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ABSTRACT. We are interested in asymptotic models for the propagation of in-
ternal waves at the interface between two shallow layers of immiscible fluid,
under the rigid-lid assumption. We review and complete existing works in the
literature, in order to offer a unified and comprehensive exposition. Anterior
models such as the shallow water and Boussinesq systems, as well as unidi-
rectional models of Camassa-Holm type, are shown to descend from a broad
Green-Naghdi model, that we introduce and justify in the sense of consis-
tency. Contrarily to earlier works, our Green-Naghdi model allows a non-flat
topography, and horizontal dimension d = 2. Its derivation follows directly
from classical results concerning the one-layer case, and we believe such strat-
egy may be used to construct interesting models in different regimes than the
shallow-water /shallow-water studied in the present work.

1. Introduction. The study of gravity waves at the surface of a homogeneous layer
of fluid has attracted a lot of interests in a broad range of scientific communities.
We let the reader refer to [38] for a comprehensive survey of the state of the art
concerning this problem, and its many interesting aspects, and we quickly discuss
here some known results and methods, relevant to the present work.

While the equations governing the motion of a homogeneous layer of ideal, in-
compressible, irrotationnal fluid under the only influence of gravity, that we name
full Euler system, are relatively easy to derive, their theoretical study is extremely
challenging. This explains why the rigorous, mathematical analysis of the govern-
ing equations is quite recent, and still enjoys present-day improvements from an
active community. In particular, the well-posedness of the Cauchy problem out-
side of the analytical framework has been discussed among others by Nalimov [41],
Yosihara [51], Craig [18], Wu [47, 48] and Lannes [36]. Such results are regularly im-
proved (time of existence, regularity of the initial data, etc.); see [49, 50, 25, 1, 29, 2]
and references therein.
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Nevertheless, the solutions of these equations are very difficult to describe, and
the relevant hydrodynamic processes are not easily visible in these equations. At
this point, a classical method is to select an asymptotic regime (described by dimen-
sionless parameters of the domain and of the flow), in which we look for approximate
models and hence for approximate solutions.

Many such asymptotic models have been derived, going back to the late 19*"
century. For example, Saint-Venant [42] derived the classical shallow-water equa-
tion, by assuming that the depth of the layer of fluid is small, so that the horizontal
velocity across the layer may be averaged as a constant; while Boussinesq [9, 10] de-
rived the model which bears his name, describing the propagation of gravity-waves of
small amplitude and long wavelength. Later on, Serre [46] and Green,Naghdi [26] in-
troduced a higher order model, which has since been widely used in coastal oceanog-
raphy, as it takes into account the dispersive effects neglected by the shallow-water
(Saint-Venant) model and allows waves of greater amplitude than the Boussinesq
model.

However, the previously mentioned works are restricted to the formal level, and
the rigorous, mathematical justification of asymptotic models received a satisfactory
answer only recently. We say that a model is fully justified (using the terminology
of [38]) if the Cauchy problem for both the full Euler system and the asymptotic
model is well-posed for a given class of initial data, and over the relevant time
scale; and if the solutions with corresponding initial data remain close. The full
justification of a system (S) follows from:

e (Consistency) One proves that families of solutions to the asymptotic model,
existing and controlled over the relevant time scale satisfy the full Euler system
up to a small residual.

o (Existence) One proves that solutions of the full Euler system and solutions
of the the model (S) with corresponding initial data do exist.

e (Convergence) One proves that the solutions of the full Euler system, and the
ones of the asymptotic model, with corresponding initial data, remain close
over the relevant time scale.

A result of Alvarez-Samaniego and Lannes [3] provides the existence and uniqueness
of a solution to the full Euler system over the relevant time scale, uniformly with
respect to the dimensionless parameters at stake, as well as a stability result with
respect to perturbation of the equations. As a consequence, any consistent and well-
posed asymptotic model is automatically justified in the sense described above. This
strategy may be applied to the (quasilinear, hyperbolic) shallow-water model, to
various Boussinesq models [34, 5, 6, 11, 44] and to Green-Naghdi models [3, 30, 32].
We let the reader refer to [38, Appendix C] for a reader’s digest of the numerous
known results on this aspect.

All the aforementioned models coincide at the lower order of precision as a simple
wave equation, which in dimension d = 1 predicts that any initial perturbation of the
free surface will split up into two counter-propagating waves. An important family
of models is dedicated to the precise study of the evolution of one of the two waves
when higher order terms are included. The most famous example of such model is
the Korteweg-de Vries [35] equation, but various extensions and generalizations have
been proposed; see [33, 16, 31] and references therein. Again, the full justification
of such models is recent: see [34, 45, 7, 12, 16, 31].
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All the aforementioned works are concerned with the case of a single layer of ho-
mogeneous fluid. Such assumption may seem too crude for applications to oceano-
graphic problems, as variation in salinity induces deviations of density. In the
present work, we are interested in the simplest setting that models such non-uniform
densities: we consider a system of two layers of homogeneous, immiscible fluid, and
we are interested in the evolution of the interface between the two layers. A con-
siderable amount of interests has been given to such bi-fluidic systems; see [28] for
a comprehensive review of the ins and outs on this topic.

The governing equations of the bi-fluidic systems share many aspects and proper-
ties of the aforementioned water-wave system, and its study has often been carried
out in parallel. In particular, one can derive asymptotic models in analogy with the
ones presented above. It is out of the scope of this introduction to present an ex-
haustive review of all the different models, as many settings are of interests. Here,
and in the present work, we restrict ourselves to the case of a surface delimited
by a flat, rigid lid (as deformation of the surface is in practice small compared to
the deformation of the interface), and to the so-called shallow water/shallow water
regime. In this regime, the two layers are assumed to be of comparable depth, and
both small when compared to the typical horizontal wavelength of the flow. In
that case, the models corresponding to the shallow water and Boussinesq systems
have been derived in [14, 19], and justified in the sense of consistency in [8] (where,
incidentally, a much larger range of scaling regimes are studied). Green-Naghdi
type models where obtained in the one-dimensional case in [40], and in the two-
dimensional case in [15]. An extensive study of scalar models has been provided
by one of the authors in [23]. Let us note that all the aforementioned works are
restricted to the case of a flat bottom, contrarily to the present work.

As attested earlier, bi-fluidic models have a similar structure as the ones in the
one-layer case. As a matter of fact, one recovers the latter from the former when
we assume that the mass density of the top layer is zero. Yet a few remarkable
differences arise, that originate interesting questions and mathematical challenges.
Among them, we would like to emphasize

1. The role of surface tension. Contrarily to the water-wave case, the Cauchy
problem for the full Euler system is ill-posed in Sobolev spaces in the absence
of surface tension. However, surface tension is very small in practice, so that
its effect is systematically negligible in the asymptotic models presented here.
In [37], Lannes shows that a small amount of surface tension is sufficient to
guarantee the well-posedness over times consistent with observations, provided
that a stability estimate holds; see the somewhat more precise description in
Section 2.2.

2. Absence of stability result. An equivalent result as the stability result (with
respect to perturbations of the equation) for the full Euler system obtained
in [3] is not known in the bi-fluidic case, partly due to the difficulties described
in the previous item. In order to deal with this, a strategy consists in proving
such stability result on the model itself. Thus the full justification of the model
is a consequence of its well-posedness, and the full Euler system’s consistency
with the asymptotic model (and not the other way around). This strategy has
been applied by the authors in [24], and we recall these results in Section 4.2.

3. A non-local operator. As noticed in [8], shallow water models for internal
waves with a rigid lid contain a non-local operator, which involves in partic-
ular the projection into the space of gradient functions; see Definition 3.4 in
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Section 3.3. This operator appears only in the case d = 2, and under the
rigid-lid configuration (see [21] for shallow water/shallow water models with
a free surface). The precise effect and meaning of this non-local term is yet
to be fully understood.

4. A critical-ratio. There exists a critical ratio for the depth of the two layers for
which the first order (quadratic) nonlinearities vanish; 62 = ~ in, e.g., (49).
This phenomenon does not occur in the one-layer case, and motivates a precise
study of unidirectional asymptotic models with stronger nonlinearities than in
the classical long wave regime, and especially in the Camassa-Holm regime, for
which first order dispersion and nonlinearities are formally of same magnitude
in the critical case. This study has been carried out in [23], completed in [24],
and the results are presented in Section 4.4.

In the present work, we report and complete recent mathematical results con-
cerning the bi-fluidic system under the rigid lid assumption; from the well-posedness
of the full Euler system to the justification of various models in the shallow water
regime. Our aim is to provide a unified and comprehensive exposition of the existing
theory. The above concerns and remarks appear spontaneously in the course of the
study. Finally, we would like to mention the work of Saut, which pursues similar
objectives than ourselves in [43].

Organization of the paper. The present paper is organized as follows. In
Section 2, we introduce the non-dimensionalized full Euler equations describing
the evolution of the two-fluid system with a rigid-lid we consider. We roughly
describe in Theorem 2.2 its well-posedness result, obtained by Lannes in [37] (for
a flat topography). Section 3 is dedicated to the construction and justification (in
the sense of consistency) of the Green-Naghdi models. This result, in dimension
d = 2, and allowing non-flat topography, is new to our knowledge. Several lower
order models, for which stronger results have been recently obtained, are shown to
descend directly from our Green-Naghdi system, and are described in Section 4.
More precisely:

e Section 4.1: The shallow water (Saint Venant) model, introduced in [8] and
studied in details in [27];

e Section 4.2: A very recent Green-Naghdi model in the Camassa-Holm regime,
introduced and rigorously justified in [24];

e Section 4.3: Boussinesq models, whose study follows from results in [7, 22],
and that we adapt to our case;

e Section 4.4: Unidirectional (scalar) models generalizing the classical Korteweg-
de Vries equation, whose rigorous justification has been investigated in [23].

