav � tqavC�
�

�, we estimate the two
bracketed terms independently.

We begin by comparing the transmission coefficients for W � qav and V �
qav C �

�. We have by (4.5)

k

tqavC�� .k/
�

k

tqav.k/
D �

1

2i
I ŒqavC�

�;qav�.k/

D �
1

2i

Z 1
�1

f qav
� .yI k/��.y/f

qavC�
�

C
.yI k/dy:

(4.6)

Using the estimates of Lemma A.2, we obtainˇ̌̌̌ Z 1
�1

f qav
� .yI k/��.y/f

qavC�
�

C
.yI k/dy

ˇ̌̌̌
� �2C� :(4.7)

From (4.6) and (4.7) we have

(4.8)
ˇ̌
tqavC�

�

.k/ � tqav.k/
ˇ̌
� �2jkj�1C�

ˇ̌
tqav.k/tqavC�

�

.k/
ˇ̌
:

Using the general relation jtV .k/j � 1, for any k 2 R (see (2.7)), we obtainˇ̌
tqavC�

�

.k/ � tqav.k/
ˇ̌
� �2jkj�1C� :

We now turn to the comparison of the transmission coefficients of V � qavCq�
and W � qav. Proceeding similarly, we have

(4.9)
k

tqavCq� .k/
�

k

tqav.k/
D �

1

2i
I Œqav;qavCq��.k/

where I Œqav;qavCq��.k/ �

Z 1
�1

f qav
� .yI k/q�.y/f

qavCq�
C

.yI k/dy:
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Two integrations by parts yield

I Œqav;qavCq��.k/

D

X
j¤0

Z 1
�1

qj .y/e
2i��jy=�f qav

� .yI k/f
qavCq�
C

.yI k/dy

D

X
j¤0

�
��

2i��j

�2 Z 1
�1

@2y
�
qj .y/f

qav
� .yI k/f

qavCq�
C

.yI k/
�
e2i��jy=� dy:

Using the estimates of Lemma A.1 and Hypotheses (V0), one sees that the integrand
is bounded. Indeed, one has

ˇ̌
I Œqav;qavCq��.k/

ˇ̌
�

X
j¤0

�
�

2��j

�2 Z 1
�1

ˇ̌
@2y
�
qj .y/f

qav
� .yI k/f

qavCq�
C

.yI k/
�ˇ̌

dy

� �2C
�
jqavjL 1

2

�X
j¤0

� Z 1
�1

ˇ̌
@2yqj .y/

ˇ̌.1C jyj/2
.1C jkj/2

dy

C

Z 1
�1

ˇ̌
@yqj .y/

ˇ̌.1C jyj/2
1C jkj

dy

C

Z 1
�1

jqj .y/j.1C jyj/
2 dy

�
� �2C.jqavjL 1

2
/
X
j¤0

jqj jW 1;1
2

:

Arguing as in (4.8), we deduceˇ̌
tqavCq� .k/ � tqav.k/r

ˇ̌
� �2jkj�1C.

>>>>>>V>>>>>>/jtqav.k/tqavCq� .k/j

� �2jkj�1C.
>>>>>>V>>>>>>/:

This completes the proof of Proposition 4.2. �

The following corollary follows from Theorem 4.1 and Proposition 4.2.

COROLLARY 4.4. Let V� D q� D q.x; x=�/ (q D 0) satisfy Hypotheses (V0).
Then

(4.10) sup
k2R

ˇ̌
t�
�
eff.k/ � tq� .k/

ˇ̌
D O.�/; � ! 0:

PROOF. The behavior for k small is controlled as in Corollary 3.5. Condi-
tions (3.8) and (3.10) hold in particular when we restrict to real wave numbers,
k 2 R. Therefore, one sees from (3.12) and (3.13) that the difference between
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tq� .k/ and t�
�
eff.k/ is small, uniformly for jkj � 1, k 2 R:

sup
k2R
jkj�1

ˇ̌
t�
�
eff.k/ � tq� .k/

ˇ̌
� C

�3

�2 C jkj
;

where C D C.MK/ and MK D max.1; supk2R jt
0.k/j/ D 1. The difference is

controlled for jkj � 1 by Proposition 4.2, and Corollary 4.4 follows. �

5 Detailed Dispersive Time Decay of exp.�iHq�
t/ 0;

Effect of a Pole of tq�.k/ near k D 0
In this section we use our detailed results on tq� .k/ to prove time decay esti-

mates of the Schrödinger equation:

(5.1) i@t D HV � �@
2
x C V.x/ ;  .x; 0/ D  0;

for initial conditions  0, which are orthogonal to the bound states of Hq� .
Let V 2 L 1

1 . Then it is known thatHV has no singular continuous spectrum, no
positive (embedded) eigenvalues, and its absolutely continuous spectrum is Œ0;1/;
see, for example, [5]. In general, HV may have a finite number of negative eigen-
values that are simple: EN < � � � < E0 < 0. We denote by uj the eigenvector
associated to the eigenvalue Ej , normalized to have L2 norm equal to 1. By the
spectral theorem, the solution of (5.1) can be decomposed as follows:

 .x; t/ D e�itHV 0 D

NX
jD0

e�itEj . 0; uj /uj C e
�itHV Pc 0;

where Pc denotes the projection onto the continuous spectral subspace of H .
exp.�i tHV /Pc 0 is a scattering state that spatially spreads and temporally

decays: je�itHV Pc 0jL1x ! 0 as t ! 1. In the case V.x/ � 0, we have
 .x; t/ D exp.i t@2x/ 0 D Kt ?  0; where jKt .x/j � .4�t/�1=2. It follows
immediately that je�itH0Pc 0jL1x � C jt j�1=2j 0jL1 : This jt j�1=2 decay rate
is associated with the potential V � 0 being nongeneric. For generic potentials
the decay estimate is more rapid: je�itHV Pc 0jL1x D O.t�3=2/; see [7, 13].
In [2, 15] the time decay of spatially weighted L2 norms is studied.

Question: What is the precise behavior of the e�itHq�Pc 0 when
q� is a highly oscillatory potential, q�.x/ � q.x; x=�/? In partic-
ular, what is the influence of the low-energy bound state induced
by the effective potential well (equivalently, the complex pole of
tq� .k/ near k D 0) on the dispersive decay properties?

Using the preceding analysis we can prove the following:
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THEOREM 5.1 (Dispersive Decay Estimate for exp.�iHq� t /). Let V� D q�.x/ D

q.x; x=�/ satisfy Hypotheses (V0) with qav � 0, and  0 2 L 1
3 . There exists con-

stants C D C.
>>>>>>V>>>>>>/ > 0 and �0 > 0 such that for 0 < � < �0,ˇ̌

.1C jxj/�3.e�itHq�Pc 0/.x; t/
ˇ̌
� C

1

t1=2

1

1C �4.
R

Rƒeff/2t
j 0jL 1

3
:(5.2)

Remark 5.2. We expect that an analogous result holds for V� D qav.x/Cq.x; x=�/,
where qav is any nongeneric potential.

