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Boundedness of wave operators for Schrödinger operators in one space dimension
for a class of singular potentials, admitting finitely many Dirac delta distributions,
is proved. Applications are presented to, for example, dispersive estimates and com-
mutator bounds. C© 2011 American Institute of Physics. [doi:10.1063/1.3525977]

I. INTRODUCTION

Wave operators provide a means for converting operator bounds for a “free” dynamics generated
by a constant coefficient Hamiltonian, H0 = −�, to analogous operator bounds about “interacting”
dynamics associated with a variable coefficient Hamiltonian, H = −� + V , on its continuous
spectral subspace. Indeed, let W± and W ∗

± denote wave operators associated with the free and
interacting Hamiltonians H0 and H (defined by (2.1) and (2.2)). Then, we have

W±W ∗
± = Pc, W ∗

±W± = I d, (1.1)

f (H )Pc = W± f (H0)W ∗
±, f (H0) = W ∗

± f (H )W±, f Borel on R . (1.2)

It follows that bounds on f (H )Pc, acting between W k1,p1 (Rd ) and W k2,p2 (Rd ), can be derived from
bounds on f (H0) between these spaces if the wave operators W± are bounded between W k1,p1 (Rd )
and W k2,p2 (Rd ) for k j ≥ 0 and p ≥ 1. Here, W k,p(Rd ), k ≥ 1, p ≥ 1, denotes the Sobolev space
of functions having derivatives up to order k in L p(Rd ).

Boundedness of wave operators in W k,p(Rd ), under smoothness and decay assumptions on
V (x), was proved by Yajima27 in dimensions d ≥ 2. Weder26 proved boundedness in dimension
one; also see the article of D’Ancona and Fanelli.2 In Ref. 26 it is assumed that V ∈ L1

γ (R), the
space of all complex-valued measurable functions φ defined on R such that

‖φ‖L1
γ

=
∫

|φ(x)|(1 + |x |)γ dx < ∞. (1.3)

For V in a class of generic potentials, the assumption is γ > 3/2, and otherwise it is assumed
γ > 5/2. Wave operator bounds can be used to establish dispersive estimates, namely,∥∥e−i Ht Pc(H ) f

∥∥
L p(Rd )

= ∥∥W±e−i H0t W ∗
± f

∥∥
L p(Rd ) ≤ C |t |− d

2 − d
p ‖ f ‖Lq (Rd ) , p−1 + q−1 = 1, p ≥ 1.

Applications of wave operator bounds for singular potentials appear in Refs. 4, 15, and 19.
Schrödinger operators with singular potentials arise in several mathematical models, which have
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recently been extensively investigated. For example, see Refs. 6–8, 11–13, 15, 17, and 19, where
Dirac delta function potentials are considered. Boundedness of wave operators in W 1,2(R) for
singular potentials is used implicitly in Refs. 8 and 15, but this property appears not to have been
addressed previously. This gap in the literature is addressed in the present work. Another motivation
for the present work is the study of scattering for highly oscillatory potentials, containing local
singularities, in the homogenization limit.4 In this work, bounds on (m2 + H )−1 Pc(H )(m2 − ∂2

x ),
where H = −∂2

x + V (x) is a Schrödinger operator with a singular (distribution) part to the potential
V (x), are required; see Sec. VIII.

This article is devoted to an extension of the one-dimensional results26 to the case of singular
potentials. Specifically, our results apply to Hamiltonians of the form

H = −∂2
x + V (x),

where V (x) satisfies the following.

Hypotheses (V):

V (x) = Vsing(x) + Vreg(x), (1.4)

Vsing(x) =
N−1∑
j=0

q j δ(x − y j ), q j , y j ∈ R, y j < y j+1, q j �= 0, (1.5)

‖Vreg‖L1
3
2 +(R) ≡

∫
R

(1 + |s|) 3
2 +|Vreg(s)| ds < ∞. (1.6)

The paper is structured as follows. In Sec. II we state our main result, Theorem 1, concerning
boundedness of the wave operators. In Sec. III the strategy of proof is outlined. Section IV sum-
marizes facts about Jost solutions, distorted plane waves, reflection and transmission coefficients,
etc. In Sec. V we state a general result, Theorem 3, from which Theorem 1 follows. The proof of
Theorem 3 is given in Sec. VI, and the completion of Theorem 1 is given in Sec. VII. Finally, in
Sec. VIII we present examples (multidelta function potentials) and applications to dispersive esti-
mates, commutator bounds, and well-posedness.

II. MAIN RESULTS

We first define and review properties of the wave operators. For basic results on wave operators,
see, for example, Refs. 1, 21, and 22.

Introduce the self-adjoint operators H0 = −� and H = −� + V . Here, V is a real-valued
potential, satisfying assumptions given below; see Sec. V. Let Pc = Pc(H ) denote the continu-
ous spectral projection associated with H . The wave operators, W±, and their adjoints, W ∗

±, are
defined by

W± ≡ s − lim
t→±∞ eit H e−i t H0 , (2.1)

W ∗
± ≡ s − lim

t→±∞ eit H0 e−i t H Pc. (2.2)

The wave operators satisfy the properties (1.1) and (1.2). The notion of wave operators is intimately
related to the idea of distorted Fourier bases, which are discussed in detail in Refs. 1, 14, and
20. In one dimension, this is directly related to the Jost solutions, studied for general self-adjoint
Schrödinger operators in Refs. 3 and 20 and for a certain class of non-self-adjoint operators in
Ref. 16.

Theorem 3 of Sec. V, combined with the calculations of Sec. VII, implies the following.

Theorem 1: Consider the Schrödinger operator with a potential, V (x), satisfying Hypotheses
(V). Then W± and W ∗

±, originally defined on W 1,p ∩ L2, 1 ≤ p ≤ ∞, have extensions to bounded
operators on W 1,p, 1 < p < ∞. Moreover, there are constants C p such that

‖W± f ‖W 1,p(R) ≤ C p‖ f ‖W 1,p(R), ‖W ∗
± f ‖W 1,p(R) ≤ C p‖ f ‖W 1,p(R), f ∈ W 1,p(R), 1 < p < ∞.