Notations. In the following, Cy denotes any nonnegative constant whose exact
expression is of no importance. The notation a < b means that a < Cyb.
We denote by C'(A1, Az, ... ) a nonnegative constant depending on the parameters
A1, Ag,...and whose dependence on the ); is always assumed to be nondecreasing.
Let p be any constant with 1 < p < co. We denote L? = LP(R?) the space of all
Lebesgue-measurable functions f with the standard norm

7l = ([ 1f00rax) " <o,
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The real inner product of any functions f; and f, in the Hilbert space L%(RY) is
denoted by

(fi. f2) = /]R £1(X) fo(X)dX.

The space L™ = L>®(R?) consists of all essentially bounded, Lebesgue-measurable
functions f with the norm

|f|Loo = esssup |f(X)] < oo.
XeR4

For any real constant s > 0, H® = H*(R%) denotes the Sobolev space of all tem-
pered distributions f with the norm |f|gs = |A®f|a < 0o, where A is the pseudo-
differential operator A = (1 — A)1/2.

For convenience, we will make use of the following notation:

1
M(S) = C(hio’ ’C’Hmax(s,toJrl)a |b|Hmax(s,t0+l)) .

For a vector-valued function F = (fi,... f,) ", we write F € LP(R)" (resp. F €
H*(R4)") if each of the components f; € LP(RY) (resp. f; € H*(R?)). The function
spaces are endowed with canonical norms:

‘F‘LP = Z‘fi‘m and ‘F‘H = Z’fi’Hs'
i=1 i=1

For any functions u = u(t, X) and v(¢, X) defined on [0,7) x R? with " > 0, we
denote the inner product, the LP-norm and especially the L2-norm, as well as the
Sobolev norm, with respect to the spatial variable X, by (u,v) = (u(t, 9, v(t, )),
’u‘LP = |u(t, -)’LP, and |u|gs = |u(t, )|, respectively.

We denote L*°([0,T); H?) the space of functions such that u(¢,-) is controlled in
H#, uniformly for ¢ € [0,T):

= esssup |u(t,)|g: < oo.

HUHLOO([O,T)§HS) te[0,T)

Finally, C*(R%) denote the space of k-times continuously differentiable functions.

We conclude this section by the nomenclature that we use to describe the different
regimes that appear in the present work. A regime is defined through restrictions
on the set of admissible dimensionless parameters of the system, which are precisely
defined in (2), below.

Definition 1.1 (Regimes). We designate by shallow water regime the set of pa-
rameters
PSW = {(%6757’)’), O < M S HMmax s O S € S ]-7 5min S 5 S 5maxa 0 S Y < 1},

with fixed 0 < fmax, Omin, Omax < 00. We designate by Camassa-Holm regime
(see [16]) the set

Pca = Psw N {(,u76,(5,'y)7 0 <e< Mp },
and by long wave regime the set

Pow = Psw N {(1,6,6,7), 0 < e < Mp },

with some fixed M € (0, 00).

Additionally, unless otherwise indicated, it is assumed that Bo™' € [0, Bo_,{,] and
B € [0,1]. The dependency of the constants on Bo_! is not displayed (Bo_i, < 1
in any oceanographic application).
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2. The full Euler system.

2.1. Construction of the full Euler system. The system we study consists in
two layers of immiscible, homogeneous, ideal, incompressible fluid under the only
influence of gravity. The two layers are infinite in the horizontal dimension, and
delimited above by a flat rigid lid and below by a non-necessarily flat bottom. The
derivation of the governing equations of such a system is not new. We briefly recall
it below, and refer to [8, 4, 23] for more details.

d
! Laz¢1 =0
Vx.-vi=0 vi=Vx_.¢1 01+ 3|Vx 2] = == — g2
P =0 kO
¢(t, X) /0& = V1+4|V(|?0n02

= V14|V

Vx. va=0 vo = Vx .09 B2 + 3|V o> = =L — g2

—dy 4+ b(X)
an¢2 =0

F1GURE 1. Sketch of the domain and governing equations

We assume that the interface and bottom are given as the graph of a function
(resp. ((t,X) and b(X)) which expresses the deviation from their rest position
(resp. (X,0),(X,—dz)) at the spatial coordinate X € R? (d = 1 or d = 2) and at
time t. Therefore, at each time t > 0, the domains of the upper and lower fluid
(denoted, respectively, Q¢ and %), are given by

Q) = {(X,2) eR'xR, ((t,X) < 2z < di },
0 = {(X,2) eR*"XR, —dp+b(X) < 2 < ((t,X) }.

We assume that the two domains are strictly connected, that is there exists h > 0
such that

di—C(t,X)>h>0, and do+C(t, X)—b(X)>h>0.

We denote by (p1,v1) and (p2, va) the mass density and velocity fields of, respec-
tively, the upper and the lower fluid. The two fluids are assumed to be homogeneous
and incompressible, so that the mass densities p;, p2 are constant, and the velocity
fields vy, vo are divergence free.

As we assume the flows to be irrotational, one can express the velocity field as
gradients of a potential: v, = Vx .¢; (i =1,2) , and the velocity potentials satisfy
Laplace’s equation

Ag; + D%¢; = 0 (i=1,2).

Here and thereafter, we use the notation Vx . to designate the gradient operator
with respect to the variable (X z), while the V and A simply denote the gradient
and the Laplacian operators with respect to the variable X.
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The fluids being ideal, they satisfy the Euler equations. Integrating the momen-
tum equations yields Bernoulli equations, written in terms of the velocity potentials:

1 P . )
Ori + §\VX,Z¢2'|2 = gz i Q; (i=1,2),
(]

where P denotes the pressure inside the fluid and g is the acceleration of gravity.

From the assumption that no fluid particle crosses the surface, the bottom or the
interface, one deduces kinematic boundary conditions, and the set of equations is
closed by the continuity of the stress tensor at the interface, which reads

[P(t,X)] = ;i_r%(P(t,X,C(t,X)—ks) - P(t,X,g(t,X)—g)) = —ok(C(t, X)),

where k() = V- (WV( ) denotes the mean curvature of the interface, and

o is the surface tension coefficient.
Altogether, the governing equations of our problem are given by the following

Adi + 826 = 0 inQfi=1,2,

i + 51V 2 2—5—92 in Qf, i=1,2,

0,01 = 0 on I'iop = {(X, 2),2 =d1)},

¢ = /14 |VCPOpd1 = /14 |V(2POnda onT ={(X,2),z2=((tX)},

Onta = 0 on I'hot = {(X,2), 2+ d2 = b(X)},
[Pt X)) = —ok(C) T

(1)
where n denotes the unit upward normal vector at the surface at stake.

The next step consists in nondimensionalizing the system. Thanks to an appro-
priate scaling, the two-layer full Euler system (1) can be written in dimensionless
form. The study of the linearized system (see [37] for example), which can be solved
explicitly, leads to a well-adapted rescaling.

Let a (resp. ap) be the maximum amplitude of the deformation of the interface
(resp. bottom). We denote by A a characteristic horizontal length (that we assume
to be identical in any of the directions if d = 2; see [38] for a treatment of the
anisotropic case when d = 2), say the wavelength of the interface. Then the typical
velocity of small propagating internal waves (or wave celerity) is given by

P (p2 — p1)dids
0 = —_—.
p2dy + pida

Consequently, we introduce the dimensionless variables'

- z =~ X ~ Co

= — X = — t = —t
T X A
the dimensionless unknowns
s CX) co WX) - dy |
t,X)=>"—, bhX)= —~ (6, X,2) = i(t, X, =1,2),
(E%) =22 W= 6% = SatX) (=12)
as well as the following dimensionless parameters
P1 a ap d3 dy g(p2 — p1)A?
= — = — = — =—, =—, Bo="++—"—"—. 2
V= T B R 5, Bo . (2)

IWe choose di as the reference vertical length. This choice is harmless as we assume in the
following that the two layers of fluid have comparable depth: the depth ratio § does not approach
zero or infinity.
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We conclude by remarking that the system can be reduced into two evolution
equations coupling Zakharov’s canonical variables [52, 20], namely (withdrawing
the tildes for the sake of readability) the deformation of the free interface from its
rest position, ¢, and the trace of the dimensionless upper potential at the interface,
1, defined as follows:

v = o1(t, X, C(t, X)).

Indeed, ¢1 and ¢o are uniquely deduced from (¢, 1) as solutions of the following
Laplace’s problems:

(WA +92)p1 =0 in O ={(X,2) e R*, e((X) <z <1},

Ont1 =0 on FtOP = {(X7 Z) € Rd+17 Z = 1}7 (3)
¢ =1 onT' = {(X,2) € RI* 2=},

(HA+02) 62 =0 in Qy = {(X,2) € R, 1 4 BH(X) < = < ((X)},

6n¢2 = 8n¢1 on F, (4)
Ona =0 on Ihop = {(X,2) € R, 2= —1 4 Bb(X)}.

More precisely, we define the so-called Dirichlet-Neumann operators.

Definition 2.1 (Dirichlet-Neumann operators). Let ¢,b € HF1(RY), ty > d/2,
such that there exists hg > 0 with hy = 1 —e( > hg > 0and hy = % +eC—pBb>
ho > 0, and let ¢ € L2 _(R%),Vy € HY?(R%). Then we define

loc

G = G*eC]tp = /1 + pleVE]2(0n¢r) |amec
= —ME(VC) : (vqj)l) ‘zzec + (az¢1) |z:e(
HPO0p = HM[eC, BBy = (o) lamec = ba(t, X, {(t, X)),

where ¢1 and ¢9 are uniquely defined (up to a constant for ¢2) as the solutions in
H?(R?) of the Laplace’s problems (3)—(4).

The existence and uniqueness of a solution to (3)—(4), and therefore the well-
posedness of the Dirichlet-Neumann operators follow from classical arguments de-
tailed, for example, in [38].