Remark 5.3. As a consequence of our proof, a decay estimate like (5.2) holds in
the case of small potentials: V � �Q, with

R
Q ¤ 0 and � sufficiently small:ˇ̌

.1C jxj/�3.e�itH�QPc 0/.x; t/
ˇ̌
� C

1

t1=2

1

1C �2.
R

RQ/
2t
j 0jL 1

3
:

PROOF OF THEOREM 5.1. We follow the method of [7, 13]. In particular, the
starting point of our analysis is the spectral theorem for H : Pc� D F?F�;

with F and F? the distorted Fourier transform and its adjoint, bounded operators
on L2:

F W � 7! F Œ��.k/ �

Z
R

�.x/‰.xI k/dx;

F?
W ˆ 7!

Z C1
�1

ˆ.k/‰.xI k/dk;

and

‰.xI k/ �
1
p
2�

(
t .k/f

q�
C
.xI k/; k � 0;

t.�k/f q�� .xI �k/; k < 0:

Consider the representation for the continuous spectral part of  .x; t/,  c.x; t/ D
Pc .x; t/:

 c.t; x/ D e
�itHq�Pc 0 D F?e�itk

2

F 0

D
1

2�

Z 1
0

e�ik
2t
jtq� .k/j2F.xI k/dk;

with

F.xI k/ D

Z 1
�1

�
f
q�
C
.xI k/f

q�
C
.yI k/C f q�� .xI k/f q�� .yI k/

�
 0.y/dy:

This representation makes explicit the role of tq�.k/ in the time evolution.
We next decompose  c.x; t/ into its high- and low-frequency components, re-

spectively, i.e., components near and far away from the edge of the continuous
spectrum, respectively. Introduce the smooth cutoff function � defined by

�.k/ �

(
0 for jkj � 2k0;
1 for jkj � k0:
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Here we set k0 D 1C
>>>>>>V>>>>>>, motivated by the high-frequency analysis of [13].

Using �.k/, we decompose into high- and low-energy components  high and  low:

 c.t; x/ D  low.x; t/C  high.x; t/

D

Z 1
0

�e�ik
2t
jtq� .k/j2F.xI k/

dk
2�

C

Z 1
0

.1 � �/e�ik
2t
jtq� .k/j2F.xI k/

dk
2�
:

(5.3)

 high can be estimated without regard to whether V is generic. We refer to propo-
sition 3 of [7] and theorem 3.1 of [13] for the following estimate:

j.1C jxj/�1 highjL1x D
ˇ̌
.1C jxj/�1e�itHq� .1 � �.H//Pc 0

ˇ̌
L1x

� C jt j�3=2j 0jL 1
1
;

(5.4)

where C depends on jq�jL11 and is bounded, independently of �.
To estimate the low-energy component  low, we make use of estimates on the

Jost solutions f q�
˙
.xI k/ and use the precise behavior of tq� .k/ obtained in Corol-

lary 4.4. We first obtain O.t�1=2/ decay, uniformly for �. In a second step, we
obtain the precise behavior in the statement of Theorem 5.1 for � small.

Let us decompose  low into contributions from frequencies in the ranges

0 � k �
k0
p
t

and
k0
p
t
� k � 2k0:

In terms of the cutoff function �, we have

 low D
1

2�

Z 1
0

�.k
p
t /�.k/e�ik

2t
jtq� .k/j2F.xI k/dk

C
1

2�

Z 1
0

.1 � �.k
p
t //�.k/e�ik

2t
jtq� .k/j2F.xI k/dk

D  
.i/
low.x; t/C  

.i i/
low .x; t/:(5.5)

A straightforward estimate of  .i/low gives

(5.6)
ˇ̌
 
.i/
low.x; t/

ˇ̌
�

1

2�

Z 2k0=
p
t

0

jtq� .k/j2F.xI k/dk �
k0

�

1

t1=2
sup
k2R
jF.x; k/j:

To estimate  .i i/low , we integrate by parts:

 
.i i/
low .x; t/ D

�1

4�it

Z 1
0

e�ik
2t@k..1 � �.k

p
t //�.k/k�1jtq� .k/j2F.xI k//dk:

Note that there is no boundary contribution from k D 1, since �.k/ is compactly
supported, and no boundary contribution from k D 0, since jtq� .0/j D 0; q� is
generic if � is small enough, by Corollary 3.4.
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Since �.x; k/ � 0 for k � 2k0 and 1 � �.k
p
t / � 0 for k � k0=

p
t , it follows

that

ˇ̌
 
.i i/
low .x; t/

ˇ̌
�
C

t

Z 2k0

k0=
p
t

ˇ̌̌̌
jtq� .k/j2F.xI k/@k

�
�.k/

1 � �.k
p
t /

2ik

�ˇ̌̌̌
C

ˇ̌̌̌
@kŒjt

q� .k/j2F.xI k/�

k

ˇ̌̌̌
dk

�
C

t
sup
k2R
jF.xI k/j

Z 2k0

k0=
p
t

p
t
j�0.k

p
t /j

k
C

1

k2
dk

C
C

t

Z 2k0

k0=
p
t

ˇ̌̌̌
@kŒjt

q� .k/j2F.xI k/�

k

ˇ̌̌̌
dk:

Note that

p
t

Z 2k0

k0=
p
t

j�0.k
p
t /j

k
dk D

p
t

Z 2k0
p
t

k0

j�0.´/j

´
d´ D O.

p
t /;

since �0.´/ vanishes near 0 and is of compact support. Therefore,

ˇ̌
 
.i i/
low .x; t/

ˇ̌
�
C.1C k�10 /

t1=2
sup
k2R
jF.xI k/j

C
C

t

Z 2k0

k0=
p
t

ˇ̌̌̌
@kŒjt

q� .k/j2F.xI k/�

k

ˇ̌̌̌
dk:

(5.7)

Estimates (5.6) and (5.7) are bounded thanks to uniform (in �) control of tq� .k/,
F.xI k/, and their k-derivatives, which are given in (5.18) and Lemma 5.4 below.
It follows then from (5.5) that

(5.8) j.1C jxj/�3 low.x; t/j � C.
>>>>>>V>>>>>>/ 1

t1=2
j 0jL 1

3
:

We now refine (5.8) by carefully considering the �-dependence for � small at
t � 1. In order to achieve a O.t�3=2/ estimate, we first integrate by parts:

 low D
�1

4�it

Z 1
0

e�ik
2t@k.�.k/k

�1
jtq� .k/j2F.xI k//dk

�
�1

4�it

Z 1
0

e�ik
2tG.xI k/dk:

