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Abstract. We prove the large-time asymptotic orbital stability of strictly entropic Riemann
shock solutions of first-order scalar hyperbolic balance laws under piecewise regular perturbations
provided that the source term is dissipative about endstates of the shock. Moreover, the convergence
toward a shifted reference state is exponential with a rate predicted by the linearized equations about
constant endstates.
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1. Introduction. In the present contribution, we study the large-time asymp-
totic behavior of solutions to first-order scalar hyperbolic balance laws, that is, in the
one-dimensional case,1 of the form

(1.1) \partial tu+ \partial x
\bigl( 
f(u)

\bigr) 
= g(u), u : \BbbR + \times \BbbR \rightarrow \BbbR ,

in a neighborhood of strictly entropy-admissible Riemann shocks, that is, about
strictly entropy-admissible traveling waves with profiles piecewise constant and ex-
hibiting a single discontinuity.

Equations such as (1.1) are prototypes for dynamics where only convective and
reaction effects are relevant and, as such, are ubiquitous in applications, at least as
first-order approximations in some particular regimes. In particular, when f(u) =
c(u)u and g(u) = r(u)u, it describes the evolution of a density u of point particles
moving with speed c and reacting at rate r.

In comparison with the purely conservative case encoded by homogeneous con-
servation laws (i.e., with g \equiv 0), the (local) well-posedness of the standard initial-
value (Cauchy) problem for (1.1) is not significantly altered by the addition of suffi-
ciently smooth (say locally Lipschitz) reaction terms g. In particular, the theory of
Kru\v zkov [10] applies, and there exists a unique bounded local-in-time entropy weak
solution for any bounded initial data. However, in contrast the large-time asymp-
totic behavior of the solutions is expected to be deeply impacted by the presence of
the source term, even when it does not lead to reaction blowup, for instance, when
g \in W 1,\infty (\BbbR ) or g is dissipative at infinity. This expectation is consistent with the sim-
ple observations that the purely reactive case (with f \equiv 0) assigns a distinguished role
to stable zeros of g---that is, the u \star such that g(u \star ) = 0 and g\prime (u \star ) < 0---and that
related growth and decay mechanisms are generically exponentially fast and hence
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STABILITY OF RIEMANN SHOCKS OF SCALAR BALANCE LAWS 793

much stronger than the algebraic decay involved in the purely conservative large-time
dynamics. That the reaction term plays a dominant role---at least near equilibria---is
also supported by the fact that the linearized operator about zeros of g, that is,

L =  - f \prime (u \star )\partial x + g\prime (u \star )

on, say, BUC0(\BbbR ) with domain BUC1(\BbbR ) when f \prime (u \star ) \not = 0, BUC0(\BbbR ) otherwise, is
closed densely defined with spectrum g\prime (u \star )+ i\BbbR if f \prime (u \star ) \not = 0, \{ g\prime (u \star )\} otherwise. In
other words, the spectral stability of zeros of g as equilibria of (1.1) agrees with their
stability as equilibria of the purely reactive equation. Incidentally, note that we have
used notation BUCk to denote the set of \scrC k functions whose derivatives up to order
k are bounded and uniformly continuous.

Another good grasp at new large-time phenomena (compared to the conservative
case) is already obtained from the analysis of the structure of relative equilibria,
namely, in the present case of traveling waves. Since the presence of a source term
discards self-similarity, these are the most natural candidates to serve as asymptotic
profiles or building blocks of a large-time description. Traveling waves of (1.1) are
given as u(t, x) = U(x - \sigma t) with wavespeed \sigma and waveprofile U solving

(f(U) - \sigma U)\prime = g(U) .

One striking novelty in the nonhomogeneous setting is the existence of traveling wave
solutions with nontrivial profiles, whereas in the conservative case only piecewise
constant profiles are available, and the only spatially periodic entropy-admissible
profiles are constant. The most obvious ones are obtained by picking two consec-
utive nondegenerate zeros u - and u+ of g and a speed \sigma /\in f \prime ([u - , u+]) and solving
U \prime = g(U)/(f \prime (U) - \sigma ) between these two zeros. Yet, in this configuration one of the
two endstates is spectrally unstable, and the corresponding front inherits this insta-
bility. More interesting waves are obtained if one allows the presence of a sonic, or
characteristic, point in the profile, that is, a point where f \prime (U) - \sigma vanishes. Neces-
sarily then, the wavespeed \sigma must be equal to the sound speed f \prime (u \star ) at a zero u \star of
g. In the nondegenerate bistable case when u - , u \star and u+ are three consecutive zeros
of g with g\prime (u - ) < 0, g\prime (u+) < 0 and g\prime (u \star ) > 0, and \sigma = f \prime (u \star ), f

\prime \prime (u \star ) \not = 0, one
indeed derives spectrally stable waves in this way that are fronts connecting u - and
u+ through u \star . As a consequence of the foregoing discussion, note that the presence
of a nondegenerate source term selects a discrete set of constant solutions but also a
discrete set of wavespeeds for stable fronts. Beyond (discontinuous or smooth) fronts
and constant solutions, the equation may also support spatially periodic traveling
waves. These are, however, necessarily discontinuous, and, as a consequence of Lax's
admissibility condition, each of their smooth parts must also contain a sonic point
(see [7] for details on a closely related system case).

Under rather natural assumptions on f and g---including the strict convexity of
f and the dissipativity at infinity of g---it has been proved that starting from an L\infty 

initial data that is either spatially periodic or constant near - \infty and near\infty , the large-
time dynamics is indeed well captured in L\infty topology by piecing together traveling
waves (constants, fronts, or periodic waves). In the periodic setting [5, 13, 19, 21],
every solution approaches asymptotically either a periodic (necessarily discontinuous)
traveling wave or a constant equilibrium. Moreover, periodic traveling waves are
actually unstable, and the rate of convergence is exponential in the latter case, whereas
it may be arbitrarily slow in the former case, even when restricting to solutions that
are initially close and do converge to a periodic traveling wave. Starting from data
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794 V. DUCH\^ENE AND L. M. RODRIGUES

with essentially compact support [20, 16], the large-time asymptotics may a priori
involve several blocks of different kinds (constants, fronts, or periodics). Yet the
scenario generating periodic blocks is also nongeneric and unstable. Note that at
the level of regularity considered there, the strict convexity assumption on f plays a
key role as it impacts the structure of possible discontinuities. The few contributions
relaxing the convexity assumption add severe restrictions on g or on the initial data,
for instance, linearity of g in [12], Riemann initial data in [22, 15], and monotonicity
of the initial data in [14].

At a technical level, one key ingredient in the proofs of the aforementioned series
of investigations consists of generalized characteristics of Dafermos [3], who provides
a formulation of the equation that is well suited to comparison principles and thus
to asymptotics in L\infty topology. Our goal here is in a neighborhood of one stable
traveling wave (of a specific kind) to complete the picture with a description in stronger
topologies assuming more regularity but less localization on initial data. By doing
so we expect to contribute to put on a par the stability theory for (1.1) with the
one successfully derived over the years for parabolic systems (see, for instance, [9] for
the stability of constants, fronts, and solitary waves and [8] for periodic waves). In
particular, we derive our asymptotics under spectral stability assumptions that are
sharp up to the exclusion of limit cases. Among the difficulties to overcome in carrying
out such a general program are the absence of regularization effects sufficiently strong
to rely on a Duhamel formula based on a linearization about the reference wave and
the presence of discontinuities and/or sonic points in the profiles themselves that alter
even the nature of the underlying spectral problems.

Whereas in a companion paper [4] we do study waves exhibiting sonic points, we
restrict ourselves here, as mentioned, to the stability of Riemann shocks, that is, to
waves given by u(t, x) = U(x  - (\psi 0 + \sigma t)) with initial shock position \psi 0 \in \BbbR , speed
\sigma \in \BbbR , and wave profile U such that

U(x) =

\Biggl\{ 
u - if x < 0,

u+ if x > 0,

where (u - , u+) \in \BbbR 2, u+ \not = u - . The function u is indeed an entropy-admissible
solution provided that

g(u+) = 0 , g(u - ) = 0 , f(u+) - f(u - ) = \sigma (u+  - u - )

and that Oleinik's condition holds:

(1.2)

\left\{         
\sigma \geq f \prime (u+) ,

f(\tau u - +(1 - \tau )u+) - f(u - )

\tau u - +(1 - \tau )u+ - u - 
\geq f(\tau u - +(1 - \tau )u+) - f(u+)

\tau u - +(1 - \tau )u+ - u+
for any \tau \in (0, 1) ,

f \prime (u - ) \geq \sigma .

One may readily check that

(1.3) g\prime (u+) \leq 0 and g\prime (u - ) \leq 0

are necessary to exclude spectral instability of u. We prove asymptotic orbital sta-
bility in W 1,\infty topology, with sharp exponential decay rates and asymptotic phase,
under BUC1 perturbations possibly jointly with perturbations on the position and
the strength of the discontinuity jump when (1.2) and (1.3) hold with strict inequal-
ities. Likewise, we also provide stability results under BUCk perturbations for any
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k \geq 1. We stress that at this stage, no convexity assumption is needed. Yet our ap-
proach may also be extended to cases when perturbations are only piecewise BUC1

with a finite number2 of discontinuities of shock type, and we then do assume that
f \prime \prime (u - ) \not = 0 and f \prime \prime (u+) \not = 0 (or only half of it if shock-type discontinuities are only
introduced on one side of the reference discontinuity).

One important point contrasting with the purely conservative case is that near
u the positions of discontinuities arising from piecewise smooth perturbations with
smooth parts sufficiently small in BUC1 may be predicted at leading order from
the linearized dynamics. This may be intuited by analogy from the consideration of
solutions near u \equiv 0 to

\partial tu+ \partial x

\biggl( 
\alpha 
u2

2

\biggr) 
=  - \beta u

with \alpha \in \BbbR , \beta \geq 0. On the latter basic explicit example, by studying \partial xu along char-
acteristics, one readily checks that the existence of a classical solution and the per-
sistence of regularity holds globally forward in time if and only if \alpha \partial x(u(0, \cdot )) \geq  - \beta .
Hence, when \beta > 0 and \alpha \not = 0, shock formation may be prevented by assuming asym-
metric initial smallness on the derivative of the initial data. Incidentally, note that
this asymmetry is fundamental in [14]. This also hints at a classification of disconti-
nuities in initial data between shocklike discontinuities across which f \prime decreases and
rarefactionlike discontinuities across which f \prime increases. The latter are removable by
a density argument in the sense that the generated dynamics may be approximated
by the one arising from a family of initial data where the discontinuity is absent. In
particular, provided results are proved under sharp asymmetric smallness conditions,
there is no loss in generality in assuming that any discontinuity is of shock type.

Though we hope that similar analyses could be carried out in some system3 cases,
we use here crucially the scalar structure to analyze the evolution of the piecewise
regularity in the following way. First, we extend each smooth part of the initial data
to a function on \BbbR , that is, either close to u - or close to u+. Then we propagate
each of the extended initial data and achieve suitable estimates on the correspond-
ing dynamics near stable constant states. Finally, we use the evolved extensions to
determine the evolution of shock locations by solving the corresponding Rankine--
Hugoniot conditions and glue them along the shock curves to obtain the solution
for the original discontinuous initial data. In particular, along the way, in order to
carry out the second step we prove a BUC1 asymptotic stability result for constant
solutions u, that is, constant functions with value a zero u of g such that g\prime (u) < 0.
Though in principle the foregoing result could be proved---yet much less readily than
L\infty asymptotics---with classical characteristics and comparison principles4 (along the
lines of [11, Chapter 4]), we choose to use tools as close as possible to those in the
classical stability theory [9, 8], relying on resolvent estimates and semigroup theory.
However, as mentioned above, since regularization effects are too weak, it is not suffi-
cient to consider the linearized dynamics. Instead we prove that spectral assumptions
yield decay estimates for all nearby---time- and space-dependent---linear dynamics

2Yet for exposition purposes, we only provide details about the case where this number is at
most one.

3During the finalization of the present contribution we were informed that a system case had
been analyzed in [23] with distinct but not disjoint techniques. Parts of the arguments used in [23]
actually originated in private communications of the second author of the present contribution to
the second author of [23].

4Similar results could also be obtained by energy estimates provided one relaxes the essentially
sharp BUC1 framework to the L2-based H2 space.
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796 V. DUCH\^ENE AND L. M. RODRIGUES

and hence actually use the evolution system (see [18, Chapter 5]) rather than the
semigroup framework.