Using the above definition, and after straightforward computations, one can
rewrite the nondimensionalized version of (1) as a simple system of two coupled
evolution equations, namely

o — Ltamp = o,
i

Oi(VH ) =1V) + (v+8)VC + SV ([TH ] —5|Vyl?) (5)
B s 70V (k(eyRQ)
= pueVN#° — Bo Y

where we denote
(LG + €(VQ) - (VH O))* — y(:GH+ €(VC) - (V1))
2(1+ pleVCP) '

We will refer to (5) as the full Euler system, and solutions of this system will be
exact solutions of our problem.

Nu,é =
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2.2. A well-posedness theorem on the full Euler system. We mention here
that Lannes [37] recently ensured that the Cauchy problem for (5) (with a flat
bottom: B = 0) is locally well-posed in Sobolev spaces, with an existence time
consistent with observations. Earlier results showed that the problem was ill-posed
in the absence of surface tension, outside of the analytic framework. It was sub-
sequently proved that taking into account the surface tension restores the local
well-posedness of the equations, but with a very small existence time of the solution
when the surface tension is small, which is the case in the oceanographic setting.

It has to be noted that none of the asymptotic models presented in the following
sections (and as a matter of fact, no asymptotic model known to us) share the same
property, and that the surface tension term could be withdrawn from the equations
(by setting Bo ! = 0) without hurting their well-posedness. The reason for this
apparent paradox is that the positive role of surface tension is to regularize Kelvin-
Helmholtz instabilities that appear at high frequencies, while the main part of the
wave, which is captured by the asymptotic models, is located at low frequencies and
is thus unaffected by surface tension.

In [37], Lannes introduces a stability criterion, whose role is to ensure that the
aforementioned frequency threshold is high enough, and shows that, under this
condition, the combined effect of surface tension and gravity is sufficient to control
the regularity of the flow.

Somewhat more precisely, one has the following result; see [37, Theorems 5 and 6]
for the precise statements.

Theorem 2.2. Let p € Psw and the initial data U° = (¢°,4°) T satisfy the follow-
mg:
1. UY belongs to an energy space of sufficiently smooth, bounded functions (in
particular, the following is required: (¢°, V)T € H/2(R4)d+1).
2. (Y satisfies the non-vanishing depth condition: there exists hg > 0 such that
min{l — eC®, 671 + €%} > ho;
3. A stability criterion is satisfied, which can be roughly expressed by the follow-

ing: T = 6729’31(%4$ 8:(3;2 is sufficiently small (o € [0,1], fized).
1

Then there exists a unique solution to (5) (with flat bottom: [ = 0) with initial data
U li=o = U°, bounded in the same energy space (no loss of derivatives). The flow is
continuous with respect to time, and defined for t € [0,e°T], where T > 0 depends
only on the quantities defined through the three above conditions, and in particular
can be chosen independent of the parameters p € Psy .

3. The Green-Naghdi/Green-Naghdi model. In the following, we construct
Green-Naghdi type models for the system (5), that is asymptotic models with pre-
cision O(u?), in the sense of consistency. As we shall see, and contrarily to earlier
works, our construction relies only on asymptotic expansions which can be straight-
forwardly deduced from known results on the one-layer case. Thus we start by
recalling below these results, which can be found in particular in [38]. We then de-
duce equivalent asymptotic expansions in the bi-fluidic setting in Section 3.2, and
finally use these expansions to construct our asymptotic models in Section 3.3.

3.1. Asymptotic expansions in the water-wave case. The proof of the fol-
lowing statements may be found in [38] (with depth D = 1, but the general case is
obtained by straightforward change of variables). For simplicity, and without lack
of generality, we set ¢ = 8 =1 in this section.



248 VINCENT DUCHENE, SAMER ISRAWI AND RAAFAT TALHOUK

Definition 3.1 (Dirichlet-Neumann operator). Let ¢,b € H*tY(RY), t, > d/2,
such that there exists hg > 0 with h = D+ —b > hg > 0, and let ¢ € L2 (R9),
Vi € HY/2(R%)?. Then we define

GHPIGHY = V14 pVCP(0n0) lo=c = —p(VE) - (V) |=¢ + (0:0) |- ,
where ¢ = ¢*P[¢,blip € H? is the unique solution to
(A+02) =0 InQ={(X,z2) eRH, —D+bX)<z<(X)}

Onp =0 on Tyt = {(X,2) € R 2= —D +b(X)}, (6)
¢=1 onT = {(X,2) e R™!, 2=},

Let us now recall that the Dirichlet-Neumann operator may be equivalently de-
fined through the vertically averaged mean velocity, thanks to the following Propo-
sition.

Proposition 1. Let (, b, satisfy the assumptions of Definition 3.1. Define
o = [ e
V(X) = 7/ Vo(X,z) dz
h(X) J-pb(x)

where ¢ = ¢*P (¢, bl € H? is the unique solution to (6).
Then one has the identity

GmPIC Y = —puV - (R V). (7)

Proof. This striking result is a consequence of a simple calculation, that we recall.
Let » € C°(R?) be a test function. Then one has

[ eoPcivax = [ w000 = [(/ive) (Vave) i
R T Q

¢
u/ dX Vga-/ dzVo
Rd —D+b
— —u [ )T ax.
R

where we used Green’s identity, and the Laplace’s equation satisfied by ¢. Since this
result is valid for any test function ¢ € C°(R?), and as G#P[¢, by € HY/2(RY),
the identity (7) holds in the strong sense. O

Let us conclude with the asymptotic expansion of the quantities defined above.
Here and in the following, we denote, for convenience,?

M(s) = Clhg " [¢] prmarcerosnys [O] prmaxce.co) -
Proposition 2. Let ¢,b € H**2 N HT(RY), ty > d/2,s > 0, such that there
exists ho > 0 with h =D+ —b > hg >0, and let ¢ € L2 _(R?), Vi) € HSTH(R?)<.
Then

V = VY|, < uM(s+2)|Ve| .. (8)
V = V¢ + pTh VY|, < p> M(s+4) |V .. (9)

with,
Th,bV = %V(h?’v V) + % [V(h*Vb-V) = h*VbV - V] 4+ VbVb-V . (10)

2In order to be completely rigorous, one should take into account the dependence with respect
to the parameter D here, and 4 in the subsequent sections. However, this dependence is harmless
as we assume that § does not approach zero or infinity: § € [dmin, Omax]; see [37] for example.
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It follows straightforwardly from (7) that if (¢,b, V)T € H*t5(RY)4+2 | then

‘ig“[CabW’ + V- (V)| . < uM(s+3)|VY| s, (11)

|ig“[<, b+ V - (hVY) — uV - (WT[h,0]VY)| . < > M(s +5)[V| s (12)

3.2. Asymptotic expansions in the bi-fluidic case. Our specific operators may
be deduced from the classical Dirichlet-Neumann operator used in the water-wave
problem, and Defined in Definition 3.1. Thus the following results are easily deduced
from the ones of the previous section.

Let us first define w; (resp. Uz) the vertically averaged mean velocity of the upper
layer (resp. lower layer):

Definition 3.2. Let ¢,b € Ht1(R?), t; > d/2, such that there exists hg > 0 with
hi=1—€>ho>0and hy=1+e—pBb>ho>0,and let ¢ € L2 (RY), Vi €
H'2(R%)4. Then we define
1 1
(6, X) = 7/ V¢1(X, z) dz,
1 —eC(X) Jee(x)
1 /GC(X)
5+ eC(X) = Bb(X) J 14
where ¢; and ¢» are uniquely defined (up to a constant for ¢5) as the solutions in
H?(R?) of the Laplace’s problems (3)—(4).

Proposition 3. Let (, b, satisfy the hypothesis of Definition 3.2. Then one has
the identity

uy(t, X) =

Vo (X, z) dz.

G“[Gdlﬁ = uV ( hiu ) = —uVv- ( ho s ) (13)

The proof of these identities is identical as the one of Proposition 1 (when con-
sidering the upper and lower potential respectively, and using that 9,¢1 = Op¢2 =
(14 u|eV¢|?)~1/2GH[e¢]rp). Thus we omit the proof, and continue with the asymp-
totic expansions of the above quantities.

Proposition 4. Let ¢,b € HF2(RY) N HT4(RY), tg > d/2,s > 0, such that there

ezists ho > 0 with min{hy, ha} > ho > 0, and let ¢ € L2 (R?), Vp € HSTH(R?)4.
Then

@ — VY|, < uM(s+2)|VY|,... (14)
[ — Vo + pT[h, 0V, < p?M(s+4)|Ve| (15)
|Vip — wy — pT (b, 0|, < p?M(s+4)|V|, . (16)

Proof. Expansions (14),(15), simply follow from Proposition 2 once we remark that
d(X, z) = ¢1(X, —z) satisfies

(pA + 32) ¢=0 in{(X,2) e R, —1 <2< —e((X)},

0:6=0 on {(X,2) € RIFL 2= -1},

o= on {(sz)eRdJrlv Z:_GC}
It follows that one has the identity ¢1(X, —2) = ¢*![—e(,0]1, the unique solution

of (6). Consequently, G*[e¢] = —G*1[—€(,0], and the expansions (14),(15) follow.
Expansion (16) is a straightforward consequence of (14),(15), and

’T[hbo](VTﬁ _ﬂl)|H5 < C(halaE C‘HHl)Wi/J - E1‘H5+2-
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The Proposition is proved. O

Proposition 5. Let ¢,b € HY2(RY) N H51/2(RY), tg > d/2,s > 0, such that
there exists hg > 0 with min{hy,ha} > ho > 0, and let ¢ € L _(R?),Vy €
H R, Then one has

i — VH"|, < uM(s+7/2)|V 0 (17)
[VH" ) — @iy — pTlha, Bblia| . < p?M(s+11/2)|Ve) (18)

Hs+5 *

Proof. As above, the expansions can be deduced from Proposition 2, once we remark
that by definition, ¢o(X, z) satisfies

é uf +08§) $2=0 in {{(();(é z))e%d:f —§+5b<Xﬁ>b(<;)f (X))},
n = on ,2) € ) + )
bo= HSOC, 0000 on {(X.2) € R

—_1
- d
— «}.