Note again, as above, that there are no boundary contributions from k D 1 or,
for � small, from k D 0, by genericity of q�. We now decompose  low further into
contributions from frequencies in ranges 0 � k � k0=

p
t and k0=

p
t � k � 2k0:
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In terms of the cutoff function �, we have

 low D
�1

4�it

Z 1
0

�.k
p
t /e�ik

2tG.xI k/dk

C
�1

4�it

Z 1
0

.1 � �.k
p
t //e�ik

2tG.xI k/dk

D  
.1/
low.x; t/C  

.2/
low.x; t/:

(5.9)

Estimation of  .1/low gives

(5.10)
ˇ̌
 
.1/
low.x; t/

ˇ̌
�

1

4�t

Z 2k0=
p
t

0

jG.xI k/jdk �
k0

�

1

t3=2
sup
k2R
jG.xI k/j:

To estimate  .2/low , we subject it to one further integration by parts:

 
.2/
low.x; t/ D

1

4�t2

Z 1
0

e�ik
2t @

@k

�
1 � �.k

p
t /

2ik
G.xI k/

�
dk:

Since G.xI k/ � 0 for k � 2k0, it follows thatˇ̌
 
.2/
low.x; t/

ˇ̌
�
C

t2

Z 2k0

k0=
p
t

ˇ̌̌̌
G.xI k/

@

@k

�
1 � �.k

p
t /

2ik

�ˇ̌̌̌
C

ˇ̌̌̌
@kG.xI k/

k

ˇ̌̌̌
dk

�
C

t2
sup
k2R
jG.xI k/j

Z 2k0

k0=
p
t

p
t
j�0.k

p
t /j

k
C

1

k2
dk

C
C

t2

Z 2k0

k0=
p
t

ˇ̌̌̌
@kG.xI k/

k

ˇ̌̌̌
dk:

Note again that

p
t

Z 2k0

k0=
p
t

j�0.k
p
t /j

k
dk D

p
t

Z 2k0
p
t

k0

j�0.´/j

´
d´ D O.

p
t /;

since �0.´/ vanishes near 0 and is of compact support. Therefore,ˇ̌
 
.2/
low.x; t/

ˇ̌
�
C.1C k�10 /

t3=2
sup
k2R
jG.xI k/j C

C

t2

Z 2k0

k0=
p
t

ˇ̌̌̌
@kG.xI k/

k

ˇ̌̌̌
dk:(5.11)

We now use the following two bounds, proved below, to complete our estimation
of  .1/low.x; t/ and  .2/low.x; t/:

jG.xI k/j � C.
>>>>>>V>>>>>>/ 1C jxj2

k2 C �4.
R
ƒeff/2

� C.
>>>>>>V>>>>>>/ 1C jxj2

�4.
R
ƒeff/2

j 0jL 1
2
;

(5.12)

j@kG.xI k/j � C.
>>>>>>V>>>>>>/ 1C jxj3

k.k2 C �4.
R
ƒeff/2/

ˇ̌
 0
ˇ̌
L 1
3

:(5.13)
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Using these bounds in (5.10) and (5.11), we obtain

.1C jxj2/�1
ˇ̌
 
.1/
low.x; t/

ˇ̌
� C.

>>>>>>V>>>>>>/t� 32 1

�4.
R

Rƒeff/2
j 0jL 1

2
(5.14)

and

.1C jxj3/�1
ˇ̌
 
.2/
low.x; t/

ˇ̌
� C.

>>>>>>V>>>>>>/t�2 Z 2k0

k0=
p
t

1

k2.k2 C �4.
R
ƒeff/2/

dkj 0jL 1
3

� C.
>>>>>>V>>>>>>/ 1

k0t1=2

Z 2
p
t

1

1

l2
dl

k20 l
2 C �4.

R
ƒeff/2t

j 0jL 1
3

� C.
>>>>>>V>>>>>>/ 1

k0t1=2

1

k20 C �
4.
R
ƒeff/2t

Z 2
p
t

1

1

l2
dl j 0jL 1

3

� C.
>>>>>>V>>>>>>/ 1

k0 t1=2

1

k20 C �
4.
R
ƒeff/2t

j 0jL 1
3
:(5.15)

Finally, one has from (5.9), (5.14), and (5.15) the estimate

(5.16)
ˇ̌
.1C jxj/�3 low.x; t/

ˇ̌
� C.

>>>>>>V>>>>>>/ t�3=2

�4.
R
ƒeff/2

j 0jL 1
3
:

Theorem 5.1 is a consequence of (5.4), (5.8), and (5.16).
We conclude the proof by establishing (5.12)–(5.13). This requires sharp esti-

mates on the transmission coefficient and the Jost solutions, as well as their deriva-
tives. These estimates are given in lemmata 3.6 and 3.9 of [2] for any generic V
sufficiently decreasing at infinity. We shall adapt the estimates to V� � V.x; x=�/.

The estimates concerning the Jost solutions are uniform with respect to �. In
particular, one has from lemma 3.6 of [2]:

sup
k2R

ˇ̌
@
j

k

�
e�ikxf

V�
C
.xI k/

�ˇ̌
� C

�
jV�jL 1

3

�
.1Cmax.0;�x//jC1;

sup
k2R

ˇ̌
@
j

k

�
eikxf V�� .xI k/

�ˇ̌
� C

�
jV�jL 1

3

�
.1Cmax.0; x//jC1;

(5.17)

with j D 0; 1; 2. Therefore,

(5.18)
ˇ̌
@
j

k
F.xI k/

ˇ̌
� C

�
jV�jL 1

3

�
.1C jxjjC1/j 0jL 1

jC1
; j D 0; 1; 2:

Estimates (5.12)–(5.13) are now a direct consequence of the following lemma, to-
gether with (5.18).

LEMMA 5.4. Let V� D V.x; x=�/ satisfy Hypotheses (V0), with qav � 0. Then
for � small enough, one hasˇ̌

@
j

k
tV� .k/

ˇ̌
� C.

>>>>>>V>>>>>>/ˇ̌̌̌ k1�j

k C �2
R
ƒeff

ˇ̌̌̌
;

with j D 0; 1; 2.
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PROOF. The estimate for j D 0 is a consequence of Corollary 4.4 with the
estimate (B.2). Estimates on the derivatives are obtained by deriving identity (2.10)
with respect to k. We recall

tV� .k/ D
2ik

2ik � IV� .k/
where IV� .k/ �

Z 1
�1

V�.y/e
�ikyf

V�
C
.yI k/dy

so that

@kt
V� .k/ D

2i

2ik � IV� .k/
�
2ik.2i � @kI

V� .k//

.2ik � IV� .k//2

D
tV� .k/

k
�
.tV� .k//2.2i � @kI

V� .k//

2ik
:

Using (5.17), one controls uniformly @kIV� .k/, so thatˇ̌
@kt

V� .k/
ˇ̌
�
jtV� .k/j

k
.1C C jtV� .k/j/ � C.