In the rest of the present paper, we first study the asymptotic stability of constant
states under regular perturbations in BUC1(\BbbR ), as stated in section 2.1 and proved
in sections 2.2 and 2.3. In section 2.4 we extend our analysis to the case where a
constant state is perturbed by a (small) shock. Then we turn to our main concern:
the asymptotic stability of (large) Riemann shocks under perturbations that are either
regular (section 3.1) or piecewise regular with a small shock (section 3.2). Next, in
section 4 we investigate extensions to multidimensional settings. Finally, in section 5,
we provide some further insights on limitations and extensions of the present analysis.

2. Asymptotic stability of constant states.

2.1. Asymptotic stability under shockless perturbations. In this section,
first we show the asymptotic stability of constant states with respect to regular per-
turbations under the natural spectral condition.

Proposition 2.1. Let g \in \scrC 2(\BbbR ) and u \in \BbbR be such that

(2.1) g(u) = 0 and g\prime (u) < 0 .

Then for any C0 > 1, there exists \epsilon > 0 such that for any f \in \scrC 2(\BbbR ), for any
v0 \in BUC1(\BbbR ) satisfying \bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon ,

the unique maximal classical solution to (1.1) generated by the initial data u | t=0 =
u+v0, u \in \scrC 0([0, T\ast (v0));BUC

1(\BbbR ))\cap \scrC 1([0, T\ast (v0));BUC
0(\BbbR )) with T\ast (v0) \in (0,\infty ],

satisfies for any 0 \leq t < T\ast (v0)\bigm\| \bigm\| u - u
\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t,

and if moreover \partial xv0 \in L1(\BbbR ),\bigm\| \bigm\| \partial xu(t, \cdot )\bigm\| \bigm\| L1(\BbbR ) \leq 
\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L1(\BbbR )C0 e

g\prime (u) t .

The foregoing proposition is a conditional asymptotic stability result. Proximity
is guaranteed only as long as the solution persists as a classical solution. A strong
sign that the result tells nothing about persistence of regularity is that the required
smallness is independent of f and does not involve derivatives of v0. This should be
contrasted with the explicit example discussed in the introduction.

In a framework involving a smallness condition with more regularity, one may
prove the following.

Proposition 2.2. Let f, g \in \scrC 2(\BbbR ) and u \in \BbbR be such that

g(u) = 0 and g\prime (u) < 0 .

Then for any C0 > 1, there exists \epsilon > 0 such that for any v0 \in BUC1(\BbbR ) satisfying\bigm\| \bigm\| v0\bigm\| \bigm\| W 1,\infty (\BbbR ) \leq \epsilon ,

the initial data u | 
t=0

= u + v0 generates a global unique classical solution to (1.1),
u \in BUC1(\BbbR + \times \BbbR ), and it satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot ) - u

\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,\bigm\| \bigm\| \partial xu(t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t .
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Assuming local convexity/concavity, one may relax part of the foregoing smallness
condition.

Proposition 2.3. Let f, g \in \scrC 2(\BbbR ) and u \in \BbbR be such that

g(u) = 0 , g\prime (u) < 0 , and f \prime \prime (u) \not = 0 .

Then for any C0 > 1, there exists \epsilon > 0 such that for any v0 \in BUC1(\BbbR ) satisfying\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon and
\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon ,

the initial data u | 
t=0

= u + v0 generate a global unique classical solution to (1.1),
u \in BUC1(\BbbR + \times \BbbR ), and it satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot ) - u

\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xu(t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,\bigm\| \bigm\| \partial xu(t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t .

By a classical approximation/compactness argument one then deduces the follow-
ing.

Corollary 2.4. Let f, g \in \scrC 2(\BbbR ) and u \in \BbbR be such that

g(u) = 0 , g\prime (u) < 0 , and f \prime \prime (u) \not = 0 .

Then for any C0 > 1, there exists \epsilon > 0 such that for any v0 \in BVloc(\BbbR ) \cap L\infty (\BbbR )
such that (sgn(f \prime \prime (u)) \partial xv0) - \in L\infty (\BbbR ) and\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon and

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon ,

the initial data u | t=0 = u+ v0 generate a global unique entropy solution to (1.1), and
it satisfies for a.e. t \geq 0\bigm\| \bigm\| u(t, \cdot ) - u

\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xu(t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,

and if moreover v0 \in BV (\BbbR ),\bigm\| \bigm\| u(t, \cdot )\bigm\| \bigm\| 
TV (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| TV (\BbbR )C0 e
g\prime (u) t ,

while if \partial xv0 \in L\infty (\BbbR ),\bigm\| \bigm\| \partial xu(t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 
\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR )C0 e

g\prime (u) t .

To enlighten the content of Corollary 2.4, we stress that it allows discontinuous
initial data generating small rarefaction waves but not shocks. This does not mean
that a similar result cannot hold when small shocks are present but simply that in
general, as the explicit example of the introduction shows, they cannot be obtained
by a limiting process building on global classical solutions. This is consistent with
expectations drawn from general theory; see, for instance, [2, Chapter 9, Problem 6].
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Remark 2.5. An examination of proofs shows that one may relax everywhere the
assumption that g \in \scrC 2. It is sufficient that g \in \scrC 1 and that the modulus of continuity

\omega (r) = max
| u - u| \leq r

| g\prime (u) - g\prime (u)| 

is such that r \mapsto \rightarrow \omega (r)/r is locally integrable. This includes the case when g \in \scrC 1,\alpha ,
\alpha > 0. Indeed, the key property is that for any positive C and \theta ,\int \infty 

0

\omega (C \varepsilon e - \theta t) d t =
1

\theta 

\int C \varepsilon 

0

\omega (r)

r
d r

\varepsilon \rightarrow 0+ - \rightarrow 0 .

The exponential decay in time also holds for higher-order derivatives without
further restriction on sizes of perturbations.

Proposition 2.6. Under the assumptions of either Proposition 2.2 or Proposi-
tion 2.3, if one assumes additionally that f \in \scrC k+1(\BbbR ), g \in \scrC k(\BbbR ) with k \in \BbbN , k \geq 2,
then there exists Ck > 0, depending on f , g, and k but not on the initial data v0,
such that if v0 \in BUCk(\BbbR ) additionally to constraints in either Proposition 2.2 or
Proposition 2.3, then the global unique classical solution to (1.1) emerging from the
initial data u+ v0 satisfies u \in BUCk(\BbbR + \times \BbbR ) and for any t \geq 0\bigm\| \bigm\| \partial kxu(t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial kxv0\bigm\| \bigm\| L\infty (\BbbR )e
Ck \| v0\| W1,\infty (1+\| v0\| k - 1

W1,\infty ) eg
\prime (u) t .

The local well-posedness theory for (1.1) at the various levels of regularity con-
sidered here is standard. Note in particular that in the foregoing statements without
any further constraint, uniqueness holds also on any finite time interval. Though we
shall not repeat it henceforth, this remark applies equally well to all our uniqueness
claims. Thus, the main upshots of Propositions 2.2 and 2.3, Corollary 2.4, and Propo-
sition 2.6 are global existence of classical solutions and exponential decay in time. For
the classical well-posedness theory for scalar balance laws, due to Kru\v zkov, the reader
is referred to [10] and5 [2, Chapter 6].

For our purposes it is expedient to introduce v
def
= u - u and, as long as classical

solutions are concerned, work with the following quasilinear form of (1.1):

(2.2) \partial tv + f \prime (u+ v)\partial xv  - g\prime (u)v = g(u+ v) - g(u) - g\prime (u)v.

Note in particular that in the above formulation one cannot allow any ``regularity
loss"" due to a linearization of the transport term. Bearing this in mind, prior to the
consideration of a mild formulation of (2.2) we analyze linear equations of the form

(2.3) \partial tv + a\partial xv  - bv = r

where a is close to f \prime (u) and b close to g\prime (u) in a suitable sense. Let us anticipate
that to deal with the mild formulation of (2.2) and prove Propositions 2.1 and 2.2
we could stick to the case where b = g\prime (u). We shall use the extra flexibility in the
choice of b only when tracking asymmetric regularity involved in Proposition 2.3 and
Corollary 2.4.

5Unfortunately, most textbooks, for expository reasons [2, Chapter 6], are restricted to conser-
vation laws. Yet for local-in-time issues, such as well-posedness, changes needed to extend from
conservation laws to balance laws are immaterial.
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As a preliminary let us discuss the linearized equation

\partial tv + f \prime (u)\partial xv  - g\prime (u)v = 0 .

A notion of solution may be obtained through the classical semigroup formalism. For
instance, one may consider L =  - f \prime (u)\partial x + g\prime (u) on either Lp(\BbbR ), 1 \leq p < \infty , or
BUC0(\BbbR ) with domain W 1,p(\BbbR ) or BUC1(\BbbR ) if f \prime (u) \not = 0 and Lp(\BbbR ) or BUC0(\BbbR )
otherwise. The operator L is then closed densely defined with spectrum g\prime (u) + i\BbbR if
f \prime (u) \not = 0, \{ g\prime (u)\} otherwise. In particular, g\prime (u) > 0 would yield spectral instability,
whereas, as follows from the analysis below, suitable resolvent estimates show that
g\prime (u) < 0 provides linear asymptotic stability with exponential rates. We refer the
reader to [18, 17] for background on semigroups and their large-time behaviors.

It is already apparent here that though this does not alter significantly the stabil-
ity properties, the vanishing of the transport term impacts dramatically the regularity
structure of the spectral problem. As long as we restrict ourselves to classical solu-
tions near a constant steady state, this is immaterial since going to a uniformly moving
frame may remove possible vanishings. This would, however, not be possible near the
continuous stable traveling fronts described in the introduction. In general, the pres-
ence of an essential characteristic point is a serious cause of trouble, and the reader
is referred to [7, 4] for an example of its impact on spectral problems.

As a consequence, it is convenient to change coordinate frame. Explicitly, for any
\sigma \in \BbbR , by introducing \widetilde v through \widetilde v(t, x) = v(t, x+ \sigma t) one replaces (2.3) with

\partial t\widetilde v + (\widetilde a - \sigma )\partial x\widetilde v  - \widetilde b\widetilde v = \widetilde r
with (\widetilde a,\widetilde b, \widetilde r) defined by (\widetilde a,\widetilde b, \widetilde r)(t, x) = (a, b, r)(t, x + \sigma t). Implicitly some of our
assumptions on a will build on the fact that one may choose \sigma so that \widetilde a  - \sigma is
bounded away from zero.

2.2. Linear equations. To consider (2.3) with time-dependent a and b, we
may either rely on or mimic the available abstract theory for evolution systems, as
described in [18, Chapter 5]. In any case the needed elementary block is the solution
of problems where a and b are independent of time.

As a consequence we first consider this case. With this restriction we are back to
the semigroup framework that may be analyzed directly by resolvent estimates. In
the present section we always assume that a , b \in BUC0(\BbbR ) with a bounded away
from zero. For such a, b, La, b =  - a\partial x + b is elliptic6 and is a closed, densely defined
operator on either Lp(\BbbR ) with domain W 1,p(\BbbR ), 1 \leq p < \infty , or on BUC0(\BbbR ) with
domain BUC1(\BbbR ). The key basic estimate is as follows.

Lemma 2.7. Assume a, b \in BUC0(\BbbR ) with a bounded away from zero.
(i) Then for any \lambda \in \BbbC such that

\Re (\lambda ) > sup
\BbbR 
b(\cdot ) ,

for any F \in BUC0(\BbbR ), there exists a unique \v v( \cdot ;\lambda ) \in BUC1(\BbbR ) such that

(\lambda  - La, b) \v v( \cdot ;\lambda ) = F

and moreover \bigm\| \bigm\| \v v( \cdot ;\lambda )\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

1

\Re \lambda  - sup\BbbR b(\cdot )
\bigm\| \bigm\| F\bigm\| \bigm\| 

L\infty (\BbbR ) .

6Or, in a more standard terminology i La, b is elliptic.
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800 V. DUCH\^ENE AND L. M. RODRIGUES

If b is constant and F \in W 1,1(\BbbR ), then \v v( \cdot ;\lambda ) \in W 1,1(\BbbR ) and\bigm\| \bigm\| \partial x\v v( \cdot ;\lambda )\bigm\| \bigm\| L1(\BbbR ) \leq 
1

\Re \lambda  - b

\bigm\| \bigm\| \partial xF\bigm\| \bigm\| L1(\BbbR ) .