(2.3)
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Remark 2.1: In general, the wave operators are not bounded on L1. The constraint p > 1 is due to
the Hilbert transform, H not being bounded on L1; see Ref. 26.

III. STRATEGY OF PROOF

We use the approach for wave operators on R initiated by Weder in Ref. 26. The heart of the
matter concerns the detailed low and high frequency behaviors of the Jost solutions, worked out by
Deift and Trubowitz,3 or a consequence of their methods. The idea is to split the wave operators into
high and low frequency components,

W± = W±,high + W±,low.

For the high frequency component, we prove for φ ∈ S,

W±,highφ =
∑

j

SA j φ, where SAφ ≡
∫ ∞

−∞
A(x, y)φ(y)dy.

For each A = A j , we use the criterion (Young’s inequality5) for L p, 1 ≤ p ≤ ∞, boundedness,

CA ≡ sup
x∈R

∫
R

|A(x, y)| dy + sup
y∈R

∫
R

|A(x, y)| dx < ∞

⇒ ‖SAφ‖L p ≤ CA ‖φ‖L p,

to prove ∥∥W±,highφ
∥∥

W 1,p ≤ C p ‖φ‖W 1,p, 1 < p < ∞. (3.1)

For the low frequency components, we have

W±,low ∼ H +
∑

j

SA j ,

where SA j is as above and H denotes the Hilbert transform

(Hφ)(x) = 1

π
P.V.

∫
φ(x − y)

y
dy =

∫ ∞

−∞
eikx (−i sgn(k)) φ̂(k)dk. (3.2)

Here, F and F−1 denote the Fourier transform on R and its inverse, defined by

φ̂(k) ≡ Fφ(k) = 1

2π

∫
e−ikxφ(x)dx, �̌(x) ≡ F−1�(x) =

∫
eikx�(k)dk. (3.3)

Thus, for low frequencies, boundedness∥∥W±,lowφ
∥∥

W 1,p ≤ C p ‖φ‖W 1,p, 1 < p < ∞, (3.4)

reduces to the boundedness properties of the Hilbert transform.23

Theorem 2: H : W s,p → W s,p, for 1 < p < ∞ and s ≥ 0, with ‖Hφ‖W s,p(R) ≤ K p ‖φ‖W s,p(R).

Estimates (3.1) and (3.4) then imply the theorem. The proof of (3.1) and (3.4) is given in
Sec. VI. We now develop some background for implementing the strategy.

IV. BACKGROUND SPECTRAL THEORY OF H = −∂2
x + V

A. Distorted plane waves, e±(x; k)

Consider the operator H = −∂2
x + V (x), defined as a self-adjoint operator on L2(R). Denote by

Pd and Pc the discrete and continuous spectrum projections. Pd and Pc are orthogonal projections
with Pc = I d − Pd .
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Denote by R0 the outgoing “free” resolvent operator R0(k) = (−∂2
x − k2)−1 with kernel

R0(k)(x, y) = −(2ik)−1 exp(ik|x − y|),
and finally introduce the distorted plane waves, e±(x ; k).

Definition 4.1: The functions u = e±(x ; k) are the unique solutions to (H − k2)u = 0 satisfying

e±(x ; k) = e±ikx + outgoing(x), (4.1)

where a function U is said to be outgoing as |x | → ∞ if

(∂x ∓ ik)U → 0, x → ±∞.

Thus, e±(x ; k) is given by the integral equation,

e±(x ; k) = e±ikx − R0(k)V e±(x ; k), (4.2)

or equivalently by

e±(x ; k) = e±ikx − RV (k)V e±ikx . (4.3)

The continuous spectral projection, Pc, is given by

Pc f (x) = 1

2π

∫ ∫ ∞

0

(
e+(x, k) e+(y, k) + e−(x, k) e−(y, k)

)
f (y) dk dy, (4.4)

see, for example, Ref. 25.
We write

Pc f ≡ F∗
+ F+ f,

where it follows from (4.4) that

F+ f ≡
∫
R

	+(y, k) f (y) dy, F∗
+ f ≡

∫
R

	+(y, k) f (k) dk, and (4.5)

	+(y, k) = 1√
2π

{
e+(x ; k), k ≥ 0

e−(x ; −k), k < 0
. (4.6)

We also define 	−(x, k) = 	+(x,−k). Recall W± = F∗
± F .22

B. Jost solutions

To make direct use of the arguments in Refs. 3 and 26, we express the results of the Sec. IV A
in terms of Jost solutions, commonly introduced for one-dimensional Schrödinger operators.

Given the Schrödinger equation

− d2

dx2
u + V u = k2u, k ∈ C, (4.7)

we define the Jost solutions, f j (x, k), j = 1, 2, Imk ≥ 0, to be the unique solutions of (4.7) satisfying
the conditions,

f1(x, k) − eikx → 0, x → ∞, and

f2(x, k) − e−ikx → 0, x → −∞. (4.8)

The Jost solutions are linearly independent solutions of (4.7) for k �= 0. Therefore, there are unique
functions T (k), R j (k), j = 1, 2, such that for k ∈ R \ 0,

f2(x, k) = R1(k)

T (k)
f1(x, k) + 1

T (k)
f1(x,−k), (4.9)

f1(x, k) = R2(k)

T (k)
f2(x, k) + 1

T (k)
f2(x,−k). (4.10)
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For a potential, V , with compact support within (−r, r ), R j (k), and T (k) are defined via the solutions,

e+(x ; k) = T (k) f1(x ; k) =
{

eikx + R2(k)e−ikx , x < −r
T (k)eikx , x > r

, (4.11)

e−(x ; k) = T (k) f2(x ; k) =
{

T (k)e−ikx , x < −r
e−ikx + R1(k)eikx , x > r

. (4.12)

Generically,

T (k) = αk + o(k), 1 + R j (k) = α j k + o(k), j = 1, 2, k → 0. (4.13)

T (k) is called the transmission coefficient associated with H . R1(k) is the right to left reflection
coefficient, and R2(k) is the left to right reflection coefficient.

