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We introduce a new class of Green–Naghdi type models for the propagation
of internal waves between two (1 + 1)-dimensional layers of homogeneous,
immiscible, ideal, incompressible, and irrotational fluids, vertically delimited
by a flat bottom and a rigid lid. These models are tailored to improve
the frequency dispersion of the original bi-layer Green–Naghdi model, and
in particular to manage high-frequency Kelvin–Helmholtz instabilities, while
maintaining its precision in the sense of consistency. Our models preserve
the Hamiltonian structure, symmetry groups, and conserved quantities of the
original model. We provide a rigorous justification of a class of our models
thanks to consistency, well-posedness, and stability results. These results
apply in particular to the original Green–Naghdi model as well as to the
Saint–Venant (hydrostatic shallow water) system with surface tension.

1. Introduction

1.1. Motivation

This work is dedicated to the study of a bi-fluidic system that consists
of two layers of homogeneous, immiscible, ideal, and incompressible
fluids under only the external influence of gravity. Such a configuration
is commonly used in oceanography, where variations of temperature and
salinity induce a density stratification; see [1] and references therein.
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A striking property of the above setting, in contrast with the free-surface
case (namely, only one layer of homogeneous fluid with a free surface), is
that the Cauchy problem for the governing equations is ill-posed outside
of the analytic framework when surface tension is neglected [2–4]. This
ill-posedness is caused by the formation of high-frequency (i.e., small wave-
length) Kelvin–Helmholtz instabilities that are triggered by any nontrivial
velocity shear. Recently, Lannes [5] showed that a small amount of surface
tension is sufficient to durably regularize the high-frequency component
of the flow, while the main low-frequency component remains mostly
unaffected.

This result explains why, occasionally, surface tension may be harmlessly
neglected in asymptotic models, that is simplified models constructed from
smallness assumptions on physical properties of the flow. This is typically
expected to be the case for models derived in the so-called shallow-water
regime, which implies that the main component of the flow is located at
low frequencies; and in particular for the two-layer extension of the classical
Green–Naghdi model introduced by Miyata [6, 7], Mal’tseva [8], and Choi
and Camassa [9]. However, as noticed in [10], a linear stability analysis
indicates that the bi-fluidic Green–Naghdi system actually overestimates
Kelvin–Helmholtz instabilities, in the sense that the threshold on the
velocity shear above which high-frequency instabilities are triggered is
always smaller for the model than for the full Euler system.

Many attempts have been made to “regularize” the Green–Naghdi model,
that is proposing new models with formally the same precision as the
original model, but which are not subject to high-frequency Kelvin–
Helmholtz instabilities, even without surface tension [11–15]. The strategies
adopted in these works rely on change of unknowns and/or Benjamin–Bona–
Mahony type tricks; see [16, section 5.2] for a thorough presentation of such
methods in the free-surface setting. In this work, we present a new class
of modified Green–Naghdi systems obtained through a different, somewhat
simpler mean. We find numerous advantages in our method:

� The original Green–Naghdi model is only lightly modified, and the
physical interpretations of variables and identities of the original model
are preserved.

� The method is quite flexible. It allows in particular to construct models
that completely suppress large-frequency Kelvin–Helmholtz instabilities;
or a model that conforms perfectly with the linear stability analysis of the
full Euler system.

� The rich structure of the original Green–Naghdi system (Hamiltonian
formulation, groups of symmetry, and conserved quantities) is maintained.
This is generally not the case when change of unknowns or Benjamin-
Bona-Mahony (BBM) tricks are involved; see, discussion in [17, 18].
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Our models may be viewed as Green–Naghdi systems with improved
frequency dispersion. In particular, one of our models shares with full
dispersion models such as in [19–22] the property that their dispersion
relation is the same as the one of the full Euler system. Notice, however,
that, consistently with the derivation of the original Green–Naghdi model
and contrarily to the aforementioned ones, our models do not rely on an
assumption of small amplitude: we only assume that the wavelength is large
compared with the depth of the two layers (see the consistency result given
in Proposition 2). To the best of our knowledge, there does not exist any
other model in the literature with such properties, even when only one
layer of fluid is involved. A noteworthy feature of our models is that,
by construction, they involve nonlocal operators (Fourier multipliers). Such
operators are common in deep-water models or small-amplitude models,
such as the Benjamin–Ono or Whitham equations, for instance, but appear
to be original in the shallow-water setting.

Our new class of models is obtained by regularizing the original Green–
Naghdi one and not from a direct derivation from the full Euler system. As
it is made clear in Section 2.1, below, we could also derive our models from
Hamilton’s principle, but once again our approximate Hamiltonian functional
consists only of a harmless perturbation of the original Green–Naghdi one.
It would be interesting to derive our models directly from an expansion of
the so-called Dirichlet–Neumann operators, and investigate whether the full
dispersion model is more precise than the original one when only small
nonlinearities are involved.

We also acknowledge that the use of surface tension in view of modeling
miscible fluids of different densities, such as water and brine, is arguable.
We view surface tension as a simple and effective way of regularizing
the flow. Let us point out that the construction of our new models does
not rely on any particular structure of the surface tension component, thus
could be applied with any additive regularizing term. Our systems may
be more evidently applicable to two-layer systems of genuinely immiscible,
homogeneous, and inviscid fluids. We believe they may also be of interest
in the situation of one layer of homogeneous fluid, with or without surface
tension.

For the sake of simplicity, our study is restricted to the setting of
a flat bottom, rigid lid, and one-dimensional horizontal variable. The
construction of our models, however, may straightforwardly be extended to
the two-dimensional case. We also expect that our strategy can be favorably
applied to more general configurations (nontrivial topography, free surface,
multi-layer, etc.)

In the present work, we motivate our models through the study of Kelvin–
Helmholtz instabilities, by linearizing the systems around solutions with
constant shear. This formal study is supported by numerical simulations,
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which demonstrate how the predictions of the modified Green–Naghdi
models may vary dramatically depending on their large-frequency dispersion
properties, and the significant influence of small surface tension. We also
provide a rigorous analysis for a class of our models by proving the well-
posedness of the Cauchy problem as well as consistency and stability results,
which together offer the full justification of our asymptotic models, in the
sense described in [16]. This includes the original Green–Naghdi model as
well as the Saint–Venant (hydrostatic shallow water) system with surface
tension, for one or two layers of fluid; all these results being original as far
as we know.

1.2. The full Euler system

For the sake of completeness and to fix the notations, we briefly recall the
governing equations of a two-layer flow in our configuration, which we call
full Euler system. We let the interested readers refer to [20, 23, 24] for more
details.

The setting consists of two layers (infinite in the horizontal variable,
vertically delimited by a flat rigid lid and a flat bottom) of immiscible,
homogeneous, ideal, incompressible, and irrotational fluid under only the
external influence of gravity. We assume that the interface between the two
layers is given as the graph of a function, ζ (t, x), so that the domain of the
two fluids at time t is

�t
1

def= {(x, y), ζ (t, x) ≤ z ≤ d1}, �t
2

def= {(x, z), −d2 ≤ z ≤ ζ (t, x)}.

Here and thereafter, the subscript i = 1 (respectively, i = 2) always refers
to the upper (respectively, lower) layer. The fluids being irrotational, we
consider the velocity potentials in each layer, which we denote by φi .
Finally, Pi denotes the pressure inside each layer.

Let a be the maximum amplitude of the deformation of the interface.
We denote by λ a characteristic horizontal length, say the wavelength of the
interface. The celerity of infinitely long and small internal waves is given
by

c0 =
√

g
(ρ2 − ρ1)d1d2

ρ2d1 + ρ1d2
,

where d1 (respectively, d2) is the depth of the upper (respectively, lower)
layer, and ρ1 (respectively, ρ2) is its mass density. g denotes the acceleration
of gravity. Consequently, we introduce the dimensionless variables

z̃
def= z

d1
, x̃

def= x

λ
, t̃

def= c0

λ
t,
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the dimensionless unknowns

ζ̃ (t̃, x̃)
def= ζ (t, x)

a
, φ̃i (t̃, x̃, z̃)

def= d1

aλc0
φi (t, x, z),

P̃i (t̃, x̃, z̃)
def= d1

aρ2c2
0

Pi (t, x, z) (i = 1, 2),

as well as the following dimensionless parameters

γ
def= ρ1

ρ2
, ε

def= a

d1
, μ

def= d2
1

λ2
, δ

def= d1

d2
, Bo

def= g(ρ2 − ρ1)λ2

σ
.

The last parameter is the Bond number, and measures the ratio of gravity
forces over capillary forces (σ is the surface tension coefficient). After
applying the above scaling, but withdrawing the tildes for the sake of
readability, the system may be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∂2
xφi + ∂z

2φi = 0 in �t
i (i = 1, 2),

∂zφ1 = 0 on {(x, z), z = 1},
∂zφ2 = 0 on {(x, z), z = −δ−1},
∂tζ = 1

μ

√
1 + με2|∂xζ |2∂nφi on {(x, z), z = εζ (t, x)},

∂tφi + ε
2 |∇μ

x,zφi |2 = − P
γ 2−i − γ+δ

1−γ z in �t
i (i = 1, 2),

[[P(t, x)]] = − γ+δ
Bo

k(ε
√
μ∂x ζ )

ε
√
μ

on {(x, z), z = εζ (t, x)},

(1)

where k(∂xζ )
def= −∂x

(
1√

1 + |∂xζ |2
∂xζ

)
,∇μ

x,z
def= (

√
μ∂x , ∂z)�

[[P(t, x)]]
def= lim

κ→0
(P(t, x, εζ (t, x) + κ) − P(t, x, εζ (t, x) − κ)) ,

and
(√

1 + με2|∂xζ |2∂nφi

)∣∣
z=εζ

= −με(∂xζ )(∂xφi )
∣∣

z=εζ
+ (∂zφi )

∣∣
z=εζ

.
We may conveniently rewrite the above system as two evolution equa-

tions, thanks to the use of Dirichlet–Neumann operators. To do so, we define

ψ(t, x)
def= φ1(t, x, εζ (t, x)), and

Gμψ = Gμ[εζ ]ψ
def=

√
1 + μ|ε∂xζ |2(∂nφ1)

∣∣
z=εζ

= −με(∂xζ )(∂xφ1)
∣∣

z=εζ + (∂zφ1)
∣∣

z=εζ ,

Hμ,δψ = Hμ,δ[εζ ]ψ
def= (φ2)

∣∣
z=εζ = φ2(t, z, εζ (t, x)),
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where φ1 and φ2 are uniquely defined (up to an additive constant for φ2) as
the solutions of the Laplace problems implied by (1). The full system (1)
then becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tζ − 1
μ

Gμψ = 0,

∂t (∂x Hμ,δψ − γ ∂xψ) + (γ + δ)∂xζ + ε
2∂x (|∂x Hμ,δψ |2 − γ |∂xψ |2)

= με∂xN μ,δ − γ + δ

Bo

∂x (k(ε
√
μ∂xζ ))

ε
√
μ

,

(2)
where

N μ,δ def=
(

1
μ

Gμψ + ε(∂xζ )(∂x Hμ,δψ)
)2 − γ

(
1
μ

Gμψ + ε(∂xζ )(∂xψ)
)2

2(1 + μ|ε∂xζ |2)
.

1.3. Our new class of modified Green–Naghdi models

Let us now present our new class of models, which aim at describing the
flow in the situation where the shallowness parameter is small:

μ � 1.

Our systems use layer-averaged horizontal velocities as unknowns, that is
defining

u1(t, x) = 1

h1(t, x)

∫ 1

εζ

∂xφ1(t, x, z)dz,

u2(t, x) = 1

h2(t, x)

∫ εζ

−δ−1

∂xφ2(t, x, z)dz.

Here and thereafter, h1 = 1 − εζ (respectively, h2 = δ−1 + εζ ) always
denotes the depth of the upper (respectively, lower) layer and is assumed to
be positive. One benefit of such a choice of unknowns is the exact identities
(in contrast with O(μ2) approximations) due to mass conservation (see, e.g.
[25, proposition 3 and (23)]):

∂t hi + ε∂x (hi ui ) = 0 (i = 1, 2). (3)

These identities are then supplemented with the following O(μ2) approxi-
mations:

∂t (ui + μQi [hi ]ui )+ γ + δ

1 − γ
∂xζ + ε

2
∂x (|ui |2) = με∂x (Ri [hi , ui ]) − 1

γ 2−i
∂x Pi ,

(4)

where P2 − P1 = − γ+δ
Bo ∂x

(
1√

1 + με2|∂xζ |2
∂xζ

)
and
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QF
i [hi ]ui

def= −1

3
h−1

i ∂xF
μ

i

{
h3

i ∂xF
μ

i ui

}
,

RF
i [hi , ui ]

def= 1

2

(
hi∂xF

μ

i ui

)2 + 1

3
h−1

i ui ∂xF
μ

i

{
h3

i ∂xF
μ

i ui

}
,

where Fμi
def= Fi (

√
μD) (i = 1, 2) is a Fourier multiplier:

F̂μi ϕ = Fi (
√
μξ )̂ϕ(ξ ).

The choice of the Fourier multipliers is free, although natural properties for
our purpose include Fi (0) = 1 and F′

i (0) = 0 (so that Fμi − Id is formally of
size O(μ)), Fi (k) = Fi (|k|), and 0 ≤ Fi ≤ 1. A class of Fourier multipliers
for which our rigorous results hold is precised in Definition 1, thereafter,
and we present three relevant examples below.

� Fid
i (

√
μD) ≡ 1 yields the classical two-layer Green–Naghdi model intro-

duced in [6, 7, 9], supplemented with the surface tension component.
� F

reg
i (

√
μD) = (1 + μθi |D|2)−1/2, with θi > 0 is an operator of order −1,

and
√
μ∂xF

μ

i is a bounded operator in L2, uniformly with respect to
μ ≥ 0. As a consequence, this choice yields a well-posed system for
sufficiently small and regular data, even in the absence of surface tension.

� F
imp
i (

√
μD) =

√
3

δ−1
i

√
μ|D| tanh(δ−1

i
√
μ|D|) − 3

δ−2
i μ|D|2 , with convention δ1 = 1,

δ2 = δ. The modified Green–Naghdi system with this choice conforms
perfectly with the full Euler system, as far as the linear stability analysis
(see Section 3) is concerned. In particular, its dispersion relation is the
same as the one of the full Euler system. One may thus hope for an
improved precision when only weak nonlinearities (ε � 1 in addition to
μ � 1) are involved. More precisely, we expect that our model is precise,
in the sense of consistency, at the order O(μ2ε) instead of O(μ2) for the
original Green–Naghdi system.

In (4), P1 (or equivalently P2) plays the role of a Lagrange multiplier
enforcing the constraint resulting from (3) and h1 + h2 = 1 + δ−1 = Cstt,
namely,

∂x (h1u1) + ∂x (h2u2) = 0. (5)

Notice now that in the one-dimensional setting, supplementing the above
equation with the conditions at infinity ui → 0 (|x | → ∞), one obtains the
identity

h1u1 + h2u2 = 0. (6)
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In this situation, one may equivalently rewrite (3)–(4) as two scalar
evolution equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tζ + ∂xw = 0,

∂t

(
h1+γ h2

h1h2
w + μQ[εζ ]w

)
+ (γ + δ)∂xζ + ε

2∂x

(
h2

1−γ h2
2

(h1h2)2 |w|2
)

= με∂x (R[εζ,w]) + γ+δ
Bo ∂

2
x ( 1√

1+με2|∂x ζ |2
∂xζ )

(7)
where, by (6) and because h1, h2 > 0,

w
def= h1h2

h1 + γ h2
(u2 − γ u1) = −h1u1 = h2u2 (8)

and

QF[εζ ]w
def= QF

2 [h2]
(
h−1

2 w
)− γQF

1 [h1]
(−h−1

1 w
)
, (9)

RF[εζ,w]
def= R2

[
h2, h−1

2 w
]− γRF

1

[
h1,−h−1

1 w
]
.

Our models are all precise in the sense of consistency at the same order
as the original Green–Naghdi model, namely, O(μ2). Furthermore, we fully
justify system (7) for a class of Fourier multipliers including all of the three
examples above, in the sense that for sufficiently small and regular initial
data, the model admits a unique strong solution, which is proved to be close
(when μ � 1) to the solution of the full Euler system with corresponding
initial data. However, only for the latter two examples is the smallness
assumption ensuring the stability of the flow, by preventing the appearance
of Kelvin–Helmholtz instabilities, consistent with the one of the full Euler
system. The precise statements of these results are displayed in Section 5.

1.4. Outline of the paper

Some elementary properties of our models are studied in Section 2. More
precisely, we show that all of our models enjoy a Hamiltonian structure,
symmetry groups, and conserved quantities, consistently with the already
known properties of the original Green–Naghdi model and the full Euler
system.

In Section 3, we recall the linear analysis of Kelvin–Helmholtz insta-
bilities for the full Euler system, and extend the study to our models. In
particular, we recover that the classical Green–Naghdi model overestimates
Kelvin–Helmholtz instabilities, whereas our modified model with the choice
Fi = F

imp
i recovers perfectly the behavior of the full Euler system.

Section 4 is dedicated to numerical illustrations of this phenomenon. We
give two examples (with and without surface tension) where the original,
improved, and regularized Green–Naghdi models predict very different
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behavior. Roughly speaking, the flows are very similar as long as no
instabilities are present, but the threshold above which Kelvin–Helmholtz
instabilities are triggered varies dramatically from one model to the other.

Section 5 is dedicated to the rigorous justification of our models, for a
class of admissible Fourier multipliers Fi . We first prove that the Cauchy
problem for system (7) with sufficiently regular initial data is well posed un-
der some hyperbolicity conditions. Roughly speaking, we show that provided
a dimensionless parameter that depends on the large frequency behavior of
Fi is sufficiently small, our system is well posed for sufficiently regular and
bounded initial data, on a time interval uniform with respect to compact sets
of parameters; see, Theorem 1 for details. We then supplement this result
with consistency (Proposition 2) and stability (Proposition 3) results, which
together offer the full justification of our models (Proposition 4).

Finally, we present in Section 6 some improved results in the limiting
case μ = 0, that is on the so-called Saint–Venant, or shallow-water system
(with surface tension).