In other words, one has the identity ¢o(X,2) = ¢ [eC, Bb]H*5¢, where g9
is defined as the solution of (6). *
Thus one deduces from Proposition 2 the following estimates:

w2 — VHS|,. < pM(s+2)[VH|,. ., (19)
@ — VH"$ + uTlho, BVH |, < @®M(s +4)|VH* 9|, . (20)

z
z

Furthermore, one has from [8, Proposition 3] that
[VH? ¢| 0 < Clhgt, 6,671 ¢l gavare) [V ovr, (21)

so that estimate (17) is now straightforward.
Finally, estimate (18) is easily deduced from the previous estimates. O

3.3. Construction of the Green-Naghdi/Green-Naghdi model. Let us recall
the full Euler system (5):

1
0 — ~G'y = 0,
I

0 (VH! Y —4V0) + (y+6)VC + SV(IVHR 2 =Ty ?) (22)
_ 6 v+ 6 V(k(ey/iC))
= RV - Bo Y/

where we denote
1am w302 _ ~(Lom 2
(3G +e(VQ) - (VHM )" = (5 G"¥ + e(VQ) - (V)
21+ AlevCP) |
By Proposition 3, the first equation of (22) yields
8tC = V- (hlﬂl) = -V. (hzﬂg). (23)

N/L,(S —

3Note that by definition of the Dirichlet-Neumann operators G* and 9“7‘571 , this identity yields

G e, B0 = 1+ pleVC2(Ondn)amee = GHIeCl .
In other words, and as remarked in [37], one has the identity
HS = (gm0 e, B} TG = —{9"0 [e¢, BB} TG e, 0]

In particular, the bound (21) is not optimal; see [37, Proposition 1 and Remark 6].
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When we plug the expansions of Propositions 4 and 5 into the second equation
of (22), and withdrawing O(u?) terms, one obtains

O (EQ — iy + uT [ha, Bbluz — pyT [ha, 0]%)
+ (1 + 0V + S9(1T + pTlhe, BBl —Afm + aT [k, 0 ?)

v+ 6V (k(ey/i0))

0
= HeVNG -~ Bo €\/1h

+0(?), (24)

with

e ( -V. (h2ﬂ2) + E(VC) . (ﬂg))2 — ’Y(V . (hlﬂl) + E(VC) . (ﬂl))Q

(= haVia + B(VD) - (02))° — v(hV -u1)”
2

Remark 1. Equations (23) and (24) are very similar to the system obtained in [15].
It may also be recovered from system (60) in [21] when setting « = 0 (notation
therein), and after straightforward adjustments (in particular, we use a different
scaling in the non-dimensionalizing step).

Proposition 6 (Consistency). Let U? = (CP,9*)" be a family of solutions to the
full Euler system (5) such that there exists T > 0, s > 0 for which (¢P,VyP)T is
bounded in L>°([0,T); H¥*N)I+1 (N sufficiently large), uniformly with respect to
(i, €,8,7) = p € Psw; see Definition 1.1. Moreover, assume that b € H**N and

1
Jho >0 such that hy = 1—eP> hg > 0, hy = —+eP —Bb> hy > 0.

(7]

Define w5 as in Definition 3.2. Then (CP,u),ub) " satisfies (23),(24), the latter
up to a remainder term, R, bounded by

HRHLOO([O,T);HS)UZ < c,
with C = C( alaﬂmax; I:lilnaémaxa b‘Hs+N7 (Cp’V,L/)P)T“Lm([O’T);HS+N)d+1)’

uniform with respect to (u,€,9,7) € Psw .

Proof. The fact that (P, ), ub) " satisfies (23) has been expressed earlier in Propo-
sition 3. That (24) approximately holds is a consequence of the asymptotic expan-
sions of Propositions 4 and 5. Let us detail briefly the argument.

Subtracting (24) to the last equation in (5) yields (withdrawing the explicit
reference to p € Pgy for the sake of readability)

R = 0 (VH”’EUJ — VY — {tz — vuy + pT[he, Bbluz — pyT [ha, 0]51})

+ §V<|VH“’61/J|2 — VY = {[u + uTlhe,Bbluz* —vlur + MT[h17O]ﬂ1|2})

eV (AP — N
= R; + R + Riir. (25)

‘We now show how to estimate each of these terms.
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Recall (18) in Proposition 5. It follows from tame product estimates in H?
(see [24, Appendix A] for example)
[[VH" 91 — [y + pTlha, Bblual?|,,. < Co| VHM’Y — Uy — uTlha, S|,
M202 M(S + 11/2)|V1/}|Hs+5

with Cy < ‘VH“"Sz/) + Uy + M'T[hg,6b]ﬂ2’Hmax{t015}. Here and below, we denote
tg > d/2
Identically, using (16) in Proposition 4, one obtains

[IVO]> = [ur + pTlh,0unl?|,. < Ci|VY — @ — pTlhy, 0w,

IN

< 20y M(s+4)|VY) ...

with C1 < |V + 1 + T [he, 0w |me{t0,s}-
It is now clear that one can choose N sufficiently large so that the following
holds:

HRII||L°°([0,T);HS)d < pc, (26)
with C' as in the Proposition (note that one can deduce a control in H® of w; from
a control in H*T2 of V4, thanks to (14) —being non optimal).

The estimate on Ry is obtained similarly. Using identity (13) as well as first
order expansions (14),(19), one obtains

I(%Gw +e(VQ) - (VH" )" = (= V- (hatlz) + €(VC) - (12))° .

7
< pCh M(s+ §)|V1/)|HS+37

with € < |26 + e(VC) - (VHP9 +T2)| manigres » and

|(iewﬂ(vg).(w))z—(v.(h1u1)+e(v<).(m))zst < pCy M(542)| VY| ias

with O < [2G*9 + €(V) - (VY + )| manieg o) -
Finally, for any f € H*(R%), one has
s~ gl S 171
20+ evep) 2l S W

so that one deduces from the above estimates that
||RIIIHL°°([O,T);HS)'1 S MQC ) (27)

with C' as in the Proposition, and for N sufficiently large.
The estimate on R; requires a control of the time derivatives. One can obtain
equivalent results as in Propositions 4 an 5, and in particular

(Ve — T = u Tl O )|, < KNG+ D|0T .
|at(vm% — @ — uTlhe, m@g)\m < PN(s+11/2)[0, V] s,

with N(E) = C(}%ﬁ C’Hg? VTMH;v
method, but after differentiating the equations (with respect to the time variable,
t). We do not detail the proof, and refer to [21, 38] for examples of applications of
this strategy.

Finally, note that one can control 9,V and 0;¢ using only a control on Vi
and ¢, using that (¢,9)" satisfies the full Euler system (5); allowing for a loss of

/.L|€VC‘2 ’Hmax{to,s}a

b‘Hg, atqH?) for 5 >ty + 1; following the same
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derivatives. At the end of the day, one sees that if N is sufficiently large, then one
has
171
with C as in the Proposition.
Altogether, estimates (26), (27) and (28) yield Proposition 6. O

HLoo([o,T);Hs)d < WC, (28)

Our aim is now to approximate (23),(24) as a system of coupled evolution equa-
tions (thus directly comparable with (22)). In order to do so, we introduce a new
velocity variable, v, which shall satisfy

hiha

(T2 N = Ve (hotls) = —V - (hT 9
v (h1+’yh2v) V- (haoliz) V- (i), (29)
so that (23) yields
hihs
0 Vi(———v) =0. 30
VG (30)

In dimension d = 1, identity (29) (assuming that v — 0 as |z| — oo) uniquely
defines v as the shear mean velocity:
hihs
Op(————v
2 hi + ~vhs
However, such an explicit expression is not available in dimension d = 2. In that
case, we make use of the following operator, introduced in [8].

) = 81(h2ﬂ2) = —633(}7,1@1) if and only if v = ws — YUy . (31)

Lemma 3.3. Assume that ¢ € L>®(RY) be such that |¢|p~ < 1. Then for any
W e L2 R4, there exists a unique V € L?(R%)? such that

V- (14+6V) = V-W.

and IIV =V, where I = % is the orthogonal projector onto the gradient vector
fields of L?(R9)4.
Moreover, one has V = QE]W, where Q[¢] : L*(R%)? — L2(R9)? is defined by

Q] : U = Y (=)™ (T(EIL)) " (IT0).

Furthermore, if ¢ € H*(RY) and W € H*(RY)4 with s > to + 1,tg > d/2, then
QE|W € B (RY? and
1
< s, —————— .
AWy, < O (Il =) W]

This allows to define v as the unique gradient solution to (29).