Finally, it is convenient to denote by m j (x, k), j = 1, 2,

m1(x, k) = e−ikx f1(x, k), and m2(x, k) = eikx f2(x, k). (4.14)

It follows from (4.1), (4.8), and (4.9) that

	+(x, k) = 1√
2π

{
T (k) eikx m1(x, k), k ≥ 0

T (−k) eikx m2(x,−k), k < 0
, (4.15)

where m1(x, k) − 1 → 0 as x → ∞ and m2(x, k) − 1 → 0 as x → −∞. The detailed smoothness
and decay properties, in x and k, of m j (x ; k) − 1 are required in estimates. These are given in
Sec. VII.

V. STATEMENT OF THE CENTRAL THEOREM

Our central result, from which Theorem 1 follows, is as follows.

Theorem 3: Let H = −∂2
x + V (x) be self-adjoint on L2(R) for which the transmission and reflection

coefficients (see (4.9)) satisfy the bounds

|R1(k)| + |R2(k)| + |T (k) − 1| ≤ C

〈k〉 , (5.1)

|∂k R1(k)| + |∂k R2(k)| + |∂k T (k)| = O
(

1

|k|
)

, |k| → ∞. (5.2)

Let S1 and S2 be defined by

(
Sj�

)
(x) ≡

∫
R

R j (x, y) �(y) dy, where (5.3)

R j (x, y) ≡
∫
R

eikx
(
m j (x, k) − 1

)
e−iky dk. (5.4)

and assume, for 1 < p < ∞, that S1 is bounded on W 1,p(R+) and S2 is bounded on W 1,p(R−).
Then W± and W ∗

± originally defined on W 1,p ∩ L2, 1 ≤ p ≤ ∞, extend to bounded operators
on W 1,p, 1 < p < ∞. Furthermore, there are constants C p such that

‖W± f ‖W 1,p ≤ C p‖ f ‖W 1,p , ‖W ∗
± f ‖W 1,p ≤ C p‖ f ‖W 1,p , f ∈ W 1,p ∩ L2, 1 < p < ∞. (5.5)

Remark 5.1: Deift and Trubowitz3 establish the hypotheses of the theorem for any potential V (x),
for which (1 + |x |) 3

2 + |V (x)| ∈ L1(R) (see Sec. VII. We show in Sec. VII B that their proof also
applies to a potential of the type in Hypothesis (V), V = Vsing + Vreg, where Vsing has a finite set of
Dirac masses within an interval (−A, A), and such that (1 + |x |) 3

2 + ∣∣Vreg(x)
∣∣ ∈ L1(R).

Remark 5.2: In fact, less restrictive bounds on Vreg, as developed in Ref. 3, would suffice. However,
for simplicity we will follow the work of Weder26 as it makes some computations more explicit.
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VI. PROOF OF CENTRAL THEOREM 3

We follow the strategy described in Sec. III. Theorem 1 will follow from Theorem 3 by verifying
the hypotheses of Theorem 3 for V = Vsing + Vreg . This verification is computed in Sec. VII.

Let χ (x ≥ 1) ∈ C∞(R) denote nondecreasing cut-off functions such that

χ (x ≥ 1) =
{

0, x ≤ 1
2

1, x ≥ 1
. (6.1)

To localize in frequency space, introduce ψ (|k| ≤ k0) ∈ C∞
0 (R) be a compactly supported

cut-off function, depending on a parameter, k0, to be chosen, such that

ψ (|k| ≤ k0) =
{

1, |k| ≤ k0

0, |k| ≥ 2k0
. (6.2)

We decompose any φ ∈ L2(R) into its low and high frequency parts,

φ(x) = φlow(x) + φhigh(x), where using D ≡ −i∂x , (6.3)

φlow(x) ≡ ψ(|D| ≤ k0)φ(x) ≡
∫
R

eikxψ (|k| ≤ k0) φ̂(k) dk, (6.4)

φhigh(x) ≡ (1 − ψ (|D| ≤ k0)) φ(x) ≡
∫
R

eikx (1 − ψ (|k| ≤ k0)) φ̂(k) dk . (6.5)

A. Bounds on W+φlow

For x ≥ 0, we can express W+φlow(x), in terms of m1(x, k), and for x ≤ 0, we can express
W+φlow(x), in terms of m2(x, k). Since the cases x ≥ 0 and x ≤ 0 are very similar, we only carry
out this calculation in detail for x ≥ 0. We have, using the notation P f (x) = f (−x),

W+φlow = F∗
+F ψ(|D| ≤ k0)φ

=
∫ ∞

0
eikx T (k) m1(x, k) ψ (|k| ≤ k0) φ̂(k) dk +

∫ 0

−∞
eikx T (−k) m2(x,−k) ψ (|k| ≤ k0) φ̂(k) dk

=
∫ ∞

0
eikx T (k) m1(x, k) ψ (|k| ≤ k0) φ̂(k) dk

+
∫ 0

−∞
eikx [R1(−k)e−2ikx m1(x,−k) + m1(x, k)] ψ (|k| ≤ k0) φ̂(k) dk

=
∫ ∞

0
eikx m1(x, k) [T (k) + R1(k)P] ψ (|k| ≤ k0) φ̂(k) dk +

∫ 0

−∞
eikx m1(x, k) φ̂(k) dk, x ≥ 0,

where we have applied (4.5) and (4.15).
We continue by using that

∫ ∞
0 [. . .] dk = 1

2

∫ ∞
−∞ (1 + sgn(k)) [. . .] dk, we have

W+φlow = 1

2

∫ ∞

−∞
(1 + sgn(k)) eikx (m1(x, k) − 1)T (k) ψ (|k| ≤ k0) φ̂(k)dk

+ 1

2

∫ ∞

−∞
(1 + sgn(k)) eikx (m1(x, k) − 1)R1(k)P ψ (|k| ≤ k0) φ̂(k)dk

+ 1

2

∫ ∞

−∞
(1 − sgn(k)) eikx (m1(x, k) − 1) ψ (|k| ≤ k0) φ̂(k)dk

+ 1

2

∫ ∞

−∞
(1 + sgn(k)) eikx T (k) ψ (|k| ≤ k0) φ̂(k)dk
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+ 1