Appendix A is dedicated to the detailed presentation of our functional
setting and some notations; and Appendix B provides the proof of our main
result, Theorem 1.

2. Hamiltonian structure, group of symmetries, and conserved
quantities

It is known since the seminal work of Zakharov [26] that the full Euler
system (with one layer) admits a Hamiltonian structure. This Hamiltonian
structure has been extended to the two-layer case in [27–29]. We show in
Section 2.1 that our models—both under the form (3)–(4) and (7)—also
admit a Hamiltonian structure, so that our models could be derived from
Hamilton’s principle on an approximate Lagrangian. Such an approach has
been worked out in [30–32] (see also [33]) in the one-layer case, in [34]
in the regime of small-amplitude long waves or small steepness, in [35]
in the two-layer case with free surface, and lacks for existing regularized
Green–Naghdi systems in the literature [11–13, 15]. We then enumerate the
group of symmetries of the system (Section 2.2) that originates from the
full Euler system (see [36]), and deduce the related conserved quantities
(Section 2.3).

2.1. Hamiltonian formulation

Let us define the functional

HF(h1, h2, u1, u2) = 1

2

∫
R

1

ε2

γ + δ

1 − γ

(
h2

2 − γ h2
1 − C

)+ 2

ε
(h1 + h2 − H )P1
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+ γ h1|u1|2 + h2|u2|2 + 2(γ + δ)

με2Bo

(√
1 + μ|∂x h2|2 − 1

)
+μγ

3
h1
(
h1∂xF

μ

1 u1
)2 + μ

1

3
h2
(
h2∂xF

μ

2 u2
)2

(10)

with H = 1 + δ−1 (the total height) and C = c0 + c1h1 + c2h2 (Casimir
invariants) where c0, c1, c2 are chosen such that the integral is well defined.
It is convenient for our purpose to define

wi
def= hi ui and vi

def= AF
i [hi ]wi

def= 1

hi
wi − μ

3
h−1

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i wi

}}
.

Under the noncavitation assumption hi > 0,AF
i [hi ] is a symmetric, coercive

thus positive definite operator, and therefore we may equivalently write the
Hamiltonian functional as

HF(h1, h2, v1, v2) = 1

2

∫
R

1

ε2

γ + δ

1 − γ

(
h2

2 − γ h2
1 − C

)+ 2

ε
(h1 + h2 − H )P1

+ γ v1AF
1 [h1]−1v1 + v2AF

2 [h2]−1v2

+ 2(γ + δ)

με2Bo

(√
1 + μ|∂x h2|2 − 1

)
.

We deduce the functional derivatives

δHF

δv1
= γAF

1 [h1]−1v1 = γ h1u1,
δHF

δv2
= AF

2 [h2]−1v2 = h2u2,

δHF

δh1
= 1

ε2

γ + δ

1 − γ
(−γ h1 + c1) + 1

ε
P1 + γ

2
|u1|2 − γμRF

1 [h1, u1],

δHF

δh2
= 1

ε2

γ + δ

1 − γ
(h2 + c2) + 1

ε
P2 + 1

2
|u2|2 − μRF

2 [h2, u2],

where P2 = P1 − γ+δ
εBo ∂x

(
∂x h2√

1+μ|∂x h2|2

)
. One can now observe that the sys-

tem (3)–(4) enjoys the noncanonical symplectic form

∂tU + ε J
δHF

δU
= 0

with

U
def=

⎛⎜⎜⎝
h1

v1

h2

v2

⎞⎟⎟⎠ and J
def=

⎛⎜⎜⎝
γ−1∂x

γ−1∂x

∂x

∂x

⎞⎟⎟⎠ .
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Let us now indicate how the Hamiltonian formulation of our system
can be identified with the well-known similar formulation of the full Euler
system for internal waves, which we recall below. We base our discussion on
the two-equations system (7) as it allows a direct comparison with earlier
works on the bi-fluidic full Euler system, such as [34]. We introduce the
functional

H(ζ, v) = 1

2

∫
R

(γ + δ)ζ 2 + 2(γ + δ)

με2Bo

(√
1 + με2|∂xζ |2 − 1

)
− vG1(γG2 + G1)−1G2v, (11)

where Gi = Gi [εζ ] are such that ∂x (Gi∂xϕ) = Giϕ, and Gi are Dirichlet–to–
Neumann operators:

� G1 : ϕ → 1
μ

(∂nφ)
∣∣

z=εζ
, where φ is the unique solution to

μ∂2
xφ + ∂2

z φ = 0 in �t
1, φ(x, εζ ) = ϕ and ∂zφ(x, 1) = 0.

� G2 : ϕ → 1
μ

(∂nφ)
∣∣

z=εζ
, where φ is the unique solution to

μ∂2
xφ + ∂2

z φ = 0 in �t
2, φ(x, εζ ) = ϕ and ∂zφ(x,−δ−1) = 0.

The operators Gi are well defined if h1(εζ ), h2(εζ ) ≥ h0 > 0 (see [16,
chapter 3]), and consequently Gi∂xϕ as well, thanks to the identity [16,
prop. 3.35]

Gi [εζ ]ψ = −∂x (hi ui ) (i = 1, 2).

Now, recall the construction of the full Euler in Section 1.2 and in partic-
ular the definitions of φ1(t, x, z), φ2(t, x, z) and ψ(t, x) = φ1(t, x, εζ (t, x)).
Denoting

v(t, x)
def= ∂x (φ2(t, x, εζ (t, x)) − γφ1(t, x, εζ (t, x))) ,

we deduce the identities v = G−1
2 G1∂xψ − γ ∂xψ = G−1

2 (G1 + γG2)∂xψ .
With these definitions, one can check that the full Euler system (2) can be

written as:

∂tζ = −∂x

(
δH
δv

)
; ∂tv = −∂x

(
δH
δζ

)
.

We now can view the Hamiltonian functional of our system as a O(μ2)
approximation of the Hamiltonian functional of the full Euler system.
Indeed, one has (see, e.g. [16, prop. 3.37] when Fμi ≡ 1, but the general
case adds only a O(μ2) perturbation):

Gi [εζ ]−1 = −AF
i [hi ] + O(μ2),
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AF
i [hi ] : w → 1

hi
w − μ

1

3
h−1

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}}
.

Notice that, using the definitions of Section 1.3,

AF[εζ ] w
def= γAF

1 [h1]w + AF
2 [h2]w

= h1 + γ h2

h1h2
w + γμQF

1 [h1]
(
h−1

1 w
)+ μQF

2 [h2]
(
h−1

2 w
)

= h1 + γ h2

h1h2
w + μQF[εζ ]w.

In particular, AF[εζ ] is a symmetric, coercive positive definite operator, if
h1(εζ ), h2(εζ ) ≥ h0 > 0. Plugging the above (truncated) approximation in
the full Euler’s Hamiltonian functional (11) yields

HF(ζ, v)
def= 1

2

∫
R

(γ + δ)ζ 2 + 2(γ + δ)

με2Bo

(√
1 + με2|∂xζ |2−1

)+ vAF[εζ ]−1v,

(12)
which corresponds to the previously defined Hamiltonian functional (10)
when h1 + h2 = H = 1 + δ−1. Indeed, we may introduce

w
def= AF[εζ ]−1v and ui

def= (−1)iw/hi (i = 1, 2), (13)

so that

HF(ζ, v) = 1

2

∫
R

(γ + δ)ζ 2 + 2(γ + δ)

με2Bo

(√
1 + με2|∂xζ |2 − 1

)+ wAF[εζ ]w

= 1

2

∫
R

(γ + δ)ζ 2 + 2(γ + δ)

με2Bo

(√
1 + με2|∂xζ |2 − 1

)+ γ h1|u1|2

+ h2|u2|2 + μ
γ

3
h1
(
h1∂xF

μ

1 u1
)2 + μ

1

3
h2
(
h2∂xF

μ

2 u2
)2
.

Computing the functional derivatives, we get

δHF

δv
= AF[εζ ]−1v = w and

δHF

δζ
= (γ + δ)ζ − γ + δ

Bo
∂x

(
(∂xζ )

(1 + με2|∂xζ |2)1/2

)
+ ε

2

h2
1 − γ h2

2

h2
1h2

2

|w|2

−μεRF[εζ,w],
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and one recognizes the Hamiltonian structure of system (7):

∂tζ = −∂x

(
δHF

δv

)
; ∂tv = −∂x

(
δHF

δζ

)
.

2.2. Symmetry groups

Based on the work of [36], one may list symmetry groups of our systems.
Most of the symmetry groups of the full Euler system have no equivalent
for the Green–Naghdi model, because they involve variations on the vertical
variable, which is not accessible anymore. The most physical symmetries,
however, remain. We list them below.

Assume (ζ, ui , Pi ) (with i = 1, 2) satisfies (3)–(4). Then for any κ ∈
R, (ζκ, uκ

i , Pκ

i ) also satisfies (3)–(4), where

(i) Horizontal translation(
ζκ, uκ

i , Pκ

i

)
(t, x)

def= (ζ (t, x − κ), ui (t, x − κ), Pi (t, x − κ))

(ii) Time translation(
ζκ, uκ

i , Pκ

i

)
(t, x)

def= (ζ (t − κ, x), ui (t − κ, x), Pi (t − κ, x))

(iii) Variation of base-level for potential pressure(
ζκ, uκ

i , Pκ

i

)
(t, x)

def= (ζ (t, x), ui (t, x), Pi (t, x) + κ)

(iv) Horizontal Galilean boost(
ζκ, uκ

i , Pκ

i

)
(t, x)

def= (ζ (t, x − κt), ui (t, x − κt) + κ, Pi (t, x − κt))

It is interesting to notice that when working with formulation (7). (i),
(ii), and (iii) induce symmetry groups as well (although (iii) is trivial), but
not (iv). Indeed, because the Galilean boost breaks the conditions ui → 0
at infinity, the identity w = −h1u1 = h2u2 cannot be deduced anymore from
the constraint (5) coming from the rigid-lid assumption. Thus, the set of
admissible solutions to (7) is too restrictive to allow Galilean invariance.

2.3. Conserved quantities

The first obviously conserved quantity of our systems, given by (3), is the
(excess of) mass:

d

dt
Z = 0, Z(t)

def=
∫

R

ζ (t, x)dx .
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Equations (4) yield other conserved quantities: the “horizontal velocity
mass”

d

dt
Vi = 0, Vi

def=
∫

R

ui + μQF
i [εζ ]ui dx (i = 1, 2).

Choi and Camassa [9] observed a similar conservation law of the original
Green–Naghdi model, and related this result to the irrotationality assumption
of the full Euler system. Indeed, one has

Vi ≈
∫

R

∂x (φi (t, x, εζ (t, x)))dx,

where the velocity potentials φi (i = 1, 2) have been defined in Section 1.2,
and the approximation is meant with precision O(μ2). Thus, one has
by construction d

dt Vi = O(μ2), and it turns out that this approximately
conserved quantity is actually exactly conserved by the Green–Naghdi flow
(see also [37]). Of course, the linear combination (recall (8) and (9))

V def= V2 − γV1 =
∫

R

h1 + γ h2

h1h2
w + μQF[εζ ]w dx

is a conserved quantity of system (7). The above conserved quantities may
be interpreted as Casimir invariants of the Hamiltonian system.

After long but straightforward manipulations, one may check

d

dt
M = −

∫ ∞

−∞
h1∂x P1 + h2∂x P2 = [h1 P1 + h2 P2]+∞

−∞ ,

M def=
∫ ∞

−∞
γ h1u1 + h2u2dx .

The total horizontal momentum is in general not conserved. This somewhat
unintuitive result is a consequence of the rigid-lid assumption and has been
thoroughly studied in [38, 39].

One has the conservation of total energy:

d

dt
HF = 0, HF =

∫
R

(γ + δ)ζ 2 + 2(γ + δ)

με2Bo

(√
1 + με2|∂xζ |2 − 1

)
+ γ h1|u1|2 + h2|u2|2 + μ

γ

3
h1
(
h1∂xF

μ

1 u1
)2 + μ

1

3
h2
(
h2∂xF

μ

2 u2
)2

dx .

The conservation of energy may be deduced from the Hamiltonian structure
of the system and more specifically from the invariance of the Hamiltonian
with respect to time translation; see, e.g. [40]. Similarly, the invariance
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with respect to horizontal space translation yields the conservation of the
horizontal impulse:

d

dt
I = 0, I(ζ, v) =

∫
R

ζv dx .

This conserved quantity of the bi-fluidic Green–Naghdi model seems to
have been unnoticed until now. In the one-layer free surface case, that is
when γ = 0, the horizontal impulse is related to the momentum (which is
conserved in this situation) through the horizontal velocity mass:

δ−1V + εI =
∫

R

h2v dx =
∫

R

h2u2 + μh2QF
2 [εζ ]u2 dx =

∫
R

h2u2 dx = M.

In this situation, the symmetry with respect to Galilean boost yields an
additional conserved quantity, which is the counterpart of the “horizontal
coordinate of mass centroid times mass” for the full Euler system as defined
in [36], namely,

C(t)
def=

∫
R

C(t, x)dx, with C(t, x) = ζ x − th2v

or, equivalently, C(t, x) = ζ x − tw. The conservation of C can be deduced
from the above, as (3) yields

d

dt
C =

∫
R

x∂tζ − w − t∂tw dx

=
∫

R

−x∂xw − w dx − t
d

dt

∫
R

wdx = −t
d

dt
M = 0.

REMARK 1 (Traveling waves). The Hamiltonian structure and conserved
quantities of our system provide a natural ground for the study of traveling
wave solutions. For instance, one easily checks that critical points of the
functional HF(ζ, v) − cI(ζ, v) yield traveling wave solutions to system (7).
However, as soon as the surface tension component or nonlocal operators
are present, explicit formula such as the one provided in [6, 7] for the
original Green–Naghdi model seems hopeless. We thus postpone to a further
study the analysis of traveling wave solutions to our system.

3. Kelvin–Helmholtz instabilities

In this section, we formally investigate the conditions for the appearance
of Kelvin–Helmholtz instabilities for the full Euler system as well as for
our Green–Naghdi models, based on the linear analysis of infinitely small
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disturbances of steady states. We say that the system suffers from Kelvin–
Helmholtz instabilities when arbitrarily high-frequency unstable modes are
predicted by this linear theory.

3.1. The full Euler system

We linearize (1) around the constant shear solution: (ζ = 0 + κζ̃ , φ1 =
u1x + κφ̃1, φ2 = u2x + κφ̃2) where u1 and u2 are constants, and κ � 1.
Notice that by (5), one has necessarily u1 + δ−1u2 = 0, and therefore

u1 = −v
γ+δ and u2 = δv

γ+δ , where v
def= u2 − γ u1. When withdrawing O(κ2)

terms, one obtains the following linear system (see, e.g. [15]):⎧⎨⎩∂t ζ̃ + c(D)∂x ζ̃ + b(D)∂x ṽ = 0,

∂t ṽ + a(D)∂x ζ̃ + c(D)∂x ṽ = 0
(14)

where ṽ
def= ∂x ((φ̃2 − γ φ̃1)|z=εζ ), and

a(k)
def= (γ + δ)

(
1 + |k|2

Bo

)
−

√
μ|k|γ

tanh(
√
μ|k|) + γ tanh(

√
μδ−1|k|)

(δ + 1)2

(δ + γ )2
|εv|2,

b(k)
def= 1√

μ|k|
tanh(

√
μ|k|) tanh(

√
μδ−1|k|)

tanh(
√
μ|k|) + γ tanh(

√
μδ−1|k|)

c(k)
def= δ tanh(

√
μ|k|) − γ tanh(

√
μδ−1|k|)

tanh(
√
μ|k|) + γ tanh(

√
μδ−1|k|)

εv

γ + δ
.

Because b(k) > 0, the mode with wavenumber k is stable (namely, the
planewave solutions ei(kx−ω±(k)t) satisfy ω±(k) ∈ R) provided that a(k) > 0.
For small values of k, this yields the necessary condition

γ ε2|v|2 δ(δ + 1)2

(δ + γ )3
< γ + δ.

For large values of k, one has tanh(
√
μ|k|) + γ tanh(

√
μδ−1|k|) ≈ 1 + γ , so

that

min
|k|

{a(k)} ≈ (γ + δ) − γ 2μBo (δ + 1)4

4(1 + γ )2(γ + δ)5
ε4|v|4.

The full Euler system is therefore stable for each wavenumber provided that

ϒ |v|2 def= γ
(
1 +

√
μBo

)
ε2|v|2 is sufficiently small.
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3.2. Our class of Green–Naghdi systems

When linearizing (7) around the constant shear solution, U
def= (ζ,w)� def=

(0 + κζ̃ , w + κw̃)�, where w is constant, one obtains the following sys-
tem: ⎧⎨⎩∂t ζ̃ + ∂xw̃ = 0,

b
F
(D)∂tw̃ − cF(D)∂t ζ̃ + aF(D)∂x ζ̃ + cF(D)∂xw̃ = 0,

(15)

with

aF(k)
def= (γ + δ) − ε2|w|2(δ3 + γ ) − με2|w|2 δ|F

μ

2 |2 + γ |Fμ1 |2
3

|k|2 + γ + δ

Bo
|k|2,

b
F
(k)

def= γ + δ + μ
|Fμ2 |2 + γ δ|Fμ1 |2

3δ
|k|2,

cF(k)
def= εw(δ2 − γ ) + μεw

∣∣Fμ2 ∣∣2 − γ
∣∣Fμ1 ∣∣2

3
|k|2,

where (with a slight abuse of notations) Fμi = Fi (
√
μk).

The stability criterion is more easily seen when rewriting system (15)
with unknown1

ṽ = (γ + δ)w̃ − εw(δ2 − γ )ζ̃ − μ

{ |Fμ2 |2 + γ δ|Fμ1 |2
3δ

∂2
x w̃

−εw |Fμ2 |2 − γ |Fμ1 |2
3

∂2
x ζ̃

}
.