>>>>>>V>>>>>>/ˇ̌̌̌ 1

k C �2
R
ƒeff

ˇ̌̌̌
:

The second derivative in k follows in the same way.
This completes the proof of Theorem 5.1 . �

6 The Effective Potential � �eff.x/; Proof of Theorem 3.3

As discussed in the introduction, for small jkj, tqavCq� .k/ is not uniformly ap-
proximated by the transmission coefficient of the homogenized (averaged) poten-
tial qav.x/ D

R 1
0 V.x; y/dy for � small. In this section we prove for k bounded that

a uniform approximation can be achieved comparing tqavCq� .k/ to the transmission
coefficient of an appropriate effective potential well:

(6.1) V eff
� .x/ D qav.x/C �

�
eff.x/

where ��eff.x/ � � �
2ƒeff.x/ � �

�2

.2�/2

X
j¤0

jqj .x/j
2

�j
2

:

The point of departure for the analysis is the identity (2.19), with the choices
V D qav C q� and W D qav C � :

(6.2)
k

tqavCq� .k/
�

k

tqavC� .k/
D
i

2
I ŒqavCq�;qavC��.k/

with

(6.3) I ŒqavCq�;qavC��.k/ �

Z 1
�1

f qavC�
� .yI k/.q�.y/ � �.y//f

qavCq�
C

.yI k/dy:

Here �.x/ is unspecified and to be chosen so that I ŒqavCq�;qavC�� is sufficiently
high order in �. The main step in the proof is the following:
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PROPOSITION 6.1. Let V� � qav.x/ C q.x; x=�/ satisfy Hypotheses (V), and
k 2 K satisfy Hypotheses (K). Define the effective potential ��eff 2 L

1
ˇ

by the
expression in (6.1). Then there exists �0 > 0 such that the following bound holds
uniformly for .�; k/ 2 Œ0; �0/ �K:

(6.4) I ŒqavC�
�
eff;qavCq��.k/ � �3C.

>>>V>>> ; sup
k2K

jkj/max.1; sup
k2K

jtqav.k/j/:

Theorem 3.3 is then a consequence of the bound (6.4) applied to the right-hand
side of (6.2). We now turn to derivation of the effective potential well ��eff and the
proof of Proposition 6.1.

6.1 The Heart of the Matter; Derivation of Effective Potential Well � �eff.x/
and Proof of Proposition 6.1

To prove Proposition 6.1 we need to bound I ŒqavC�
�
eff;qavCq��, given by the inte-

gral expression in (6.3). We seek a decomposition of the integrand into oscillatory
and nonoscillatory terms. Oscillatory terms can be integrated by parts to obtain
bounds of high order in �. Nonoscillatory terms are removed by an appropriate
choice of �.x/.

We begin with f qavCq�
C

. Using the Volterra equation (2.16) with V D qav C q�
and W D qav, one has

(6.5) f
qavCq�
C

.xI k/ D f
qav
C
.xI k/C J Œqav; q��.xI k/;

where

(6.6) J Œqav; q��.�I k/ �Z 1
�

q�.y/
f
qav
C
.�I k/f qav

� .yI k/ � f qav
� .�I k/f

qav
C
.yI k/

W Œf
qav
C
; f qav
� �

f
qavCq�
C

.yI k/dy:

Therefore,

.q�.�/ � �.�//f
qavCq�
C

.�I k/ D q�.�/f
qav
C
.�I k/ � �.�/f

qavCq�
C

.�I k/

C q�.�/J Œqav; q��.�I k/;

implying that I ŒqavC�;qavCq��, given by (6.3), can be written as

I ŒqavC�;qavCq�� D

Z 1
�1

f qavC�
� .�I k/

�
�
q�.�/f

qav
C
.�I k/ � �.�/f

qavCq�
C

.�I k/

C q�.�/J Œqav; q��.�I k/
�
d�:

(6.7)

We next show that there exists a natural choice, � D ��eff.x/ D O.�2/, such that
the contribution of

��.�/f
qavCq�
C

.�I k/C q�.�/J Œqav; q��.�I k/
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to the integral (6.7) is of order O.�3/ for � sufficiently small.

LEMMA 6.2 (Cancellation Lemma). Let V.x; y/ satisfy Hypotheses (V), and k 2
K satisfy Hypotheses (K). Define

(6.8) ��eff.x/ D �
�2

.2�/2

X
j¤0

jqj .x/j
2

�j
2
D ��2ƒeff.x/:

Then, there exists �0 > 0 and C.V;K/ D C.
>>>V>>> ; supk2K jkj/ such that

���eff.�/f
qavCq�
C

.�I k/C q�.�/J Œqav; q��.�I k/

D �2
X
j¤0

zqj .�/e
2i��j �=� C �2

X
j;l¤0
jCl¤0

zqj;l.�/e
2i�.�jC�l /�=�

C �3q�.�/R
�.�I k/;

where the following estimates hold for any .�; k/ 2 Œ0; �0/ �K:X
j;l¤0
jCl¤0

�
jzqj;l.�/e

ˇ j� j
j C jzq0j;l.�/e

ˇ j� j
j C jzq00j;l.�/e

ˇ j� j
j
�
� C.V;K/;

jR�.�I k/j C
X
j¤0

�
jzqj .�/e

ˇ j� j
j C jzq0j .�/e

ˇ j� j
j C jzq00j .�/e

ˇ j� j
j
�
�

C.V;K/MK.1C j�j
2/e˛j� j;

for ˇ > 2˛. Therefore, one has

I ŒqavC�
�
eff;qavCq��.k/

D

Z 1
�1

f qavC�
�
eff

� .�I k/
�
q�.�/f

qav
C
C �2

X
j¤0

zqj .�/e
2i��j �=�

C �2
X
j;l¤0
jCl¤0

zqj;l.�/e
2i�.�jC�l /�=�

C �3q�.�/R
�.�I k/

�
dy:

(6.9)

Lemma 6.2 is proved in the next section. We first apply it to conclude the proof
of Theorem 3.3. In succession, each term in (6.9) is controlled, for k 2 K, by the
bounds of the following:
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LEMMA 6.3. Let V.x; y/ satisfy Hypotheses (V), and k 2 K satisfy Hypotheses
(K); then one hasˇ̌̌̌ Z 1

�1

f qavC�
�
eff

� .�I k/q�.�/f
qav
C .�I k/d�

ˇ̌̌̌
� �3C.