2

∫ ∞

−∞
(1 + sgn(k)) eikx R1(k)P ψ (|k| ≤ k0) φ̂(k)dk

+ 1

2

∫ ∞

−∞
(1 − sgn(k)) eikx ψ (|k| ≤ k0) φ̂(k)dk, x ≥ 0. (6.6)

For x ≤ 0, an analogous representation holds with m1(x, k) replaced by m2(x, k).
We now show that W+,1,low is a bounded operator on W 1,p(R+). Each term in the first three

lines of (6.6) is of the form

φ �→ S1 ◦ (I ± i H) ◦ 	(D) φ , (6.7)

and each term in the last three lines is of the form

φ �→ (I ± i H) ◦ 	(D) φ , (6.8)

where S1 is defined in (5.3) and (5.4), H denotes the Hilbert transform (3.2), and

	(D) = F−1 	̂(k) F and

	̂(k) = T (k) ψ(|k| ≤ k0) or R1(k) P ψ(|k| ≤ k0) or ψ(|k| ≤ k0).

(For x ≤ 0, the argument is parallel with S1 replaced by S2.)
By hypotheses on T (k) and R(k), 	̂(k) is a multiplier on W 1,p(R) for 1 < p < ∞.23 The Hilbert

transform is bounded (Theorem 2), so that the boundedness of the operators in (6.7) and (6.8) on
W 1,p for 1 < p < ∞ follows from the boundedness of Sj , which holds by hypothesis. Therefore,
one has

‖W+φlow‖W 1,p(R) ≤ C ‖φ‖W 1,p(R), (6.9)

and this completes the low frequency analysis.

B. High frequencies

We have, using (4.9) and the notation P f (x) = f (−x),

W+φhigh = F∗
+F (1 − ψ(|D| ≤ k0)) φ

=
∫ ∞

0
T (k)eikx m1(x, k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+
∫ 0

−∞
T (−k)eikx m2(x,−k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

=
∫ ∞

0
T (k)eikx m1(x, k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+
∫ 0

−∞
eikx [R1(−k)e−2ikx m1(x,−k) + m1(x, k)](1 − ψ (|k| ≤ k0))φ̂(k)dk

=
∫ ∞

0
eikx m1(x, k)[T (k) + R1(k)P](1 − ψ (|k| ≤ k0))φ̂(k)dk +

∫ 0

−∞
eikx m1(x, k)φ̂(k)dk.

For x ≥ 0, we rewrite this expression as

W+φhigh = 1

2

∫ ∞

−∞
eikx (1 + sgn(k)) (m1(x, k) − 1)T (k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+ 1

2

∫ ∞

−∞
eikx (1 + sgn(k))(m1(x, k) − 1)R1(k)P(1 − ψ (|k| ≤ k0))φ̂(k)dk

+ 1

2

∫ ∞

−∞
eikx (1 − sgn(k))(m1(x, k) − 1)(1 − ψ (|k| ≤ k0))φ̂(k)dk
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+ 1

2

∫ ∞

−∞
eikx (1 + sgn(k))T (k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+ 1

2

∫ ∞

−∞
eikx (1 + sgn(k))R1(k)P(1 − ψ (|k| ≤ k0))φ̂(k)dk

+ 1

2

∫ ∞

−∞
eikx (1 − sgn(k))(1 − ψ (|k| ≤ k0))φ̂(k)dk, x ≥ 0.

An analogous expression, with m1(x, k) replaced by m2(x, k), is used for x ≤ 0. We now proceed
to show that each term is bounded on W 1,p(R+), p ≥ 1.

Each summand in this decomposition of W+φhigh is of the form

φ �→ Sj ◦ ρ(D) φ, or φ �→ ρ(D)φ. (6.10)

where ρ(D) = F−1ρ̂(k)F . Here, Sj , j = 1, 2, defined in (5.3) and (5.4), is bounded on W 1,p(R+)
for 1 < p < ∞ by hypothesis. Moreover, ρ(k) is a multiplier on W 1,p(R) for 1 < p < ∞ due
to hypotheses on R(k), T (k) − 1, ∂k R(k) and ∂k T (k), and the fact that 1 − ψ(|k| ≤ k0) is smooth,
asymptotically constant as k → ∞, and vanishing in a neighborhood of 0. It follows that

‖W+φhigh‖W 1,p(R+) ≤ C‖V ‖L1
3
2 +(R) ‖φ‖W 1,p(R+). (6.11)

An estimate analogous to (6.11), similarly proved using a representation of W+φhigh(x) for x ≤ 0,
in terms of S2, also holds. Thus,

‖W+φhigh‖W 1,p(R) ≤ C‖V ‖L1
3
2 +(R) ‖φ‖W 1,p(R). (6.12)

The decomposition (6.3) and the bounds (6.9) and (6.12) imply the result. This completes the
proof of the central result, Theorem 3.

VII. COMPLETION OF THE PROOF OF THEOREM 1

This section is devoted to the completion of the proof of Theorem 1, as a consequence of
Theorem 3. The hypotheses of Theorem 3 are satisfied for potentials V ∈ L1

3
2 +(R) by results given

in Ref. 3. We briefly recall the argument below, and then we generalize it to potentials of the form
(1.4), V = Vsing + Vreg , in Sec. VII B.