Indeed, one obtains in that case{
∂t ζ̃ + cF(D)∂x ζ̃ + bF(D)∂x ṽ = 0,

∂t ṽ + aF(D)∂x ζ̃ + cF(D)∂x ṽ = 0
(16)

with

aF(k)
def= (γ + δ) + γ + δ

Bo
|k|2

− |εw|2 γ (δ + 1)2

δ(γ + δ)

(
δ2 + 1

3
μ|k|2|Fμ2 |2

)(
1 + 1

3
μ|k|2|Fμ1 |2

)
1 + μ

|Fμ2 |2 + γ δ|Fμ1 |2
3δ(γ + δ)

|k|2
,

1This change of unknown is not without signification. It consists of writing the system with the
“original” variables of the full Euler system: ζ, v = ∂x ((φ2 − γφ1)|z=εζ ), or more precisely O(μ2)
approximations of these variables. It is interesting to note that the nonlinear hyperbolicity condition
in Theorem 1 matches the naive sufficient condition for stability aF(k) > 0 coming from (15) but not
the sharp condition aF(k) > 0 (in particular, when γ → 0); see also, Remark 3.
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bF(k)
def=

1

γ + δ

1 + μ
|Fμ2 |2 + γ δ|Fμ1 |2

3δ(γ + δ)
|k|2

cF(k)
def= εw

δ2 − γ

γ + δ
+ μ

|Fμ2 |2 − γ |Fμ1 |2
3(γ + δ)

|k|2

1 + μ
|Fμ2 |2 + γ δ|Fμ1 |2

3δ(γ + δ)
|k|2

.

Analogously with the full Euler system, the mode with wavenumber k is
stable if and only if aF(k) > 0. Let us quickly discuss the three examples
introduced in Section 1.3.

� In the case of the original Green–Naghdi system, Fid
i (

√
μD) ≡ 1, the

condition to ensure that all modes are stable is

ϒGN|w|2 def= γ (1 + μBo)ε2|w|2 is sufficiently small.

This is more stringent than the corresponding condition on the full Euler
system in the oceanographic context, where one expects μBo � 1, as
noticed in [10, 15].

� If F
imp
i (

√
μD) =

√
3

δ−1
i

√
μ|D| tanh(δ−1

i
√
μ|D|) − 3

δ−2
i μ|D|2 (with convention δ1 =

1, δ2 = δ), then the linearized system (16) is exactly (14) (recall that
by (5), w = 1

γ+δ v):

aF(k) = a(k) ; bF(k) = b(k) ; cF(k) = c(k).

In particular, the stability criterion of this Green–Naghdi model corre-
sponds to the one of the full Euler system. As previously mentioned, this
also shows that the model has the same dispersion relation as the full
Euler system, as this corresponds to setting w = 0.

� In the case F
reg
i (

√
μD) = 1√

1+μθi |D|2
, one remarks that

(γ + δ) > |εw|2 γ (δ + 1)2

δ(γ + δ)

(
δ2 + 1

3θ2

)(
1 + 1

3θ1

)
is a sufficient condition to ensure that all modes are stable, and does
not require the presence of surface tension. A natural choice is θi = 1

15δ2
i

with convention δ1 = 1, δ2 = δ, for the Taylor expansion of the dispersion
relation around μ = 0 to fit the one of the full Euler system, at
augmented order O(μ3), instead of the O(μ2) precision of the original
Green–Naghdi system.
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Figure 1. Instability curves of the modified Green–Naghdi models with Fi = 1 (original),
Fi = F

reg
i (regularized), and Fi = F

imp
i (improved). The last one coincides with the full

Euler system counterpart. The dimensionless parameters are γ = 0.95, δ = 0.5, ε = 0.5, μ =
0.1, and Bo−1 = 5 × 10−4.

In Fig. 1, we plot the instability curves corresponding to aF(k) for
the above three examples. More precisely, for fixed k ∈ R, we plot the
value of ε2|w|2 above which aF(k) > 0, and thus instabilities are triggered.
One clearly sees a great discrepancy for large wavenumbers. In particular,
the minimum of the curve, which corresponds to the domain where all
wavenumbers are stable, not only varies for each model, but also is obtained
at different values of k.

4. Numerical illustrations

We numerically compute several of our Green–Naghdi systems, with and
without surface tension, to observe how the different frequency dispersions
may affect the appearance of Kelvin–Helmholtz instabilities.

As in Fig. 1, we focus on the three aforementioned examples: Fi = 1
(original), Fi = F

reg
i with θi = 1

15δ2
i

(regularized), and Fi = F
imp
i (improved).

Values for the dimensionless parameters are as in Fig. 1 above. The initial
data are ζ (0, x) = −e−4|x |2 and w(0, x) = 0.

Figures 2 and 3 represent the predicted flow at times t = 2 and t = 3
in the situation with surface tension. Figure 4 represents the predicted flow
at time t = 2 in the situation without surface tension. Each time, the left
panel plots the flux, w(t, x) (or rather 1 + w for the sake of readability)
as well as the interface deformation, ζ (t, x); while the right panel plots the
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Figure 2. Prediction of the Green–Naghdi models, with surface tension, at time t = 2.
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Figure 3. Prediction of the Green–Naghdi models, with surface tension, at time t = 3.

spatial Fourier transform of the interface deformation, ζ̂ (t, k). The dashed
line represents the initial data, and the three colored lines represent the
predictions of each model.

Discussion 1. In the situation with surface tension, we see that at
time t = 2 (Fig. 2), the predictions of the three models are similar.
Only the original model shows small but clear discrepancy, and most
importantly early signs of instabilities. This situation is clearer when looking
at the Fourier transform, right panel. We see the existence of a strong
large frequency component that has grown from machine precision noise.
As expected, modes with higher wavenumbers grow faster. Notice the
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Figure 4. Prediction of the Green–Naghdi models, without surface tension, at time t = 2.

regularized model also exhibits a nontrivial (although very small) high-
frequency component. This component is, however, stable with respect to
time: it is not produced by Kelvin–Helmholtz instabilities, but rather by
numerical errors. It does not appear when surface tension is absent (Fig. 4).

At later time t = 3 (Fig. 3), the Kelvin–Helmholtz instabilities have
completely destroyed the flow of the original model. For such irregular data,
spectral methods are completely inappropriate, and we do not claim that our
numerical scheme computes any relevant approximate solution. Meanwhile,
the flows predicted by the regularized and improved models remain smooth
and are very similar. When running the numerical simulation for much
larger time, our computations indicate that the flow of the regularized and
improved models remains smooth for all time.

When surface tension is neglected from the models, we see (Fig. 4)
that at time t = 2, Kelvin–Helmholtz instabilities have already destroyed the
flow for the original model, and the improved model shows early signs
of instabilities in its high-frequency component. The flow predicted by the
regularized model, however, remains smooth and is very similar to the flow
with surface tension.

Numerical scheme. Let us now briefly present our numerical scheme.
It is very natural in our context to use spectral methods [41] as for the
space discretization, because Fourier multipliers are dealt similarly as regular
differential operators. Such methods yield an exponential accuracy with
respect to the spatial mesh size for smooth data. In our simulations, we
used 29 = 512 equally distributed points (with periodic boundary conditions)
on x ∈ [−4; 4]. As for the time evolution, we use the Matlab solver
ode45, which is based on the fourth- and fifth-order Runge–Kutta–Merson
method [42], with a relative tolerance of 10−10 and absolute tolerance of
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10−12. It is convenient to solve the system written in terms of ζ and
v = h1+γ h2

h1h2
w + μQF[εζ ]w; see (13), although this requires to solve at each

time step w as a function of ζ and v.
In Table 1, we display the numerical variations, between time t = 1 and

initial time t = 0, of the conserved quantities (discussed in Section 2.3) as
a very rough mean to appreciate the precision of the numerical scheme.
One sees that the agreement is excellent, except when the horizontal impulse
is concerned. The latter shows a great sensibility to the presence of large
frequency components, indicating that such component, as expected, affects
the precision of the numerical scheme. It is remarkable that the other
conserved quantities do not suffer from such a loss of precision.

5. Full justification

This section is dedicated to the proof of the main results of this work,
namely, the rigorous justification of the class of modified Green–Naghdi
systems introduced in Section 1.3, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tζ + ∂xw = 0,

∂t

(
h1 + γ h2

h1h2
w + μQF[εζ ]w

)
+ (γ + δ)∂xζ + ε

2
∂x

(
h2

1 − γ h2
2

(h1h2)2
|w|2

)
= με∂x (RF[εζ ]w) + γ + δ

Bo
∂2

x

(
1√

1 + με2|∂xζ |2
∂xζ

)
,

(17)
where

QF[εζ ]w = −1

3
h−1

2 ∂xF
μ

2

{
h3

2∂xF
μ

2

{
h−1

2 w
}}− γ

3
h−1

1 ∂xF
μ

1

{
h3

1∂xF
μ

1

{
h−1

1 w
}}
,

RF[εζ,w] = 1

3
wh−2

2 ∂xF
μ

2

{
h3

2∂xF
μ

2

{
h−1

2 w
}}− γ

3
wh−2

1 ∂xF
μ

1

{
h3

1∂xF
μ

1

{
h−1

1 w
}}

+ 1

2

(
h2∂xF

μ

2

{
h−1

2 w
})2 − γ

2

(
h1∂xF

μ

1

{
h−1

1 w
})2
.

Here and thereafter, we always denote h1 = h1(εζ ) = 1 − εζ and h2 =
h2(εζ ) = δ−1 + εζ . Let us also recall that Fμi (i = 1, 2) denotes a Fourier
multiplier:

Fμi = Fi (
√
μD) i.e., F̂μi f (ξ ) = Fi (

√
μξ ) f̂ (ξ ).

To allow for the functional analysis detailed in Section B.1, we restrict
ourselves to admissible Fourier multipliers Fμi , as follows.
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DEFINITION 1. The operator Fμi = Fi (
√
μD) (i = 1, 2) is admissible if it

satisfies:

i. Fi : R → R+ is even and positive;
ii. Fi is of twice differentiable, Fi (0) = 1,F′

i (0) = 0 and supk∈R
|F′′

i (k)| ≤
CF < ∞;

iii. k → |k|Fi (k) is subadditive, namely, for any k, l ∈ R,

|k + l|Fi (k + l) ≤ |k|Fi (k) + |l|Fi (l).

In that case, one can define appropriate pairs KFi ∈ R+ and ς ∈ [0, 1]
such that

∀k ∈ R, Fi (k) ≤ KFi |k|−ς . (18)

PROPOSITION 1. The three examples provided in Section 1.3, namely,
Fid

i ,F
reg
i ,F

imp
i are admissible, and satisfy (18) with ς = 0, 1, 1/2 (respec-

tively).

Proof: A sufficient condition for Fμi to be admissible is to satisfy, in
addition to i. and ii.,
iii’. k → kFi (k) is nondecreasing on R+, and k → Fi (k) is nonincreasing on
R+.

Indeed, for k + l ≥ k ≥ l ≥ 0, that Fi (k) is nonincreasing on
R+yields 0 ≤ Fi (k + l) ≤ Fi (k) ≤ Fi (l), and therefore (k + l)Fi (k + l) ≤
kFi (k) + lFi (k) ≤ kFi (k) + lFi (l). This shows k ∈ R+ → kFi (k) = |k|Fi (k)
is subadditive. Because Fi is even, one shows in the same way that
k ∈ R− → |k|Fi (k) is subadditive. Finally, for k ≤ 0 ≤ l, that Fi is even and
k ∈ R+ → kFi is nondecreasing yields |k + l|Fi (k + l) = |k + l|Fi (|k + l|) ≤
(|k| + |l|)Fi (|k| + |l|), and the subadditivity in R+ allows to conclude.

That property iii’ holds is immediate for the first two examples, only the
last one requires clarifications. One easily checks that k ∈ R+ → kF

imp
i (k)

is nondecreasing, so that we focus on the proof that k → F
imp
i (k) is

nonincreasing for k ∈ R+. To this aim, it suffices to show that

∀k > 0, f (k)
def= −k2 − 1

2
k sinh(2k) + cosh(2k) − 1 < 0.

This follows from f (0) = f ′(0) = f ′′(0) = 0 and

f ′′′(k) = 2 sinh(2k) − 4k cosh(2k) = 2 cosh(2k)(tanh(2k) − 2k) < 0 (k > 0).

Thus, property iii’ holds, and k → |k|Fimp
i (k) is subadditive. �
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For reasons explained in Appendix B, our energy space involves both
space and time derivatives of the unknowns. For U = (ζ,w)�, we define

E0(U )
def= |ζ |2X0

Bo−1
+ |w|2Y 0

Fμ
, E N (U )

def=
N∑

|α|=0

E0(∂αU )
def= |ζ |2X N

Bo−1
+ |w|2Y N

Fμ
,

where N always denotes an integer and α a multi-index. The functional
setting and in particular the definitions of functional spaces X N

Bo−1 and Y N
Fμ

are given in Appendix A.
In addition to γ, μ, ε, δ,Bo−1 ≥ 0, it is convenient to introduce the

dimensionless parameters

ϒF
def= ε2

(
1 + (γ KF1 + KF2 )(μBo)1−ς) < ∞, (19)

where ς, KF1, KF2 are specified in Definition 1, (18); and

m
def= max{ε, γ, δ, δ−1, μ,Bo−1} < ∞.

THEOREM 1 (Well-posedness). Let U 0 def= (ζ 0, w0)� ∈ X N
Bo−1 × Y N

Fμ with
N ≥ 4, satisfying

h0
1

def= 1 − εζ 0 ≥ h0 > 0, h0
2

def= δ−1 + εζ 0 ≥ h0 > 0;

(γ + δ) − ε2 max
x∈R

{((
h0

2

)−3 + γ
(
h0

1

)−3
)

|w0|2
}

≥ k0 > 0.

One can define K = C(m, h−1
0 , k−1

0 , ε|ζ |H 3
x
) such that if ϒF|w0|2

Z1
Fμ

≤ K −1,

there exists T > 0 and a unique U
def= (ζ,w)� ∈ C0

w([0, T ); X N
Bo−1 × Y N

Fμ)

solution to (17) and U |
t=0

= U 0.
Moreover, there exists C0 = C(m, h−1

0 , k−1
0 , K , E N (U 0)) such that

T −1 ≤ C0 ×
(
ε +ϒ

1/2
F |w0|Z1

Fμ
+ϒF|w0|2Z2

Fμ

)
,

sup
t∈[0,T )

E N (U ) ≤ C0 × E N (U 0).

The proof of this result is postponed to Appendix B. Let us for now
discuss a few implications.

REMARK 2 (Initial data). Because our functional spaces involve time
derivatives, it is not a priori clear how to define |ζ 0|X N

Bo−1
and |w0|Y N

Fμ
.

As it is manifest from the proof, the definition of (∂αU 0)|t=0 for sufficiently
regular ζ 0(x), w0(x) is given by system (17) itself. More precisely, for
α = (0, α2), the definition is clear. We then define (∂αU 0)|t=0 for α = (α1, α2)
with α1 > 0 by finite induction on α1, through the identities obtained from
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differentiating (17) |α1| − 1 times with respect to time. These identities are
given in Lemma 6, and are uniquely solved by Lemma 8.

REMARK 3 (Domain of hyperbolicity and time of existence). Hypotheses
on the initial data ensure that the flow lies in the “domain of hyperbolicity”
of the system; see Lemma 7. They may be seen as the nonlinear version
of the stability criterion presented in Section 3.2, because they provide
sufficient conditions for Kelvin–Helmholtz instabilities not to appear. How-
ever, remark that our “Kelvin–Helmholtz instability parameter”, ϒF, is not
multiplied by γ , in contrast with ϒ and ϒGN in Section 3, as well as the
nonlinear criterion on the full Euler system given by Lannes [5, (5.1)]. The
latter results imply that the large-frequency Kelvin-Helmholtz instabilities
disappear in the limit γ → 0, so that surface tension is not necessary
for the well-posedness of the system when γ = 0. We do not recover such
property with our rigorous analysis, although numerical simulations indicate
that our models are well-posed when γ = 0 and Bo = ∞, as long as the
nonvanishing depth condition is satisfied.

A second setback is that the time of existence involves ϒ1/2
F |w0|Z1

Fμ
, and

not only ϒF|w0|2
Z2

Fμ
. In practice, this means that when ϒF � 1, and in

particular when ϒF ≤ ε � 1, then the time of existence of our result is
significantly smaller than the one in [16, theorem 6].

However, let us note that our conclusions, in particular with the choice
Fi = F

imp
i where ς = 1/2, are in complete agreement with aforementioned

results in the oceanographic setting of internal waves, where one expects
large values of ε and γ ≈ 1.

We believe that the above limitations originate from the choice of un-
knowns used when quasilinearizing the equation. This was quickly discussed
in footnote 1 in Section 3.2 as for the occurrence of γ . The restriction on
the time of existence originates from estimates (B.8) and (B.9) in Lemma 6,
and more precisely the lack of an analog of [5, lemma 7] thanks to
which “good unknowns” were constructed. We show in Section 6 how the
techniques used in this work, applied to the Saint–Venant system (that is
setting μ = 0) written with different unknowns, yields sharp results.

REMARK 4 (Regularized systems). In the case ς = 1, one sees that
Theorem 1 does not depend on Bo (through ϒF). In particular, the results
hold true even when surface tension is neglected, i.e., Bo−1 = 0, and we
recover in that case the “quasilinear timescale” T −1 � ε. Our strategy
relying on the use of space–time energy is not needed in that case, as
classical energy methods can be applied to prove the well-posedness for
initial data in Sobolev spaces: (ζ 0, w0)� ∈ H s × H s, s > 3/2.

We show now that the above well-posedness analysis can be supple-
mented with consistency and stability results, which together provide the full
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justification of our models (17). Such a program was completed for similar
models in the one-layer setting in [43–45] (see [16] for a detailed account).
In the two-layer case with rigid upper lid, the consistency of many models
was derived in [20]. The consistency result below builds upon [24] and [25].