Definition 3.4. Let ¢ € L>=(R?) be such that €[(|z~ < 1 and |¢ — Bb|r~ < 671,

so that b )
1he .
= 14§, ith w < 1.
h1 + vhs ’Y+(5( f) W |£|L

Then we define v as the unique gradient solution to (29); or, in other words,
v = —(y+8)Q[(hur) = (v +8)Q[¢](hotiz) -
Note that the condition |£|r~ < 1 is ensured by the following:
¢ (v + 0)hiho 11— hi(6hg = 1) +vho(hy = 1) 1— hi(2 = 6hg) + vha(2 — h1)
hi + vho hy + vhe hy + vhs
and €|(|p~ < 1 yields 0 < h; < 2 whereas |e( — 8b|p~ < §~! yields 0 < hy < 2571,

)
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Remark 2. In the one dimensional space (d = 1), one has II = Id, and one can
check that the operator Q simply reduces to Q[¢]W = ﬁw, so that one recovers

—hgv _ hlv

— Uy = ——— .
hl —+ ’}/hg 2 h1 + ’7h2

Note also that in that case, conditions €|(|r~ < 1 and |e — Bb|r~ < 6—! may be
replaced by the slightly less stringent non-vanishing depth condition: hy = 1—e( > 0
and hy =61 +eC — Bb > 0.

v = Uy —yu; and u; =

Let us emphasize again that in the case d = 2, there is no reason to think that
v = Tz — Uy holds, even with precision O(u); and in particular that @y — vu;
is a gradient vector field. In the same way, one would like to write, seeing (29),
Uy = 5Q[€6C](h1hfﬁl2 v) and Uy = —Q[—e(](hfjr'ﬁw v); but unfortunately, it is not
clear that Wy, uy are gradient vector fields (as a matter of fact, their second or-
der expansion tends to show that it is not true). However, one has the following

expansion:

Proposition 7. Let s > to+ 1, to > d/2, ¢ € L} (R?), V) € HF/2(RD and
¢, b€ H¥5(R?) be such that

Jho > 0 such that 1—6|C|L002 ho > 0, %—|Bb—eC|Lw2 ho > 0.

Then one has

Vo — ]y, + | — @y <pM(s+2)|[VY| ., (32)

|VH" ) — g, + [0 — G2, < puM(s+7/2)|VY|,.0s  (33)

|V — . — pQl—eC](haTh1,00tn)| . < p*M(s+4)|V|,., (34)
|VH" ) — Ty — péQ[6eC](haTlha, Bbli2)| ;. < p*M (s +11/2)|V| .05, (35)

where we denote u; = —Q[—e(] (hfjffﬁtz v), Uy = 59[564}(,}1}122}]’2 v).

Proof. The first estimate follows from

hih

V-(hiVY) = V~(h1ﬂ1)+V~(h1(V¢—ﬂ1)) = —V~(172v)+v~(h1(vw—ﬂ1)),

hi +~ha
where we used identity (29). Consequently, Lemma 3.3 yields

hihs _
Vi = =Q[—el](—————v — hi (VY — .
v = Al — (Vo — @)

The control of |V¢ — ’ e as in estimate (32) is now a consequence of Proposi-
tion 4, and the continuity of the operator 9 expressed in Lemma 3.3. The control
of |H1 — 171‘ - 1s then deduced, using once again Proposition 4 and triangular

inequality. Estimate (32) is proved.

Estimate (33) is obtained in the same way, but using this time the control of
|ﬂg = VH“’51/J|HS displayed in Proposition 5.

Following the same strategy one order further, yields

V- (hlvw) = V- (hlﬂl) + HJV . th[hl, O]ﬂl +V- (hl(Vw — Uy — ,LLT[hl, O}ﬂl))

hiho
T () Tl 09012 )

hih
+V. (h1(v¢ — 1y — pT [y, 0]t ) + phy T ke, 0]{@; 4+ Q[—€(] (hlj'i’jhgv) })
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The last term in the identity above is estimated in part thanks to Proposition 4,
and in part thanks to the first order estimate (32). Estimate (34) then follows as
above from the definition and continuity of the the operator £Q; see Lemma 3.3.

Estimate (35) is obtained in the same way, and we omit the detailed calculations.
O

One deduces from Proposition 7 the following approximate equation equivalent
o (24) (withdrawing again O(u?) terms):

0u (2 =71 -+ (3906e)(ha T [ha, BbJiz2) — 1Q[—eC] (i Tlha, 0)i)) ) + (3+8)¥¢
+ £9(1(1d+u0R5eChaTTha, Bb]) ol — 7|14+~ eClhn T [ha, 0)) a2

— ey - TEEVIAIO) ) (ag)

Bo €\/1
where we denote u; = —Q[—¢(] (hlhj’}’l‘/th v), Uy = 69[ed(] (hhjr}}yi v), and

(= hoV -z + B(VD) - (@2))” — (V@)

5 .
Proposition 8 (Consistency). Let UP = (¢P,9¢P)" be a family of solutions to the
full Euler system (5) such that there exists T > 0, s > 0 for which (P, VyP)T
bounded in L°°([0,T); Hs*N)+1 (N sufficiently large), uniformly with respect to
(u,€,8,7) = p € Psw; see Definition 1.1. Moreover, assume that b € H**N and

NS —
NO —

1
Jho > 0 such that 17€|C|Loo > hy > 0, 5= |ﬂb*€C|LOC > ho > 0.
Define v* through Definitions 5.2 and 3./. Then (CP,v*)T satisfies (30) and (36),
the latter up to a remainder term, R, bounded by

HRHLOO([(),T);Hs)d < p?C,

thh C = C(hala ,U/maxy 61;3117 (Smaxa ‘b|Hs+n) ’(<p7 va)‘r |’Loo([07T);HS+N)d+1 )7 uniform

with respect to (p,€,6,7) € Psw.

The Proposition is obtained as in the proof of Proposition 6, but using the
asymptotic expansions of Proposition 7; we omit its proof.

Unidimensional case (d = 1). Recall that in the one dimensional space, one

has simply
(v +0)Q[]V £ hs Q[-«(V = h1V and 0Q[0eC]V = h—ZV,

for any V € L%(R), and denoting h; = 1 — ¢( and h2 = 6! + €. In particular,
one can check that u; =u; = h_liiiﬂfz and Ug = Uy = The system (30),(36)
thus becomes (withdrawing O(u?) terms)

h1h2 v ) -0
hy + ~vhe 7

1 1

h1 +’Yh

¢ + o

(37)

O (v + T Tha, B (5255) — iy TR0l GE2) ) + (v +8)0uC

g, ((n)2=a(hy) _ 6 s 0 (Revm0)
33:(WU2) = ped,RY —7]3—()77
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where we denote

we _ 1o hy v hy v 2 7 —hy v (|2

Ry" = 2( hQaw(hqu’th)+ﬁ(amb)<h1+’yh2)) Z(hlam(h1+’yh2))
hl v hlv _h2U —hgv

- (h1+7h2)ﬂh2’5b](h1+7h2) +7(h1+vh2)T[h1’O](h1+7h2)'

If, additionally, one assumes the bottom is flat (by setting 8 = 0), then one
recovers the following system, as already introduced in [23]:

8¢ + 800(#%”) — 0,

— € h? — ~vh2
o(v + uQlhn,halv) + (v+8)0uC + 5éam((,111+7jh22)2|v|2)

— Or €
= pedy (R[h1, holv) — %w,

(38)

where we define:

— ! . h V 5 hy V
QU ho]V = 3h1hs <h18w<h28’c(h1+*yh2)) + 7}‘2895(’“8%% +7h2))>’

o B 1 hl 1% 2 hg Vv 2
Rl ho]V 2((”2‘%(hl+m>) B ’y(hlﬁx(fhﬂ-’ﬂlz))>

1V (hig(ag V \N _ hag (150 haV
S F s <h26””<h2ax(h1+7h2)) 7hla’ﬂ(hlaﬂv(m+fyh2))>'

Proposition 8 thus generalizes the consistency result obtained in [23, 24] to the
case d = 2, and to non-flat topography.

4. Lower order models. The system of equations (30),(36) is very broad, in the
sense that it has been obtained with minimal assumptions: allowing d = 1 and
d = 2, non-flat topography, and in the shallow water regime of Definition 1.1. It is
justified by a consistency result (Proposition 8). As argued in the introduction, the
consistency result alone is not sufficient to fully justify a model. In particular, its
well-posedness should be confirmed. As a matter of fact, contrarily to the water-
wave case [3], the well-posedness of the Green-Naghi model in the bi-fluidic case
is not clear, and similar systems have been proved to be ill-posed; see [39] and
discussion in [17]. In the following subsections, we show that existing models in the
literature directly descend from our Green-Naghdi model (30),(36), after additional
assumptions (typically, restricting to d = 1, flat bottom, and/or more stringent
regimes), or with a lower precision. Their justification in the sense of consistency is
therefore a direct application of Proposition 8, and stronger results (well-posedness,
convergence) are stated when available.

4.1. The shallow water (Saint Venant) model. In this section, we consider
only the first order terms in equation (36) (equivalently, we set p = 0; this corre-
sponds to the assumption that the horizontal velocity field is constant throughout
the depth of the fluid). The system (30),(36), withdrawing O(u) terms, is now
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simply
hth v
8t< + V(h1+’yh2) = 07

(39)
iz — i) + (v+0)VC + §9(|iaf? i) = FLVAC,

where we recall that hy = 1 —€(, ho = 6 '+ €(, 1y = —D[—eC](hferisz) and

g = 09Q[ed(] (hh}th v), where the operator 9 is defined in Definition 3.3.
A similar system is obtained when using a different velocity variable, such as the
shear velocity at the interface V = VH*%) — 4V1). In that case, one obtains the

following [8]:

¢ + V- (mRl«]V) = 0,
WV + (7+)VC + 5T(IV =RV - IRV ) = FEVAC,

(40)

where R is defined similarly as 9: R[e(]W is the only gradient solution to
V- ((h1 +vho)R[e(]W) = V- (hoaW) .
System (39) and system (40) are equivalent up to order O(y). In fact from Propo-
sition 7, one has V = s — vy + O(p), and
-V ((h1 + ’yhg)ﬂl) =-V- (hlﬂl) - ’}/V . (hzﬂl)
=V (hV)+0(p).