A. The case of regular potentials

From the relation m1(x, k) = e−ikx f1(x, k), k ∈ C, we have that m1(x, k) is the unique solution
of

d2

dx2
m1 + 2ik

d

dx
m1 = V m1, and m1(x ; k) → 1, as x → ∞. (7.1)

Consequently, we have

m1(x, k) = 1 +
∫ ∞

x
Dk(y − x)V (y)m1(y, k)dy, where Dk(x) ≡

∫ x

0
e2ikydy. (7.2)

Indeed, for V ∈ L1
3
2 +(R), the iterates of the Volterra integral are bounded by γ (x)n

n! , with

γ (x) ≡
∫ ∞

x
(t − x)|V (t)| dt.

Summing on n, we find that the majoring series converges and m1(x, k) satisfies the bound

|m1(x, k)| ≤ eγ (x)γ (x).
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By a careful analysis for x → −∞, one has the improved estimate

|m1(x, k)| ≤ C(1 + max(−x, 0))
∫ ∞

x
(1 + |t |)|V (t)| dt. (7.3)

As a consequence, the function m1(x, k) − 1 is in the Hardy space, and therefore there exists
B1 ∈ L2(R×R+) such that

m1(x, k) = 1 +
∫ ∞

0
B1(x, y)e2ikydy. (7.4)

Now, the function B1(x, y) is equivalently defined with

B1(x, y) ≡
∫ ∞

x+y
V (t) dt +

∫ y

0

∫ ∞

x+y−z
V (t)B1(t, z) dt dz, (7.5)

=
∞∑

n=0

Kn(x, y), (7.6)

where Kn is defined by induction with

K0(x, y) =
∫ ∞

x+y
V (t)dt, Kn+1(x, y) =

∫ y

0

∫ ∞

x+y−z
V (t)Kn(t, z)dtdz.

It is then easy to prove by induction that

|Kn(x, y)| ≤ γ n(x)

n!
η(x + y), with η(x) ≡

∫ ∞

x
|V (t)| dt.

This allows us to confirm that the sum in (7.6) is well-defined and satisfies (7.5), plus the estimates

|B1(x, y)| ≤ eγ (x)η(x + y), ‖B1(x, ·)‖L1 ≤ eγ (x)γ (x). (7.7)

From (7.7), taking the x-derivative of (7.5), we have

|∂x B1(x, y)| ≤ C eγ1(x)

(
V (x + y) +

∫ ∞

x+y
|V (t)|dt

)
, x ∈ R, y > 0. (7.8)

The construction above and (7.4) with the estimates (7.7) and (7.8) are sufficient to prove.

Lemma 7.1: S1 is bounded on W 1,p(R+) and S2 is bounded on W 1,p(R−) for 1 < p < ∞.

Proof: We focus on the bound for S1 on W 1,p(R+). The bound for S2 on W 1,p(R−) is similar. To
prove boundedness of S1 and ∂S1 on L p, we use the operator

SR�(x) =
∫
R

R(x, y) �(y) dy,

which is bounded on L p with estimate

‖SR� ‖L p ≤ CR ‖�‖L p , 1 ≤ p ≤ ∞ (7.9)

if

CR ≡ sup
x≥0

∫
R

|R(x, y)| dy + sup
y≥0

∫
R

|R(x, y)| dx < ∞. (7.10)

Using the representation formula (7.4), we have

R j (x, y) ≡
∫
R

eik(x−y)
∫ ∞

0
e2ikz B1(x, z) dk dz = B1

(
x,

y − x

2

)
.

Thus, the operator S1 simplifies to

(S1�) (x) =
∫ ∞

x
B1

(
x,

y − x

2

)
�(y)dy =

∫ ∞

0
B1

(
x,

ζ

2

)
�(ζ − x) dζ, x ≥ 0.
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Since we must estimate S1 on W 1,p, we also compute

∂x (S1�) (x) =
∫ ∞

0
B1

(
x,

ζ

2

)
(−∂ζ )�(ζ − x) dζ +

∫ ∞

0
∂x B1

(
x,

ζ

2

)
�(ζ − x) dζ

=
∫ ∞

x
B1

(
x,

y − x

2

)
(−∂y)�(y) dy +

∫ ∞

x
∂x B1

(
x,

y − x

2

)
�(y) dy, x ≥ 0.

Note that by (7.7) and (7.8), we have for large enough x that

|B1(x, z)| �
∫ ∞

x+z
|V (s)|ds and |∂x B1(x, z)| � |V (x)| +

∫ ∞

x+z
|V (s)|ds. (7.11)

Therefore,

sup
x≥0

∫
1y≥x

∣∣∣∣B1

(
x,

y − x

2

)∣∣∣∣ dy + sup
y≥0

∫
1y≥x

∣∣∣∣B1

(
x,

y − x

2

)∣∣∣∣ dx

≤ 2 sup
x≥0

∫ ∞

0

∫ ∞

x+y
2

|V (s)|ds dy

≤ 2
∫ ∞

0

(
1 + x + y

2

)− 3
2 − ∫ ∞

x+y
2

(1 + s)
3
2 +|V (s)|ds

≤ const × ‖V ‖L1
3
2 +(R).

A similar bound applies to the kernel 1x≥y∂x B1
(
x,

y−x
2

)
. Thus, we have

‖S1�‖W 1,p(R+) ≡ ‖S1�‖L p(R+) + ‖∂x (S1�) ‖L p(R+) ≤ C‖V ‖L1
3
2 +(R) ‖�‖W 1,p(R+).

Applying similar arguments with S1 replaced by S2 for x ≤ 0 yields boundedness of S2

on W 1,p. �
Lemma 7.2:

|R j (k)|, |T (k) − 1| ≤ C

〈k〉 ∀k ∈ R, |∂k T (k)|, |∂k R1(k)|, |∂k R2(k)| ≤ C

|k| as |k| → ∞.