PROPOSITION 2 (Consistency). Let U
def= (ζ, ψ)� be a solution of the full

Euler system (2) such that there exists C0, T > 0 with

‖ζ‖L∞([0,T );H s+5
x ) + ‖∂tζ‖L∞([0,T );H s+4

x )

+ ‖∂xψ‖
L∞([0,T );H

s+ 11
2

x )
+ ‖∂t∂xψ‖

L∞([0,T );H
s+ 9

2
x )

≤ C0,

for given s ≥ t0 + 1/2, t0 > 1/2. Moreover, assume that there exists h0 > 0
such that for all (t, x) ∈ [0, T ) × R,

h1(t, x) = 1 − εζ (t, x) ≥ h0 > 0, h2(t, x) = δ−1 + εζ (t, x) ≥ h0 > 0.
(20)

Define w by ∂xw = − 1
μ

Gμ[εζ ]ψ = −∂tζ . Then, (ζ,w)� satisfies exactly the
first equation of (17), and the second up to a remainder, r , bounded as

‖r‖L∞([0,T );H s
x ) ≤ μ2 × C(m, h−1

0 ,C0,CF).

Proof: The proposition has been stated and proved, in the case of
the original Green–Naghdi system, Fid

i ≡ 1, in [24, proposition 2.4]. By
triangular inequality, there only remains to estimate

rQ
def= μ

∣∣∂t

(QFid
[εζ ]w − QF[εζ ]w

)∣∣
H s

x

and

rR
def= με

∣∣∂x

(RFid
[εζ,w] − RF[εζ,w]

)∣∣
H s

x
.

Notice that by Definition 1, one has∣∣Fi (
√
μk) − 1

∣∣ ≤ 1

2
CFμ|k|2.

It follows, because H s
x is an algebra for s > 1/2 and by Lemma 5, that

rQ ≤
2∑

i=1

μ

3

∣∣∂t

(
h−1

i ∂x

(
Fμi − Id

){
h3

i ∂xF
μ

i

{
h−1

i w
}})∣∣

H s
x

+μ
3

∣∣∂t

(
h−1

i ∂x

{
h3

i ∂x

(
Fμi − Id

){
h−1

i w
}})∣∣

H s
x
,

≤ μ2CF C
(
m, h−1

0 , |∂tζ |L∞([0,T );H s+4
x ), |∂tw|L∞([0,T );H s+4

x )

)
.

Similarly, one has

rR ≤ μ2CF C(m, h−1
0 , |ζ |L∞([0,T );H s+5

x ), |w|L∞([0,T );H s+5
x )).
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Now, recall that by definition, ∂xw = −∂tζ ∈ L∞([0, T ); H s+4
x ), and w ∈

L∞([0, T ); L2) by identity (5) and the uniform control of ui ; see, e.g. [25,
proposition 4]. Thus, we control w ∈ L∞([0, T ); H s+5

x ), and similarly ∂tw ∈
L∞([0, T ); H s+4

x ), and the proposition follows. �
PROPOSITION 3 (Stability). Let N ≥ 4 and Ui = (ζi , wi )� ∈ L∞([0, T );

X N
Bo−1 × Y N

Fμ) solution to (17) with remainder terms (0, ri )�. Assume that ζi

satisfy (20),(B.27),(B.28) with h0, k0, K > 0. Set 2 ≤ n ≤ N − 1 and assume
that ∂αri ∈ L1([0, T ); (Y 0

Fμ)�) for any |α| ≤ n.
Then, there exists 0 < T � ≤ T such that for all t ∈ [0, T �)

En(U1 − U2)1/2 ≤ C0 En(U1|t=0 − U2|t=0 )
1/2eλt + C0

∫ t

0
eελ(t−t ′) fn(t ′)dt ′.

with

λ = C0 ×
(
ε + ϒF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fμ

)

)
, fn(t) =

∑
|α|≤n

∣∣∂αr1 − ∂αr2

∣∣
(Y 0

Fμ
)�
,

and C0 = C
(
m, h−1

0 , k−1
0 , K ,

∥∥U1

∥∥
L∞([0,T ];X4

Bo−1 ×Y 4
Fμ

)
,
∥∥U2

∥∥
L∞([0,T ];X4

Bo−1 ×Y 4
Fμ

)

)
.

Moreover, one has

(T �)−1 ≤ C0

(
ε +ϒ

1/2
F

∥∥w1

∥∥2

L∞([0,T ];Z1
Fμ

)
+ϒF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fμ

)

)
.

Proof: By Lemma 6, for any |α| ≤ n ≤ N − 1,U (α)
i

def= (∂αζi , ∂
αwi )�

satisfies (B.30) with remainder terms r̃ (α)
i

def= r (α)
i + ∂αri ∈ L1([0, T ); (Y 0

Fμ)�),
and∣∣r̃ (α)

1 − r̃ (α)
2

∣∣
(Y 0

Fμ
)�

≤ ∣∣∂αr1 − ∂αr2

∣∣
(Y 0

Fμ
)�

+ C0 × (ε +ϒ
1/2
F

∣∣w1

∣∣
Z1

Fμ
+ ϒF

∣∣w1

∣∣2
Z1

Fμ
) × E |α|(U1 − U2)1/2,

with C0 = C(m, h−1
0 , E N (U1), E N (U2)). By Lemma 11, one has

E0
(

U (α)
1 − U (α)

2

)1/2
≤C0 E0

(
U (α)

1

∣∣
t=0

− U (α)
2

∣∣
t=0

)1/2
eλt +C0

∫ t

0
f (α)(t ′)eλ(t−t ′)dt ′,

with C0, λ as in the statement and

f (α)(t) = ∣∣r̃ (α)
1 − r̃ (α)

2

∣∣
(Y 0

Fμ
)�

+ ε
∣∣U2

∣∣
(W 3,∞

x )2

∣∣U1 − U2

∣∣
X2

Bo−1 ×Y 2
Fμ
.

Because n ≥ 2 and N ≥ 4, one can restrict T � as in the statement and
augment C0 if necessary so that the estimate holds. �

The following is now a straightforward consequence of Theorem 1 and
Propositions 2 and 3.
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PROPOSITION 4 (Full justification). Let U 0 ≡ (ζ 0, w0)� ∈ X N
Bo−1 × Y N

Fμ with
N sufficiently large, and satisfying the hypotheses of Theorem 1. Define
ψ0 with ∂xw

0 = − 1
μ

Gμ[εζ 0]ψ0 and assume that (ζ 0, ψ0)� satisfies the
hypotheses of theorem 5 in [5]. Then, there exists C, T > 0 such that

� There exists a unique solution U ≡ (ζ, ψ)� to the full Euler system (2),
defined on [0, T ] and with initial data (ζ 0, ψ0)� (provided by theorem 5
in [5]);

� There exists a unique solution UF ≡ (ζF, wF)� to our modified Green–
Naghdi model (17), defined on [0, T ] and with initial data (ζ 0, w0)�

(provided by Theorem 1);
� Defining ∂xw = − 1

μ
Gμ[εζ ]ψ = −∂tζ , one has for any t ∈ [0, T ],∥∥(ζ,w) − (ζF, wF)

∥∥
L∞([0,t];X0

Bo−1 ×Y 0
Fμ

)
≤ C μ2 t.

6. The Saint–Venant system

The Saint–Venant system (with surface tension) is obtained from our Green–
Naghdi models (17) by setting μ = 0. The results of Section 5 thus apply
as a particular case. However, it is possible to obtain sharper results by
considering the system obtained after the following change of variable

v
def= h1+γ h2

h1h2
w = u2 − γ u1:⎧⎨⎩
∂tζ + ∂x (H (εζ )v) = 0,

∂tv + (γ + δ)∂xζ + ε
2∂x (H ′(εζ )|v|2) − γ+δ

Bo ∂
3
x ζ = 0,

(21)

where we denote H (εζ ) = h1h2
h1+γ h2

.
In the following, we quickly review the steps of the method developed in

Appendix B, providing results without proof.
The analog of Lemma 6 is the following:

LEMMA 1. Let U = (ζ, v)� ∈ X N
Bo−1 × H N with N ≥ 2, solution to (21)

and satisfying

h1(εζ ) = 1 − εζ ≥ h0 > 0, h2(εζ ) = δ−1 + εζ ≥ h0 > 0. (22)

For any α = (α1, α2) such that |α| ≤ N, denote U (α) def= (∂αζ, ∂αv)� and

v〈α̌〉 def= (∂α−e1v, ∂α−e2v)� (if α j = 0, then ∂α−e jv = 0 by convention). Then,
U (α) satisfies:{

∂tζ
(α) + ∂x (H (εζ )v(α)) + εH ′(εζ )v∂xζ

(α) + ∂x ďα[εζ ]v〈α̌〉 = r (α)
1 ,

∂tv
(α) + ∂xaSV[εζ, εv]ζ (α) + εH ′(εζ )v∂xv

(α) = r (α)
2 ,



Two-Layer Green-Naghdi Systems with Improved Frequency Dispersion 385

with ďα[εζ ]v〈α̌〉 def= ∑
j∈{1,2} α j H ′(εζ )(ε∂e j ζ )(∂α−e jv) and

aSV[εζ, εv] • def=
(

(γ + δ) + ε2

2
H ′′(εζ )|v|2

)
• −γ + δ

Bo
∂2

x •;

and r (α)[εζ, εv] = (
r (α)

1 [εζ, εv], r (α)
2 [εζ, εv]

)� ∈ X0
Bo−1 × L2 satisfies∣∣r (α)[εζ, εv]

∣∣
X0

Bo−1 ×L2 ≤ ε C
(
m, h−1

0 ,
∣∣ζ ∣∣

X N
Bo−1
,
∣∣v∣∣

H N

)
× (∣∣ζ ∣∣

X N
Bo−1

+ ∣∣v∣∣
H N

)
.

One has immediately the following analog of Lemma 7.

LEMMA 2. Let (ζ, v)� ∈ L∞ × L∞ be such that εζ satisfies (22) with
h0 > 0, and

(γ + δ) + ε2

2
H ′′(εζ )|v|2 = (γ + δ) − γ ε2 (h1 + h2)2

(h1 + γ h2)3
|v|2 ≥ k0 > 0. (23)

Then, there exists K0, K1 = C
(
m, h−1

0 , k−1
0 , ε

∣∣ζ ∣∣
L∞
)

such that

∀ f, g ∈ X0
Bo−1,

∣∣〈aSV[εζ, εv] f, g
〉
(X0

Bo−1 )�

∣∣ ≤ K1

∣∣ f
∣∣

X0
Bo−1

∣∣g∣∣
X0

Bo−1
,

∀ f, g ∈ L2,
∣∣(H (εζ ) f, g)L2

∣∣ ≤ K1

∣∣ f
∣∣

L2

∣∣g∣∣
L2,

∀ f ∈ X0
Bo−1,

〈
aSV[εζ, εv] f, f

〉
(X0

Bo−1 )�
≥ 1

K0

∣∣ f
∣∣2

X0
Bo−1
,

∀ f ∈ L2, (H (εζ ) f, f )L2 ≥ 1

K0

∣∣ f
∣∣2

L2 .

A priori energy estimates are obtained by adding the L2 inner product
of the first equation with aSVζ

(α), and the one of second one with
H (εζ )v(α) + ďα[εζ ]v〈α̌〉, and following the proof of Lemmas 10 and 11.
Applying the strategy of Section 1.5, one then obtains the following analog
of Theorem 1.

THEOREM 2. Let N ≥ 2 and U 0 def= (ζ 0, v0)� ∈ X N
Bo−1 × H N , satisfy-

ing (22), (23) with h0, k0 > 0. Then, there exists T > 0 and a unique solu-

tion U
def= (ζ, v)� ∈ C0

w([0, T ); X N
Bo−1 × H N ) satisfying (21). Moreover, there

exists C0 = C(m, h−1
0 , k−1

0 , |U 0|X N
Bo−1 ×H N ) such that T −1 ≤ C0 × ε and

sup
t∈[0,T )

(∣∣ζ ∣∣
X N

Bo−1
+ ∣∣v∣∣

H N

)
≤ C0

(∣∣ζ 0
∣∣

X N
Bo−1

+ ∣∣v0
∣∣

H N

)
.

REMARK 5. Theorem 2 is valid uniformly with respect to the parameter
Bo−1, and the result holds in particular in the case without surface tension:
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Bo−1 = 0. This case is, however, straightforward as the Saint–Venant system
is then a quasilinear system, and the result was stated in particular in [46].
Assumption (23) corresponds exactly to the hyperbolicity condition provided
therein.

Notice that (23) is automatically satisfied in the limit γ → 0: Kelvin–
Helmholtz instabilities disappear in the free-surface setting, and (22) suffices
to ensure the stability of the flow.

REMARK 6. While completing our work, we have been informed of
related results covering the free-surface setting (γ = 0, δ = 1) of our
Theorem 2. Saut et al. in [47] generalize the result to Boussinesq systems in
dimension d = 2, while Chiron and Benzoni-Gavage [48] treat more general
Euler–Korteweg systems.
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Appendix A: Notations and functional setting

The notation a � b means that a ≤ C0 b, where C0 is a nonneg-
ative constant whose exact expression is of no importance. We denote
by C(λ1, λ2, . . .) a nonnegative constant depending on the parameters
λ1, λ2, . . . and whose dependence on the λ j is always assumed to be
nondecreasing.

In this paper, we sometimes work with norms involving derivatives in
both space and time variables. We find it convenient to use the following
sometimes nonstandard notations.

� For 1 ≤ p < ∞, we denote L p
x = L p = L p(R) the standard Lebesgue

spaces associated with the norm

| f |L p =
(∫

R

| f (x)|pdx

) 1
p

< ∞.

The real inner product of any functions f1 and f2 in the Hilbert space
L2(R) is denoted by (

f1, f2
)

L2 =
∫

R

f1(x) f2(x)dx .
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The space L∞ = L∞
x = L∞(R) consists of all essentially bounded,

Lebesgue-measurable functions f with the norm∣∣ f
∣∣

L∞ = ess supx∈R
| f (x)| < ∞.

� We acknowledge the fact that only space derivatives are involved by the
use of a subscript. For k ∈ N, we denote by W k,∞

x (R) = { f, s.t. ∀0 ≤ j ≤
k, ∂ j

x f ∈ L∞(R)} endowed with its canonical norm.
For any real constant s ∈ R, H s

x = H s
x (R) denotes the Sobolev space

of all tempered distributions f with the norm | f |H s
x

= |�s f |L2 < ∞,
where � is the pseudo-differential operator � = (1 − ∂2

x )1/2. We denote
H∞

x = ∩N∈N H N
x .

� In the absence of subscript, the derivatives are with respect to space and
time, and thus apply to functions defined on (t, x) ∈ [0, T ) × R. Thus,
for N ∈ N,W N ,∞ is the space of functions endowed with the following
norm:

| f |W N ,∞ =
∑

|α|≤N

|∂α f |L∞
x
,

where we use the standard multi-index notation: α ∈ N2, ∂ (α1,α2) = ∂
α1
t ∂

α2
x

and |α| = α1 + α2. In particular, ∂e1 = ∂ (1,0) = ∂t and ∂e2 = ∂ (0,1) = ∂x .
Similarly, H N is the space of functions endowed with

| f |2H N =
∑

|α|≤N

|∂α f |2L2
x
.

We denote H∞ = ∩N∈N H N .
� Given μ, γ,Bo−1 ≥ 0 and Fi (i = 1, 2) admissible functions (in the sense

of Definition 1), we define X0
Bo−1, Y 0

Fμ,W 0
Bo−1, Z0

Fμ as the completion of
the Schwartz space, S(R), for the following norms:

| f |2X0
Bo−1

def= | f |2L2 + 1

Bo
|∂x f |2L2 , | f |2Y 0

Fμ

def= | f |2L2 + μγ |∂xF
μ

1 f |2L2 + μ|∂xF
μ

2 f |2L2 ,

| f |W 0
Bo−1

def= | f̂ |L1 + 1

Bo
|∂̂x f |L1 , | f |Z0

Fμ

def= | f̂ |L1 + √
μγ |∂̂xF

μ

1 f |L1 + √
μ|∂̂xF

μ

2 f |L1 .

For N ∈ N, we define consistently with above the norms controlling space
and time derivatives:

| f |2X N
Bo−1

def=
∑

|α|≤N

|∂α f |2X0
Bo−1
, | f |2Y N

Fμ

def=
∑

|α|≤N

|∂α f |2Y 0
Fμ
,

| f |W N
Bo−1

def=
∑

|α|≤N

|∂α f |W 0
Bo−1
, | f |Z N

Fμ

def=
∑

|α|≤N

|∂α f |Z0
Fμ
.
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� Denoting X any of the previously defined functional spaces, we de-
note by X � its topological dual, endowed with the norm

∣∣ϕ∣∣
X � =

sup(|ϕ( f )|, ∣∣ f
∣∣

X
≤ 1); and by 〈·, ·〉(X )� the (X � − X ) duality brackets.

� For any function u = u(t, x) defined on [0, T ) × R with T > 0, and any
of the previously defined functional spaces, X , we denote L∞([0, T ); X )
the space of functions such that u(t, ·) is controlled in X , uniformly for
t ∈ [0, T ), and denote the associated norm∥∥u

∥∥
L∞([0,T );X )

= ess sup
t∈[0,T )

∣∣u(t, ·)∣∣
X
< ∞.

For k ∈ N,Ck([0, T ); X ) denotes the space of X -valued continuous func-
tions on [0, T ) with continuous derivatives up to the order k. Finally,
C0

w([0, T ); X ) is the space of continuous functions with values in X , given
the weak topology.

Appendix B: Proof of the Theorem 1

This section is dedicated to the proof of our main result, Theorem 1.
The proof relies on energy estimates that are also used in the proof of
Proposition 3.

Our strategy is similar to the one used for the full Euler system with
surface tension by Lannes [5, 16], and originates from an idea of Rousset
and Tzvetkov [49, 50]. The main difference with respect to the traditional
methods for quasilinear systems is that we treat time derivatives in the same
way as space derivatives. In particular, the main tool of the analysis is the
control of a space–time energy. The reason for such a strategy is that

� the two unknowns, ζ and w, are controlled in different functional spaces,
one being continuously embedded in the other but to the price of a non
uniform constant (see Lemma 3), and the inclusion being strict;

� the most singular term of the system, namely, the one that involves the
operator of highest order, comes from the surface tension component, and
couples the two unknowns (it appears as an off-diagonal component of the
quasilinearized system).