Moreover, if \lambda \in \BbbR , \lambda \in (sup\BbbR b(\cdot ),\infty ) and F \geq 0, then \v v( \cdot ;\lambda ) \geq 0.
(ii) Assume moreover that

a \in BUC1(\BbbR ) , b is constant , \Re (\lambda ) > b - inf
\BbbR 
a\prime (\cdot ) ,

and F \in W 1,\infty (\BbbR ). Then\bigm\| \bigm\| \partial x\v v( \cdot ;\lambda )\bigm\| \bigm\| L\infty (\BbbR ) \leq 
1

\Re \lambda  - b+ inf\BbbR a\prime (\cdot )
\bigm\| \bigm\| \partial xF\bigm\| \bigm\| L\infty (\BbbR ) .

Proof. Let us begin with the uniqueness part. If (\lambda  - La, b) \v v( \cdot ;\lambda ) = 0, then
actually

\v v(x ;\lambda ) = e
\int x
0
b(z) - \lambda 
a(z)

d z \v v0

for some constant \v v0 \in \BbbC . Then if a is positive and bounded away from zero and
\Re (\lambda ) > sup\BbbR b(\cdot ), the boundedness near x =  - \infty implies \v v0 = 0 since for any x < 0,

| e
\int x
0
b(z) - \lambda 
a(z)

d z| \geq e
| x| \Re (\lambda ) - sup\BbbR b(\cdot )

\| a\| L\infty . Likewise if a is negative and bounded away from
zero and \Re (\lambda ) > sup\BbbR b(\cdot ), boundedness near x = \infty yields \v v0 = 0.

From now on for definiteness we assume that a is positive and bounded away from
zero. Note that there is no loss of generality since one may go from this case to the
opposite one by reversing x into  - x.

Let F \in BUC0(\BbbR ). One readily checks when \Re (\lambda ) > sup\BbbR b(\cdot ) that

\v v(x;\lambda )
def
=

\int x

 - \infty 
e
\int x
y
b(z) - \lambda 
a(z)

d z F (y)

a(y)
d y

defines \v v( \cdot ;\lambda ) \in BUC1(\BbbR ) and that

| \v v(x;\lambda )| \leq 

\bigm\| \bigm\| F\bigm\| \bigm\| 
L\infty (\BbbR )

\Re \lambda  - sup\BbbR b(\cdot )

\int x

 - \infty 
e
\int x
y
b(z) - \Re \lambda 
a(z)

d z\Re \lambda  - b(y)

a(y)
d y =

\bigm\| \bigm\| F\bigm\| \bigm\| 
L\infty (\BbbR )

\Re \lambda  - sup\BbbR b(\cdot )
,

\partial x\v v(x;\lambda ) =
F (x)

a(x)
+

\int x

 - \infty 

b(x) - \lambda 

a(x)
e
\int x
y
b(z) - \lambda 
a(z)

d z F (y)

a(y)
d y .

It is also straightforward to check that if moreover \lambda \in \BbbR and F \geq 0, then \v v(\cdot ;\lambda ) \geq 0.
When moreover b is constant and \partial xF \in L1(\BbbR ) + L\infty (\BbbR ), the latter expression may
be integrated by parts into

\partial x\v v(x;\lambda ) =

\int x

 - \infty 
e
\int x
y
b - \lambda 
a(z)

d z \partial yF (y)

a(x)
d y

=

\int x

 - \infty 
e
\int x
y
b - \lambda  - a\prime (z)

a(z)
d z \partial yF (y)

a(y)
d y .

The latter expression may be used to obtain the \.W 1,\infty \rightarrow \.W 1,\infty bound as we have
derived the L\infty \rightarrow L\infty bound. Concerning the former expression it may be integrated
in x to deduce the \.W 1,1 \rightarrow \.W 1,1 bound since when b is constant for any y,\int \infty 

y

e
\int x
y
b - \Re (\lambda )
a(z)

d z dx

a(x)
=

1

\Re (\lambda ) - b
.
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With the above frozen-time resolvent estimates, for general coefficients a, b one
may first change frame to ensure that a is bounded away from zero and then apply
general theorems on evolution systems. See, for instance, [18, Chapter 5, Theorem 3.1]
with X = BUC0(\BbbR ) and Y = BUC1(\BbbR ), and apply [18, Chapter 5, Theorem 2.3] to
reduce the verification of assumption (H2) there to the case where b is constant.

Proposition 2.8. Let T \in (0,\infty ] and (a, b) \in \scrC 0([0, T ), BUC1(\BbbR )\times BUC0(\BbbR )).
Then the family of operators \scrL t = La(t,\cdot ), b(t,\cdot ) generates an evolution system \scrS a,b on
BUC0(\BbbR ) such that for any v0 \in BUC0(\BbbR ) and any 0 \leq s \leq t < T\bigm\| \bigm\| \scrS a,b(s, t) v0\bigm\| \bigm\| L\infty (\BbbR ) \leq e

\int t
s
sup\BbbR b(\tau ,\cdot ) d \tau 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) ,

and v0 \geq 0 implies \scrS a,b(s, t) v0 \geq 0.
If moreover b is constant, v0 \in BUC0(\BbbR )\cap W 1,1(\BbbR ) yields for any 0 \leq s \leq t < T\bigm\| \bigm\| \partial x\scrS a,b(s, t) v0\bigm\| \bigm\| L1(\BbbR ) \leq e(t - s) b

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L1(\BbbR )

and from v0 \in W 1,\infty (\BbbR ) stems for any 0 \leq s \leq t < T\bigm\| \bigm\| \partial x\scrS a,b(s, t) v0\bigm\| \bigm\| L\infty (\BbbR ) \leq e(t - s) b - 
\int t
s
inf\BbbR \partial xa(\tau ,\cdot ) d \tau 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR ) .

2.3. The shockless nonlinear problem. In this section we complete the proofs
of results from section 2.1.

Proof of Proposition 2.1. Let \epsilon \in (0, 1]. Pick a classical solution u = u+v starting
from u + v0 such that

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) \leq \epsilon . Then if u exists (as a classical solution) on

[0, t0), for any 0 \leq t < t0,

v(t, \cdot ) = \scrS f \prime (u+v), g\prime (u)v0 +

\int t

0

\scrS f \prime (u+v), g\prime (u)(s, t)
\bigl( 
g(u+ v) - g(u) - g\prime (u)v

\bigr) 
(s, \cdot ) d s .

Therefore, if moreover for any t \in [0, t0),
\bigm\| \bigm\| v(t, \cdot )\bigm\| \bigm\| 

L\infty (\BbbR ) \leq 2\epsilon eg
\prime (u) t, then for any

t \in [0, t0),

e - g
\prime (u) t

\bigm\| \bigm\| v(t, \cdot )\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) + 2\epsilon Cg

\int t

0

eg
\prime (u) s

\Bigl( 
e - g

\prime (u) s
\bigm\| \bigm\| v(s, \cdot )\bigm\| \bigm\| 

L\infty (\BbbR )

\Bigr) 
d s,

where Cg =
1
2

\bigm\| \bigm\| g\prime \prime \bigm\| \bigm\| 
L\infty ([u - 2\epsilon ,u+2\epsilon ])

, so that for any t \in [0, t0),

(2.4) e - g
\prime (u) t

\bigm\| \bigm\| v(t, \cdot )\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) e
2\epsilon Cg

\int t
0
eg

\prime (u) s d s \leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR ) e

\epsilon 
2Cg

| g\prime (u)| .

If \epsilon is small enough to ensure that exp(\epsilon 
2Cg

| g\prime (u)| ) < 2, then a continuity argument

yields that estimate (2.4) holds as long as u persists as a classical solution. Since

exp(\epsilon 
2Cg

| g\prime (u)| ) may be brought arbitrarily close to 1 by choosing \epsilon small, this proves the

L\infty part of Proposition 2.1. With this bound in hand, we deduce even more directly
that if moreover \partial xv0 \in L1, then\bigm\| \bigm\| \partial xv(t, \cdot )\bigm\| \bigm\| L1(\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L1(\BbbR ) e
g\prime (u) t e

\epsilon 
2C0 Cg
| g\prime (u)| .

This achieves the proof by taking \epsilon even smaller if needed.
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The proof of Proposition 2.2 being completely similar, we omit it.

Proof of Proposition 2.3. First we fix \epsilon \in (0, 1] sufficiently small to satisfy con-
clusions of Proposition 2.1 and to ensure that on [u - C0\epsilon , u+ C0\epsilon ], f

\prime \prime is of the sign
of f \prime \prime (u). To proceed we use that if u = u+ v persists as a classical solution on [0, t0),
then for t \in [0, t0)

\partial xv(t, \cdot ) = \scrS f \prime (u+v), g\prime (u+v) - f \prime \prime (u+v)\partial xv(0, t) \partial xv0 ,

thus, by linearity and preservation of nonnegativity,

(sgn(f \prime \prime (u))\partial xv(t, \cdot )) - \leq \scrS f \prime (u+v), g\prime (u+v) - f \prime \prime (u+v)\partial xv(0, t) (sgn(f
\prime \prime (u))\partial xv0) - .

Therefore, if moreover for any t \in [0, t0),
\bigm\| \bigm\| (sgn(f \prime \prime (u))\partial xv(t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 2\epsilon eg

\prime (u) t,

then for any t \in [0, t0)\bigm\| \bigm\| (sgn(f \prime \prime (u))\partial xv(t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 
\bigm\| \bigm\| (sgn(f \prime \prime (u))\partial xv0) - \bigm\| \bigm\| L\infty (\BbbR )e

g\prime (u) te
\epsilon 
2Cf+C0 Cg

| g\prime (u)| 

with Cf =
\bigm\| \bigm\| f \prime \prime \bigm\| \bigm\| 

L\infty ([u - C0\epsilon ,u+C0\epsilon ])
and Cg =

\bigm\| \bigm\| g\prime \prime \bigm\| \bigm\| 
L\infty ([u - C0\epsilon ,u+C0\epsilon ])

. By choosing \epsilon 

sufficiently small so that e
\epsilon 
2Cf+C0 Cg

| g\prime (u)| \leq min(\{ 2, C0\} ), one deduces that if u = u + v
persists as a classical solution on [0, t0), then for t \in [0, t0)\bigm\| \bigm\| (sgn(f \prime \prime (u))\partial xv(t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| (sgn(f \prime \prime (u))\partial xv0) - \bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t .

One concludes by noticing that this implies that if u = u + v persists as a classical
solution on [0, t0), then for t \in [0, t0),\bigm\| \bigm\| \partial xv(t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR )C0 e
g\prime (u) t ,

which rules out finite-time blowup.

Proof of Proposition 2.6. Propagation of regularity being classical, we focus on
the decay estimate. Note that since we already know that v is small in L\infty ,

\partial k
xv(t, \cdot ) = \scrS f \prime (u+v), g\prime (u)(0, t) \partial 

k
xv0 +

\int t

0

\scrS f \prime (u+v), g\prime (u)(s, t)
\Bigl( 
c0(v(s, \cdot )) v(s, \cdot ) \partial kxv(s, \cdot )

+
\sum 

2\leq m\leq | \alpha | 
\alpha \in (\BbbN \ast )m, | \alpha | \in \{ k,k+1\} 

c\alpha (v(s, \cdot ))
m\prod 
i=1

\partial \alpha i
x v(s, \cdot )

\Bigr) 
d s

with c0, c\alpha bounded. Note moreover that for any 1 \leq \ell \leq k, for some C \geq 0, and for
any function w,\bigm\| \bigm\| \partial \ell xw\bigm\| \bigm\| L\infty (\BbbR ) \leq C min(\{ 

\bigm\| \bigm\| w\bigm\| \bigm\| k - \ell k
L\infty (\BbbR )

\bigm\| \bigm\| \partial kxw\bigm\| \bigm\| \ell kL\infty (\BbbR ),
\bigm\| \bigm\| \partial xw\bigm\| \bigm\| k - \ell k - 1

L\infty (\BbbR )
\bigm\| \bigm\| \partial kxw\bigm\| \bigm\| \ell  - 1

k - 1

L\infty (\BbbR )\} )

so that for any 2 \leq m \leq k + 1, \alpha \in (\BbbN \ast )m, | \alpha | \in \{ k, k + 1\} , there exists C \prime and C \prime \prime 

such that for any w,\bigm\| \bigm\| m\prod 
i=1

\partial \alpha ix w
\bigm\| \bigm\| 
L\infty (\BbbR ) \leq C \prime min(\{ 

\bigm\| \bigm\| w\bigm\| \bigm\| m - | \alpha | 
k

L\infty (\BbbR )

\bigm\| \bigm\| \partial kxw\bigm\| \bigm\| | \alpha | 
k

L\infty (\BbbR ),
\bigm\| \bigm\| \partial xw\bigm\| \bigm\| m - | \alpha |  - m

k - 1

L\infty (\BbbR )
\bigm\| \bigm\| \partial kxw\bigm\| \bigm\| | \alpha |  - m

k - 1

L\infty (\BbbR )\} )

\leq C \prime \prime \bigm\| \bigm\| w\bigm\| \bigm\| m - 1

W 1,\infty (\BbbR )

\bigm\| \bigm\| \partial kxw\bigm\| \bigm\| L\infty (\BbbR ) .