Proof of Lemma 7.2 for V = Vreg:
We follow again the method of Ref. 3. From (7.2), one has

m1(x, k) = 1 + 1

2ik

∫ ∞

0
(e2ik(y−x) − 1)V (y)m1(y, k) dy

= e−2ikx

(
1

2ik

∫ +∞

−∞
e2ikym1(y, k)V (y) dy

)

+
(

1 − 1

2ik

∫ +∞

−∞
m1(y, k)V (y) dy

)
+ o(1), x → −∞.

Moreover, one has from (4.8) and (4.9)

m1(x, k) = e−2ikx R2(k)

T (k)
+ 1

T (k)
+ o(1), x → −∞.

This, and the same study on m2(x, k), leads to the following integral representations:

1

T (k)
= 1 − 1

2ik

∫ +∞

−∞
m1(y, k)V (y) dy, (7.12)

R2(k)

T (k)
= 1

2ik

∫ +∞

−∞
e2ikym1(y, k)V (y) dy, (7.13)

R1(k)

T (k)
= 1

2ik

∫ +∞

−∞
e2ikym2(y, k)V (y) dy. (7.14)
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These integral representations, together with the L1
3
2 + decay assumption on the potential and the

uniform bounds (7.3), immediately lead to

|R j (k)|, |T (k) − 1| ≤ C

〈k〉 .

Now, differentiating (7.4) with respect to k leads to the uniform estimate

| ∂km1(x, k) | ≤ C〈k〉〈x〉,
so that (7.12) yields

|∂k T (k)| ≤ C

|k| , as |k| → ∞.

The equivalent estimates for R1(k), R2(k) follow similarly from (7.13) and (7.14), and Lemma 7.2
holds.

B. The case of potentials with a singular component

In this section we prove that one can generalize the construction above for generalized poten-
tials, satisfying Hypothesis (V), with equivalent estimates, so that Lemmas 7.1 and 7.2 hold. As a
consequence, the hypotheses of Theorem 3 are satisfied and Theorem 1 is proved.

Proof of Lemma 7.1 for V satisfying Hypotheses (V):
We prove the desired estimates for m1(x, k), x ≥ 0, and similar results apply to m2(x, k), x ≤ 0.

Let us define the function B1(x, y) with

B1(x, y) ≡
∫ ∞

x+y
Vreg(t) dt +

N−1∑
l=0

cl1(xl − (x + y)) +
∫ y

0

∫ ∞

x+y−z
Vreg(t)B1(t, z) dt dz

+
∫ y

0

N−1∑
l=0

cl B1(xl, z)1(xl − (x + y − z)) dz, (7.15)

=
∞∑

n=0

Kn(x, y), (7.16)

with 1 the classical symmetric Heaviside function defined such that

1(x) =
⎧⎨
⎩

1 , x > 0
1
2 , x = 0
0 , x < 0

,

and Kn defined by induction, with

K0(x, y) =
∫ ∞

x+y
Vreg(t)dt +

N−1∑
l=0

cl1(xl − (x + y)),

Kn+1(x, y) =
∫ y

0

∫ ∞

x+y−z
Vreg(t)Kn(t, z)dtdz +

N−1∑
l=0

cl

∫ y

0
Kn(xl, z)1(xl − (x + y − z)) dz.

Following the proof of Lemma 3 of Ref. 3, it is easy to show the following pointwise bound by
induction:

|Kn(x, y)| ≤ γ n
1 (x)

n!
η1(x + y),

with γ1 and η1 defined as

γ1(x) ≡
∫ ∞

x
(t − x)|Vreg(t)| dt +

N−1∑
l=0

|cl |(xl − x)1(xl − x),
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η1(x) ≡
∫ ∞

x
|Vreg(t)| dt +

N−1∑
l=0

|cl |1(xl − x).

This allows us to confirm that the sum in (7.16) is well-defined and satisfies (7.15), plus the estimates

|B1(x, y)| ≤ eγ1(x)η1(x + y), ‖B1(x, ·)‖L1 ≤ eγ (x)γ (x) (7.17)

and, differentiating with respect to x ,

|∂x B1(x, y)| ≤ C eγ1(x)

(
V (x + y) +

∫ ∞

x+y
|V (t)|dt

)
, x ∈ R, y > 0. (7.18)

Abusing notation (see justification below), we define

m1(x, k) ≡ 1 +
∫ ∞

0
B1(x, y)e2iky dy, (7.19)

it is easy to deduce from (7.15) that

∂x m1(x, k) =
∫ ∞

0

(
∂x B1(x, y) − ∂y B1(x, y)

)
e2iky dy +

∫ ∞

0
∂y B1(x, y)e2iky dy

= −
∫ ∞

0

∫ ∞

x
Vreg(t)B1(t, y) dt e2iky dy −

∫ ∞

0

N−1∑
l=0

cl B1(xl, y)1(xl − x)e2iky dy

−
∫ ∞

0
2ik B1(x, y)e2iky dy − B1(x, 0). (7.20)

∂2
x m1(x, k) =

∫ ∞

0
Vreg(x)B1(x, y)e2iky dy +

∫ ∞

0

N−1∑
l=0

cl B1(xl , y)δ(xl − x)e2iky dy

−
∫ ∞

0
2ik∂x B1(x, y)e2iky dy + Vreg(x) +

N−1∑
l=0

clδ(xl − x). (7.21)

Therefore, m1(x, k) is the unique function satisfying

d2

dx2
m1 + 2ik

d

dx
m1 =

∑
l

clδ(x − xl ) + Vreg m1, k ∈ C,

with m1(x ; k) → 1 as x → ∞. Equation (7.19) is thus justified.
Finally, Lemma 7.1 follows from (7.19), with the estimates (7.17) and (7.18).