This is why, one cannot use standard energy methods in Sobolev-based
functional spaces, as commutator estimates fail to control all coupling terms;
see also the discussion in [47].

More precisely, our strategy is as follows. In Lemma 6 below, we
“quasilinearize” the system. We differentiate several times the equations with
respect to space and time, and extract the leading order components. The
quasilinear system we consider is the complete system of all the equations
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satisfied by the original unknowns and their space–time derivatives up to
sufficiently high order. Thus, only L2-type estimates on the aforementioned
linear “block” systems will be required. In Section 1.3, we study the
operators involved in the block systems, and exhibit sufficient conditions for
the existence of a coercive symmetrizer of the system in Lemma 7. This
yields a priori energy estimates in Section 1.4. Finally, in Section 1.5, we
explain how to deduce from these energy estimates the well-posedness of
the linear block systems (Lemma 12), and in turn the well-posedness of the
nonlinear system (Theorem 1).

B.1. Technical results

In this section, we provide tools (injections and product estimates) similar
to the classical ones concerning Sobolev spaces, for the functional spaces
X N

Bo−1, Y N
Fμ, Z N

Fμ , as defined in Appendix A.

Let us fix μ, γ,Bo−1 ≥ 0 and Fi (i = 1, 2) admissible functions (in the
sense of Definition 1). In particular, there exist KFi > 0 and ς ∈ [0, 1] such
that

|Fi (ξ )|2 ≤ min{1, KFi |ξ |−2ς }. (B.1)

The following standard injections will be frequently used, sometimes
without notice:

| f |L∞ ≤ | f̂ |L1 � | f |H
t0
x

(t0 > 1/2);

thus | f |Z N
Fμ

� | f |Y N+1
Fμ

and | f |Z N
Fμ

� | f |H N+t0+1 . (B.2)

One immediately sees that the space X0
Bo−1 is continuously embedded in

Y 0
Fμ ; Lemma 3 precises the norm of the inclusion map.

LEMMA 3. If Fi satisfies (B.1), then

∀ f ∈ X0
Bo−1 (R),

∣∣ f
∣∣2
Y 0

Fμ
≤ (

1 + (γ KF1 + KF2 )(μBo)1−ς) ∣∣ f
∣∣2

X0
Bo−1
.

Proof: The inequality is a simple consequence of Parseval’s identity and
Young’s inequality:

μ|∂xFi (
√
μD) f |2L2 ≤ KFiμ

1−ς
∫

|ξ |2−2ς | f̂ (ξ )|2 dξ ≤ KFi (μBo)1−ς
∫ (

1 + 1

Bo
|ξ |2

)
| f̂ (ξ )|2 dξ,

where we used Boς |ξ |2−2ς ≤ ςBo + (1 − ς )|ξ |2. �
Sobolev spaces H N

x and W N ,∞
x enjoy straightforward product estimates,

which are immediately extended to X N
Bo−1 and W N

Bo−1 :

| f g|X0
Bo−1

� |g|W 0
Bo−1

| f |X0
Bo−1

� |g|X1
Bo−1

| f |X0
Bo−1
, | f g|W 0

Bo−1
� | f |W 0

Bo−1
|g|W 0

Bo−1
;
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and therefore

∀N ≥ 1, | f g|X N
Bo−1

� | f |X N
Bo−1

|g|X N
Bo−1
.

Lemma 4 shows that spaces Y N
Fμ and Z N

Fμ enjoy similar estimates, thanks to
the subadditivity property of admissible functions (recall Definition 1).

LEMMA 4. Let Fi : R → R+(i = 1, 2) be admissible functions. Then, for
any 1 ≤ p, q, p̃, q̃, r ≤ ∞ satisfying 1 + 1

r = 1
p + 1

q = 1
p̃ + 1

q̃ , one has∣∣ ̂∂xF
μ

i { f g}∣∣
Lr ≤ ∣∣ f̂

∣∣
L p

∣∣∂̂xF
μ

i g
∣∣

Lq + ∣∣̂g∣∣
L p̃

∣∣∂̂xF
μ

i f
∣∣

Lq̃ . (B.3)

It follows in particular:

| f g|Y 0
Fμ

� |g|Z0
Fμ

| f |Y 0
Fμ

� |g|Y 1
Fμ

| f |Y 0
Fμ
, (B.4)

∀N ≥ 1, | f g|Y N
Fμ

� | f |Y N
Fμ

|g|Y N
Fμ
, (B.5)

| f g|Z0
Fμ

� | f |Z0
Fμ

|g|Z0
Fμ
. (B.6)

Proof: From the subadditivity, one has
√
μ|ξ |Fi (

√
μξ ) ≤√

μ|η|Fi (
√
μη) + √

μ|ξ − η|Fi (
√
μ(ξ − η)). Thus,∣∣ ̂∂xF

μ

i { f g}∣∣r
Lr =

∫
R

(|ξ |Fi (
√
μξ ))r | f̂ � ĝ|r (ξ )dξ

=
∫

R

dξ
∣∣∣ ∫

R

dη|ξ |Fi (
√
μξ ) f̂ (η)̂g(ξ − η)

∣∣∣r
≤

∫
dξ
∣∣∣ ∫ dη|η|Fi (

√
μη)| f̂ |(η)|̂g|(ξ − η)

+|ξ − η|Fi (
√
μ(ξ − η))| f̂ |(η)||̂g|(ξ − η)

∣∣∣r
≤

∫
dξ
∣∣∣(|∂̂xF

μ

i f | � |̂g|)(ξ ) + (| f̂ | � |∂̂xF
μ

i g|)(ξ )
∣∣∣r ,

where we used that |∂̂xF
μ

i f |(ξ ) = |iξFi (
√
μξ ) f̂ (ξ )| = |ξ |Fi (

√
μξ )| f̂ (ξ )| be-

cause Fi (
√
μξ ) ≥ 0. Estimate (B.3) follows from Young’s inequality for

convolutions.
Estimate (B.4) is deduced with r = p = q̃ = 2 and p̃ = q = 1, and

using (B.2).
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Estimate (B.5) follows from the above result and triangular inequality,∣∣ f g
∣∣
Y N

Fμ
≤

∑
|α+β|≤N

Cα,β,N

∣∣(∂α f )(∂βg)
∣∣
Y 0

Fμ
�

∑
|α|≤N−1,|β|≤N

∣∣∂α f
∣∣
Y 1

Fμ

∣∣∂β f
∣∣
Y 0

Fμ

.

Estimate (B.6) follows from (B.3) with p = p̃ = q = q̃ = r = 1. �
We now provide Schauder-type estimates in our functional spaces.

LEMMA 5. Let H ∈ C∞(−δ−1, 1) and εζ ∈ L∞ such that

h1(εζ ) = 1 − εζ ≥ h0 > 0, h2(εζ ) = δ−1 + εζ ≥ h0 > 0.

Then, denoting Hn,h0

def= ∣∣H ∣∣
Cn([−δ−1+h0,1−h0])

and fixing t0 > 1/2, one has

• For any s ≥ 0, if ζ ∈ H s and f ∈ H s
x , then one has with n ∈ N, n ≥

max{s, t0}:
|H (εζ ) f |H s

x
≤ C

(
h−1

0 , Hn,h0, |εζ |H
max{s,t0}
x

)| f |H s
x
.

• For any f̂ ∈ L1, one has∣∣Ĥ (εζ ) f
∣∣

L1 ≤ C
(
h−1

0 , H1,h0, |εζ |H
t0
x

)∣∣ f̂
∣∣

L1 .

• For any N ∈ N, if ζ ∈ H t0+1+N
x and f ∈ Z N

Fμ , then one has∣∣H (εζ ) f
∣∣

Z N
Fμ

≤ C
(
h−1

0 , H2+N ,h0, |εζ |H
t0+1+N
x

)| f
∣∣

Z N
Fμ
.

• For any N ∈ N, if ζ ∈ H t0+1+N
x and f ∈ Y N

Fμ , then one has∣∣H (εζ ) f
∣∣
Y N

Fμ
≤ C

(
h−1

0 , H2+N ,h0, |εζ |H
t0+1+N
x

)∣∣ f
∣∣
Y N

Fμ
.

Proof: In each case, we decompose H (εζ ) f = H (0) f + (H (εζ ) −
H (0)) f = H (0) f + Gh0 (εζ ) f where Gh0 is such that Gh0 ∈
C∞(R),Gh0 (x) = H (x) − H (0) for x ∈ [−δ−1 + h0, 1 − h0] and Gh0 (x) = 0
for x ∈ R \ [−δ−1, 1]. It is clear that, because min{h1(εζ ), h2(εζ )} ≥
h0 > 0, one can construct such a Gh0 satisfying additionally: for any
n ∈ N,

∣∣Gh0

∣∣
Cn = C(h−1

0 , Hn,h0 ).
The first estimate is a direct consequence of a classical Schauder-type

estimate in Sobolev spaces; see, e.g. [51]. As for the second, one has∣∣Ĥ (εζ ) f
∣∣

L1 ≤ ∣∣Ĥ (0) f
∣∣

L1 + ∣∣Ĝh0 (εζ ) � f̂
∣∣

L1 ≤ H (0)| f̂ |L1 + ∣∣Ĝh0 (εζ )
∣∣

L1 | f̂ |L1 .

The second estimate now follows from (B.2) and applying the above result:∣∣Ĝh0 (εζ )
∣∣

L1 � |Gh0 (εζ )|H
t0
x

≤ C
(

h−1
0 , H1,h0 , |εζ |H

t0
x

)
.
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Using that Z0
Fμ is an algebra, one has

|H (εζ ) f |Z0
Fμ

≤ |H (0) f |Z0
Fμ

+ |Gh0 (εζ ) f |Z0
Fμ

≤ H (0)| f |Z0
Fμ

+ |Gh0 (εζ )|Z0
Fμ

| f |Z0
Fμ
.

Because |u|Z0
Fμ

≤ |u|
H

t0+1
x

for any u ∈ H t0+1
x , one deduces the third estimate for

N = 0 as above. The case N ≥ 1 is obtained by induction, differentiating N

times H (εζ ) f and applying Leibniz’s rule.
The last estimate is obtained identically because by Lemma 4

|H (εζ ) f |Y 0
Fμ

≤ |H (0) f |Y 0
Fμ

+ |Gh0 (εζ ) f |Y 0
Fμ

≤ H (0)| f |Y 0
Fμ

+ |Gh0 (εζ )|Z0
Fμ

| f |Y 0
Fμ
.

The proof is now complete. �

B.2. Quasilinearization of the system

Lemma 6 introduces the quasilinear block systems that are central in our
analysis.

LEMMA 6. Let U = (ζ,w)� ∈ X N
Bo−1 × Y N

Fμ with N ≥ 4, solution to (17)
and satisfying

h1(εζ ) = 1 − εζ ≥ h0 > 0, h2(εζ ) = δ−1 + εζ ≥ h0 > 0. (B.7)

For any α = (α1, α2) such that |α| ≤ N, denote U (α) def= (∂αζ, ∂αw)� and

ζ 〈α̌〉 def= (∂α−e1ζ, ∂α−e2ζ )� (if α j = 0, then ∂α−e j ζ = 0 by convention). Then,
one can define r (α) ∈ (Y 0

Fμ)� such that⎧⎨⎩ ∂tζ
(α) + ∂xw

(α) = 0,

b[εζ ]∂tw
(α) + ∂xa[εζ, εw]ζ (α) + ∂x ǎα[εζ ]ζ 〈α̌〉 + c[εζ, εw]∂xw

(α) = r (α),

where

a[εζ, εw]• def=
(

(γ + δ) − ε2 h3
1 + γ h3

2

(h1h2)3
|w|2

)
× • − με2

(
d1RF

2 [h2, w]

+ γ d1RF
1 [h1, w]

) • −γ + δ

Bo
∂x

(
∂x•

(1 + με2|∂xζ |2)3/2

)

b[εζ ]• def= h1 + γ h2

h1h2
• +μ

(
QF

2 [h2] + γQF
1 [h1]

)
•,

c[εζ, εw]• def= 2ε
h2

1 − γ h2
2

(h1h2)2
w × • − με

(
dQF

2 [h2](w) − γ dQF
1 [h1](w)

) •

−με(d2RF
2 [h2, w] − γ d2RF

1 [h1, w]
)•,



Two-Layer Green-Naghdi Systems with Improved Frequency Dispersion 393

with QF
i , dQF

i , d1RF
i , d2RF

i defined in (B.14), (B.16), (B.20), (B.21) below;
and

ǎα[εζ ]ζ 〈α̌〉 def= γ + δ

Bo
∂x

⎛⎝ ∑
j∈{1,2}

3α jμε
2

(∂x∂
e j ζ )(∂xζ )(∂xζ

〈α̌〉
j )

(1 + με2|∂xζ |2)5/2

⎞⎠
if |α| = N, and ǎα[εζ ]ζ 〈α̌〉 = 0 otherwise.

Moreover, r (α) = r (α)[εζ, εw] satisfies∣∣r (α)
∣∣
(Y 0

Fμ
)�
≤C

(
m, h−1

0 , E N (U )
)

×E |α|(U )1/2 × (
ε +ϒ

1/2
F

∣∣w∣∣
Z1

Fμ
+ϒF

∣∣w∣∣2
Z1

Fμ

)
, (B.8)

and

|r (α)[εζ1, εw1] − r (α)[εζ2, εw2]|(Y 0
Fμ

)�≤C
(
m, h−1

0 , E N (U1), E N (U2)
)

×E |α|(U1 − U2)1/2 × (
ε + ϒ

1/2
F |w1|Z1

Fμ
+ϒF|w1|2Z1

Fμ

)
. (B.9)

Proof: The proof simply consists of differentiating α times the Green–
Naghdi system (17). The higher order terms contribute to a, b, c, and ǎ,
while lower order terms contribute to r (α). In the following, we explain how
the estimates concerning r (α) are obtained.

Contribution from the first-order terms, ∂t

(
h1+γ h2

h1h2
w
)

+
ε
2∂x

(
h2

1−γ h2
2

(h1h2)2 |w|2
)

.

Applying Leibniz’s rule, one finds

∂α
(
ε

2
∂x

(
h2

1 − γ h2
2

(h1h2)2
|w|2

))
= −ε2 h3

1 + γ h3
2

(h1h2)3
|w|2∂x∂

αζ

+ ε h2
1 − γ h2

2

(h1h2)2
w∂x∂

αw + εr (α)
1 , (B.10)

with

r (α)
1 =

|α|+1∑
n=0

∑
βi ,β

′
j

εnC (βi ,β
′
j )G(n)(εζ )

(
n∏

i=1

∂βi ζ

)⎛⎝ 2∏
j=1

∂β
′
iw

⎞⎠
def=

|α|+1∑
n=0

∑
βi ,β

′
j

εnC (βi ,β
′
j )r

(βi ,β
′
j )

1 ,



394 V. Duchêne et al.

where (βi , β
′
j ) is any n + 2-tuple of multi-index satisfying

1 ≤ |β1| ≤ . . . ≤ |βn| ≤ |α|, 0 ≤ |β ′
1| ≤ |β ′

2| ≤ |α|, and

n∑
i=1

βi +
2∑

j=1

β ′
j = α + (0, 1),

C (βi ,β
′
j ) is a constant, and G(n) the n-th derivative of G(X ) = h2

1(X )−γ h2
2(X )

(h1h2)2(X ) =
(1−X )2−γ (δ−1+X )2

(1−X )2(δ−1+X )2 .
We estimate each of these terms as follows:

• If |βn| = |α|, then 0 ≤ |β1|, . . . , |βn−1|, |β ′
1|, |β ′

2| ≤ 1, and

∣∣r (βi ,β
′
j )

1

∣∣
L2 ≤ ∣∣G(n)(εζ )

∣∣
L∞
∣∣∂βnζ

∣∣
L2

(
n−1∏
i=1

∣∣∂βi ζ
∣∣

L∞

)⎛⎝ 2∏
j=1

∣∣∂β ′
iw
∣∣

L∞

⎞⎠ .
• Otherwise 0 ≤ |β1|, . . . , |βn|, |β ′

1| ≤ |α| − 1, and

∣∣r (βi ,β
′
j )

1

∣∣
L2 ≤ ∣∣G(n)(εζ )

∣∣
L∞

(
n∏

i=1

∣∣∂βi ζ
∣∣

L∞

)(∣∣∂β ′
1w
∣∣

L∞
∣∣∂β ′

2ζ
∣∣

L2

)
.

One has
∣∣G(n)(εζ )

∣∣
L∞ ≤ C(m, h−1

0 ) because εζ satisfies (B.7); and by
Sobolev embedding,∣∣∂βu

∣∣
L∞ ≤ ∣∣∂βu

∣∣
H 1

x
≤ min

{∣∣u∣∣
X1+|β|

Bo−1
,
∣∣u∣∣

Y 1+|β|
Fμ

}
.

We deduce immediately that for N ≥ 2 and |α| ≤ N ,∣∣r (α)
1

∣∣
L2 ≤ C

(
m, h−1

0 , E N (U )
)× E |α|(U )1/2. (B.11)

For the second contribution, one deduces from the first equation of (17),
∂tζ = −∂xw, that

∂α∂t

(
h1 + γ h2

h1h2
w

)
= h1 + γ h2

h1h2
∂t∂

αw + εw
h2

1 − γ h2
2

h1h2
∂x∂

αw + εr (α)
2 ,

(B.12)
where r (α)

2 is estimated as above:∣∣r (α)
2

∣∣
L2 ≤ C

(
m, h−1

0 , E N (U )
)× E |α|(U )1/2. (B.13)

Contribution from the dispersive terms, μ∂t (QF[εζ ]w) −
με∂x

(RF[εζ ]w
)
.
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Define (with a slight abuse of notation with respect to Section 1.3)

QF
i [hi ]w

def= −1

3
h−1

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}}
, (B.14)

so that QF[εζ ]w = QF
2 [h2]w + γQF

1 [h1]w. Differentiating α + e1 times and
using ∂tζ = −∂xw yields

∂α∂tQF
i [hi ]w = QF

i [hi ]∂
α∂tw − (−1)i dQF

i [hi ](w)(ε∂α∂xw) + r (α)
3,i (B.15)

where

dQF
i [hi ](w)• = 1

3
h−2

i

(
∂xF

μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}})× •

−h−1
i ∂xF

μ

i

{
h2

i ∂xF
μ

i

{
h−1

i w
}× •}

+1

3
h−1

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−2

i w × •}}; (B.16)

and

r (α)
3,i =

∑
β j

C (β j )
(
∂β1 h−1

i

)
∂xF

μ

i

{(
∂β2 h3

i

)
∂xF

μ

i

{(
∂β3 h−1

i

)
(∂β4w)

}} def=
∑
β j

C (β j )r
(β j )
3,i ,

where C (β j ) is a constant, and (β j ) is any 4-tuple of multi-index satisfying

0 ≤ |β1|, |β2|, |β3|, |β4| ≤ |α| and
4∑

j=1

β j = α + (1, 0).