>>>V>>>; sup
k2K

jkj/;

X
j¤0

ˇ̌̌̌ Z 1
�1

f qavC�
�
eff

� .�I k/zqj .�/e
2i��j �=� d�

ˇ̌̌̌
� �2MKC.

>>>V>>> ; sup
k2K

jkj/;

X
j;l¤0
jCl¤0

ˇ̌̌̌ Z 1
�1

f qavC�
�
eff

� .�I k/zqj;l .�/e
2i�.�jC�l /�=� d�

ˇ̌̌̌
� �2C.

>>>V>>> ; sup
k2K

jkj/;

ˇ̌̌̌ Z 1
�1

f qavC�
�
eff

� .�I k/ q�.�/R
�.�I k/d�

ˇ̌̌̌
�MKC.

>>>V>>> ; sup
k2K

jkj/;

where C.
>>>V>>> ; supk2K jkj/ and MK D max.1; supk2K jt

qav.k/j/ are indepen-
dent of � 2 Œ0; �0/.

We obtain the desired O.�3/ bound on I ŒqavC�
�
eff;qavCq��.k/ by applying Lem-

ma 6.3 to (6.9). Proposition 6.1 and therefore Theorem 3.3 follow. We now turn to
the proofs of Lemmata 6.2 and 6.3, in Sections 6.2 and 6.3. �

6.2 Proof of Lemma 6.2
For ease of presentation, we will use the simplified notation for the expression

in (6.6):

J Œqav; q��.�I k/ �
X
j¤0

Z 1
�

m.�; yI k/qj .y/ e
c�jy=�f .y/d´;(6.10)

where c D 2�i , f .y/ D f qavCq�
C

.yI k/, and

m.�; yI k/ D
f
qav
C
.�I k/f qav

� .yI k/ � f qav
� .�I k/f

qav
C
.yI k/

W Œf
qav
C
; f qav
� �

:

To make explicit the smallness of certain terms due to cancellations, we shall inte-
grate by parts, keeping in mind that we do not control more than two derivatives of
f � f

qavCq�
C

. To evaluate boundary terms that arise, we shall use that

fm.�; yI k/; @ym.�; yI k/; @
2
ym.�; yI k/g

ˇ̌
yD�
D f0; 1; 0g:

We now embark on the detailed expansion. From (6.10), using integration by
parts, one has

J Œqav; q��.�I k/ �
X
j

�
�

c�j

�2�
qjf e

c�j �=� C

Z 1
�

@2y.m qjf /e
c�jy=� dy

�
:
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Decompose the integrand by using @2y.mqjf / D @2y.mqj /f C 2@y.mqj /@yf C

mqj @
2
yf . The first two terms can be integrated by parts once more. This gives,

for j ¤ 0,Z 1
�

@2y.mqj /fe
c�jy=� dy D �

�

c�j

Z 1
�

@y
�
@2y.mqj /f

�
ec�jy=� dy

� 2
�

c�j
q0j .�/f .�/e

c�j �=�;

Z 1
�

@y.mqj /@yfe
c�jy=� dy D �

�

c�j

Z 1
�

@y.@y.mqj /@yf /e
c�jy=� dy

�
�

c�j
qj .�/f

0.�/ec�j �=�:

As for the last term, we use the equation for the Jost solution f to express @2yf in
terms of f : @2yf D @2yf

qavCq�
C

D .qav C q� � k
2/f

qavCq�
C

. Thus we eventually
obtain

J Œqav; q��.�I k/

D

X
j¤0

�
�

c�j

�2�
qjf e

c�j �=� C

Z 1
�

mqj .qav C q� � k
2/f ec�j y=� dy

C
�

c�j

�X
l;m;n

clmn

Z 1
�

.@lm@mqj @
nf /ec�j y=� dy

� 2.qjf /
0ec�j �=�

��
;

(6.11)

with 0 � l; m � 3, 0 � n � 2, and clmn 2 N.
We now study each of the terms of (6.11) separately, beginning with an O.�3/

bound on the curly bracket terms in (6.11). Using the estimates of Lemmata A.2
and A.3, one has for any 0 � l; m � 3, 0 � n � 2,ˇ̌

@lym.�; yI k/@
m
y qj .y/@

n
yf

qavCq�
C

.yI k/
ˇ̌

�MKC.1C jkj
l/
�
1C jy � �j.1C jyj/.1C j�j/e˛j� je˛jyj

�
� .1C jkjn/.1C jyj/e˛jyjj@my qj .y/j:

Therefore, the contribution to J Œqav; q�� of the sum over all integrals in curly brack-
ets in (6.11) is bounded by �3MKC.

>>>V>>> ; supk2K jkj/.1C j�j/
2e˛j� j, uniformly

for k 2 K. The boundary term in the curly brackets satisfies a similar bound. Its
contribution is bounded by �3MKC.

>>>V>>> ; supk2K jkj/.
We now turn to the first two terms, in square brackets, of (6.11). Using the

Fourier decomposition of q�.x/, (1.5), one sees that there are two types of terms:
(a) terms where �l D ��j (l D �j ), q�j e�2i��jy=�, where no oscillations re-
main due to phase cancellation, and (b) contributions from terms where �l C�j ¤
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0, which are highly oscillatory for � small. In these latter terms, an additional factor
of � is gained via one more integration by parts. Specifically, one hasZ 1

�

mqj .qav C q� � k
2/fec�jy=� dy

D

Z 1
�

mqj q�jf dy

C

Z 1
�

mqjf

�
.qav � k

2/ec�jy=� C
X

l…f0;�j g

qie
c.�lC�j /y=�

�
dy:

The last terms can be integrated by parts; the resulting integral and boundary
terms are estimated as above. Finally, recalling that f D f qavCq� , we obtain

(6.12)

J Œqav; q��.�I k/

D

X
j¤0

�
�

c�j

�2�
qjf

qavCq� .�I k/ec�j �=�

C

Z 1
�

m.�; yI k/qj .y/q�j .y/f
qavCq� .yI k/dy

�
C �3R�.�I k/;

with jR�.�I k/j �MKC
�
jqj
W
3;1
ˇ

; supk2K jkj
�
.1C j�j2/e˛j� j.