Proof of Lemma 7.2: We follow again the method of Ref. 3. The generalization of (7.2) to potentials
satisfying Hypotheses (V) is

m1(x, k) = 1 + 1

2ik

∫ ∞

0
(e2ik(y−x) − 1)Vreg(y)m1(y, k) dy

+ 1

2ik

N−1∑
l=0

cl (e
2ik(xl−x) − 1)m1(xl , k)1(xl − x)

= e−2ikx

2ik

(∫ +∞

−∞
e2ikym1(y, k)Vreg(y) dy +

N−1∑
l=0

cle
2ikxl m1(xl, k)

)

+ 1 − 1

2ik

(∫ +∞

−∞
m1(y, k)Vreg(y) dy +

N−1∑
l=0

clm1(xl , k)

)
+ o(1)(x → −∞).
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Moreover, one has from (4.8) and (4.9)

m1(x, k) = e−2ikx R2(k)

T (k)
+ 1

T (k)
+ o(1)(x → −∞).

This, and the same study on m2(x, k), leads to the following integral representations:

1

T (k)
= 1 − 1

2ik

∫ +∞

−∞
m1(y, k)Vreg(y) dy − 1

2ik

N−1∑
l=0

clm1(xl , k), (7.22)

R2(k)

T (k)
= 1

2ik

∫ +∞

−∞
e2ikym1(y, k)Vreg(y) dy + 1

2ik

N−1∑
l=0

cle
2ikxl m1(xl , k), (7.23)

R1(k)

T (k)
= 1

2ik

∫ +∞

−∞
e2ikym2(y, k)Vreg(y) dy + 1

2ik

N−1∑
l=0

cle
2ikxl m2(xl, k). (7.24)

The identity (7.19), with the estimates (7.17), guarantees the uniform bounds

|m1(x, k)| ≤ C〈x〉, |∂km1(x, k)| ≤ C〈k〉〈x〉.
Therefore the L1

3
2 + decay assumption on the potential Vreg immediately leads to

|R j (k)|, |T (k) − 1| ≤ C

〈k〉 .

Now, differentiating (7.22) with respect to k yields

|∂k T (k)| ≤ C

|k| , as |k| → ∞.

The equivalent estimates for R1(k), R2(k) follow similarly from (7.23) and (7.24), and Lemma 7.2
holds.

VIII. EXAMPLES AND APPLICATIONS

A. V(x) = a sum of Dirac delta masses

In this section we directly verify the hypotheses of Theorem 3 for the case of a potential, which
is the sum of Dirac delta functions, thereby establishing the applicability of our main results to this
case.

We follow the analysis from Refs. 11 and 25, see also Refs. 9 and 10 for specific examples.
Seek solutions of the form (

H�q,�y − 1

2
k2

)
e±(x, k) = 0, (8.1)

where H�q,�y = ∑N−1
j=0 q jδ(x − y j ) when �q = (q0, . . . , qN−1), �y = (y0, . . . , yN−1), and where

e±(x, k) represent the distorted Fourier basis functions as defined in (4.1). Thus,

e+(x, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eikx + B0e−ikx , for x < y0

A1eikx + B1e−ikx , for y0 < x < y1
...

AN eikx , for x > yN−1

, (8.2)

where we have taken A0 = 1 and BN = 0. With this choice of notation, we have, referring to (4.11)
and (4.12), AN = T , the transmission coefficient, and B0 = R1, the reflection coefficient for the
“incoming” plane wave eikx from −∞. Then, we have the following system of equations implied
by continuity and jump conditions at the points {y j } for j = 0, . . . , N − 1:
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eiky0 + B0e−iky0 = A1eikx0 + B1e−iky0

ik
[
A1eiky0 − B1e−iky0 − eiky0 + B0e−iky0

] = 2q0
[
A1eiky0 + B1e−iky0

]
...

AN−1eikyN−1 + BN−1e−ikyN−1 = AN eikyN−1

ik
[
AN eikyN−1 − AN−1eiky0 + BN−1e−iky0

] = 2qN−1
[
AN eikyN−1

]
.

Note, the above system guarantees unitarity or that

|B0|2 + |AN |2 = 1. (8.3)

We can define similarly

e−(x, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0e−ikx , for x < y0

C1eikx + D1e−ikx , for y0 < x < y1
...

CN eikx + e−ikx , for x > yN−1

, (8.4)

where now the incoming wave is e−ikx from ∞, and the scattering matrix is determined by the
transmission coefficients D0 = T and the reflection coefficient CN = R2 for the “incoming” plane
wave e−ikx from ∞.

1. Bounds on m1, m2:

In addition, for general singular potentials with compact support, we have

m1(x, k) = e−ikx f1(x, k) =
{

e−ikx e+(x,k)
T (k) , for x < yN−1

1, for x > yN−1
,

m2(x, k) = eikx f2(x, k) =
{

eikx e−(x,k)
T (k) , for x > y0

1, for x < y0
.

Hence, there exists constants C1
α(yN−1) and C2

α(y0) such that

|∂α
k m1(x, k)| ≤ C1

α(yN−1), for yN−1 > x ≥ 0, (8.5)

|∂α
k m2(x, k)| ≤ C2

α(y0), for y0 < x ≤ 0. (8.6)

As a result, we can see that an arbitrary collection of δ functions satisfies the required estimate for
the proof of Lemma 7.1.

We conclude this subsection with explicit computations of the transmission and reflection
coefficients for single and double δ well potentials.