We estimate each of these terms by assuming that U = (ζ,w)� ∈ S(R) ×
S(R), so that for any f ∈ S(R), the following identities are immediately
valid:

〈r (β j )
3,i , f 〉(Y 0

Fμ
)� = ((

∂β1 h−1
i

)
∂xF

μ

i

{(
∂β2 h3

i

)
∂xF

μ

i

{
(∂β3 h−1

i )(∂β4w)
}}
, f
)

L2

= − ((
∂β2 h3

i

)
∂xF

μ

i

{(
∂β3 h−1

i

)
(∂β4w)

}
, ∂xF

μ

i

{(
∂β1 h−1

i

)
f
})

L2 .

The estimates hold as well for U = (ζ,w)� ∈ X N
Bo−1 × Y N

Fμ (N ≥ 4) and

f ∈ Y 0
Fμ by density of S(R) in Y 0

Fμ and X0
Bo−1 using standard continuity

arguments.

• If |β1| = |α|, then 0 ≤ |β2|, |β3|, |β4| ≤ 1 and

|γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)� | ≤ γ 2−iμ|∂β1 h−1

i |L2 |∂xF
μ

i {(∂β2 h3
i )∂xF

μ

i {(∂β3 h−1
i )(∂β4w)}}|L∞| f |L2 .
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Notice that for |β1| = |α| ≥ 1, there exists j ∈ {1, 2} such that
e j ≤ β1 and

|∂β1 h−1
i |L2 = |∂β1−e j (h−2

i ε∂e j ζ )|L2 ≤ C
(
m, h−1

0 , |εζ |W |α|−1,∞) × ε|ζ |H |α| .

Now, using several times Lemma 5, and because ∂β2 h3
i = 3h2

i ε∂
β2ζ

if |β2| = 1 or ∂β2 h3
i = h3

i if |β2| = 0 (and similarly for ∂β3 h−1
i ), one

has

√
γ 2−iμ

∣∣∂xF
μ

i

{(
∂β2 h3

i

)
∂xF

μ

i

{(
∂β3 h−1

i

)
(∂β4w)

}}∣∣
L∞

≤ ∣∣(∂β2 h3
i

)
∂xF

μ

i

{(
∂β3 h−1

i

) (
∂β4w

)}∣∣
Z0

Fμ

≤ C
(
m, h−1

0 ,
∣∣εζ ∣∣

H 3

) ∣∣(∂β3 h−1
i

)
(∂β4w)

∣∣
Z1

Fμ

≤ C
(
m, h−1

0 ,
∣∣εζ ∣∣

H 4

) ∣∣w∣∣
Z2

Fμ
.

Therefore, because max{4, |α|} ≤ N ,∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�
∣∣ ≤ C

(
m, h−1

0 ,
∣∣εζ ∣∣

H N

)× ε
√
γ 2−iμ

∣∣w∣∣
Z2

Fμ

∣∣ζ ∣∣
X |α|

Bo−1

∣∣ f
∣∣

L2 .

• If |β2| = |α|, then 0 ≤ |β1|, |β3|, |β4| ≤ 1 and∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�
∣∣

≤ γ 2−iμ
∣∣∂β2 h3

i

∣∣
L2

∣∣∂xF
μ

i

{
(∂β3 h−1

i )(∂β4w)
}|L∞|∂xF

μ

i

{
(∂β1 h−1

i ) f
}∣∣

L2 .

One has as above
∣∣∂β2 h3

i

∣∣
L2 ≤ ε|ζ |H |α|C(m, |εζ |W |α|−1 ). By Lemma 5,

one has√
γ 2−iμ

∣∣∣∂xF
μ

i

{(
∂β1 h−1

i

)
f
}∣∣∣

L2
≤
∣∣∣(∂β1 h−1

i

)
f
∣∣∣
Y 0
Fμ

≤ C
(
m, h−1

0 ,

∣∣∣εζ ∣∣∣
H3

) ∣∣∣ f
∣∣∣
Y 0
Fμ

.

The last term is treated identically, and one obtains eventually∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣ ≤ C(m, h−1
0 , |εζ |H N ) × ε|ζ |X |α|

Bo−1
|w|Z1

Fμ
| f |Y 0

Fμ
.

• If |β4| = |α|, then 0 ≤ |β1|, |β2|, |β3| ≤ 1 and∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣
≤ γ 2−iμ

∣∣∂β2 h3
i

∣∣
L∞
∣∣∂xF

μ

i

{(
∂β3 h−1

i

)
(∂β4w)

}∣∣
L2

∣∣∂xF
μ

i

{(
∂β1 h−1

i

)
f
}∣∣

L2 .

Reasoning as above and because |β1| + |β2| + |β3| = 1, one obtains∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣ ≤ C(m, h−1
0 , |εζ |H 3 ) × ε|ζ |Z1

Fμ
|w|Y |α|

Fμ
| f |Y 0

Fμ
.
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• If |β3| = |α|, one obtains as above∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣ ≤ C
(
m, h−1

0 ,
∣∣εζ ∣∣

H 3,
∣∣εζ ∣∣

W |α|−1,∞
)

×ε|w∣∣
Z1

Fμ

∣∣ζ ∣∣
Y |α|

Fμ

∣∣ f
∣∣
Y 0

Fμ
.

By Lemma 3 and (19), it follows∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣ ≤ C(m, h−1
0 , |εζ |H N ) × ϒ

1/2
F |w|Z1

Fμ
|ζ |X |α|

Bo−1
| f |Y 0

Fμ
.

• Otherwise, one has 0 ≤ |β1|, |β2|, |β3|, |β4| ≤ |α| − 1.
If |β1| ≤ |α| − 2, we integrate by parts and estimate∣∣∣γ 2−iμ〈r (β j )

3,i , f 〉(Y 0
Fμ

)�

∣∣∣
≤ ∣∣∂β2 h3

i

∣∣
L∞
∣∣∂xF

μ

i

{(
∂β3 h−1

i

) (
∂β4w

)}∣∣
Y 0

Fμ

∣∣∂xF
μ

i

{(
∂β1 h−1

i

)
f
}∣∣

Y 0
Fμ
.

If |β1| = |α| − 1, then we estimate∣∣∣γ 2−iμ
(

r
(β j )
3,i , f

)
L2

∣∣∣
≤ μ

∣∣∂β1 h−1
i

∣∣
L2

∣∣∂xF
μ

i

{(
∂β2 h3

i

)
∂xF

μ

i

{(
∂β3 h−1

i

)
(∂β4w)

}}|L∞| f |L2 .

In both cases, we find∣∣∣γ 2−iμ〈r (β j )
3,i , f 〉(Y 0

Fμ
)�

∣∣∣ ≤ C
(
m, h−1

0 , |εζ |H N , |w|Y N
Fμ

)× ε|ζ |X |α|
Bo−1

| f
∣∣
Y 0

Fμ
.

Plugging these estimates into (B.15), we proved

μ∂α∂t (QF[εζ ]w) = μ
(
QF

2 [h2] + γQF
1 [h1]

)
∂α∂tw − μ

(
dQF

2 [h2](w)

−γ dQF
1 [h1](w)

)
(ε∂α∂xw) + r (α)

3 , (B.17)

with∣∣r (α)
3

∣∣
(Y 0

Fμ
)�

≤ C
(
m, h−1

0 , E N (U )
)× E |α|(U )1/2 ×

(
ε +ϒ

1/2
F

∣∣w∣∣
Z1

Fμ

)
. (B.18)

The other contribution is treated similarly. We define RF[εζ,w] =
RF

2 [h2, w] − γRF
1 [h1, w] with

RF
i [hi , w]

def= 1

3
wh−2

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}}+ 1

2

(
hi∂xF

μ

i

{
h−1

i w
})2
, (B.19)

d1RF
i [hi , w] • def= −2

3
wh−3

i ∂xF
μ

i

{
h3

i ∂xF
μ

i (h−1
i w)

}× •

+wh−2
i ∂xF

μ

i

{
h2

i ∂xF
μ

i

{
h−1

i w
}× •}
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− 1

3
wh−2

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−2

i w•}}
+ (

hi∂xF
μ

i

{
h−1

i w
})× ((

∂xF
μ

i

{
h−1

i w
})

(B.20)

× • − (
hi∂xF

μ

i

{
h−2

i w × •}) ),
d2RF

i [hi , w] • def= 1

3

(
h−2

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}})× •

+1

3
wh−2

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i × •}}
+ (

hi∂xF
μ

i

{
h−1

i w
})× (

hi∂xF
μ

i

{
h−1

i × •}) . (B.21)

It follows

με∂α∂x (RF[εζ,w]) = με2∂x

((
d1RF

2 [h2, w] + γ d1RF
1 [h1, w]

)
∂αζ

)
+με∂x

((
d2RF

2 [h2, w] − γ d2RF
1 [h1, w]

)
∂αw

)+ r (α)
4 , (B.22)

where r (α)
4 may be estimated similarly as r (α)

3 above:∣∣r (α)
4

∣∣
(Y 0

Fμ
)�

≤ C
(
m, h−1

0 , E N (U )
)× E |α|(U )1/2 × (

ε +ϒF

∣∣w∣∣2
Z1

Fμ

)
. (B.23)

Contribution from the surface tension term, γ+δ
Bo ∂

2
x

(
1√

1+με2|∂xζ |2
∂xζ

)
.

Let us denote s(∂xζ ) = 1√
1+με2|∂x ζ |2

∂xζ and notice ∂s =
1

(1+με2|∂xζ |2)3/2 ∂∂xζ . It follows

∂α∂2
x s = ∂2

x

(
1

(1 + με2|∂xζ |2)3/2
∂α∂xζ

)

−
2∑

j=1

3α j∂
2
x

(
με2(∂xζ )(∂e j ∂xζ )

(1 + με2|∂xζ |2)5/2
∂α−e j ∂xζ

)
+ r (α)

5 , (B.24)

with

r (α)
5 =

N+1∑
k=1

(με2)k

(1 + με2|∂xζ |2)k+3/2

∑
(β j )

C (β j )r
(β j )
k , r

(β j )
k

def=
2k+1∏
j=1

∂β j ∂xζ,

where for any k ∈ {1, . . . , N + 1}, (β j ) is a 2k + 1-uple such that for all
j ∈ {1, . . . , 2k + 1}, one has

0 ≤ |β1| ≤ . . . ≤ |β2k+1| ≤ |α| ≤ N and
2k+1∑
j=1

β j = α + (0, 2),

and C(β j ) is a constant.
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Assume first that |β2k+1| = N . Then, for any j ∈ {1, . . . , k}, |β j | ≤ 2. It
follows

1

Bo

∣∣r (β j )
k

∣∣
L2 ≤ 1

Bo1/2
C
(∣∣∂xζ

∣∣
W 2,∞

) ∣∣∂β2k+1ζ
∣∣

X0
Bo−1

≤ 1

Bo1/2
C
(∣∣ζ ∣∣

H 4

) ∣∣ζ ∣∣
X N

Bo−1
.

Now, if |β2k+1| = N − 1, then either |β2k | = 3 and |β j | = 0 for any
j ≤ 2k − 1, or |β j | ≤ 2 for any j ≤ 2k. The latter case is estimated as
above, while in the former case, one has

1

Bo

∣∣r (β j )
k

∣∣
L2 ≤ 1

Bo1/2
C(|∂xζ |W 2,∞)|∂β2kζ |W 0

Bo−1
|∂β2k+1∂xζ |L2

≤ 1

Bo1/2
C(|ζ |X4

Bo−1
)|ζ |X N

Bo−1
.

Otherwise, one has |β j | ≤ N − 2 for any j ∈ {1, . . . , 2k + 1}, and in that
case,

1

Bo

∣∣r (β j )
5

∣∣
L2 ≤ 1

Bo
C(|ζ |X N

Bo−1
)|ζ |X N

Bo−1
.

Altogether, this yields for N ≥ 4

1

Bo

∣∣r (α)
5

∣∣
L2 ≤ με2

Bo1/2
C(Bo−1, με2, |ζ |X N

Bo−1
)|ζ |X N

Bo−1
. (B.25)

Finally, we notice that

∂x ǎαζ
〈α̌〉 def= γ + δ

Bo

2∑
j=1

3α j∂
2
x

(
με2(∂xζ )(∂e j ∂xζ )

(1 + με2|∂xζ |2)5/2
∂α−e j ∂xζ

)
may be estimated, when 1 ≤ |α| ≤ N − 1, as∣∣∂x ǎαζ

〈α̌〉∣∣
L2 ≤ με2C(Bo−1, με2, |ζ |X N

Bo−1
)|ζ |X |α|

Bo−1
(1 ≤ |α| ≤ N − 1).

(B.26)

The definition of the operators a, b, c, ǎ
(α)
α , r (α) and estimate (B.8) follow

from (B.10)–(B.11), (B.12)–(B.13), (B.17)–(B.18), (B.22)–(B.23), (B.24)–
(B.25), as well as (B.26) when 1 ≤ |α| ≤ N − 1.

Estimate (B.9) is obtained identically, using in particular the trivial
estimates ∣∣H (εζ1) − H (εζ2)

∣∣
L∞ ≤ H1,h0ε

∣∣ζ1 − ζ2

∣∣
L∞,∣∣H (εζ1) − H (εζ2)

∣∣
L2 ≤ H1,h0ε

∣∣ζ1 − ζ2

∣∣
L2,
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and ∣∣Ĥ (εζ1) − Ĥ (εζ2)
∣∣

L1 ≤ ∣∣H (εζ1) − H (εζ2)
∣∣

H 1 ≤ C(H2,h0,
∣∣εζ1

∣∣
W 1,∞,∣∣εζ2

∣∣
W 1,∞)ε

∣∣ζ1 − ζ2

∣∣
H 1,

where H and H1,h0 are as in Lemma 5. This concludes the proof of
Lemma 6. �

B.3. Preliminary results

In this section, we prove that the operator a[εζ, εw] (respectively, b[εζ ]),
introduced in Lemma 6, is symmetric, continuous, and coercive with
respect to the space X0

Bo−1 (respectively, Y 0
Fμ), provided that some conditions

are satisfied by (εζ, εw). These requirements can be seen as sufficient
conditions for the hyperbolicity of the system, and permit to control the
energy solutions to the quasilinear system for positive times (Section B.4),
and eventually prove the well-posedness of our system (Section B.5).

LEMMA 7. Let (ζ,w)� ∈ H 3
x × Z1

Fμ be such that εζ satisfies (B.7)
with h0 > 0. Then, one has a[εζ, εw] ∈ L(X0

Bo−1 ; (X0
Bo−1 )�), b[εζ ] ∈ L(Y 0

Fμ ;

(Y 0
Fμ)�), and c[εζ, εw] ∈ L(Y 0

Fμ ; (Y 0
Fμ)�). Moreover, there exists K0, K1 =

C(m, h−1
0 , ε

∣∣ζ ∣∣
H 3

x
) such that

∀ f, g ∈ X0
Bo−1,

∣∣〈a[εζ, εw] f, g〉(X0
Bo−1 )�

∣∣
≤ K1

(
1 + ϒF

∣∣w∣∣2
Z1

Fμ

) ∣∣ f
∣∣

X0
Bo−1

∣∣g∣∣
X0

Bo−1

∀ f, g ∈ Y 0
Fμ,

∣∣〈b[εζ ] f, g〉(Y 0
Fμ

)�
∣∣ ≤ K1

∣∣ f
∣∣
Y 0

Fμ

∣∣g∣∣
Y 0

Fμ

∀ f, g ∈ Y 0
Fμ,

∣∣〈c[εζ, εw] f, g〉(Y 0
Fμ

)�
∣∣ ≤ εK1

∣∣w∣∣
Z1

Fμ

∣∣ f
∣∣
Y 0

Fμ

∣∣g∣∣
Y 0

Fμ
,

∀ f ∈ Y 0
Fμ, 〈b[εζ ] f, f 〉(Y 0

Fμ
)� ≥ 1

K0

∣∣ f
∣∣2
Y 0

Fμ
.

Assume additionally that there exists k0 > 0 such that

(γ + δ) − ε2 max
x∈R

{(
h−3

2 + γ h−3
1

) |w|2} ≥ k0 > 0. (B.27)

Then, there exists K , K ′
0 = C(m, h−1

0 , k−1
0 , ε

∣∣ζ ∣∣
H 3

x
) such that if

ϒF

∣∣w∣∣2
Z1

Fμ
≤ K −1, (B.28)

then

∀ f ∈ X0
Bo−1, 〈a[εζ, εw] f, f 〉(X0

Bo−1 )� ≥ 1

K ′
0

∣∣ f
∣∣2

X0
Bo−1
.
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Proof: We establish each result for f, g ∈ S(R) so that all the terms
are obviously well defined and in particular, the (X � − X ) duality product
(with X = X0

Bo−1 or Y 0
Fμ) coincides with the L2 scalar product; the result for

f, g ∈ X0
Bo−1 or Y 0

Fμ is then obtained by density of S(R) in X0
Bo−1 and Y 0

Fμ ,
and continuous linear extension.

One has, after integration by parts,

〈b[εζ ] f, g〉(Y 0
Fμ

)� = (
b[εζ ] f, g

)
L2

=
∫

R

h1 + γ h2

h1h2
f g + μ

3
h3

2

(
∂xF2

{
h−1

2 f
}) (

∂xF2
{
h−1

2 g
})

+μγ
3

h3
1

(
∂xF1

{
h−1

1 f
}) (

∂xF1
{
h−1

1 g
})

dx . (B.29)

It follows easily

|〈b[εζ ] f, g〉(Y 0
Fμ

)� | ≤ K1| f |Y 0
Fμ

|g|Y 0
Fμ
.