The proof is then concluded by first invoking the bounds of either Proposition 2.2 or
Proposition 2.3 jointly with those of Proposition 2.8 and then applying the Gr\"onwall
lemma.
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Proof of Corollary 2.4. Initial data as in Corollary 2.4 may be approximated
through cutoff with sufficiently slow cutoff functions and convolution with positive
kernels by initial data satisfying constraints of Proposition 2.3. Bounds of Propo-
sitions 2.1 and 2.3, jointly with (1.1), are then sufficient to extract a subsequence
converging pointwise and uniformly bounded. With the latter one may take lim-
its in weak formulations encoding the notion of entropy solution, hence proving the
existence of an entropy solution starting from the prescribed initial data and satisfy-
ing claimed bounds. We refer the reader to [2, section 6.2] for details on the latter
compactness arguments.

2.4. Perturbation by small shocks. In this section we extend Proposition 2.3
to the case where the perturbation contains a shock.

We provide a description of the solution u as regular on

\Omega \psi 
def
= \BbbR + \times \BbbR \setminus \{ (t, \psi (t)) | t \geq 0 \} ,

where \psi follows the position of the shock.

Remark 2.9. It may be convenient to think of u as being of the form

u : (t, x) \mapsto \rightarrow \widetilde u(t, x - \psi (t))

with smooth unknowns \psi : \BbbR + \rightarrow \BbbR and \widetilde u : \BbbR + \times \BbbR  \star \rightarrow \BbbR . Though we shall not
use this form explicitly here (partly because it is not convenient when two shocks are
present), it underlies our strategy and statements. In particular, henceforth \partial xu will
denote not the distributional derivative of u \in \scrD \prime (\BbbR ) but its smooth part

\partial xu : (t, x) \mapsto \rightarrow \partial x\widetilde u(t, x - \psi (t)) .

Similarly, for k \in \BbbN  \star and \Omega an open domain, we denote W k,\infty (\Omega ) (resp., BUCk(\Omega ))
the space of functions such that the restrictions to each connected component of \Omega , \v \Omega 
belongs to W k,\infty (\v \Omega ) (resp., BUCk(\v \Omega )). These spaces are endowed with the obvious
norms consistent with this definition.

For such a u to satisfy the equation in a distributional sense, we require u to satisfy
it in a classical sense on \Omega \psi , and that also holds the Rankine--Hugoniot condition, for
any t \geq 0,

f(ur(t)) - f(ul(t)) = \psi \prime (t)(ur(t) - ul(t)),

where ul(t) = lim\delta \searrow 0 u(t, \psi (t) - \delta ) and ur(t) = lim\delta \searrow 0 u(t, \psi (t)+ \delta ). Moreover, when
f \prime \prime (u) \not = 0, then if u is sufficiently close to u, its admissibility as an entropy solution
is equivalent to Lax's condition [2, section 4.5]:

f \prime (ur(t)) < f \prime (ul(t)), t \geq 0 .

Of course this requires initially f \prime (ur(0)) < f \prime (ul(0)). Recall, however, that disconti-
nuities with f \prime (ur(0)) > f \prime (ul(0)) are already covered by Corollary 2.4.

Proposition 2.10. Let f, g \in \scrC 2(\BbbR ) and u \in \BbbR be such that

g(u) = 0 , g\prime (u) < 0 , and f \prime \prime (u) \not = 0 .

For any C0 > 1, there exist \epsilon > 0 and C > 0 such that for any \psi 0 \in \BbbR and any
\~v0 \in BUC1(\BbbR  \star ) satisfying

(2.5)
\bigm\| \bigm\| \~v0\bigm\| \bigm\| L\infty (\BbbR  \star ) \leq \epsilon and

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR  \star ) \leq \epsilon 
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804 V. DUCH\^ENE AND L. M. RODRIGUES

and
lim
\delta \searrow 0

f \prime (u+ \~v0(\delta )) < lim
\delta \searrow 0

f \prime (u+ \~v0( - \delta )),

there exists \psi \in \scrC 2(\BbbR +) and u \in BUC1(\Omega \psi ) with initial data \psi (0) = \psi 0 and u(0, \cdot ) =
(u+ \widetilde v0)(\cdot +\psi 0) such that u is an entropy solution to (1.1) and satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot  - \psi (t)) - u

\bigm\| \bigm\| 
L\infty (\BbbR \setminus \{ \psi (t)\} ) \leq 

\bigm\| \bigm\| \~v0\bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xu(t, \cdot  - \psi (t))) - 

\bigm\| \bigm\| 
L\infty (\BbbR \setminus \{ \psi (t)\} ) \leq 

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial x\~v0) - \bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t,\bigm\| \bigm\| \partial xu(t, \cdot  - \psi (t))

\bigm\| \bigm\| 
L\infty (\BbbR \setminus \{ \psi (t)\} ) \leq 

\bigm\| \bigm\| \partial x\~v0\bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t ,

| \psi \prime (t) - f \prime (u)| \leq 
\bigm\| \bigm\| \~v0\bigm\| \bigm\| L\infty (\BbbR  \star )C e

g\prime (u) t ,

and moreover there exists \psi \infty such that

| \psi \infty  - \psi 0| \leq 
\bigm\| \bigm\| \~v0\bigm\| \bigm\| L\infty (\BbbR  \star )C

and for any t \geq 0

| \psi (t) - \psi \infty  - t f \prime (u)| \leq 
\bigm\| \bigm\| \~v0\bigm\| \bigm\| L\infty (\BbbR  \star )C e

g\prime (u) t .

Remark 2.11. The consideration of perturbation by small shocks is partly mo-
tivated by the fact that smooth perturbations, small in L\infty but not in W 1,\infty , may
indeed form shocks in finite time. Note, however, that whereas Proposition 2.1 does
follow smooth solutions until shock formation, Proposition 2.10 cannot be used right
after shock formation since it requires (asymmetric) smallness of the smooth part of
the gradient. Indeed Proposition 2.10 is a counterpart to Proposition 2.3, whereas an
analog to Proposition 2.1 would be more appropriate near a shock formation. Note,
however, that then the ``smooth"" part of solutions would then be controlled only in
W 1,1.

Remark 2.12. Since the problem is known to be globally well-posed in the class
of L\infty entropy solutions, one may rightfully wonder whether the result could be ex-
tended to such a general class. Such an extension would lead us a way beyond the
scope of the present contribution, focused on piecewise smooth solutions, and very
close to front-tracking algorithms. Without going that far, let us now give some hints
about first steps required to extend our strategy in this direction. Note first that it
is straightforward to extend Proposition 2.10 to cases when the initial data contain
discontinuities leading to rarefaction waves and an arbitrary number of well-separated
shocks. Going beyond the latter case to allow for interacting shocks seems a more
tedious task but seemingly still achievable with arguments in the spirit of those ex-
pounded in the present contribution. In particular, even in the latter case, one expects
that no new discontinuity arises and that paths of discontinuities could be predicted
by linearized dynamics. However, to relax constraints on derivatives, one would need
to follow the path sketched in Remark 2.11 or to approximate L\infty initial data by
piecewise smooth initial data containing only flat or almost flat smooth parts but
an arbitrary large number of shocks. In both cases the prediction of the regularity
structure would be a much harder task.

Proof of Proposition 2.10. To spare notational complexity, we assume henceforth
that \psi 0 = 0 and accordingly drop tildes on \widetilde v0. The general case may be dealt with
either by using translation invariance or by propagating notational changes.
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We recall that the proof strategy is the following. Given initial data v0 satisfy-
ing (2.5), we define two extensions v0,\pm , defined on \BbbR , satisfying v0,\pm = v0 on \BbbR \pm 

and fulfilling the hypotheses of Proposition 2.3 near u. Consider u\pm the two global
unique classical solutions to (1.1) emerging from the initial data u\pm (0, \cdot ) = u+ v0,\pm .
The solution u is constructed by patching together u+ and u - along the curve \psi (t)
defined through the Rankine--Hugoniot condition.

The first step is carried out thanks to the following lemma.

Lemma 2.13. For any C
(0)
0 > 1 and any v0 \in BUC1(\BbbR  \star ), there exist v0,\pm \in 

BUC1(\BbbR ) satisfying

v0(x) =

\Biggl\{ 
v0,+(x) if x > 0,

v0, - (x) if x < 0

and \bigm\| \bigm\| v0,\pm \bigm\| \bigm\| L\infty (\BbbR ) \leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR \pm )

C
(0)
0 ,\bigm\| \bigm\| (\partial xv0,\pm ) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| (\partial xv0) - \bigm\| \bigm\| L\infty (\BbbR \pm )
,\bigm\| \bigm\| ( - \partial xv0,\pm ) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| ( - \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR \pm )
,\bigm\| \bigm\| \partial xv0,\pm \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR \pm )
.

Proof. Since the situation is symmetric, we only show how to extend the right
part of v0. To do so let us introduce

v0(0
+)

def
= lim

x\searrow 0
v0(x) and \partial xv0(0

+)
def
= lim

x\searrow 0
\partial xv0(x) ,

whose existence is guaranteed by uniform continuity.
We set

\delta =
2(C

(0)
0  - 1)

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR +)

max(\{ 1, | \partial xv0(0+)| \} )

and define

v0,+(x) =

\left\{     
v0(0

+) - \delta 
2\partial xv0(0

+) if x \in ( - \infty , - \delta ] ,
v0(0

+) +
\bigl( 
x+ 1

2\delta 
 - 1x2

\bigr) 
\partial xv0(0

+) if x \in ( - \delta , 0] ,
v0(x) if x > 0 .

One readily checks that v0,+ satisfies all prescribed constraints.

We can now proceed with the proof of Proposition 2.10. We denote C0 the pre-
scribed amplifying constant and \epsilon the smallness parameter as in the statement. First

we apply Lemma 2.13 with amplification constant C
(0)
0 =

\surd 
C0 to receive extensions

v0,\pm . Then we apply twice Proposition 2.3, with initial perturbations v0,\pm near u and
prescribed amplification factors C\pm 

0 =
\surd 
C0. This is licit provided we constrain \epsilon by\sqrt{} 

C0\epsilon \leq \epsilon 0 ,

where \epsilon 0 encodes the smallness constraint arising from Proposition 2.3, hence the
existence of u\pm \in BUC1(\BbbR +\times \BbbR ) global unique classical solutions to (1.1) with initial
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data u\pm (0, \cdot ) = u+ v0,\pm satisfying for any t \geq 0\bigm\| \bigm\| u\pm (t, \cdot ) - u
\bigm\| \bigm\| 
L\infty (\BbbR ) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xu\pm (t, \cdot )) - \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| (sgn(f \prime \prime (u)) \partial xv0) - \bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t ,\bigm\| \bigm\| \partial xu\pm (t, \cdot )\bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial xv0\bigm\| \bigm\| L\infty (\BbbR  \star )C0 e
g\prime (u) t .

We shall construct our solution, u, through the following formula:

(2.6) u(t, x) =

\Biggl\{ 
u - (t, x) if x < \psi (t),

u+(t, x) if x > \psi (t),

where the discontinuity curve, \psi , is defined through the Rankine--Hugoniot condition\bigl( 
u+(t, \psi (t)) - u - (t, \psi (t))

\bigr) 
\psi \prime (t) = f(u+(t, \psi (t))) - f(u - (t, \psi (t))) .

To this aim, we introduce the slope function associated with f :

(2.7) sf : \BbbR \times \BbbR \rightarrow \BbbR , (a, b) \mapsto \rightarrow 
\int 1

0

f \prime 
\bigl( 
a+ \tau (b - a)

\bigr) 
d \tau .