2. Single δ potential (Hq = −qδ(x)):

By setting up the appropriate equations, we have

R1 = rq = q

ik − q
, (8.7)

T = tq = ik

ik − q
, (8.8)

where rq and tq are the reflection and transmission coefficients for Hq , respectively. We must show
that the bounds from (5.1) hold; however, such bounds follow clearly for (8.8) and (8.7).
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3. Double δ potential (Hq,L = −q(δ(x + L) + δ(x − L))):

Setting up the appropriate equations, we have

R1 = rq,L =
(

q(ik − q)e2ikL + q(ik + q)e−2ikL

q2e2ikL − (ik + q)2e−2ikL

)
e−2ikL , (8.9)

T = tq,L =
(

k2

q2e2ikL − (ik + q)2e−2ikL

)
e−2ikL , (8.10)

where rq,L and tq,L are the reflection and transmission coefficients for Hq,L , respectively.
Again, we must verify Lemma (7.2); hence, we must prove, for instance,

|∂k tq,L (k)| ≤ C(1 + |k|)−1,

provided q L �= 1/2. Indeed, we have

∂k tq,L (k) = 2k(k2 − 2ikq + q2(e4ikL − 1)) − 2ik2(2Lq2e4ikL − (ik + q))

(k2 − 2ikq + q2(e4ikL − 1))2
,

which satisfies

|∂k tq,L (k)| ∼ O(|k|−1),

as k → ∞ and

|∂k tq,L (k)| ∼ O
(

1

4q2 L − 2q

)
,

as k → 0. A similar computation holds for rq,L .

B. Commutator/resolvent-type bounds

In Ref. 4, where homogenization of high contrast oscillatory structures with defects is studied,
bounds on (H0 + 1)−1(H�q,�y + 1) are required to estimate a Lipmann Schwinger equation. We have
by our main theorem that

(H0 + 1)−1(H�q,�y + 1)Pc = (H0 + 1)−1W+(H0 + 1)W ∗
+ : L2 → L2.

C. Dispersive and Strichartz estimates in H1 for δ-Schrödinger

We may represent

e−i t H Pc f = 1

2π

∫ ∫ ∞

0
e− i tk2

2
(
e+(x, k) e+(x, k) + e−(x, k) e−(x, k)

)
f (y)dkdy. (8.11)

From here, we may use direct computations to arrive at Strichartz estimates and apply Weder’s
results on wave operators since the potentials are all in L1 with compact support.

Using the properties of wave operators, we have

‖ei Ht Pc f ‖L p = ‖W±eit H0 W ∗
± f ‖L p (8.12)

and using standard dispersive estimates for the linear Schrödinger operator (see, for instance,
Ref. 24 for a concise overview) we arrive at

‖ei Ht Pc f ‖L p ≤ C pt−( 1
2 − 1

p )‖ f ‖W 1,p . (8.13)

Define a Strichartz pair (q, r ) to be admissible if

2

q
= 1

2
− 1

r
(8.14)

with 2 ≤ r < ∞. Then, we arrive at the celebrated Strichartz estimates

‖ei Ht Pcu0‖Lq W 1,r � ‖u0‖W 1,2 (8.15)
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and ∥∥∥∥
∫ t

0
ei H (t−s) Pc f

∥∥∥∥
Lq W 1,r

� ‖ f (x, t)‖Lq̃
t W 1,r̃

x
(8.16)

using duality techniques and once again the boundedness of the wave operators.
As a side note, using positive commutators and well crafted local smoothing spaces, from

Ref. 18 we have the Strichartz estimate∥∥∥∥
∫ t

0
ei H (t−s) Pc f

∥∥∥∥
L∞ L2

� ‖ f (x, t)‖L p̃
t Lq̃

x
. (8.17)

Now, by boundedness of wave operators on W 1,p spaces for singular potentials, as proved in
Theorem 3, we have the following useful relation:∥∥∥∥

∫ t

0
ei H (t−s) Pc f

∥∥∥∥
L∞ H 1

� ‖ f (x, t)‖L p̃
t W 1,q̃

x
, (8.18)

where ( p̃, q̃) is a dual Strichartz pair without going through the dispersive estimates first.

D. Local well-posedness in H1 for δ-NLS/Gross-Pitaevskii equation

Consider the nonlinear Schrödinger (NLS)/Gross-Pitaevskii equation, with a potential consisting
of a finite set of Dirac delta functions:{

i∂t u + H�q,�yu − |u|2σ u = 0
u(x, 0) = u0(x) ∈ H 1 ,

for 0 < σ < ∞. We seek a solution in the following sense:

u = �[u],

where

�[u](t) = e−i H�q,�y t u0 − i
∫ t

0
e−i H�q,�y (t−s)|u|2σ u(s)ds. (8.19)

We claim that local well-posedness can be established via the contraction mapping principle in
the space C0([0, T ); H 1(R)) for T sufficiently small. To prove the necessary boundedness and
contraction estimates, it is natural to apply the operator (I + H�q,�y)

1
2 Pc, which commutes with the

group e−i H�q,�y t to (8.19). Then, estimates follow in a straightforward way, using that H 1(R) is an
algebra, provided the space

H1(R) =
{

f : (I + H�q,�y)
1
2 Pc f ∈ L2(R)

}
(8.20)

is equivalent to the classical Sobolev space H 1. This follows from the relations

(I + H )
1
2 Pc = W (I − ∂2

x )
1
2 W ∗, W ∗(I + H )

1
2 W = (I − ∂2

x )
1
2

and our results on the boundedness of wave operators associated with H�q,�y on H 1.

E. Long time dynamics for NLS with a double δ well potential

In Ref. 19, the long time dynamics of solutions to the nonlinear Schrödinger/Gross-Pitaevskii
equation,

i∂t u = (−� + V (x))u + gK
[|u|2] u, (8.21)

where V is a symmetric, double well potential, are studied. In particular, under appropriate spectral
assumptions on the operator H = −∂2

x + V (x), in a neighborhood of a symmetry breaking bifurca-
tion point, there are different classes of oscillating solutions (8.21) which shadow periodic orbits of
a finite dimensional reduction on very long, but finite, time scales. These solutions correspond to
states with mass concentrations oscillating between the two wells of a symmetric potential well. The
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proof requires dispersive/Strichartz-type estimates. The results of this paper imply that the results
from Ref. 19 extend to (8.21) for the case of singular potentials, such as

V (x) = −q[δ(x − L) + δ(x + L)].
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