Using the fact that u; is a gradient vector and the definition of operator R[e(], we
deduce that —u; = R[eC]V + O(p) and thus —V - (h1t1) = V- (i R[eC]V) + O(w).
The definition of 4y implies now the equivalence between (39); and (40);. In the
same way to obtain the equivalence of (39)2 and (40) up to order O(p): we just

use the two fact u; = —R[eC]V + O(p) and w2 =V — yR[e]V + O(p).
In one dimension (i.e. d = 1), both (39) and (40) read

hah
8t€ + 8x(h11+2’yz2> - 07

o[ h?—yh3 (41)
O + (1 +8)0:C + 50 (Bl = HOC

System (40) has been derived and justified in the sense of consistency in [8], in
the case of a flat bottom, and without surface tension. An equivalent consistency
result clearly holds for (39) (as a consequence of Proposition 8 in particular). More
precisely, one has

Proposition 9 (Consistency). Let s > 0 and U? = ((P,¢?) be a family of solutions
of the full Euler system (5) for which ((P,VP) T is bounded in L ([0, T); HTN)d+1
with sufficiently large N; and such that there exists hg > 0 with

1
h151—6<p2h0>0, h255+€cp2h()>0.

Define v as in definition 3.4, and V.= VH*%) — V).
Then (¢,v) T satisfies (39), up to a remainder (0, R1)"; and (¢, V)7 satisfies (40),
up to a remainder (0, Rz)"; with

121

|L°°([0’T);H5)d + HRQHLOO([O’T);HSW < Cpu,
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with C' = C(hal, Mmax I;iln’ §max; H(Cp, Vz/}p)THLOO([O T).Hs+N)d+1)f um'form with re-
spect to the parameters p € Psyy .
Let us now mention that the well-posedness of the Cauchy problem for (40)

(without surface tension and bottom topography) has been studied in [27], and we
reproduce below their result (see [27, Theorem 2]).

Theorem 4.1 (Well-posedness). Let d = 2 and Bo™' = 3 = 0. Let s > tg + 1,
to > 1, and U° = (¢°, V)T € H*(R?)? be such that there exists ho > 0 with

: 1 EV+ (1 —1)R[V?
mln{l—e(o o =—€|C® v+ —y }Zho>07
’ ‘L 5 | ’L 1—€‘CO’LOO+’Y(5_1+€’CO‘LOO)
(42)
and curl V® = 0. Then, there exists Tmax > 0 and a unique mazimal solution

U= (V)" € C(0, Tmax/€); H*(R?)3) to (40) with initial condition U°.
Remark 3. In the case d = 1, the conditions (42) can be replaced by

1 62(h1 + h2)2

hi=1—¢( > h, 0, hy=— > h 0 0—y————r

1 €C = ho>0, hy 5+€C_ 0>0, v+ 7(h1+7h2)3

which is sufficient to write (41) as a symmetrizable quasilinear equation; thus clas-
sical techniques apply. See [27, Theorem 1] for the precise result.

|U|2 > ho > 07

4.2. A Green-Naghdi type model in the Camassa-Holm regime. This sec-
tion is limited to the so-called Camassa-Holm regime (that is using additional
assumptions € = O(,/n); see Definition 1.1), flat bottom case (f = 0) and one
dimensional space d = 1. Moreover, we neglect the surface tension component
in our model. All the estimates are now understood uniformly with respect to
(/1’567577) € Pcu. _

In that case, one can easily check that the following approximations hold for Q,
R defined in section 3.3

Qlh, holV = —vOV — 6%5 (8= )V + (a+28)0:(C0:V) = BCOTV)

+ O(),

Rlh1, ho]V = « (;(aggvf + ;Vagv) + O(Vn)

with )
po L0 o1y g g2 00—
36(y +96) (y+0)? d(y+0)3

Plugging these expansions into system (38) yields a simplified model, precise

with the same order of magnitude as the original model (that is O(u?)) in the

Camassa-Holm regime. Furthermore, after several additional transformations, one

may produce an equivalent model (again, in the sense of consistency) which pos-

sesses a structure similar to symmetrizable quasilinear systems, thus allowing its full

justification. The following system of equations has been introduced and justified
by the authors in [24].

hihs
0 O | ———— =0,
¢+ (h1 +,yh211)

(43)

(44)
TleC] (Opv + €sv0v) + (7 + 0)q1(e€)0xC

2 .12
+5¢1(e€)0, (%W - g\v‘z) = —pe3ad,((0:v)?),
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where

TV = acQV — wda(a(e000,V ), (45)

with ¢;(X) =14+ k; X (i = 1,2) and k1, ka,< are defined by :

Y+ -y 1-n (v+9)B 62—~
= —(28-0a) =2 - = = 4
K1 31/(5 @) ~to 1+40 K2 B 374_5;(6)
20— 1—7 52—

= = 26 - . 47
N R D RO o

We recall that the shear mean velocity is uniquely defined in the case of one dimen-
sion, d =1 (see (31) and (13)) by
hl h2 )

1
nlalg - _
LG ey 8I<h1 o

System (44) is fully justified as an asymptotic model by the following results
(see [24] for a more precise statement):

Proposition 10 (Consistency). Let UP = (¢P,P)T be a family of solutions of the
full Buler system (5) for which (CP,0,4")" is bounded in L>([0,T); H*TN)2 with
s > 0 and sufficiently large N, and uniformly with respect to (u,€,0,7v) =p € Pon;
see Definition 1.1. Moreover, assume

(48)

1
dho1 > 0 such that hy=1-— ECP >ho1 >0, hy= g + GCP > hg1 > 0. (Hl)

Define vP as in (48). Then (CP,vP)T satisfies (44), up to a remainder (0, R)T,
bounded by
2 —1
HRHLOO([O,T);HS) < (B +Bo) C,
with C = C(h6117 Mv Hmaxs ﬁ7 6max7 | (Cpa amwp)—rHLoo([07T);Hs+N)2))) uniform with
respect to the parameters p € Pop.

System (44) is well-posed (in the sense of Hadamard) in the Sobolev-based energy
space X* = H*(R) x H**!(R), endowed with the norm

VU= (o) € X5 U = [ + olhs + pldavli,
provided that the following ellipticity condition (for the operator ¥) holds:
dhge > 0 such that in% (1 + EKJQC) > hga >0 ; in& (1 + 6%31C) > hga > 0. (H2)
zE rE

Theorem 4.2 (Existence and uniqueness). Let so > 1/2, s > so + 1, and let
Uo = (Co,v0) " € X* satisfy (H1),(H2). Then there exists a mazimal time Tpax >
0, uniformly bounded from below with respect to p € Pcy, such that the system
of equations (44) admits a unique solution U = ((,v)T € C°([0, Timax/€); X*) N
CL([0, Tiax/€); X571 with the initial value (¢,v) =0 = (Co,v0) and preserving the
conditions (H1),(H2) (with different lower bounds) for any t € [0, Tiax/€)-

Moreover, for any 0 < T < Thax, there are constants independent of p € Pop:
Co, M = C(hgt's hoy s Omas, Oy M, T, {UO such that one has the energy esti-
mate

[xc-);
T

Vo<t< =,
€

U)o + 10U )| gums < Coert
If Thhax < 00, one has
Tinax
U, )|xs — 00 as t— —=,
€
or one of the two conditions (H1),(H2) ceases to be true as t — Tax/e€.
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Proposition 11 (Stability). Let s > so + 1 with so > 1/2, and let Uy, =
(Coyl,v()’l)T € X® and Uy = (<072,’U072)T € X5t Under the assumptions of
Theorem 4.2, let U; be the solution of system (44) with U, |y=0 = Uy ;.Then there
ezists T=1, X, Co = C(hgy', hoy » Smaxs Opmins M, [Uo 1| o+ [Uo 2l xs41) > 0 such that

T
YVt € [O, z], |(U1 — UQ)(t < Coee)\Tt’Ul,o — U2’0|X'—*"

’ .) |Xs

Finally, the following “convergence result” states that the solutions of our system
approach the solutions of the full Euler system, with as good a precision as p (and
Bo ') is small.

Theorem 4.3 (Convergence). Let p € Poy and U° = (¢°,9°)T € H*N N
sufficiently large, satisfy the hypotheses of Theorem 5 in [37] (see Theorem 2.2), as
well as (H1),(H2). Then there exists C,T > 0, independent of p, such that

e There erists a unique solution U = ((, )" to the full Euler system (5), defined
on [0,T] and with initial data (¢°,¥°)" (provided by Theorem 5 in [37));

e There exists a unique solution U, = (Ga,va) ' to our new model (44), defined
on [0, T] and with initial data (¢°,v°) 7, with v° = v[(°,¢°] defined as in (48)
(provided by Theorem 4.2);

o With v = v[(,v], defined as in (48),0ne has

1¢:0) = (Carva) || o (o 17,x0) < C1® +Bo™ ).

The above results hold on time interval t € [0,T/¢] with T bounded from below,
independently of p € Pcm, provided that a stronger criterion is satisfied by the
initial data. This corresponds to setting o = 1 in Theorem 2.2; see criterion (5.5)
and Theorem 6 in [37] for the precise statement.

Remark 4. The new model allows to fully justify any well-posed system, consis-
tent with our model (44), thanks to an a priori estimate between two approximate
solutions of our system, established in [24] (see Proposition 7.1 and Theorem 7.5
therein). This is used in particular to obtain the convergence results of the unidi-
rectional and decoupled approximations stated in Section 4.4.

Remark 5. The previous results concerning (44), where the surface tension effects
are neglected, still hold when surface tension is taken into account. These results
will be precisely stated in a forthcoming paper.

4.3. Boussinesq models. In this section, we restrict ourselves to the case of flat
bottom (S = 0), and unidimensional case (d = 1). Moreover, we restrict the regime
under study to the so-called long wave regime, where ¢ = O(u); see Definition 1.1.
We also assume that the surface tension term is at most of size Bo™* = O(p), with
the following:

_ g(p2 — p1)di el

Bo~ ! = [LbO_l with bo= bomin, 00).
o

In that case, when withdrawing O(u?) terms, one can easily check (see the proof
of Proposition 12, below for detailed calculations) that the system (38) becomes a
simple quasilinear system, with additional linear dispersive terms:

0 U — uA020,U + Ag0,U + €A[U]0,U + pA0°U = 0, (49)
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-7 (%)

0 0 0 0
A = <O 1446 > ; Ap = (_w(s 0) .
356(y+9) bo

The full Euler system is consistent with this model, with the same precision as the
Green-Naghdi models, provided that the assumptions of the long wave regime, and
in particular ¢ < My, hold (in addition to the aforementioned 8 = 0,d = 1); see
Proposition 12, below.

with

Boussinesq systems with improved frequency dispersion. Let us emphasize
that system (49) is only one of a large family of Boussinesq-type models, that are
consistent with precision O(u?). Briefly, one can make use of

e Near-identity change of variable. Define, for 61,602 > 0, the following
v, 0, = (Id—p002)~(1d —pbhed?)v.