We have sf \in \scrC 1(\BbbR \times \BbbR ). Thus, (t, x) \mapsto \rightarrow sf (u - (t, x), u+(t, x)) \in BUC1(\BbbR + \times \BbbR ), and
there exists a unique \psi \in \scrC 2(\BbbR +) satisfying \psi (0) = 0 and for any t \geq 0,

\psi \prime (t) = sf (u - (t, \psi (t)), u+(t, \psi (t))) .

It follows that \psi satisfies the Rankine--Hugoniot condition as well as the claimed
estimates. Indeed, we have for any t \geq 0

\psi \prime (t) - f \prime (u) = sf (u - (t, \psi (t)), u+(t, \psi (t))) - sf (u, u) ,

and since sf is a locally Lipschitz function, the bound on \psi \prime (t) - f \prime (u) stems directly
from the known bounds on

\bigm\| \bigm\| u\pm (t, \cdot )  - u
\bigm\| \bigm\| 
L\infty (\BbbR ). Now the bound on \psi \prime  - f \prime (u) may

be integrated to conclude the desired estimate with

\psi \infty =

\int \infty 

0

(\psi \prime (t) - f \prime (u)) d t .

To achieve the proof, we need to ensure that, lessening \epsilon if necessary, the con-
structed weak solution is an entropy solution. Since f \prime \prime (u) \not = 0, we can restrict \epsilon so
that f is either strictly concave or strictly convex on [u - C0\epsilon , u+ C0\epsilon ], and hence u
is an entropy solution if and only if Lax's condition holds, i.e.,

f \prime (u+(t, \psi (t))) < f \prime (u - (t, \psi (t))), t \geq 0 .

Since the corresponding inequality holds at time t = 0 and f \prime is one-to-one on
[u - C0\epsilon , u+ C0\epsilon ], it is sufficient to prove that

w(t) := u+(t, \psi (t)) - u - (t, \psi (t)) \not = 0, t > 0 .

Notice that

w\prime (t) = (\partial tu+ + \psi \prime (t)\partial xu+  - \partial tu -  - \psi \prime (t)\partial xu - ) (t, \psi (t))

=
\Bigl( 
g(u+) - g(u - ) +

\bigl( 
\psi \prime (t) - f \prime (u+)

\bigr) 
\partial xu+  - 

\bigl( 
\psi \prime (t) - f \prime (u - )

\bigr) 
\partial xu - 

\Bigr) 
(t, \psi (t))

= \Phi (t, w(t))
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with

\Phi : (t, z) \mapsto \rightarrow sg(u+(t, \psi (t)), u - (t, \psi (t))) z

+
\Bigl( 
sf (u+(t, \psi (t)), u+(t, \psi (t)) - z) - sf (u+(t, \psi (t)), u+(t, \psi (t)))

\Bigr) 
\partial xu+(t, \psi (t))

 - 
\Bigl( 
sf (u - (t, \psi (t)) + z, u - (t, \psi (t))) - sf (u - (t, \psi (t)), u - (t, \psi (t)))

\Bigr) 
\partial xu - (t, \psi (t)).

Since \Phi is \scrC 1 and (\forall t \geq 0, \Phi (t, 0) = 0), an application of the Cauchy--Lipschitz
theorem concludes the proof.

3. Asymptotic stability of shocks.

3.1. Asymptotic stability under shockless perturbations. In this section,
under natural spectral assumptions, we show the asymptotic stability under regu-
lar perturbations of entropy-admissible Riemann shocks of (1.1). More precisely, as
described in the introduction we consider a uniformly traveling wave u,

u(t, x) = U(x - (\psi 0 + \sigma t)) ,

with initial shock position \psi 0 \in \BbbR , speed \sigma \in \BbbR , and wave profile U given by

(3.1) U(x) =

\Biggl\{ 
u - if x < 0

u+ if x > 0 ,

where (u - , u+) \in \BbbR 2, u+ \not = u - . The problem is invariant by translation, and \psi 0 is
arbitrary, whereas speed and profile are assumed to satisfy conditions enforcing that
u is a stable entropy solution. To ensure that u is a weak solution, we require that
(\sigma , u - , u+) satisfies the equilibrium condition

(3.2) g(u+) = 0 and g(u - ) = 0

and the Rankine--Hugoniot condition

(3.3) f(u+) - f(u - ) = \sigma (u+  - u - ) .

(Strict) entropy admissibility then amounts to the Oleinik condition

(3.4)

\left\{         
\sigma > f \prime (u+) ,

f(\tau u - +(1 - \tau )u+) - f(u - )

\tau u - +(1 - \tau )u+ - u - 
>

f(\tau u - +(1 - \tau )u+) - f(u+)

\tau u - +(1 - \tau )u+ - u+
for any \tau \in (0, 1) ,

f \prime (u - ) > \sigma ,

and the spectral stability is encoded in

(3.5) g\prime (u+) < 0 and g\prime (u - ) < 0 .

Remark 3.1. Note that the entropy condition (3.4) contributes to the stability
properties of the shock in a more subtle way than (3.5). To begin, let us point out
that without assuming condition (3.4) the proof of Theorem 3.2 below provides a
weak solution to (1.1). Yet in full generality the solution depends then on the choices
of initial extensions. This lack of uniqueness is even captured by a direct spectral
analysis, as hinted at in section 5, and the corresponding linearized dynamics is ill-
posed. Replacing (3.4) with the weaker Lax condition

f \prime (u+) < \sigma < f \prime (u - )
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restores spectral stability and ensures uniqueness in a suitable class of piecewise
smooth solutions. The uniqueness in the class of entropy-admissible solutions if
Oleinik's condition is satisfied is provided by the theory due to Kru\v zkov [10]. The
full condition (3.4) would also be crucial to the stability properties of the shock if one
allowed perturbations breaking the large shock into a ``sum"" of smaller subshocks.
See [2, Remark 4.7] for a more detailed discussion and more generally [2, Chapters 4
and 6] for classical background on entropy solutions.

As in section 2.4 we shall solve (1.1) in the class of piecewise regular functions
and adopt conventions introduced there. The main difference is that now we require
as entropy condition, for any t \geq 0,
(3.6)\left\{         

\psi \prime (t) > f \prime (ur(t)) ,

f(\tau ul(t)+(1 - \tau )ur(t)) - f(ul(t))
\tau ul(t)+(1 - \tau )ur(t) - ul(t)

> f(\tau ul(t)+(1 - \tau )ur(t)) - f(ur(t))
\tau ul(t)+(1 - \tau )ur(t) - ur(t)

for any \tau \in (0, 1) ,

f \prime (ul(t)) > \psi \prime (t) ,

where ul(t) = lim\delta \searrow 0 u(t, \psi (t) - \delta ) and ur(t) = lim\delta \searrow 0 u(t, \psi (t) + \delta ).

Theorem 3.2. Let f, g \in \scrC 2(\BbbR ) and (\sigma , u - , u+) \in \BbbR 3 satisfying (3.2)--(3.5) and

(3.7) f \prime \prime (u+) \not = 0 and f \prime \prime (u - ) \not = 0 .

For any C0 > 1, there exists \epsilon > 0 and C > 0 such that for any \psi 0 \in \BbbR and\widetilde v0 \in BUC1(\BbbR  \star ) satisfying

(3.8)

\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star ) \leq \epsilon ,\bigm\| \bigm\| (sgn(f \prime \prime (u+)) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR +)
\leq \epsilon ,\bigm\| \bigm\| (sgn(f \prime \prime (u - )) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR  - )
\leq \epsilon ,

there exists \psi \in \scrC 2(\BbbR +) with initial data \psi (0) = \psi 0 such that the entropy solution
to (1.1), u, generated by the initial data u(0, \cdot ) = (U+\widetilde v0)(\cdot +\psi 0), U being as in (3.1),
belongs to BUC1(\Omega \psi ) and satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot  - \psi (t)) - u\pm 

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u\pm )) \partial xu(t, \cdot  - \psi (t))) - 

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| (sgn(f \prime \prime (u\pm )) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t,\bigm\| \bigm\| \partial xu(t, \cdot  - \psi (t))

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \partial x\widetilde v0\bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t ,

| \psi \prime (t) - \sigma | \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star ) C e

max(\{ g\prime (u+),g\prime (u - )\} ) t ,

and moreover there exists \psi \infty such that

| \psi \infty  - \psi 0| \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star )C

and for any t \geq 0

| \psi (t) - \psi \infty  - t \sigma | \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star )C e

max(\{ g\prime (u+),g\prime (u - )\} ) t .

Remark 3.3. Theorem 3.2 is a direct counterpart to Proposition 2.3. We could
also derive from it an analog to Corollary 2.4. Likewise, as in Proposition 2.2, we
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could relax totally or partly hypothesis (3.7) if (3.8) is strengthened. This would lead
to four different versions of Theorem 3.2. We could also provide a counterpart to
Proposition 2.1.

Modifications required to prove the foregoing claims are straightforward, and we
have chosen to omit them so as to avoid redundancy.

Remark 3.4. Note that expressed in classical stability terminology (see, for in-
stance, [6]), we have proved orbital stability with asymptotic phase. We stress, how-
ever, that the role of phase shifts is here deeper than in the classical stability analysis
of smooth waves since it is required not only to provide decay of suitable norms in
large-time but also to ensure that these norms are finite locally in time. In particular
here, there is no freedom, even in finite time, in the definition of phase shifts. See [7,
section 4.1] and [4] for related (more elaborate) discussions.

Proof of Theorem 3.2. The proof of Theorem 3.2 follows closely the construction
given in the proof of Proposition 2.10.

We also assume henceforth that \psi 0 = 0 without loss of generality. Using Lemma
2.13 and Proposition 2.3, we find that for \epsilon > 0 sufficiently small and for any v0 \in 
BUC1(\BbbR  \star ) satisfying (3.8), there exist u\pm \in BUC1(\BbbR +\times \BbbR ) global classical solutions
to (1.1) with initial data u\pm (0, \cdot ) = u\pm +v0,\pm and satisfying the desired estimates. We
can now construct the solution, u, through (2.6), where \psi is defined by the differential
equation

\psi \prime (t) = sf (u - (t, \psi (t)), u+(t, \psi (t))) ,

where sf is defined in (2.7), so that the Rankine--Hugoniot condition as well as the
desired bounds on \psi hold since for any t \geq 0,

\psi \prime (t) - \sigma = sf (u - (t, \psi (t)), u+(t, \psi (t))) - sf (u - , u+) .

Then the last estimates on \psi are obtained by integration with

\psi \infty =

\int \infty 

0

(\psi \prime (t) - \sigma ) d t .

To achieve the proof of Theorem 3.2 we only need to ensure that by lessening \epsilon 
further if necessary, formula (2.6) ensures (3.6). For this purpose we consider

Sf : \BbbR \times \BbbR \times [0, 1] \rightarrow \BbbR , (a, b, \tau ) \mapsto \rightarrow sf (a, \tau a+ (1 - \tau ) b) - sf (b, \tau a+ (1 - \tau ) b)

and observe that it is continuous. Since \{ u - \} \times \{ u+\} \times [0, 1] is compact and since for
any \tau \in [0, 1], Sf (u - , u+, \tau ) > 0, one may ensure that provided \epsilon is small enough, for
any (a, b) such that | a - u - | \leq C0\epsilon and | b - u+| \leq C0\epsilon , and any \tau \in [0, 1], Sf (a, b, \tau ) >
0. From this stems (3.6) for u built from (2.6), and the proof is complete.

We now prove that the exponential decay of higher derivatives holds provided we
assume the stronger (symmetric) smallness condition on the first derivative.

Proposition 3.5. Let k \in \BbbN , k \geq 2, f \in \scrC k+1(\BbbR ), g \in \scrC k(\BbbR ), and (\sigma , u - , u+) \in 
\BbbR 3 satisfying (3.2)--(3.5). There exists \epsilon > 0 and Ck such that for any \psi 0 \in \BbbR and\widetilde v0 \in BUCk(\BbbR  \star ) satisfying

(3.9)
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star ) \leq \epsilon and

\bigm\| \bigm\| \partial x\widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star ) \leq \epsilon ,
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810 V. DUCH\^ENE AND L. M. RODRIGUES

there exist \psi \in \scrC k+1(\BbbR +) and u \in BUCk(\Omega \psi ) with initial data \psi (0) = \psi 0 and
u(0, \cdot ) = (U + \widetilde v0)(\cdot + \psi 0) such that u is an entropy solution to (1.1) and satisfies for
any t \geq 0 and any j \in \{ 0, . . . , k\} \bigm\| \bigm\| u(t, \cdot  - \psi (t)) - u\pm 

\bigm\| \bigm\| 
W j,\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W j,\infty (\BbbR \pm )

Ck e
g\prime (u\pm ) t ,

| \psi (j+1)(t)| \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W j,\infty (\BbbR  \star ) Ck e

max(\{ g\prime (u+),g\prime (u - )\} ) t .