Now multiply (6.12) by q�.�/ D
P
l¤0 ql.�/ exp.2�i�l�=�/ and then add the

result to ��f qavCq�
C

to obtain (decomposing again into nonoscillatory and highly
oscillatory terms and using the notation c D 2�i ):

��.�/f
qavCq�
C .�I k/C q�.�/J Œqav; q��.�I k/

D

�
��.�/C

X
j¤0

�
�

c�j

�2
qj .�/q�j .�/

�
f
qavCq�
C .�I k/

C

X
l…f0;�j g

X
j¤0

�
�

c�j

�2�
qlqj e

c.�lC�j /�=�f
qavCq�
C

�
C

X
l¤0

X
j¤0

�
�

c�j

�2�
qle

c�l�=�

Z 1
�

m.�; y/ qj .y/q�j .y/f
qavCq� .yI k/dy

�
C �3q�.�/R

�.�I k/:

(6.13)

The first term on the right-hand side of (6.13) is nonoscillatory in � for small �. We
remove it by choosing

(6.14) �.�/ D ��eff.�/ �
X
j¤0

�
�

2i��j

�2
q�j .�/qj .�/ D �

�2

4�2

X
j¤0

jqj .�/j
2

�j
2

:
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Then

���eff.�/f
qavCq�
C

.�I k/C q�.�/J Œqav; q��.�I k/

D �2
X
l¤0

zql.�/e
2i��l�=� C �2

X
j;l¤0
jCl¤0

zqj;l.�/e
2i�.�jC�l /�=�

C �3q�.�/R
�.�I k/;

which we’ve written in the form of the statement of Lemma 6.2. Here zqj .�/ and
zqj;l.�/ are given by

zql .�/ � ql .�/
X
j¤0

�
1

2i��j

�2 Z 1
�

m.�; yI k/qj q�j .y/f
qavCq�
C .yI k/dy;(6.15)

zqj;l .�/ �

�
1

2i��j

�2
ql .�/qj .�/f

qavCq�
C .�I k/:(6.16)

To conclude, we verify the necessary estimates on zqj and zqj;l.�/, and their first
and second derivatives.

As for (6.15), we use Lemmata A.2 and A.3, and obtainˇ̌̌̌ Z 1
�

m.�; yI k/qj q�j .y/f
qavCq�
C

.yI k/dy
ˇ̌̌̌
�

MKC.
>>>V>>> ; sup

k2K

jkj/.1C j�j2/e˛j� j:

For the derivatives, we use

@�

Z 1
�

m.�; yI k/qj q�j .y/f
qavCq�
C

.yI k/dy

D

Z 1
�

@2�m.�; yI k/qj q�j .y/f
qavCq�
C

.yI k/dy;

@2�

Z 1
�

m.�; yI k/qj q�j .y/f
qavCq�
C

.yI k/dy

D

Z 1
�

@2�m.�; yI k/qj q�j .y/f
qavCq�
C

.yI k/dy � qj q�j .�/f
qavCq�
C

.�I k/;

so that the integrals are uniformly bounded in the same way. As these objects are
multiplied by ql , q0l , or q00

l
, and since ql 2 W

2;1
ˇ

, it follows that

jzql.�/e
ˇ j� j
j C jzq0l.�/e

ˇ j� j
j C jzq00l .�/e

ˇ j� j
j �

MKC
�
jql jW 2;1

ˇ

; sup
k2K

jkj
�
.1C j�j2/e˛j� j;

uniformly for k 2 K.
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As for (6.16), one has

jql.�/qj .�/f
qavCq�
C

.�I k/j � jql.�/jjqjf
qavCq�
C

.�I k/j

� e�ˇ j� jjql jL1
ˇ
jqjf

qavCq�
C

. � I k/jL1

� C.
>>>V>>> ; sup

k2K

jkj/jqj jL1
ˇ
jql jL1

ˇ
e�ˇ j� j;

where we used Lemma A.2 to estimate f qavCq�
C

. The first and second derivatives
are bounded in the same way, and the double series converge.

This concludes the proof of the cancellation lemma, Lemma 6.2.

6.3 Proof of Lemma 6.3
The last estimate of Lemma 6.3 follows from bounds on R� (see Lemma 6.2)

and f qavC�
�
eff

� .yI k/ (see Lemma A.2), and the decay Hypotheses (V) on q�. One
has ˇ̌̌̌ Z 1

�1

f qavC�
�
eff

� .yI k/q�.y/R
�.yI k/dy

ˇ̌̌̌
�MKC.

>>>V>>> ; sup
k2K

jkj/

Z 1
�1

.1C jyj/3e2˛jyjjq�.y/jdy

�MKC.
>>>V>>> ; sup

k2K

jkj
�
:

To prove the �2-smallness of the second estimate of Lemma 6.3, we integrate by
parts:Z 1
�1

f qavC�
�
eff

� .yI k/zqj e
2i��j =� dy D�
�

2i��j

�2 Z 1
�1

.f qavC�
�
eff

� . � I k/zqj /
00.y/e2i��jy=� dy:

The estimate follows as previously from the bounds on zqj (Lemma 6.2) and the

ones on f qavC�
�
eff

� .yI k/ (Lemma A.2), as well as the hypotheses on �j : (3.3) in
Hypotheses (V).

The third estimate follows as previously, asZ 1
�1

f qavC�
�
eff

� .yI k/zqj;le
2i�.�jC�l /=� dy D�

�

2i�.�j C �l/

�2 Z 1
�1

.f qavC�
�
eff

� . � I k/zqj;l/
00.y/e2i��jy=� dy:
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The estimate follows, using now the bounds on zqj;l (Lemma 6.2). Finally, we use
three integrations by parts for the first estimate of Lemma 6.3:Z 1
�1

f qavC�
�
eff

� .yI k/qj .y/f
qav
C
. � I k/e

2i��j
� dy D�

i�

2��j

�3 Z 1
�1

.f qavC�
�
eff

� . � I k/qjf
qav
C
. � I k//000.y/e

2i��j y

� dy;

which is estimated using the third item of Lemma A.2, and Hypotheses (V).

Appendix A Some Useful Estimates Used Throughout the Paper
We recall that the Jost solution is defined through the Volterra equation

(A.1) f VC .xI k/ � e
ikx
D

Z 1
x

sin.k.y � x//
2ik

V .y/f VC .yI k/dy:

A detailed discussion of Jost solutions f˙.xI k/ applying to =.k/ � 0 can be found
in [5], where it is assumed that V 2 L 1

2 . We present in the following lemma the
results holding when k 2 R and deal with the analytic continuation in a complex
strip around the real axis afterwards.

LEMMA A.1. If k 2 R and V 2 L 1
2 , then one hasˇ̌

f V˙ .xI k/
ˇ̌
� C.1C jkj/�1.1C jxj/;(A.2) ˇ̌

@xf
V
˙ .xI k/

ˇ̌
� C

1C jkj.1C jxj/

1C jkj
� C.1C jxj/;(A.3) ˇ̌

@2xf
V
˙ .xI k/

ˇ̌
� jV.x/ � k2jjf VC .xI k/j � C.1C jkj/.1C jxj/;(A.4)

where C D C.jV jL 1
2
/. Moreover, if @xV 2 L 1

2 , thenˇ̌
@3xf

V
˙ .xI k/

ˇ̌
� C.1C jkj2/.1C jxj/ with C D C.jV j

W 1;1
2

/:

PROOF. As for the first two estimates, equivalent bounds are given in [5, lem-
ma 1] for the function m˙.xI k/ � f˙.xI k/e

˙ikx . The results for f˙.xI k/
follow straightforwardly. The last two estimates are a direct consequence of (A.1).