When rewriting (49) with respect to this new variable, vg, g,, and withdrawing
O(p?) terms, one obtains

Uy — A 020Uy + Agd,Up + €AlUgl0,Uy + pAqs03Us = 0,  (50)
with Up = ((, ve,.0,) " and

A= (B et g) ,12:< 0 ;ﬁz>.
w0 B2 oy +4) 0
e The Benjamin-Bona-Mahony trick. Using that 0,Uy + Ag0,Up = O(u), one
has for any A1, Ay € R:
oy = (1_0Al Y m) Uy — (Aol fQ) 490Uy + O(1).
Plugging this approximation into (50) yields, withdrawing again O(u?) terms,
Uy — nA1020,Us + AgdUp + €AlUpldnUpy + pdsdUs = 0,  (51)

_ ((1 — A1)02 0 )
= 0 (1= X2) (55535 +61) )

Ay
' 0
T\ L (1 0) [Az(ggg—f&ﬁel)—ez] 0 '

The above transformations are useful, for example, with the aim of improving the
frequency dispersion, that is choosing the coefficients so that the dispersion relation
fits the one of the full Euler system with high precision, even for relatively large
u (using truncated Taylor series or Padé approximant). It may also be useful for
mathematical purposes to generate such a large family of models, which are all
equivalent in the sense of consistency, but may have very different properties (well-
posedness, stability, integrability, etc.); see, e.g., [13] and references therein. We let
the reader refer to [38] for a detailed account in the water-wave case.

In [44], Saut and Xu offer an in-depth study of the well-posedness of Boussinesq
systems similar to (51) in the water-wave setting (thus with different coefficients).
It would be interesting, but out of the scope of the present work, to adapt the
techniques developed therein to our bi-fluidic systems.
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A fully justified symmetric Boussinesq model. Another strategy for con-
structing a model with improved properties, that has been used in [7, 22] and that
we develop in the following, consists in symmetrizing the original model (49), up to
precision O(pu?). Define

_(y+d 0 ¢] _ 6% —~ <0 0) :<(7+5)(1+blo) O)
S°<0 Via)’SM(Wé)QOC’T 0 =5/

Multiplying (49) with (So + eS[U] — pT'0?) and withdrawing O(u?) terms yields
(So + €S[U] — pS103)0:U + (X0 + €S[U] — 1020, U = 0, (52)

with the following symmetric matrices and operators:

_ (01 ¢] _ ¢ ¢ = (v ¢
S I R e =

v+ 8)(1+ L 0
S1=5A41+T= <( )é 2 S R E57. 0 I
¥+9 38(v+6)?
0 1+ 2+
21 = TA() - S(]A2 = (1 + é Ob0> .

This new model is fully justified, in the sense described in the introduction. Let us
detail the consistency, well-posedness and convergence results below.

Proposition 12 (Consistency). Let UP = ((P,4P)T be a family of solutions to the
full Euler system (5) with 8 =0 and d = 1, such that there exists T >0, s > 0 for
which (CP,0,¢%) T is bounded in L°°([0,T); H**N)? (N sufficiently large), uniformly
with respect to (j,€,6,7) = p € Prw; see Definition 1.1, and bo™ ' < bor;iln,
bomin > 0. Moreover, assume that

1
Jhg > 0 such that hi=1—€e® > hy > 0, thg—i—eCpZ ho > 0.

Define vP = Uy — i1 ; see Definition 3.2. Then (CP,vP)T satisfy (49) (resp. (52))
up to a remainder term, Rp (resp. Rg), bounded by

1Bl 1 oy + (Bl oy < 1€
with C' = C(halﬂ bor:lilnaﬂmaxz M 5_1 5max7 ||(CP’ azq/}p)—rHLOO([O,T);HS-%—N)Q); U’IlifOTm

» Ymin?

with respect to (u,€,0,7v) € Prw .

Proof. Let us first recall that since we assume d = 1, then defining v? = Uy —
~uy is equivalent as defining vP through Definition 3.4, but requires only the non-
vanishing depth condition hi, he > hg > 0, instead of the more stringent condition
of Definition 3.4. Let us also emphasize that system (30),(36) is ezactly (that is,
without any approximation) system (38), in the case § = 0 and d = 1. Thus, by
Proposition 8, we know that (¢P,vP)T satisfies (38) up to a remainder term, R,
satisfying

HRHLOO([(),T);HSV < u?C,

with C as in the Proposition 12.
Thus one only needs to check that the neglected terms from (38) in (49) and (52),
when using that e < Mpu, are estimated in the same way. Let us detail briefly.
We first claim that the following holds, for any s > 0 and with ¢q > 1/2:
hl h2 1 52 -

2 —1 —1
ke ~ 740 (v+5)2€qm < O s i [ g .- (53)
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The formal expansion (as powers of e() is easily checked, so that the estimate in
L norm is straightforward:

| hihs 1 5% — _ }(52—7)(1—7) (e¢)?

hi+~hy ~v+6 (v+6)2€dL°° - (Y+8)?2 m +7h2|Lm
52 C(hal,éma)mér;ilrﬂ C’L‘X’)'

The control in H? is slightly more elaborate, as h1, ho are not bounded in H?, since
they do not decrease at infinity. We let the reader refer to [24, Lemma 4.5] to see
how this technical difficulty may be faced.
It follows from (53) that
h,l hQ 1 62 - 2
- v) = 0z + € ——=0,(Cv) + € Ry,
(h1+7h2 ) v+6 (7 +0)2 (¢v) !
Wlth ‘Rl ‘H‘s S C(h/aly 6max, 5r;iln7 |<|Hmax {tg,s}+1> U|Hmax{t0,s}+1)'
One obtains in the same way the following estimates:

IA

B—ah3 N o (87
8I(W'U ) = 3m(mv ) +€R2,
with |Ra| . < C(hy", Smaxs Omins [C] pramax (v, 415 | V] pmas (1061 11)> and
_ 1+~0 - _
0, (Qlha, halv) = —mazatv + €Rs 8I<|R[h1,h2]v) = Ry,
with ’R3’HS = C(halaémaxaﬁg;iln,|C|HSO+1,}&5<|H50,|’U|HSO+1,|8t’U|HSO) and with

|R4|HS = C(hy", Omaxs O |C|Hs0+17 |U|HSO+1), where sgp = max {{g, s} + 2.
Let us recall that estimates on 9;¢ and J;v may be deduced from estimates on
¢, v as they satisfy the full Euler system (5), allowing for a loss of derivatives.
Altogether, choosing N sufficiently large and since € < My when p € Prw, it
follows that (¢,v) " satisfy (49) up to a remainder term, denoted Rp, and bounded
by

HRB HL‘”([O,T);HS)?

< ||R|}Lw([O’T);HS)2 + € ||| R1| + |R2| + |Rs| + | R4 , < u?C.

|HL°°([0,T);HS)

One obtains similarly the estimate concerning the symmetric system (49), after
controlling the extra error terms:

HRSHLN([O,T);HS)? =< ||RB||L°°([O,T);HS)2

+ [[(eSIU] = nT &) (= nA1920,U + eAUN0,U + pA2030) | o (0 ysarey2-

This is easily checked if N is sufficiently large, and using again that ¢ < Mpu.
Proposition 12 is proved. O

In addition to its justification in the sense of consistency, one is able to fully
justify the symmetric Boussinesq model (52), thanks to its following properties:

1. The matrices Sy, X, S1, 21 are 2-by-2 symmetric matrices;
2. S[] and X[-] are linear mappings with values into 2-by-2 symmetric matrices;
3. Sy and S, are definite positive.

These properties allow to control a natural energy of the system:

E*(U) = (SOU, U) + 6( SUU , U) + u( 510U &CU),
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which is equivalent to the scaled Sobolev norm X fLH:

’ U |§(ﬁ+1 = ’ U ‘iISxHS + /J‘ .U ﬁ{SXHS’

provided that €U is sufficiently small, (for the nonlinear terms to be controlled).

The following results are a direct consequence of [22, Proposition 2.6 and 2.8]
(where the author deal with the case of internal waves with a free surface, so that
the system has four equations, but possesses the exact same structure), and we do
not detail the proof further on.

Theorem 4.4 (Well-posedness). Let U® € H*TY(R)?, with s > 3/2. Then there
exists a constant Co = C(61, 6max, M, bor;iln) >0 and eg = (C’0|U0‘Xs+1)_1 such
that for any 0 < € < €, there exists T > 0, independent of €, and a unique So-
lution U € C°([0,T/e); X3t )NC'([0,T/e); X3) of the Cauchy problem (52) with
Uli=o = U°.

Moreover, one has the following estimate for t € [0,T/€]:

{U0|X;’+1

1= Co|U®

HU|’L°°([0,t];X,‘ﬁ1) + HatU”Loc([o,t];X;) < Go (54)

XZ+1 et

A stability result similar to Proposition 11 holds, so that the symmetric Boussinesq
system is well-posed in the sense of Hadamard.