Proof. The result does not follow directly from Proposition 2.6 applied to u\pm 
defined in the proof of Theorem 3.2 because the initial data provided by Lemma 2.13
are not sufficiently regular. Here we rather rely on the following lemma deduced from
a standard extension theorem [1, Theorem 4.26].

Lemma 3.6. Let k \in \BbbN , k \geq 2. There exists Ck > 0 such that for any v0 \in 
BUCk(\BbbR  \star ), there exist v0,\pm \in \scrC k(\BbbR ) satisfying

v0(x) =

\Biggl\{ 
v0,+(x) if x > 0,

v0, - (x) if x < 0,

and for any j \in \BbbN , 0 \leq j \leq k,

(3.10)
\bigm\| \bigm\| \partial jxv0,\pm \bigm\| \bigm\| L\infty (\BbbR ) \leq 

\bigm\| \bigm\| \partial jxv0\bigm\| \bigm\| L\infty (\BbbR \pm )
Ck .

Replacing Lemma 2.13 and Proposition 2.3 with Lemma 3.6 and Proposition 2.6,
the proof of Proposition 3.5 is then almost identical to the proof of Theorem 3.2.

We can also obtain a counterpart to Proposition 3.5 with the asymmetric small-
ness assumption on first-order derivatives.

Proposition 3.7. Let k \in \BbbN , k \geq 2, f \in \scrC k+1(\BbbR ), g \in \scrC k(\BbbR ), and (\sigma , u - , u+) \in 
\BbbR 3 satisfying (3.2)--(3.5) and (3.7). There exist \epsilon > 0 and Ck,\epsilon > 0 such that for
any \psi 0 \in \BbbR and \widetilde v0 \in BUCk(\BbbR  \star ) satisfying (3.8), the entropy solution defined in
Theorem 3.2 satisfies u \in BUCk(\Omega \psi ), \psi \in \scrC k+1(\BbbR +), and for any t \geq 0 and any
j \in \{ 1, . . . , k\} ,\bigm\| \bigm\| \partial jxu(t, \cdot  - \psi (t))

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W j,\infty (\BbbR \pm )

Ck,\epsilon (1 +
\bigm\| \bigm\| \partial 2x\widetilde v0\bigm\| \bigm\| j - 1

L\infty (\BbbR \pm )
)

\times e
Ck,\epsilon \| \widetilde v0\| W1,\infty (\BbbR \pm ) (1+\| \widetilde v0\| j - 1

W1,\infty (\BbbR \pm )
)
eg

\prime (u\pm ) t ,

| \psi (j+1)(t)| \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W j,\infty (\BbbR  \star )Ck,\epsilon (1 +

\bigm\| \bigm\| \partial 2x\widetilde v0\bigm\| \bigm\| j - 1

L\infty (\BbbR  \star ))

\times e
Ck,\epsilon \| \widetilde v0\| W1,\infty (\BbbR  \star ) (1+\| \widetilde v0\| j - 1

W1,\infty (\BbbR  \star )
)
emax(\{ g\prime (u+),g\prime (u - )\} ) t .

Proof. Although we follow the same strategy as in the earlier results, we need to
ensure that the regular extensions \widetilde v0,\pm \in BUCk(\BbbR ) preserve the asymmetric smallness
hypothesis (3.8). To this aim, we introduce a smooth cutoff function, \chi , such that
\chi (x) = 0 for | x| \geq 2/3, \chi (x) = 1 for | x| \leq 1/3, and \chi (x) \in [0, 1] for x \in \BbbR and define

\widetilde v0,+(x) =
\left\{     
\widetilde v0(0+) + \int  - \delta 

0
w0,+(y)\chi (\delta 

 - 1y) d y if x \in ( - \infty , - \delta ] ,\widetilde v0(0+) + \int x0 w0,+(y)\chi (\delta 
 - 1y) d y if x \in ( - \delta , 0] ,\widetilde v0(x) if x > 0 ,

where w0,+ is the extension associated with \partial x\widetilde v0 provided by Lemma 3.6.
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When choosing

\delta = min

\Biggl( \Biggl\{ 
c0 \epsilon 

1 +
\bigm\| \bigm\| \partial x\widetilde v0\bigm\| \bigm\| W 1,\infty (\BbbR +)

, 1

\Biggr\} \Biggr) 
,

with c0 > 0 sufficiently small and defining symmetrically \widetilde v0, - , we derive the following
lemma.

Lemma 3.8. Let k \in \BbbN , k \geq 2, C0 > 1, and \epsilon > 0. There exists Ck,\epsilon > 0 such
that for any \widetilde v0 \in BUCk(\BbbR  \star ) satisfying (3.8), there exist \widetilde v0,\pm \in BUCk(\BbbR ) satisfying

\widetilde v0(x) = \Biggl\{ \widetilde v0,+(x) if x > 0,\widetilde v0, - (x) if x < 0

and the estimates \bigm\| \bigm\| \widetilde v0,\pm \bigm\| \bigm\| L\infty (\BbbR ) \leq min(\{ C0\epsilon ,
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W 1,\infty (\BbbR  \star )Ck,\epsilon \} ) ,\bigm\| \bigm\| (sgn(f \prime \prime (u+)) \partial x\widetilde v0,+) - \bigm\| \bigm\| L\infty (\BbbR ) \leq C0\epsilon ,\bigm\| \bigm\| (sgn(f \prime \prime (u - )) \partial x\widetilde v0, - ) - \bigm\| \bigm\| L\infty (\BbbR ) \leq C0\epsilon ,

and for any j \in \BbbN , 1 \leq j \leq k,\bigm\| \bigm\| \widetilde v0,\pm \bigm\| \bigm\| W j,\infty (\BbbR ) \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| W j,\infty (\BbbR \pm )

(1 +
\bigm\| \bigm\| \partial x\widetilde v0\bigm\| \bigm\| j - 1

W 1,\infty (\BbbR \pm )
)Ck,\epsilon .

We can now follow the proof of Theorem 3.2, replacing Lemma 2.13 and Propo-
sition 2.3 with Lemma 3.8 and Proposition 2.6.

Remark 3.9. The nonuniqueness of the intermediate stage of our proofs is par-
ticularly striking here since even for the same initial data, depending on the level of
regularity we aim at, we build distinct extended solutions. Yet in the end, as discussed
in Remark 3.1, the parts actually used in the final gluing process are indeed indepen-
dent of choices in the extension as a consequence of Lax's condition, and uniqueness
holds by the theory of Kru\v zkov [10].

3.2. Perturbation by small shocks. We now elaborate on Proposition 2.10
and Theorem 3.2 and perturb a spectrally stable strictly entropy-admissible Riemann
shock of (1.1) with a perturbation containing one shock. For concreteness and conci-
sion we assume that the small shock is located on the left of the large shock, the op-
posite situation being deduced by symmetry considerations. Since the Riemann shock
is strictly entropy-admissible, sufficiently small perturbations with a small shock will
produce two paths of discontinuity eventually merging in a single one, the small shock
being essentially absorbed by the large one.

We follow the position of the large shock with \psi : \BbbR \rightarrow \BbbR and the position of the
small shock, as long as it persists, with \psi s : [0, t \star ] \rightarrow \BbbR , where t \star > 0, \psi s(t

 \star ) = \psi (t \star )
and, for any t \in [0, t \star ), \psi s(t) < \psi (t). In particular, we seek for a solution that is a
classical solution on the domain

\Omega \psi ,\psi s
def
= \BbbR + \times \BbbR \setminus 

\Bigl( 
\{ (t, \psi s(t)) | t \in [0, t \star ] \} \cup \{ (t, \psi (t)) | t \geq 0\} 

\Bigr) 
(see Figure 3.1).
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812 V. DUCH\^ENE AND L. M. RODRIGUES

(a) Original domain (b) Straightened domain

Fig. 3.1. Sketch of the shock paths.

Theorem 3.10. Let f, g \in \scrC 2(\BbbR ) and (\sigma , u - , u+) \in \BbbR 3 satisfying (3.2)--(3.5)

and (3.7). For any C0 > 1, there exists \epsilon > 0 and C > 0 such that for any \widetilde \psi s,0 < 0

and \psi 0 \in \BbbR and any \widetilde v0 \in BUC1(\BbbR  \star \setminus \{ \widetilde \psi s,0\} ) satisfying

(3.11)

\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star \setminus \{ \widetilde \psi s,0\} )
\leq \epsilon ,\bigm\| \bigm\| (sgn(f \prime \prime (u+)) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR +)
\leq \epsilon ,\bigm\| \bigm\| (sgn(f \prime \prime (u - )) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR  - \setminus \{ \widetilde \psi s,0\} )
\leq \epsilon ,

there exist
\bullet a time t \star \in (0,+\infty ),
\bullet a \scrC 0 function \psi : \BbbR + \rightarrow \BbbR that is \scrC 2 on \BbbR + \setminus \{ t \star \} and such that \psi (0) = \psi 0,

\bullet a \scrC 2 function \widetilde \psi s : [0, t
 \star ] \rightarrow \BbbR  - such that \widetilde \psi s is negative on [0, t \star ), \widetilde \psi s(0) = \widetilde \psi s,0

and \widetilde \psi s(t
 \star ) = 0,

so that, with \psi s = \psi | [0,t \star ]+ \widetilde \psi s, the entropy solution to (1.1), u, generated by the initial

data (U + \widetilde v0)(\cdot + \psi 0) belongs to BUC1(\Omega \psi ,\psi s) and satisfies7 for any t \geq 0\bigm\| \bigm\| u(t, \cdot  - \psi (t)) - u\pm 
\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t ,\bigm\| \bigm\| (sgn(f \prime \prime (u\pm )) \partial xu(t, \cdot  - \psi (t))) - 

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| (sgn(f \prime \prime (u\pm )) \partial x\widetilde v0) - \bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t,\bigm\| \bigm\| \partial xu(t, \cdot  - \psi (t))

\bigm\| \bigm\| 
L\infty (\BbbR \pm )

\leq 
\bigm\| \bigm\| \partial x\widetilde v0\bigm\| \bigm\| L\infty (\BbbR \pm )

C0 e
g\prime (u\pm ) t ,

| \psi \prime 
s(t) - f \prime (u - )| \leq 

\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  - \setminus \{ \widetilde \psi s,0\} )
C eg

\prime (u - ) t , t \leq t \star ,

| \psi \prime (t) - \sigma | \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star \setminus \{ \widetilde \psi s,0\} )

C emax(\{ g\prime (u+),g\prime (u - )\} ) t ,

and moreover there exists \psi \infty such that

| \psi \infty  - \psi 0| \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star \setminus \{ \widetilde \psi s,0\} )

C

and for any t \geq 0

| \psi (t) - \psi \infty  - t \sigma | \leq 
\bigm\| \bigm\| \widetilde v0\bigm\| \bigm\| L\infty (\BbbR  \star \setminus \{ \widetilde \psi s,0\} )

C emax(\{ g\prime (u+),g\prime (u - )\} ) t .

7In the first three inequalities, we sacrifice consistency for the sake of concision and readability
and write \BbbR  - even when 0 \leq t < t \star and notational conventions used elsewhere would require
\BbbR  - \setminus \{ \widetilde \psi s(t)\} or \BbbR  - \setminus \{ \widetilde \psi s,0\} .
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Proof. Here again we follow the extension/patching strategy used for the previous
results, assume without loss of generality that \psi 0 = 0, and correspondingly drop some
tildes. With a straightforward adaptation of Lemma 2.13 and using Proposition 2.3,
we find that for \epsilon > 0 sufficiently small and for any v0 \in BUC1(\BbbR  \star \setminus \{ \psi s,0\} ) satisfy-
ing (3.11), there exists ul, uc, ur \in BUC1(\BbbR + \times \BbbR ) global classical solutions to (1.1)
with initial data such that\left\{     

ul(0, x) = u - + v0(x) if x < \psi s,0,

uc(0, x) = u - + v0(x) if x \in (\psi s,0, 0),

ur(0, x) = u+ + v0(x) if x > 0

and satisfying the desired estimates.
We may now identify shock locations. Let \psi l and \psi r be defined by the differential

equations

\psi \prime 
l(t) = sf (ul(t, \psi l(t)), uc(t, \psi l(t))) and \psi 

\prime 
r(t) = sf (uc(t, \psi r(t)), ur(t, \psi r(t)))

with initial data \psi l(0) = \psi l,0 and \psi r(0) = 0. Then we observe that \psi l, \psi r \in \scrC 2(\BbbR +)
and

| \psi \prime 
l(t) - f \prime (u - )| \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR  - \setminus \{ \psi s,0\} )
C eg

\prime (u - ) t ,

| \psi \prime 
r(t) - \sigma | \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR  \star \setminus \{ \psi s,0\} )
C emax(\{ g\prime (u+),g\prime (u - )\} ) t .