We write again for the coercivity inequality,

〈b[εζ ] f, f 〉(Y 0
Fμ

)� =
∫

R

h1 + γ h2

h1h2
| f |2 + μ

3
h3

2|∂xF2
{
h−1

2 f
} |2

+ μγ

3
h3

1|∂xF1
{
h−1

1 f
} |2 dx .

It follows immediately, because εζ satisfies (B.7),

〈b[εζ ] f, f 〉(Y 0
Fμ

)� ≥ 1 + γ

1 + δ−1

∣∣ f
∣∣2

L2 + μh3
0

3

∣∣∂xF2
{
h−1

2 f
}∣∣2

L2

+μγ h3
0

3

∣∣∂xF1
{
h−1

1 f
}∣∣2

L2 .

Now, by Lemma 4, one has∣∣∂xF1 f
∣∣

L2 = ∣∣∂xF1
{
(1 + εζ )h−1

1 f
}∣∣

L2 ≤ (1 + ε
∣∣ζ ∣∣

Z0
Fμ

)
∣∣∂xF1

{
h−1

1 f
}∣∣

L2,

and similarly for
∣∣∂xF2{h−1

2 f }∣∣2
L2 . We conclude∣∣ f

∣∣2
Y 0

Fμ
≤ C

(
m, h−1

0 , ε
∣∣ζ ∣∣

Z0
Fμ

)
× 〈b[εζ ] f, f 〉(Y 0

Fμ
)� .

By similar argumentation, one easily shows that the operator c[εζ, εw] is
well defined and continuous from Y 0

Fμ to (Y 0
Fμ)�, and satisfies the third

estimate of the statement.
We show now the coercivity of a[εζ, εw] under additional assump-

tion (B.27). We write

〈a[εζ, εw] f, f 〉(X0
Bo−1 )� = (a[εζ, εw] f, f )L2
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=
∫

R

(
(γ + δ) − ε2 h3

1 + γ h3
2

(h1h2)3
|w|2

)
| f |2 + γ + δ

Bo

|∂x f |2
(1 + με|∂xζ |2)3/2

dx

+με2(R2 − γ R1),

with

Ri =
((

hi

(
∂xF

μ

i {h−1
i w})2 − 2

3
wh−3

i ∂xF
μ

i

{
h3

i ∂xF
μ

i {h−1
i w}})× f, f

)
L2

+1

3

(
h3

i ∂xF
μ

i

{
h−2

i w f
}
, ∂xF

μ

i

{
h−2

i w f
})

L2

− 2
(
∂xF

μ

i

{(
h−2

i w
)× f

}
,
(
h2

i ∂xF
μ

i

{
h−1

i w
} )× f

)
L2 .

Using Cauchy–Schwarz inequality and Lemmas 4 and 5, one has the
following estimate

με2|R2 − γ R1| ≤ ε2|w|2Z1
Fμ

C
(
m, h−1

0 , ε
∣∣ζ ∣∣

H 3
x

)
| f |2Y 0

Fμ

≤ ϒF

∣∣w∣∣2
Z1

Fμ
C
(
m, h−1

0 , ε|ζ |H 3
x

) ∣∣ f
∣∣2

X0
Bo−1
,

where the last identity follows from Lemma 3.
From (B.27), one has immediately

〈a[εζ, εw] f, f 〉(X0
Bo−1 )� − με2(R2 − γ R1) ≥ min

{
k0,

γ + δ

(1 + με
∣∣∂xζ

∣∣2
L∞)3/2

}

×∣∣ f
∣∣2

X0
Bo−1
.

The existence of K ′
0, K such that (B.28) implies∣∣ f

∣∣2
X0

Bo−1
≤ K ′

0〈a[εζ, εw] f, f 〉(X0
Bo−1 )�

is now straightforward.
One shows similarly that a[εζ, εw] : X0

Bo−1 → (X0
Bo−1 )� is well defined

and continuous, and satisfies the first estimate of the statement. This
concludes the proof of Lemma 7. �

Lemma 8 is a direct consequence of Lemma 7.

LEMMA 8. Let (ζ,w)� ∈ H 3
x × Z1

Fμ be such that εζ satisfies (B.7). Then,
b[εζ ] : Y 0

Fμ → (Y 0
Fμ)� is a topological isomorphism with:

∀ f ∈ Y 0
Fμ,

∣∣(b[εζ ])−1 f
∣∣
Y 0

Fμ
≤ K0

∣∣ f
∣∣
(Y 0

Fμ
)�
,

with K0 as in Lemma 7.
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If, additionally, (εζ, εw) satisfies (B.27)–(B.28), then a[εζ, εw] : X0
Bo−1 →

(X0
Bo−1 )� is a topological isomorphism with:

∀ f ∈ X0
Bo−1,

∣∣(a[εζ, εw])−1 f
∣∣

X0
Bo−1

≤ K ′
0

∣∣ f
∣∣
(X0

Bo−1 )�
,

with K ′
0 as in Lemma 7.

Proof: By Lemma 7, b[εζ ] : Y 0
Fμ → (Y 0

Fμ)� is well defined, continuous,
and coercive. We then deduce by the operator version of Lax–Milgram
theorem that b[εζ ] is an isomorphism from Y 0

Fμ onto (Y 0
Fμ)�. The continuity

of the inverse follows from the continuity and coercivity of b[εζ ]:∣∣b[εζ ]−1 f
∣∣2
Y 0

Fμ
≤ K0〈b[εζ ]b[εζ ]−1 f,

b[εζ ]−1 f 〉(Y 0
Fμ

)� ≤ K0

∣∣ f
∣∣
(Y 0

Fμ
)�

∣∣b[εζ ]−1 f
∣∣
Y 0

Fμ
.

The whole discussion is identical for a[εζ, εw], replacing Y 0
Fμ with X0

Bo−1 ,
and K0 with K ′

0. �
We conclude this section with the following result.

LEMMA 9. Let (ζ,w)� ∈ H 3
x × Z1

Fμ be such that εζ satisfies (B.7). Then,
the operator a[εζ, εw] : X0

Bo−1 → (X0
Bo−1 )� is symmetric:

∀ f, g ∈ X0
Bo−1, 〈a[εζ, εw] f, g〉(X0

Bo−1 )� = 〈a[εζ, εw]g, f 〉(X0
Bo−1 )� .

The same result holds true for b[εζ ] and c[εζ, εw], replacing X0
Bo−1

with Y 0
Fμ .

Proof: The symmetry property for b[εζ ] is straightforwardly seen
from (B.29). The other operators require a slight rewriting. In particular,
notice

d1RF
i [hi , w]• =

(
hi

(
∂xF

μ

i

{
h−1

i w
})2 − 2

3
wh−3

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
} })× •

+ (
h−2

i w
)× ∂xF

μ

i

{(
h2

i ∂xF
μ

i

{
h−1

i w
})× •}− (

h2
i ∂xF

μ

i

{
h−1

i w
})

×∂xF
μ

i

{(
h−2

i w
)× •}− 1

3

(
h−2

i w
)
∂xF

μ

i

{
h3

i ∂xF
μ

i

{
(h−2

i w)•}}
and(

dQF
i [hi ](w) + d2RF

i [hi , w]
)

• =
(

2

3
h−2

i ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
h−1

i w
}})× •

−h−1
i ∂xF

μ

i

{(
h2

i ∂xF
μ

i

{
h−1

i w
})× •}

+ (
h2

i ∂xF
μ

i

{
h−1

i w
})× ∂xF

μ

i

{
h−1

i × •}
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+1

3
h−1

i × ∂xF
μ

i

{
h3

i ∂xF
μ

i

{
(h−2

i w) × •}}
+1

3

(
h−2

i w
)× ∂xF

μ

i

{
h3

i ∂xF
μ

i

{
h−1

i × •}}
are obviously symmetric, because ∂xF

μ

i is skew-symmetric. The result is
now clear. �

B.4. A priori estimates

We now consider the quasilinearized system arising from Lemma 6:{
∂t ζ̇ + ∂xẇ = r1,

b∂tẇ + ∂xaζ̇ + ∂x ǎαζ̌ + c∂xẇ = r2,
(B.30)

where we denote for conciseness a = a[εζ, εw] (and similarly for ǎα, b, c),
as defined in Lemma 6, and r1, r2 are remainder terms to be precised.
More accurately, we introduce a regularized version of (B.30). Denote
Jν = (1 − ν∂2

x )−1/2 and consider{
∂t ζ̇ + J2

ν∂xẇ = r1,

b∂tẇ + J2
ν∂xaζ̇ + J2

ν∂x ǎαζ̌ + JνcJν∂xẇ = r2.
(B.31)

We obtain below a uniform a priori control of the energy of any solution,
and then, in Lemma 11, a similar estimate on the difference between two
solutions.

LEMMA 10. Let U̇
def= (ζ̇ , ẇ)�, U

def= (ζ,w)� ∈ L∞([0, T ]; X4
Bo−1 × Y 4

Fμ), ζ̌ ∈
L∞([0, T ]; (X1

Bo−1 )2), and r = (r1, r2)� ∈ L1([0, T ); X0
Bo−1 × (Y 0

Fμ)�) satisfy-
ing (B.31) with ν ∈ [0, 1]. Assume moreover that U (t) satisfies(B.7), (B.27),
and (B.28) with h−1

0 , k−1
0 , K −1 uniformly for t ∈ [0, T ]. Then, one has

E0(U̇ )1/2 ≤ C0(E0(U̇ |t=0)1/2 + (με2)
∥∥ζ̌∥∥

L∞([0,T ];(X0
Bo−1 )2)

)
eλt

+ C0

∫ t

0
f (t ′)eλ(t−t ′)dt ′,

with

λ = C0 ×
(
ε +ϒF

∥∥w∥∥2

L∞([0,T ];Z2
Fμ

)

)
,

f (t) = ∣∣r ∣∣
X0

Bo−1 ×(Y 0
Fμ

)�
+ με2

∣∣ζ̌ ∣∣
(X1

Bo−1 )2,

and C0 = C(m, h−1
0 , k−1

0 , K , ‖U‖L∞([0,T ];X4
Bo−1 ×Y 4

Fμ
)).

REMARK 7. The energy estimate is uniform with respect to ν ∈ [0, 1], and
holds in particular for solutions to the nonregularized system (B.30).
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Proof: Because U, U̇ ∈ L∞([0, T ]; X4
Bo−1 × Y 4

Fμ), all the components of

Eq. (B.31) are obviously well defined in L2. We compute the L2 inner
product of the first equation with aζ̇ + ǎαζ̌ , and add the L2 inner product
of the second equation with ẇ. Recalling that a, b, c are symmetric (by
Lemma 9), and because Jν is symmetric and ∂x is skew-symmetric, we
obtain after straightforward manipulations

d

dt

(
1

2
(aζ̇ , ζ̇ )L2 + (ζ̇ , ǎαζ̌ )L2 + 1

2
(bẇ, ẇ)L2

)
=

1

2
([∂t , a]ζ̇ , ζ̇ )L2 + (ζ̇ , ∂t (ǎαζ̌ ))L2 + 1

2
([∂t , b]ẇ, ẇ)L2 + 1

2
([∂x , c]Jνẇ, Jνẇ)L2

+(r1, aζ̇ + ǎαζ̌ )L2 + (r2, ẇ)L2 . (B.32)

We estimate below each of the components of the right-hand-side. These
estimates follow from the product estimates of Section B.1, as in the proof
of Lemma 6. For the sake of conciseness, we do not detail all calculations
but rather provide the precise estimates for each component.

(I)
def= ([

∂t , a
]
ζ̇ , ζ̇

)
L2 One has, by definition,

[∂t , a
]
ζ̇ = −ε2ζ̇ ∂t

(
G(εζ )|w|2)− με2

([
∂t , d1RF

2 [h2, w]
]
ζ̇

−γ [∂t , d1RF
1 [h1, w]

]
ζ̇
)

−γ + δ

Bo
∂x

(
∂t

(
1

(1 + με2|∂xζ |2)3/2

)
∂x ζ̇

)
,

where G(εζ ) = h3
1+γ h3

2
(h1h2)3 , and RF

i [hi , w] is defined in (B.19).
The first contribution is easily estimated:∣∣(−ε2ζ̇ ∂t (G(εζ )|w|2), ζ̇ )L2

∣∣ ≤ C(m, h−1
0 , |εζ |W 1,∞) × ε2|w|2W 1,∞|ζ̇ |2L2 .

The third component is estimated after one integration by parts:∣∣∣∣(−γ + δ

Bo
∂x

(
∂t

(
(1 + με2|∂xζ |2)−3/2

)
∂x ζ̇

)
, ζ̇

)
L2

∣∣∣∣ ≤ C(m,
∣∣ζ ∣∣

W 2,∞)

×με2 1

Bo

∣∣∂x ζ̇
∣∣2

L2 .

Treating the last contribution is more involved, as
[
∂t , d1RF

i [hi , w]
]

is
the sum of many terms. However, all of these terms may be dealt with
as in the proof of Lemma 6: using integration by parts if necessary,
one may ensure that the operator ∂xF

μ

i applies only once to each ζ̇

and because much regularity is assumed on ζ ∈ X4
Bo−1 , Lemmas 4, 5,
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and 3 yield∣∣∣με2γ 2−i
([
∂t , d1RF

i [hi , w]
]
ζ̇ , ζ̇

)
L2

∣∣∣ ≤ C0 × ε2|w|2Z2
Fμ

|ζ̇ |2Y 0
Fμ

≤ C0ϒF|w|2Z2
Fμ

|ζ̇ |2X0
Bo−1
, withC0 = C(m, h−1

0 , |ζ |X4
Bo−1

).Altogether,

we proved

|(I )| ≤ C
(
m, h−1

0 ,
∣∣ζ ∣∣

X4
Bo−1

)
×
(
με2 +ϒF

∣∣w∣∣2
Z2

Fμ

) ∣∣ζ̇ ∣∣2
X0

Bo−1
. (B.33)

(II)
def= ([∂t , b]ẇ, ẇ)L2 . One has, by definition,[
∂t , b

]
ẇ = ∂t

(
h1 + γ h2

h1h2

)
ẇ + με

(
dQF

2 [h2](ẇ) − γ dQF
1 [h1](ẇ)

)
∂tζ,

where dQF
i is defined in (B.16). The first term is estimated as∣∣∣∣(∂t

(
h1 + γ h2

h1h2

)
ẇ, ẇ

)
L2

∣∣∣∣ ≤ C
(
m, h−1

0 ,
∣∣∂tζ

∣∣
L∞
)× ε

∣∣ẇ∣∣2
L2 .

For the second term, we have after integration by parts and by
triangular inequality∣∣∣(dQF

i [hi ](ẇ)∂tζ, ẇ
)

L2

∣∣∣ ≤ 2

3

∣∣(h3
i ∂xF

μ

i

{
h−1

i ẇ
}
, ∂xF

μ

i

{
h−2

i ∂tζ ẇ
} )

L2

∣∣
+ ∣∣(h2

i (∂tζ )∂xF
μ

i {h−1
i ẇ}, ∂xF

μ

i

{
h−1

i ẇ
} )

L2

∣∣ .
By Lemmas 4 and 5, one immediately deduces

|(I I )| ≤ C(m, h−1
0 ,

∣∣ζ ∣∣
X4

Bo−1
) × ε

∣∣ẇ∣∣2
Y 0

Fμ
. (B.34)

(III)
def= ([

∂x , c
]
Jνẇ, Jνẇ

)
L2 . One may proceed similarly as above, and one

obtains without any additional difficulty

|(I I I )| ≤ C(m, h−1
0 ,

∣∣ζ ∣∣
X4

Bo−1
,
∣∣w∣∣

Y 4
Fμ

) × ε
∣∣Jνẇ∣∣2Y 0

Fμ

≤ C(m, h−1
0 ,

∣∣ζ ∣∣
X4

Bo−1
,
∣∣w∣∣

Y 4
Fμ

) × ε
∣∣ẇ∣∣2

Y 0
Fμ
. (B.35)

(IV)
def= (

ζ̇ , ∂t (ǎαζ̌ )
)

L2 . After one integration by parts, one has

(I V ) = −3με2 γ + δ

Bo

∑
j∈{1,2}

α j

(
∂x ζ̇ , ∂t

(
(∂x∂

e j ζ )(∂xζ )(∂x ζ̌ j )

(1 + με2|∂xζ |2)5/2

))
L2

.
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Recall ζ̌ = (ζ̌0, ζ̌1)� ∈ X1
Bo−1 × X1

Bo−1 , so we easily deduce by
Cauchy–Schwarz inequality

|(I V )| ≤ C(m,
∣∣ζ ∣∣

W 3,∞) × με2
∣∣ζ̇ ∣∣

X0
Bo−1

∣∣ζ̌ ∣∣
(X1

Bo−1 )2 . (B.36)

(V)
def= (

r1, aζ̇ + ǎαζ̌
)

L2 + (
r2, ẇ

)
L2 . By Lemma 7, one obtains

|(V )| ≤ C(m, h−1
0 , k−1

0 , ε
∣∣ζ ∣∣

H 3
x
)
∣∣r1
∣∣

X0
Bo−1

∣∣ζ̇ ∣∣
X0

Bo−1

+με2C(m,
∣∣ζ ∣∣

W 2,∞)
∣∣r1
∣∣

X0
Bo−1

∣∣ζ̇ ∣∣
(X0

Bo−1 )2 + ∣∣r2
∣∣
(Y 0

Fμ
)�

∣∣ẇ∣∣
Y 0

Fμ
.