�

If e2˛jxjV 2 L1, then f˙.xI k/ has an analytic continuation to =.k/ > �˛.
Some results are presented in [12]. In this section we review and obtain the required
extensions of these results. In order to simplify the results, we also restrict k to the
complex strip j=.k/j < ˛.

LEMMA A.2. If j=.k/j < ˛ and V 2 L1
ˇ

, with ˇ > 2˛ � 0, then one hasˇ̌
f V˙ .xI k/

ˇ̌
� C.1C jxj/e˛jxj;(A.5) ˇ̌

@xf
V
˙ .xI k/

ˇ̌
� C.1C jkj/.1C jxj/e˛jxj;(A.6) ˇ̌

@2xf
V
˙ .xI k/

ˇ̌
� jV.x/ � k2j

ˇ̌
f VC .xI k/

ˇ̌
� C.1C jkj2/.1C jxj/e˛jxj;(A.7)
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where C D C.jV jL1
ˇ
/. Moreover, if V 2 W 1;1

ˇ
, thenˇ̌

@3xf
V
˙ .xI k/

ˇ̌
� C.1C jkj3/.1C jxj/e˛jxj with C D C.jV j

W
1;1
ˇ

�
:

PROOF. We prove bounds for f V
C

. Analogous bounds f V� .xI k/ are similarly
proved and are obtained from the above by replacing x by �x and x � 0 by
�x � 0, etc.

The estimates follow from the Volterra equation (A.1) satisfied by the Jost so-
lutions and make use of the following bounds: for k 2 C and for y � x, one
has

jcos.k.y � x//j C jsin.k.y � x//j � Cej=.k/j.y�x/ � Ce˛jxje˛jyj;(A.8)

jsin.k.y � x//j
jkj

� C
y � x

1C jkj.y � x/
ej=.k/j.y�x/ � C.y � x/e˛jxje˛jyj:(A.9)

By theorem XI.57 of [12], one deduces from a careful study of the iterates of the
Volterra equation (A.1) that for x � 0, one has

(A.10)
ˇ̌
f VC .xI k/ � e

ikx
ˇ̌
� e˛jxj

ˇ̌
eQk.x/ � 1

ˇ̌
� Ce˛jxj;

with Qk.x/ �
R1
x

4y
1Cjkjy

jV.y/j e2˛jyjdy. Equation (A.5) follows for x � 0.
As for the case x � 0, (A.1) yieldsˇ̌

f VC .xI k/
ˇ̌
D

ˇ̌̌̌
eikx C

Z 1
x

sin.k.y � x//
k

V.y/f VC .yI k/dy
ˇ̌̌̌

� e˛jxj C

Z 1
x

.y � x/e˛jxje˛jyjjV.y/j
ˇ̌
f VC .yI k/

ˇ̌
dy

� e˛jxj
�
1C

Z 1
0

ye˛jyjjV.y/j
ˇ̌
f VC .yI k/

ˇ̌
dy

C .�x/

Z 1
x

e˛jyjjV.y/j
ˇ̌
f VC .yI k/

ˇ̌
dy
�

� e˛jxj
�
C0 C .�x/

Z 1
x

e˛jyjjV.y/j
ˇ̌
f VC .yI k/

ˇ̌
dy
�
:

We used (A.9) for the first inequality; the last inequality follows from (A.10), with

x D 0. Therefore, one has with g.x/ �
jf V
C
.xIk/j

.C0C.�x//e˛jxj
,

jg.x/j � 1C

Z 1
x

e˛jyjjV.y/j jg.yI k/j.C0 C .�y//e
˛jyjdy:

By Gronwall’s inequality

g.x/ � exp
�Z 1

x

.C0 C .�y//e
2˛jyj
jV.y/jdy

�
� C

�
jV jL1

ˇ

ˇ̌�
:

Finally, one has

f .xI k/ � C
�
jV jL1

ˇ

ˇ̌�
.C0 C .�x//e

˛jxj
� C.1C jxj/e˛jxj;
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with C D C.jV jL1
ˇ
/. This completes the proof of (A.5).

The proof of (A.6) is similar; it is obtained by differentiation and estimation of
the Volterra integral equation (A.1). The bound (A.7) is a direct consequence of
@2xf

V
C
D .V � k2/f V

C
and the above bounds. �

LEMMA A.3. Let qav 2 W
1;1
ˇ

and k 2 K satisfy Hypotheses (K). Define

m.x; yI k/ �
f
qav
C
.xI k/f qav

� .yI k/ � f qav
� .xI k/f

qav
C
.yI k/

W Œf
qav
C
; f qav
� �

:

Then one has, for 0 � l � 3,

(A.11)
ˇ̌
@lym.x; yI k/

ˇ̌
C
ˇ̌
@lxm.x; yI k/

ˇ̌
�

CMK.1C jkj/
l
�
1C jy � xj.1C jyj/.1C jxj/e˛jxje˛jyj

�
;

where C D C.jqavjW 1;1
ˇ

/ and MK D max.1; supk2K jt
qav.k/j/ <1.

Restricting to k 2 R and assuming only qav 2 W 1;1
2 , one has for 0 � l � 3ˇ̌

@lym.x; yI k/
ˇ̌
C
ˇ̌
@lxm.x; yI k/

ˇ̌
�

C.1C jkj/l�2
�
1C jy � xj.1C jyj/.1C jxj/

�
;

where C D C.jqavjW 1;1
2

/.

PROOF. Let us start with the estimate (A.11) when l D 0. One can always
assume that y > x, since m.x; yI k/ D �m.y; xI k/. Using Taylor’s theorem with
remainder in the integral form, one has

f
qav
˙
.yI k/ D f

qav
˙
.xI k/C .y � x/

�
@yf

qav
˙
.yI k/

�ˇ̌
yDx

C
1

2

Z y

x

�
@2yf

qav
˙
.yI k/

�ˇ̌
yDt

.y � t /dt:

It follows that
m.x; yI k/ D .y � x/

C
1

2

Z y

x

f
qav
C
.xI k/f qav

� .t I k/ � f qav
� .xI k/f

qav
C
.t I k/

W Œf
qav
C
; f

qav
� �

.qav.t/ � k
2/.y � t /dt

D .y � x/C
1

2

Z y

x
m.x; t I k/.qav.t/ � k

2/.y � t /dt:

Therefore, one has with gx.y/ �
jm.x;yIk/j
jx�yj

,

gx.y/ � 1C
1

2jx � yj

Z y

x

gx.t/jx � t j jqav.t/ � k
2
jjy � t jdt

� 1C
1

2

Z y

x

gx.t/jx � t j jqav.t/ � k
2
jdt;
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since jy � t j � jy � xj for t 2 Œx; y�. By Gronwall’s inequality, one has

gx.y/ � exp
�
1

2

Z y

x

jx � t jjqav.t/ � k
2
j

�
dt � C

�
jqavjL1

ˇ

�
e
1
4
k2.y�x/2 :

Therefore, we have an estimate on jm.x; yI k/j such that jkjjx � yj � 1, uniformly
for k.