Since f \prime (u - ) > \sigma and \psi s,0 < 0, this implies that the time

t \star = argmin \{ t \in \BbbR + | \psi l(t) = \psi r(t)\} 

is positive and finite. Finally, \psi f is defined by the differential equation

\psi \prime 
f(t) = sf (ul(t, \psi f(t)), ur(t, \psi f(t)))

with ``initial"" data \psi (t \star ) = \psi r(t
 \star ). Note that \psi f \in \scrC 2(\BbbR +) and that | \psi \prime 

f(t)  - \sigma | also
decays exponentially with the same estimate as | \psi \prime 

r(t) - \sigma | . Then we set \psi s = (\psi l)| [0,t \star ]
and

\psi : \BbbR \rightarrow \BbbR , t \mapsto \rightarrow 

\Biggl\{ 
\psi r(t) if 0 \leq t < t \star ,

\psi f(t) if t \geq t \star .

Again the last estimates on \psi are obtained by integration with

\psi \infty =

\int \infty 

0

(\psi \prime (t) - \sigma ) d t .

We can now construct the solution u. For any t \in [0, t \star ), we define

u(t, x) =

\left\{     
ul(t, x) if x < \psi s(t) ,

uc(t, x) if \psi s(t) < x < \psi (t) ,

ur(t, x) if x > \psi (t) .

For subsequent times t \in [t \star ,+\infty ), we set

u(t, x) =

\Biggl\{ 
ul(t, x) if x < \psi (t) ,

ur(t, x) if x > \psi (t) .

One easily checks that the function u is an entropy solution as soon as \epsilon is sufficiently
small, following the proof of Proposition 2.10 (along the path \{ (t, \psi s(t)) | 0 \leq t \leq t \star \} )
and Proposition 3.2 (along the path \{ (t, \psi (t)) | t \geq 0\} ).

D
ow

nl
oa

de
d 

02
/2

5/
20

 to
 1

29
.2

0.
36

.2
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

814 V. DUCH\^ENE AND L. M. RODRIGUES

4. Transverse stability in the multidimensional framework. In the pres-
ent section we consider some generalizations of the main results proved so far to
multidimensional settings. In particular, we now replace (1.1) with

(4.1) \partial tu+ div
\bigl( 
f(u)

\bigr) 
= g(u),

where the spatial variable x belongs to \BbbR d, d \in \BbbN  \star , and f : \BbbR \rightarrow \BbbR d.
Most of adaptations are rather straightforward, and we only sketch main vari-

ations required in the process. We aim not at gaining new insights on the general
stability problem but at demonstrating a certain robustness of the one-dimensional
arguments.

Starting from spatial dimension d = 2 the range of possible geometries for dis-
continuities becomes too wide to be reasonably covered here, even if one restricts to a
few typical cases. Therefore, in the multidimensional case we only consider shockless
perturbations.

4.1. Asymptotic stability of constant states. Propositions 2.2 and 2.6 trans-
late almost verbatim to the multidimensional case.

Proposition 4.1. Let f \in \scrC 2(\BbbR ;\BbbR d), g \in \scrC 2(\BbbR ), and u \in \BbbR be such that

g(u) = 0 and g\prime (u) < 0 .

Then for any C0 > 1, there exists \epsilon > 0 such that for any v0 \in BUC1(\BbbR d) satisfying\bigm\| \bigm\| v0\bigm\| \bigm\| W 1,\infty (\BbbR d) \leq \epsilon ,

the initial data u(0, \cdot ) = u + v0 generate a global unique classical solution to (4.1),
u \in BUC1(\BbbR + \times \BbbR d), and it satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot ) - u

\bigm\| \bigm\| 
L\infty (\BbbR d) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\BbbR d)C0 e
g\prime (u) t ,\bigm\| \bigm\| \nabla u(t, \cdot )\bigm\| \bigm\| 

L\infty (\BbbR d;\BbbR d) \leq 
\bigm\| \bigm\| \nabla v0\bigm\| \bigm\| L\infty (\BbbR d;\BbbR d)C0 e

g\prime (u) t .

In the foregoing statement and henceforth, we measure vectors in \BbbR d with the
Euclidean norm.

Proposition 4.2. Under the assumptions of Proposition 4.1, if one assumes ad-
ditionally that f \in \scrC k+1(\BbbR ;\BbbR d), g \in \scrC k(\BbbR ) with k \in \BbbN , k \geq 2, then there exists Ck >
0, depending on f , g, and k but not on the initial data v0, such that if v0 \in BUCk(\BbbR d)
additionally to constraints in Proposition 4.1, then the global unique classical solution
to (4.1) emerging from the initial data u + v0 satisfies u \in BUCk(\BbbR + \times \BbbR d) and for
any \alpha multi-index of size | \alpha | = k and t \geq 0\bigm\| \bigm\| \partial \alpha u(t, \cdot )\bigm\| \bigm\| 

L\infty (\BbbR d) \leq 
\bigm\| \bigm\| \partial \alpha v0\bigm\| \bigm\| L\infty (\BbbR d)e

Ck \| v0\| W1,\infty (1+\| v0\| k - 1

W1,\infty ) eg
\prime (u) t .

Proofs are also essentially identical. The proof involves now the consideration
of operators La, b =  - a \cdot \nabla + b, but still with a close to f \prime (u) and b close to g\prime (u).
Since transport operators are not elliptic when d > 1, their domains---the set of
v \in BUC0(\BbbR d) such that La, bv \in BUC0(\BbbR d)---cannot be identified with a classical
function space. Note, however, that this does not alter any part of the argument
and that in particular one may still apply [18, Chapter 5, Theorem 3.1] with X =
BUC0(\BbbR d) and Y = BUC1(\BbbR d) even though Y is now a common core rather than a
common domain.

Key estimates are provided in the following lemma.
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Lemma 4.3. Assume a \in BUC1(\BbbR d;\BbbR d), b \in BUC0(\BbbR d).
(i) Then for any \lambda \in \BbbC such that

\Re (\lambda ) > sup
\BbbR d

b(\cdot ) ,

for any F \in BUC0(\BbbR d), there exists a unique \v v( \cdot ;\lambda ) \in BUC0(\BbbR d) such that

(\lambda  - La, b) \v v( \cdot ;\lambda ) = F

and moreover \bigm\| \bigm\| \v v( \cdot ;\lambda )\bigm\| \bigm\| 
L\infty (\BbbR d) \leq 

1

\Re \lambda  - sup\BbbR d b(\cdot )
\bigm\| \bigm\| F\bigm\| \bigm\| 

L\infty (\BbbR d) .

(ii) Assume moreover that

b is constant and \Re (\lambda ) > b+ sup
\BbbR d

\bigm\| \bigm\| d a\bigm\| \bigm\| (\cdot ) .
Then for any F \in BUC1(\BbbR d), \v v( \cdot ;\lambda ) \in BUC1(\BbbR d) and\bigm\| \bigm\| \nabla \v v( \cdot ;\lambda )

\bigm\| \bigm\| 
L\infty (\BbbR d) \leq 

1

\Re \lambda  - b - sup\BbbR d
\bigm\| \bigm\| d a\bigm\| \bigm\| (\cdot )\bigm\| \bigm\| \nabla F\bigm\| \bigm\| L\infty (\BbbR d) .

Proof. One may proceed as in the one-dimensional case with the generalized for-
mula

\v v(x;\lambda )
def
=

\int 0

 - \infty 
e
\int 0
s
(b(X(\sigma ;x)) - \lambda ) d\sigma F (X(s;x)) d s,

where X(\cdot , x) is such that X(0, x) = x and \forall s \in \BbbR , \partial sX(s;x) = a(X(s;x)). Since a is
Lipschitz, X(\cdot , x) is indeed globally well defined. When moreover b is constant, one
derives from the latter

dx \v v(x;\lambda )(h) =

\int 0

 - \infty 
e
\int 0
s
(b - \lambda ) d\sigma dF (X(s;x))(dxX(s;x)(h)) d s,

and the claim follows from the observation that for any s \leq 0,\bigm\| \bigm\| dxX(s;x)(h)
\bigm\| \bigm\| \leq e

\int 0
s
\| d a(X(\sigma ;x))\| d\sigma 

\bigm\| \bigm\| h\bigm\| \bigm\| \leq e
\int 0
s
\| d a\| L\infty d\sigma 

\bigm\| \bigm\| h\bigm\| \bigm\| .
4.2. Asymptotic stability of Riemann shocks. We now turn to the stability

of plane Riemann shocks. For the sake of clarity and without loss of generality, we
fix the direction of propagation of the reference Riemann shock, split spatial variables
accordingly x = (\xi , y) \in \BbbR \times \BbbR d - 1, and correspondingly f = (f\shortparallel , f\bot ).

We consider a plane wave u,

u(t, x) = U(\xi  - (\psi 0 + \sigma t)) ,

with \psi 0 \in \BbbR , \sigma \in \BbbR , and U such that

(4.2) U(\xi ) =

\Biggl\{ 
u - if \xi < 0,

u+ if \xi > 0,

where (u - , u+) \in \BbbR 2, u+ \not = u - are such that

(4.3) g(u+) = 0 , g(u - ) = 0, and f\shortparallel (u+) - f\shortparallel (u - ) = \sigma (u+  - u - ),
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816 V. DUCH\^ENE AND L. M. RODRIGUES

and we assume that u is strictly entropy-admissible, that is,
(4.4)\left\{         

\sigma > f \prime \shortparallel (u+) ,

f\shortparallel (\tau u - +(1 - \tau )u+) - f\shortparallel (u - )

\tau u - +(1 - \tau )u+ - u - 
>

f\shortparallel (\tau u - +(1 - \tau )u+) - f\shortparallel (u+)

\tau u - +(1 - \tau )u+ - u+
for any \tau \in (0, 1) ,

f \prime \shortparallel (u - ) > \sigma 

(though this does not play a strong role in our analysis; see Remark 3.1). Moreover,
we require

(4.5) g\prime (u+) < 0 and g\prime (u - ) < 0 .

To accurately account for discontinuities, we introduce

\Omega +
\psi 0

def
= \{ (\xi , y) \in \BbbR \times \BbbR d - 1 ; \xi > \psi 0(y) \} ,

\Omega  - 
\psi 0

def
= \{ (\xi , y) \in \BbbR \times \BbbR d - 1 ; \xi < \psi 0(y) \} ,

\Omega \psi +
def
= \{ (t, \xi , y) \in \BbbR + \times \BbbR \times \BbbR d - 1 ; \xi > \psi (t, y) \} ,

\Omega \psi  - 
def
= \{ (t, \xi , y) \in \BbbR + \times \BbbR \times \BbbR d - 1 ; \xi < \psi (t, y) \} ,

\Omega \psi 0

def
= \Omega +

\psi 0
\cup \Omega  - 

\psi 0
, \Omega \psi 

def
= \Omega \psi + \cup \Omega \psi  - .