Theorem 4.5 (Convergence). Letp € Prw and U° = (¢°, 99T € HSTN(R)?, with
N sufficiently large, satisfy the hypotheses of Theorem & in [37]; see Theorem 2.2.
Then there exists C,T, ey > 0, independent of p € Pryw and Bo™* < ubo:niln , such
that for any 0 < e < €,

o There exists a unique solution U = ((,%) " to the full Euler system (5), with
B =0 and d = 1, defined on [0,T] and with initial data (¢°,¥°)T (provided
by Theorem 5 in [37]);

e The non-vanishing depth condition is satisfied for ¢ < €y, so that one can
define v = Uy — YU, with Uy, Uy as in Definition 3.2;

e There exists a unique solution Ug = ((p,vp)" to the symmetric Boussinesq
model (52), defined on [0,T] and with initial data ((°,v|i=0)" (provided by
Theorem 4.4);

e The difference between the two solutions is controlled as
2
H(Cav) - (CB’UB)HLW([O,T];X5+1) S C/J/ t.

The above results hold on time interval t € [0,T/¢] with T bounded by below, inde-
pendently of p € Prw, provided that a stronger criterion is satisfied by the initial
data. This corresponds to setting ¢ = 1 in Theorem 2.2; see criterion (5.5) and
Theorem 6 in [37] for the precise statement.

4.4. Scalar models. In this section, we are interested in the justification of scalar
asymptotic models for the propagation of internal waves (as opposed to all afore-
mentioned models, which consist in a system of evolution equations). The derivation
and study of such models have a very rich and ancient history, starting with the
work of Boussinesq [9] and Korteweg-de Vries [35] which introduced the famous
Korteweg-de Vries equation

Ou + cOzu + audzu + V@iu = 0,



SHALLOW WATER MODELS FOR INTERNAL WAVES 265

as a model for the propagation of surface gravity waves, in the long wave regime.
However, the complete rigorous justification of such models is much more recent [34,
45, 7] (see [22] for the bi-fluidic case).

One obvious discrepancy between scalar models such as the KdV equation and
coupled models, is that the former selects a direction of propagation (right or left,
depending on the sign of ¢). On the contrary, the first order approximation of
coupled models is a linear wave equation, which predicts that any initial perturba-
tion of the flow will split into two counter-propagating waves. This yields two very
different possible justifications for scalar models:

e Unidirectional approximation. One proves that if the initial perturbation (that
is the deformation of the interface as well as shear layer-mean velocity) is
carefully chosen, then the flow can be approximated as a solution of a scalar
equation. Physically speaking, this means that we focus our attention on only
one of the two counter-propagating waves after they have split.

e Decouled approximation. For a generic initial perturbation of the flow, we
approximate the flow as the superposition of two (uncoupled) waves, each
one driven by a scalar equation. This justification is of course more general
as for the admissible initial data, but its precision is often much worse, as
controlling the coupling effects between the two counter-propagating waves
(and in particular their secular growth), which are neglected in the decoupled
approximation, is arduous.

A major difference between the water-wave case and the bi-fluidic case is that in
the latter, there exists a critical ratio (6> = ~y) for which the first order (quadratic)
nonlinearity of our models vanishes; see the Boussinesq system (49) for example.
This allows to consider a regime with greater nonlinearities than the long wave
regime (and in particular the Camassa-Holm regime; see Definition 1.1), and thus
motivates higher order models than the Korteweg-de Vries equations, in order to
recover the highest possible precision. Here, we focus on the so-called Constantin-
Lannes equation:

(1— ppd*ow + ea1vdv + anv?dv + Eazvdv
+ prdv + pedy (k1vd2v + k2(0,v)?) = 0, (55)

where 8, «; (i = 1,2,3), v, k1, K2, are fixed, given parameters . This equation has
been studied and justified as a model for the propagation of unidirectional surface
gravity waves in [16]. In particular, the well-posedness of the Cauchy problem
for (55) in Sobolev spaces is proved, provided § > 0.

The justification of both the unidirectional and decoupled approximation in the
bi-fluidic case, in the sense of consistency, have been worked out in [23]. In what
follows, we restrict to the Camassa-Holm regime and to the Constantin-Lannes
equations for the sake of simplicity, but more general results may be found therein.
The full justification, and in particular the convergence results stated below is then
a consequence of the properties of the Green-Naghdi type model introduced by the
authors in [24], and recalled in section 4.2. We let the reader refer to the afore-
mentioned references for more details, and disclose the statements below without
further comments.

Definition 4.6 (Unidirectional approximation). Let (° € H*(R), s > 5/2, (6, ) €
R?, and set parameters p = (u,€,8,7) € Pop, as defined in Definition 1.1. Then
the Constantin-Lannes unidirectional approzimation, (Cy,vy), is defined as follows.
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Let ¢, be the unique solution of
OC + 02C + €01C0:C + €202¢20,¢ + Ea3P0,C + pl 03¢ — v 020,¢
+ pedy (KGO + 15(0.0)2) =0, (56)

with (y |=0 = ¢°, and parameters

_ 38— _ 2L(%—y)? g8ty _ T8 —y)® 3782 (8%+) + 5(5*—)
01 =355 2= fﬁ?@é) RS 75 A3 = 1J(r Jga)ﬁ 1(+9)2 e
0N _
vpt= (1-0-2X) 65(7 15)7 v = (0+N) 65(716)7
0N _ (14—6(040)(8°=1)(14+796) _ _1— o _ (17-120)(8*—7)(14+16) _ _1—~
ko = 245 (~+9)2 8(v+8): 2= 185(7+9)2 2(7+8)°

It is assumed that 6, A are chosen such that ut’ > 0, so that (56) is well-posed, and
¢(t,-) € H® is uniquely defined over time scale O(1/¢); see [16, Proposition 4].

Then define v, as vy, = hl}:xzj{u] with

v[¢] = c+e%g2+62§<3+e3f<4+uu8§c+ue (K1COZ¢ + K2(0:0)%), (57)

0,0
where parameters oy, ag, ag are as above, and v = v00 k1 = Ky, Ko = K.

Theorem 4.7 (Convergence of the unidirectional approximation). Let p € Pog
and U° = (%, ¢°)T € H*+tN(R)2, with N sufficiently large, satisfy the hypotheses
of [37, Theorem 5] (see Theorem 2.2) as well as the ones of Theorem 4.2. De-
fine v° = WY — yu?, with u),uy as in Definition 3.2, and assume that (¢°,v°)7
satisfies (57). Then there exists C,T > 0, independent of p, such that
o There exists a unique solution U = ((,1) " to the full Euler system (5), with
B =0 and d = 1, defined on [0,T] and with initial data (¢°,°)" (provided
by Theorem & in [37]); We denote v = Us — YUy the shear layer-mean velocity
with Wy, Us as in Definition 5.2.
e The Constantin-Lannes unidirectional approzimation, (C,,v,)", with initial
data (¢°,v°) 7 is uniquely defined for t € [0,T] as described above.

e The difference between the two solutions is controlled as
|| C7 CU?’UU HL‘X’([O T] H‘S)Q S C(MQ + Bo_l)t.

If the initial data satisfies a stronger stability hypothesis (see [37, Theorem 6]), then
the result holds for large time t € [0,T /€], with T independent of p.

Definition 4.8 (Decoupled approximation). Let (¢°,v°)T € H*(R)?, s > 5/2, and
set parameters (u, €, 0,7) € Pcou, as defined in Definition 1.1, and (A, ) € R%. The
Constantin-Lannes decoupled approzimation is then

Uor = (v+(t,m B 4v (L +t),(v+6) vyt —t) —v_(tx —l—t))),

where vy [;—0 = 3(¢° + %=) 1=0 and vy = (1 £ pAd?)"1v} where v} satisfies

7+(5
v} £ eav}dv) £ Ean(v))?00) + EafN (W) 0v)
+ wlrPvy — w20} + ped, (nf A} 820} + kG (8,02) %) =0, (58)

with parameters given by

_ 38—y 76(5+1)? §2(5+1)%y(1—7)
=550, 2= 3T, = ST
o — 6 1446 Y JON = 1=0 1490 DY
, LT 6006+ T T 6 800+
kI = (A48 (6" =) 5—0 _ (1—v) )\36 —y Kl = (A4+v8)(6°—v) 5—0 _ (A=)
1 =  36(v+9)? 4 6("/+6) 2 y+4 2= " 35(y+96)* 4 12(y+96) *
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above, it is assumed that 6, A are chosen such that v/ > 0, thus (58) is well-

posed.

Theorem 4.9 (Convergence of the decoupled approximation). Let p € Py and

let

U = (%" T € HSN(R)2, with N sufficiently large, satisfy the hypotheses

of [37, Theorem 5] (see Theorem 2.2) as well as the ones of Theorem /.2. Then
there exists C,T > 0, independent of p, such that

o There exists a unique solution U = ((,1) " to the full Euler system (5), with
B =0 and d = 1, defined on [0,T] and with initial data (¢°,°)T (provided
by Theorem 5 in [37]). We denote v = Uy — yuy the shear layer-mean velocity
with Uy, Uz as in Definition 3.2.

e The Constantin-Lannes decoupled approzimation Ucp = (Cq,vq) T with initial
data (C°,v|i=0) " is uniquely defined for t € [0,T] as described above.

e The difference between the two solutions is controlled as

1¢,0) = (€t va)l| o (o 1ysey < € (20 min(t,t7%)(1 + eot) + Bo™'t),

with g9 = max{e(6? — ), u}.

e Moreover, assume that the initial data is sufficiently localized in space, that is
more precisely (14 |-12)0%¢° and (1 +|-|*)0%v |;=o € H*(R), k € {0,...,7},
then one has the improved estimate

H(C,’U) — (Cd’vd)HLw([O,T];HSP < C (50 min(t,l)(l + Eot) + BOi1 t).

The first three items hold for large time t € [0,T/e], with T independent of p,
provided that a stronger criterion is satisfied by the initial data (see hypotheses
in [37, Theorem 6]). In that case, the last item is valid for timet € [0, T/ max{e, u}].
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