When jkjjx � yj � 1, one has from Lemma A.2

jm.x; yI k/j � C
.1C jxj/e˛jxj.1C jyj/e˛jyj

W Œf
qav
C
; f qav
� �

� CMK.1C jxj/.1C jyj/
e˛jxje˛jyj

jkj

� CMK.1C jxj/.1C jyj/jx � yje
˛jxje˛jyj;

where we used that
1

W Œf
qav
C
; f qav
� �.k/

D
tqav.k/

�2ik

from (2.6) and jtqav.k/j � MK from Hypotheses (K). The estimate (A.11), when
l D 0, is now straightforward.

Let us now look at @ym.x; yI k/. Using

@yf
qav
˙
.yI k/ D

�
@yf

qav
˙
.yI k/

�ˇ̌
yDx
C

Z y

x

�
@2yf

qav
˙
.yI k/

�ˇ̌
yDt

dt;

one has the identity

@ym.x; yI k/ D 1C

Z y

x

m.x; t I k/.qav.t/ � k
2/dt:

If jkjjx � yj � 1, we use that m.x; yI k/ is uniformly bounded and obtain

j@ym.x; yI k/j � 1C

Z y

x

jm.x; t I k/jjqav.t/ � k
2
jdt

� C.1C jx � yj C jkj2jx � yj/ � C.1C jx � yj/.1C jkj/:

When jkjjx � yj � 1, one uses the definition of m with Lemma A.2, and one
obtains as previously

j@ym.x; yI k/j � CMK.1C jkj/.1C jxj/.1C jyj/jx � yje
˛jxje˛jyj:

Estimate (A.11) follows for l D 1 by using the symmetry m.x; yI k/ D �m.y; xI k/.
Estimate (A.11) for l D 2 is straightforward when remarking that

@2ym.x; yI k/ D .qav.y/ � k
2/m.x; yI k/;

and the case l D 3 follows in the same way.
The proof when k 2 R and qav; @xqav 2 L 1

2 is identical, using the estimates of
Lemma A.1 instead of Lemma A.2. Note that MK D 1 for k 2 R, by using (2.7).

�
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Appendix B Transmission Coefficient of �.x/ � ��2ƒ.x/
In this section, we study the transmission coefficient of potentials of the form

�.x/ � ��2ƒ.x/, where ƒ 2 L1
ˇ

is independent of �. We are particularly inter-
ested in the special case where �.x/ is the effective potential

��eff.x/ � �
�2

4�2

X
j¤0

jqj .x/j
2

�j
2

;

derived earlier.

LEMMA B.1 (Transmission Coefficient tqav��
2ƒ.k/). Let qav and ƒ be any func-

tions in L1
ˇ

. Then, for k 2 K satisfying Hypotheses (K), one has

k

tqav��2ƒ.k/
D

�
k

tqav.k/
�
i�2

2

Z 1
�1

f qav
� .yI k/ƒ.y/f

qav
C .yI k/dy

�
C O.�4/:(B.1)

PROOF. We recall the identity (2.19), satisfied by the transmission coefficient
related to any potential V;W 2 L1

ˇ
:

k

tV .k/
D

k

tW .k/
�
I ŒV;W �.k/

2i

with I ŒV;W �.k/ �
Z 1
�1

f W� .yI k/.V �W /.y/f VC .yI k/dy:

Now, in the case where W � qav and V � qav � �
2ƒ.x/, one has

k

tqav��2ƒ.k/
�

k

tqav.k/
D �

i�2

2
I �.k/;

I �.k/ �

Z 1
�1

f qav
� .yI k/ƒ.y/f

qav��
2ƒ

C
.yI k/dy:

Then, the Volterra equation (2.16) with V D qav � �
2ƒ and W D qav leads to

f
qav��

2ƒ

C
.xIk/ D f

qav
C
.xIk/

� �2
Z 1
x

ƒ.y/
f
qav
C
.xIk/f qav

� .yIk/� f qav
� .xIk/f

qav
C
.yIk/

W Œf
qav
C
; f qav
� �

f
qav��

2ƒ

C
.yIk/dy:

We can then use the estimates of Lemmata A.2 and A.3, so thatˇ̌̌̌
I �.k/ �

Z 1
�1

f qav
� .yI k/ƒ.y/f

qav
C
.yI k/dy

ˇ̌̌̌
� C�2

Z 1
�1

f qav
� .yI k/ƒ.y/

Z 1
y

ƒ.´/m.y; ´I k/f
qav��

2ƒ
C

.´I k/d´ dy

� �2MKC uniformly for k 2 K:

This concludes the proof. �
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A simple consequence is the following:

COROLLARY B.2. Let qav and ƒ be functions in L1
ˇ

. Then:

(1) If qav is generic, in the sense of Definition 2.1, then qav � �
2ƒ is generic

for � sufficiently small.
(2) If qav is nongeneric and

R1
�1

ƒ.y/.f
qav
C
.yI 0//2dy ¤ 0, then qav � �

2ƒ is
generic for � sufficiently small.

(3) If qav � 0 and k 2 K satisfies Hypotheses (K), then

(B.2)
k

t��
2ƒ.k/

D k �
i�2

2

Z 1
�1

ƒ.y/dy C O.�4/;

uniformly in k 2 K. It follows that ifˇ̌̌̌
k �

i�2

2

Z 1
�1

ƒ

ˇ̌̌̌
� C max.�� ; jkj/ for � < 4; k 2 K;

then one has

(B.3)
ˇ̌̌̌
t��

2ƒ.k/ �
k

k � i�2

2

R1
�1

ƒ

ˇ̌̌̌
D O.�4�� /:

PROOF. As discussed in Section 2.2, a potential V is generic if and only if its
transmission coefficient satisfies tV .0/ D 0 or, equivalently, if limk!0 k

tV .k/
¤ 0.

Items (1) and (2) are therefore a straightforward consequence of (B.1). As for
item (3), since qav.x/ � 0, we have tqav � 1 and f qav

˙
.xI k/ D e˙ikx . The result

follows by substitution into (B.1) and straightforward computations. �
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