Theorem 4.4. Let f \in \scrC 2(\BbbR ;\BbbR d), g \in \scrC 2(\BbbR ) and (\sigma , u - , u+) \in \BbbR 3 satisfy-
ing (4.3)--(4.5). For any C0 > 1, there exists \epsilon > 0 and C > 0 such that for any
\psi 0 \in BUC1(\BbbR d - 1) and v0 \in BUC1(\Omega \psi 0

) satisfying\bigm\| \bigm\| v0\bigm\| \bigm\| W 1,\infty (\Omega \psi 0
)

\leq \epsilon ,\bigm\| \bigm\| \nabla y\psi 0

\bigm\| \bigm\| 
L\infty (\BbbR d - 1)

\leq \epsilon ,

there exists \psi \in \scrC 2(\BbbR + \times \BbbR d - 1) with initial data \psi (0, \cdot ) = \psi 0 such that the entropy
solution to (4.1), u, generated by the initial data

u(0, \xi , y) = U(\xi  - \psi 0(y)) + v0(\xi , y) ,

U being as in (4.2), belongs to BUC1(\Omega \psi ) and satisfies for any t \geq 0\bigm\| \bigm\| u(t, \cdot , \cdot ) - u\pm 
\bigm\| \bigm\| 
L\infty (\Omega \pm 

\psi (t,\cdot ))
\leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\Omega \pm 

\psi 0
)
C0 e

g\prime (u\pm ) t ,\bigm\| \bigm\| \nabla u(t, \cdot , \cdot )\bigm\| \bigm\| 
L\infty (\Omega \pm 

\psi (t,\cdot );\BbbR d)
\leq 
\bigm\| \bigm\| \nabla v0\bigm\| \bigm\| L\infty (\Omega \pm 

\psi 0
;\BbbR d)C0 e

g\prime (u\pm ) t ,\bigm\| \bigm\| \nabla y\psi (t, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d - 1;\BbbR d - 1)

\leq 
\bigm\| \bigm\| \nabla y\psi 0

\bigm\| \bigm\| 
L\infty (\BbbR d - 1;\BbbR d - 1)

C0 +
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\Omega \psi 0

)
C

and\bigm\| \bigm\| \partial t\psi (t, \cdot )+sf\bot (u - , u+)\cdot \nabla y\psi (t, \cdot ) - \sigma 
\bigm\| \bigm\| 
L\infty (\BbbR d - 1)

\leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\Omega \psi 0

)
C emax(\{ g\prime (u+),g\prime (u - )\} ) t ,

where sf\bot is defined as in (2.7), and moreover there exists \psi \infty such that\bigm\| \bigm\| \psi \infty  - \psi 0

\bigm\| \bigm\| 
L\infty (\BbbR d - 1)

\leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\Omega \psi 0

)
C

and for any t \geq 0\bigm\| \bigm\| \psi (t, \cdot ) - \psi \infty (\cdot  - t sf\bot (u - , u+)) - t \sigma 
\bigm\| \bigm\| 
L\infty (\BbbR d - 1)

\leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| L\infty (\Omega \psi 0

)
C emax(\{ g\prime (u+),g\prime (u - )\} ) t .
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Proof. The proof follows the same scheme as the one of the proof of Theorem 3.2.
To start with, even though one cannot reduce the proof to the case when \psi 0 = 0, the
Lipschitz assumption on \psi 0 is sufficient to extend both smooth parts of v0 so as to
apply Proposition 4.1 to both extensions and receive functions u - and u+. Once the
shock position is determined---through the equation \xi = \psi (t, y)---that is, once \psi is
known, the sought solution is obtained by gluing u - and u+.

Once again the evolution of \psi is determined from the Rankine--Hugoniot condi-
tions. They read

\partial t\psi (t, \cdot ) + sf\bot (u - (t, \psi (t, \cdot ), \cdot ), u+(t, \psi (t, \cdot ), \cdot )) \cdot \nabla y\psi (t, \cdot )
= sf\shortparallel (u - (t, \psi (t, \cdot ), \cdot ), u+(t, \psi (t, \cdot ), \cdot )) .

At the level of regularity considered here, the local well-posedness of the foregoing
PDE is classical, and we may again focus on proving bounds. Uniform bounds on
\psi (t, \cdot )  - \sigma t and \nabla y\psi , hence also the global well-posedness, is derived by arguing
as in the proof of Proposition 4.1. Indeed, Lemma 4.3 yields the existence of and
bounds for the evolution system generated by the time-dependent linear operator
La(t,\cdot ), 0 =  - a(t, \cdot ) \cdot \nabla , where a \in \scrC 0([0, T ), BUC1(\BbbR d - 1)). We may then apply
Duhamel's formula on the equation

\partial t(\psi (t, \cdot ) - \sigma t) + sf\bot (u - (t, \psi (t, \cdot ), \cdot ), u+(t, \psi (t, \cdot ), \cdot )) \cdot \nabla y(\psi (t, \cdot ) - \sigma t)

= sf\shortparallel (u - (t, \psi (t, \cdot ), \cdot ), u+(t, \psi (t, \cdot ), \cdot )) - sf\shortparallel (u - , u+)

and use that u -  - u - and u+ - u+ decay exponentially in time in W 1,\infty . Subtracting\bigl( 
sf\bot (u - (t, \psi (t, \cdot ), \cdot ), u+(t, \psi (t, \cdot ), \cdot )) - sf\bot (u - , u+)

\bigr) 
\cdot \nabla y\psi (t, \cdot ) to each side of the above

equation and using again the exponential decay in time in L\infty of u -  - u - and u+ - u+,
with

\psi \infty (y)
def
= \psi 0(y) +

\int \infty 

0

d

d t

\bigl( 
\psi (\cdot , y + sf\bot (u - , u+) \cdot ) - \sigma \cdot 

\bigr) 
(t) d t

= \psi 0(y) +

\int \infty 

0

\bigl( 
\partial t\psi + sf\bot (u - , u+) \cdot \nabla y\psi 

\bigr) 
(t, y + sf\bot (u - , u+)t) - \sigma d t ,

we obtain the decay bounds. Finally, the L\infty bounds on u\pm allow to guarantee,
lessening \epsilon if necessary, that the strict entropy admissibility of the shock propagates
for positive times, and the uniqueness of entropy solutions is provided by the theory
of Kru\v zkov [10].

The proof of Theorem 3.5 also carries over to the multidimensional case. Note in
particular that the Lipschitz condition on \psi 0 is already sufficient to extend smooth
parts of v0 while maintaining higher-order regularity.

Proposition 4.5. Let k \in \BbbN , k \geq 2, f \in \scrC k+1(\BbbR ;\BbbR d), g \in \scrC k(\BbbR ), and let
(\sigma , u - , u+) \in \BbbR 3 satisfying (4.3)--(4.5) and defining a strictly entropic plane wave.
There exists \epsilon > 0 and Ck such that for any \psi 0 \in BUC1(\BbbR d) and v0 \in BUCk(\Omega \psi 0

)
satisfying \bigm\| \bigm\| v0\bigm\| \bigm\| W 1,\infty (\Omega \psi 0

)
\leq \epsilon and

\bigm\| \bigm\| \nabla y\psi 0

\bigm\| \bigm\| 
L\infty (\BbbR d) \leq \epsilon ,

there exist \psi \in \scrC 2(\BbbR +) and u \in BUCk(\Omega \psi ) with initial data \psi (0, \cdot ) = \psi 0 and u(0, \cdot , \cdot )
given by

u(0, \xi , y) = U(\xi  - \psi 0(y)) + v0(\xi , y) ,
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U being as in (4.2), such that u is an entropy solution to (4.1) and satisfies for any
t \geq 0 and any j \in \{ 0, . . . , k\} \bigm\| \bigm\| u(t, \cdot , \cdot ) - u\pm 

\bigm\| \bigm\| 
W j,\infty (\Omega \pm 

\psi (t,\cdot ))
\leq 
\bigm\| \bigm\| v0\bigm\| \bigm\| W j,\infty (\Omega \pm 

\psi 0
)
Ck e

g\prime (u\pm ) t .

If moreover \psi 0 \in BUCk+1(\BbbR d), then \psi \in BUCk+1(\BbbR \times \BbbR d), and for any t \geq 0 and
any j \in \{ 1, . . . , k\} ,\bigm\| \bigm\| (\partial t + sf\bot (u - , u+) \cdot \nabla y)

j+1\psi (t, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d) \leq 

\bigm\| \bigm\| v0\bigm\| \bigm\| W j,\infty (\Omega \psi 0
)
Ck e

max(\{ g\prime (u+),g\prime (u - )\} ) t .

5. Further comments. Finally, we conclude our contribution by replacing the
present analysis in the more general framework of stability of discontinuous solutions
of hyperbolic systems of balance laws. In particular, we comment on which feature of
Riemann shocks of scalar laws is involved in each of the derived properties.

To begin with, note that the scalar character of the equations is essential to
reduce the analysis of piecewise smooth solutions to on the one hand the analysis
of smooth solutions and on the other the gluing according to the Rankine--Hugoniot
conditions. The strategy may also be used in multidimensional cases (as in section 4)
or with wave profiles that are not piecewise constant (as in [4]). The argument is
crucially used to allow for perturbations adding discontinuities. However, as long as
perturbations do not change the regularity structure, up to some loss in optimality
one may replace the argument with a direct stability analysis whose starting point
is expounded below. In the scalar case the latter restriction amounts essentially to
requiring smoothness on perturbations, whereas in the system case it should also
include compatibility conditions at discontinuities, for instance, met by perturbations
supported far away from the original discontinuities.8 Unfortunately, for the moment
the consideration of discontinuous perturbations in a system case still lies beyond
reach of both frameworks.

To give an idea of what a direct stability analysis for Riemann shocks would
look like, we now write the corresponding spectral stability problem (in the one-
dimensional case). The question is whether one may solve uniquely in (\v v( \cdot ;\lambda ), \v \psi (\lambda ))
and continuously with respect to any (F,\varphi ) the system

(\lambda + (f \prime (u+) - \sigma )\partial x  - g\prime (u+)) \v v( \cdot ;\lambda ) = F on \BbbR  \star + ,
(\lambda + (f \prime (u - ) - \sigma )\partial x  - g\prime (u - )) \v v( \cdot ;\lambda ) = F on \BbbR  \star  - ,

\lambda \v \psi (\lambda ) - 
\biggl( 
f \prime (u+) - \sigma 

u+  - u - 
\v v(0+;\lambda ) - 

f \prime (u - ) - \sigma 

u+  - u - 
\v v(0 - ;\lambda )

\biggr) 
= \varphi .

An inspection of the proof of Lemma 2.7 shows that since f \prime (u+) < \sigma , when \Re (\lambda ) >
g\prime (u+), \v v( \cdot ;\lambda ) is uniquely and continuously determined on \BbbR  \star + by the first equation
and obtained there by solving from +\infty . Likewise, when \Re (\lambda ) > g\prime (u - ), \v v( \cdot ;\lambda ) is
uniquely and continuously determined on \BbbR  \star  - by the second equation and obtained
there by solving from  - \infty . Thus, when \Re (\lambda ) > max(\{ g\prime (u - ); g\prime (u+)\} ), the problem
is uniquely solved if and only if \lambda \not = 0. A closer examination reveals that it follows
from f \prime (u+) < \sigma < f \prime (u - ) that the spectrum is\bigl\{ 

\lambda ; \Re (\lambda ) \leq max(\{ g\prime (u - ); g\prime (u+)\} )
\bigr\} 
\cup \{ 0\} 

8We recall that during the finalization of the present contribution, we have been informed that
a system case has been analyzed in [23], and we refer to it for such an example of analysis.
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and that when max(\{ g\prime (u - ); g\prime (u+)\} ) < 0, 0 has multiplicity 1 (in the sense provided
by resolvent singularities). The consideration of the Riemann shocks may leave the
reader with the deceptive impression that in scalar balance laws the stability of travel-
ing waves is determined by smooth parts of the profiles, whereas shocks play a passive
role, encoding invariance by space translation. This special feature is, however, due to
the fact that g(U) is continuous across discontinuities. In contrast, in [4] we provide
examples of some cases when positions of discontinuities are exponentially stable and
of some others when they bring exponential instabilities even when the smooth parts
are pointwise dissipative (in a weighted sense that yields equivalent norms).

In the foregoing paragraph and all through the text, not much care was required
in the sense in which spectral properties were considered. Indeed, any reasonable
functional framework is associated with the same spectrum. This is also reflected at
the nonlinear level in the fact that stability is also obtained in arbitrarily high regular-
ity. This is easy to see at the spectral level when profiles are piecewise constant, but it
is more fundamentally related to the ellipticity of underlying operators, hence here to
the fact that f \prime (U) - \sigma is bounded away from zero. When this condition is relaxed (to
include sonic points), one may still deduce, at any level of regularity, nonlinear sta-
bility from spectral stability. Yet spectral properties do depend on functional choices
and specifically on the degree of regularity under consideration. In particular, in [4]
we exhibit an instability mechanism that is seen in the topology of BUCk, k \geq 1, but
not in BUC0, which demonstrates that not all key properties in scalar balance laws
are captured by L\infty -based estimates.

The present paper opens at least two clear close follow-ups: the stability of more
general traveling waves of scalar balance laws and the stability of Riemann shocks in
general systems. The former is studied in detail in the companion paper [4], where
breakthroughs obtained here are combined with an elucidation of the effects of the
presence of sonic points in wave profiles so as to derive an essentially complete picture
for balance laws. The latter is left for future work.
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