(B.37)

Altogether, plugging (B.33)–(B.37) into (B.32) yields

d

dt

(
1

2

(
aζ̇ , ζ̇

)
L2 + (

ζ̇ , ǎαζ̌
)

L2 + 1

2

(
bẇ, ẇ

)
L2

)
≤ C0

(
ε +ϒF

∣∣w∣∣2
Z2

Fμ

)
E0(U̇ ) + C0C1 E0(U̇ )1/2, (B.38)

with C0 = C(m, h−1
0 , E4(U )),C1 = ∣∣r ∣∣

X0
Bo−1 ×(Y 0

Fμ
)�

+ με2
∣∣ζ̌ ∣∣

(X1
Bo−1 )2 , and

E0(U̇ ) = ∣∣ζ̇ ∣∣2
X0

Bo−1
+ ∣∣ẇ∣∣2

Y 0
Fμ

.

By Lemma 7, there exists K0, K1 = C(m, h−1
0 , k−1

0 , K , E4(U )) such
that

1

K0
E0(U̇ ) ≤ 1

2

(
aζ̇ , ζ̇

)
L2 + 1

2

(
bẇ, ẇ

)
L2 ≤ K1 E0(U̇ ). (B.39)

Let us now estimate∣∣∣(ζ̇ , ǎαζ̌ )L2

∣∣∣ ≤ με2C2 × ∣∣ζ̇ ∣∣
X0

Bo−1

∣∣ζ̌ ∣∣
X0

Bo−1
≤ 1

2
με2C2

×(M−1
∣∣ζ̇ ∣∣2

X0
Bo−1

+ M
∣∣ζ̌ ∣∣2

X0
Bo−1

)
,

with C2 = C(m,
∣∣∂xζ

∣∣
W 2,∞) and arbitrary M > 0. Choosing M =

με2C2 K0, (B.39) yields

1

2K0
E0(U̇ ) − M̃ ≤ Ẽ0(U̇ ) ≤ (K1 + 1

2K0
)E0(U̇ ) + M̃, (B.40)

where we denoted M̃
def= maxt∈[0,T ]

{
1
2 K0(με2C2)2

∣∣ζ̌ ∣∣2
X0

Bo−1

}
and

Ẽ0(U̇ )
def= 1

2

(
aζ̇ , ζ̇

)
L2 + (

ζ̇ , ǎαζ̌
)

L2 + 1

2

(
bẇ, ẇ

)
L2 .
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The differential inequality (B.38) may therefore be reformulated as

d

dt
(Ẽ0(U̇ ) + M̃) ≤ 2K0C0

(
ε +ϒF

∣∣w∣∣2
Z2

Fμ

) (
Ẽ0(U̇ ) + M̃

)
+
√

2K0C0C1
(
Ẽ0(U̇ ) + M̃

)1/2
.

We deduce(
Ẽ0(U̇ ) + M̃

)1/2 ≤ (
Ẽ0(U̇ |t=0 ) + M̃

)1/2
eλt + C0

∫ t

0
C1(t ′)eλ(t−t ′)dt ′,

where λ,C0 are as in the statement of the lemma. Using (B.40) and
augmenting C0 if necessary, the energy estimate is now straightforward. �

LEMMA 11. Define two tuple of solutions to (B.30), (U̇1,U1, r1) and
(U̇2,U2, r2), satisfying the same properties as in Lemma 10 (with ζ̌1 = ζ̌2 =
0). Then, one has

E0(U̇1 − U̇2)1/2 ≤ C0 E0(U̇1|t=0 − U̇2|t=0 )
1/2eλt + C0

∫ t

0
f (t ′)eλ(t−t ′)dt ′,

with λ = C0 ×
(
ε + ϒF

∥∥w1

∥∥2

L∞([0,T ];Z2
Fμ

)

)
,

f (t) = ∣∣r1 − r2

∣∣
X0

Bo−1 ×(Y 0
Fμ

)�
+ ε

∣∣U̇2

∣∣
(W 3,∞

x )2

∣∣U1 − U2

∣∣
X2

Bo−1 ×Y 2
Fμ

and C0 = C(m, h−1
0 , k−1

0 , K ,
∥∥U1

∥∥
L∞([0,T ];X4

Bo−1 ×Y 4
Fμ

)
,
∥∥U2

∥∥
L∞([0,T ];X4

Bo−1 ×Y 4
Fμ

)
).

Proof: The difference between the two solutions satisfies the system{
∂t (ζ̇1 − ζ̇2) + ∂x (ẇ1 − ẇ2) = r1

1 − r1
2 ,

b1∂t (ẇ1 − ẇ2) + ∂xa1(ζ̇1 − ζ̇2) + c1∂x (ẇ1 − ẇ2) = r2
1 − r2

2 + rdiff ,

where we denote ai = a[εζi , εwi ] (and similarly for bi , ci ), and

rdiff
def= (b2 − b1)∂tẇ2 + (∂xa2 − ∂xa1)ζ̇2 + (c2 − c1)∂xẇ2

def=
3∑

i=1

r (i)
diff .

The lemma is a straightforward consequence of Lemma 10 (with ν = 0),
once rdiff is estimated. We focus on the most difficult term, namely,
r (2)

diff = (∂xa2 − ∂xa1)ζ̇2.
Let f ∈ Y 0

Fμ . One has(
r (2)

diff , f
)

L2
=
∫

R

−ε2 f ∂x ((G(εζ2)|w2|2 − G(εζ1)|w1|2)ζ̇2)

−με2 f ∂x

((
d1RF

2 [εζ2, w2] − d1RF
2 [εζ1, w1] + γ d1RF

1 [εζ2, w2] − γ d1RF
1 [εζ1, w1]

)
ζ̇2

)
+ γ + δ

Bo
f ∂2

x

((
1

(1 + με2|∂xζ2|2)3/2
− 1

(1 + με2|∂xζ1|2)3/2

)
∂x ζ̇2

)
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where G(εζ )
def= h3

1+γ h3
2

(h1h2)3 .

Because
∣∣G(εζ2 − εζ1)

∣∣
L2 ≤ ε

∣∣ζ2 − ζ1

∣∣
L2 × supy∈[εζ2,εζ1] G ′(y), it is

straightforward that

|∂x ((G(εζ2)|w2|2 − G(εζ1)|w1|2)ζ̇2)|L2 ≤ C0(ε|ζ1 − ζ2|H1 + |w1 − w2|H1 )|ζ̇2|W 1,∞
x
,

with C0 = C(m, h−1
0 , |ζ1|L∞, |ζ2|L∞, |w1|L∞, |w2|L∞).

Similarly,

1

Bo−1
|∂2

x (((1 + με2|∂xζ2|2)−3/2 − (1 + με2|∂xζ1|2)−3/2)∂x ζ̇2)|L2

≤ με2C0|∂xζ1 − ∂xζ2|X1
Bo−1

|∂x ζ̇2|W 2,∞
x
,

with C0 = C(m, |∂xζ1|W 1,∞
x
, |∂xζ2|W 1,∞

x
).

As for the last component, recall d1RF
i is defined in (B.19). Proceeding as

in the proof of Lemma 6, we obtain

γ 2−iμε2
∣∣(d1RF

i [εζ2, w2]ζ̇2 − d1RF
i [εζ1, w1]ζ̇2, f

)
L2

∣∣
≤ ε2C0 × (|w1 − w2|Y 1

Fμ
+ ε|ζ1 − ζ2|Y 1

Fμ

)|ζ̇2|Z1
Fμ

| f |Y 0
Fμ

with C0 = C(m, h−1
0 , |ζ1|H 3

x
, |ζ2|H 3

x
, |w1|Z1

Fμ
, |w2|Z1

Fμ
).

Altogether, we find∣∣r (2)
diff

∣∣
(Y 0

Fμ
)�

≤ εC0

∣∣ζ̇2

∣∣
W 3,∞

x

∣∣U2 − U1

∣∣
X2

Bo−1 ×Y 2
Fμ
,

with C0 = C(m, h−1
0 , k−1

0 , K ,
∣∣U1

∣∣
X4

Bo−1 ×Y 4
Fμ
,
∣∣U2

∣∣
X4

Bo−1 ×Y 4
Fμ

).

All the other terms in rdiff are estimated in the same way, and Lemma 11
now directly follows from Lemma 10. �

B.5. Well-posedness results; proof of Theorem 1

In this section, we conclude the proof of the main result of the paper, The-
orem 1, namely, the well-posedness of the Cauchy problem for system (17).
We first prove in Lemma 12 the existence and uniqueness of solutions of
the linearized system (B.30) for smooth data, and provide a uniform energy
estimate. A solution of the nonlinear system (17) is then constructed using a
Picard iteration scheme. Uniqueness and continuous dependence with respect
to the initial data follow from Lemma 11.

LEMMA 12. Let ζ,w, ζ̌ , r1, r2 ∈ H∞([0, T ] × R) be such that (B.7),

(B.27), (B.28) hold. Then, for any U̇ 0 def= (ζ̇ 0, ẇ0)� ∈ H∞
x (R)2, there exists

a unique solution U̇
def= (ζ̇ , ẇ)� ∈ H∞([0, T ] × R)2 satisfying (B.30) and

U̇
∣∣

t=0
= U̇ 0.



410 V. Duchêne et al.

REMARK 8. One could assume only continuity in time and finite (but
large enough) regularity in space on ζ,w, ζ̌ , r .

Proof: We first consider the regularized system introduced in (B.31) and
that we rewrite (recall that, by Lemma 8, b−1 : (Y 0

Fμ)� → Y 0
Fμ is well defined

and continuous) as{
∂t ζ̇ν + J2

ν∂xẇν = r1,

∂tẇν + b−1J2
ν∂xaζ̇ + b−1J2

ν∂x ǎαζ̌ + b−1JνcJν∂xẇν = b−1r2.
(B.41)

Because Jν
def= (1 − ν∂2

x )−1/2 is of order −1, (B.41) is a system of
ordinary differential equations on X0

Bo−1 × Y 0
Fμ , which is solved uniquely by

Cauchy–Lipschitz theorem. More precisely, for any ν > 0 and r = (r1, r2) ∈
C0([0, T ]; X0

Bo−1 × (Y 0
Fμ)�), ζ̌ ∈ C0([0, T ]; (X1

Bo−1 )2), and U̇ 0 ∈ X0
Bo−1 × Y 0

Fμ ,

there exists a unique U̇ν
def= (ζ̇ν, ẇν)� ∈ C1([0, T ]; X0

Bo−1 × Y 0
Fμ), solution

to (B.41) with initial data U̇
∣∣

t=0
= (ζ̇ 0, ẇ0)�.

Differentiating N times (B.31) and proceeding as in the proof
of Lemma 6, one can check that ∂N

x U̇ν satisfies (B.31) with ob-
vious modifications to r1, r2, and ζ̌ . Thus, by the above argument,
∂N

x U̇ν ∈ C1([0, T ]; X0
Bo−1 × Y 0

Fμ), and it follows (because N may be chosen

arbitrarily large) that U̇ν ∈ C1([0, T ]; H∞
x (R)). In particular, ∂tUν |t=0

∈ H∞
x .

Applying the above argument to ∂tUν after differentiating (B.31) with
respect to time, one deduces ∂t U̇ν ∈ C1([0, T ]; H∞

x (R)), and by induction
Uν ∈ H∞([0, T ] × R).

Applying the estimate of Lemma 10 to ∂N
x Uν with N ∈ N given, one has

E0(∂N
x U̇ν) ≤ M,

with M = C
(
m, h−1

0 , k−1
0 , K , T, E0(∂N

x U̇ 0), ‖(ζ,w, ζ̌ , r )‖H∞([0,T ]×R)6

)
, uni-

form with respect to ν > 0.
Let us now consider Vν,ν ′ = U̇ν − U̇ν ′ . Notice that Vν,ν ′ satisfies (B.31)

with ζ̌ = 0, Vν,ν ′

∣∣∣
t=0

= 0, and r1
ν,ν ′ = (J2

ν − J2
ν ′)∂xẇν ′ ,

r2
ν,ν ′ = (J2

ν − J2
ν ′)∂xaζ̇ν ′ + (J2

ν − J2
ν ′)∂x ǎαζ̌ + (JνcJν − Jν ′cJν ′)∂xẇν ′ .

Because for any s ∈ R, ‖Jν‖H s
x →H s

x
= 1 and ‖Jν − Jν ′‖H s

x →H s
x

→ 0(ν → ν ′)
and thanks to the above energy estimates, one has |rν,ν ′ |X0

Bo−1 ×(Y 0
Fμ

)� → 0

as ν → ν ′. By Lemma 10, one deduces that U̇ν is a Cauchy sequence of
C0([0, T ]; X0

Bo−1 × Y 0
Fμ). Therefore, there exists a limit that we denote U̇ ∈

C0([0, T ]; X0
Bo−1 × Y 0

Fμ), which satisfies the nonregularized (ν = 0) system,
namely, (B.30).
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The above energy estimates on ∂N
x U̇ν being uniform with respect to ν,

one has U̇ ∈ L∞([0, T ]; H∞
x ). By (B.30), we deduce ∂t U̇ ∈ L∞([0, T ]; H∞

x ),
and by induction U̇ ∈ H∞([0, T ] × R).

Uniqueness of the solution follows when applying the energy estimate of
Lemma 10 to the difference between two solutions. �

We can now conclude with the proof of our main result, Theorem 1.

Proof of Theorem 1: Let us define Friedrichs mollifiers, jκ = 1(|D| ≤ κ)
and

Un|t=0
= U0

n
def= {(∂αj2nζ 0, ∂αj2nw0)}|α|≤N .

For each n ≥ 1, we define, thanks to Lemma 12, Un
def= {(ζ (α)

n , w
(α)
n )}|α|≤N

as the unique solution to Un|t=0
= U0

n as well as (B.30), where (using the
notations and definitions of Lemma 6) a = a[εζn−1, εwn−1] and similarly
for b, c, r = r (α); ǎζ̌ = 0 if |α| ≤ N − 1 and ǎζ̌ = ǎαζ̌

〈α̌〉
n−1 otherwise. Our

iteration scheme is initialized with smooth and time-constant U0 = U0
0.

Lemma 12 defines at each step Un ∈ C([0, Tn]; H∞
x ), where

Tn(h′
0, k ′

0, K ′,M ′) def= max{T ≥ 0, such that E N (ζn, wn)1/2 ≤ M ′E N (U 0)1/2

and (ζn, wn)satisfies (B7), (B27), (B28) with h′
0, k ′

0, K ′}.
One has Tn > 0 as soon as h′

0 < h0, k ′
0 < k0, K ′ > K , and M ′ > 1, by

standard continuity arguments. Let us prove that Tn can be bounded from
below, uniformly with respect to n ∈ N.

By Lemma 10, we have the energy estimate for U (α)
n

def= (ζ (α)
n , w

(α)
n )� with

any |α| ≤ N :

E0(U (α)
n )1/2 ≤ C0(E0

(
U (α)

n |t=0

)1/2 + με2 M ′E N (U 0)1/2)eλt

+C0

∫ t

0
f (t ′)eλ(t−t ′)dt ′,

for any t ∈ [0, Tn−1(h′
0, k ′

0, K ′,M ′)] and with

λ = C0 ×
(
ε +ϒF

∥∥wn−1

∥∥2

L∞([0,T );Z2
Fμ

)

)
,

f (t) = ∣∣r (α)
∣∣
(Y 0

Fμ
)�

+ με2 M ′E N (U 0)1/2,

and where C0 = C(m, (h′
0)−1, (k ′

0)−1, K ′,M ′).
Notice that ∂αUn �= U (α)

n but one can check (differentiating the equa-
tions satisfied by Un) that ∂αUn satisfies (B.30) with a remainder term
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r̃ (α)[εζn, εwn, εζn−1, εwn−1] which is estimated identically as in Lemma 6.
This yields, for any t ∈ [0,min{Tn−1, Tn}],

E N (Un)1/2 ≤ C0eλt E N (U 0)1/2

(
1 + C′

0 M ′t ×
(
ε +ϒ

1/2
F

∣∣∣wn−1

∣∣∣
Z1

Fμ

+ ϒF

∣∣∣wn−1

∣∣∣2
Z1

Fμ

))
,

with λ,C0 as above, and C′
0 = C(m, (h′

0)−1,M ′, E N (U 0)).
We deduce that there exists M�, 1

T � = C(m, h−1
0 , k−1

0 , K , E N (U 0)), inde-
pendent of n, such that

Tn(h0/2, k0/2, 2K ,M�) ≥ T �/λ′, λ′ def= ε +ϒ
1/2
F

∣∣w0
∣∣

Z1
Fμ

+ϒF

∣∣w0
∣∣2

Z2
Fμ
,

and that for any t ∈ [0, T �/λ′], one has

E N (Un)1/2 ≤ M� E N (U 0)1/2. (B.42)

Let us now consider Vn = Un − Un−1. Notice first that

E j (Vn|t=0 ) = E j ((Un − Un−1)|t=0 ) � 2−2n(N− j) E N (U 0).

One can control E0(Vn) from Lemma 11, using the above, the estimate on
r (α)

n − r (α)
n−1 given by Lemma 6 as well as the energy estimate (B.42). Similar

estimates on ∂αV n for 0 ≤ |α| ≤ 2 yield

E2(Vn)1/2 ≤ C02−n(N−2)eλ
′t + C0λ

′
∫ t

0
E2(Vn−1)1/2eλ

′(t−t ′)dt ′,

with C0, λ
′ as above. Therefore, restricting T � ≤ T � if necessary, the

sequence Un = U 0 +∑n
j=1 Vj converges in C0([0, T �/λ′]; X2

Bo−1 × Y 2
Fμ).

Using that Un is uniformly bounded in C0([0, T �/λ′]; X N
Bo−1 × Y N

Fμ),
the logarithmic convexity of Sobolev norms yields that Un converges
strongly in C0([0, T �/λ′]; X N−1

Bo−1 × Y N−1
Fμ ). The limit U = limn→∞ Un belongs

to L∞([0, T �/λ′]; X N
Bo−1 × Y N

Fμ) ∩ C0([0, T �/λ′]; X N−1
Bo−1 × Y N−1

Fμ ) and then by

classical argument belongs to C0
w([0, T �/λ′]; X N

Bo−1 × Y N
Fμ). It is now straight-

forward to check that U satisfies system (B.30), and therefore (by
Lemma 6) (17).

By passing to the limit the energy estimate (B.42), one deduces the
energy estimate of the statement. The uniqueness of the solution is a
consequence of Lemma 11, applied to the difference between two solutions
(see also Proposition 3). Theorem 1 is proved.
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