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Well-posedness of the Green-Naghdi and
Boussinesq-Peregrine systems

Vincent Duchêne
Samer Israwi

Abstract. In this paper we address the Cauchy problem for two
systems modeling the propagation of long gravity waves in a layer of
homogeneous, incompressible and inviscid fluid delimited above by a
free surface, and below by a non-necessarily flat rigid bottom. Con-
cerning the Green-Naghdi system, we improve the result of Alvarez-
Samaniego and Lannes [5] in the sense that much less regular data
are allowed, and no loss of derivatives is involved. Concerning the
Boussinesq-Peregrine system, we improve the lower bound on the time
of existence provided by Mésognon-Gireau [42]. The main ingredient
is a physically motivated change of unknowns revealing the quasilinear
structure of the systems, from which energy methods are implemented.

1. Introduction

1.1. Motivation
The Green-Naghdi system1 (sometimes called Serre or fully nonlinear Boussi-
nesq system) is a model for the propagation of surface gravity waves in a
layer of homogeneous incompressible inviscid fluid with rigid bottom and
free surface. It has been formally derived several times in the literature,
in particular in [48, 51, 25, 40, 47], using different techniques and various
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1The Boussinesq-Peregrine system can be viewed as a simplification of the Green-
Naghdi system for small-amplitude waves, which is particularly relevant for numerical
purposes; see [45, 32, 42, 7]. This work is dedicated to the Green-Naghdi system and
we only remark incidentally that our strategy may also be favorably applied to the
Boussinesq-Peregrine system described thereafter.
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hypotheses. For a clear and modern exposition, it is shown in [33] that
the Green-Naghdi system can be derived as an asymptotic model from
the water waves system (namely the “exact” equations for the propaga-
tion of surface gravity waves), by assuming that the typical horizontal
length of the flow is much larger than the depth of the fluid layer —that
is in the shallow-water regime— and that the flow is irrotational. Roughly
speaking, a Taylor expansion with respect to the small “shallow-water pa-
rameter” yields at first order the Saint-Venant system, and at second order
the Green-Naghdi system (see for instance [39] for higher order systems).
As a relatively simple fully nonlinear model (that is without restriction
on the amplitude of the waves) formally improving the precision of the
Saint-Venant system, the Green-Naghdi system is widely used to model
and numerically simulate the propagation of surface waves, in particular
in coastal oceanography. It would be impossible to review the vast liter-
ature on the subject, and we only let the reader refer to [6, 10] for an
introduction and relevant references.

In this work, we are interested in the structural properties and rigorous
justification of the Green-Naghdi system. The derivation through formal
Taylor expansions of Bonneton and Lannes [33] can be made rigorous [32,
Prop. 5.8]: roughly speaking, any sufficiently smooth solution of the wa-
ter waves system satisfies the Green-Naghdi system up to a quantifiable
(small) remainder. This consistency result is only one step towards the full
justification of the model in the following sense: the solution of the water
waves system and the solution of the Green-Naghdi system with corre-
sponding initial data remain close on a relevant time interval. In order for
such result to hold, one needs of course to ensure the existence and unique-
ness of a solution to the Green-Naghdi system in the aforementioned time
interval for a large class of initial data; one also needs a stability property
ensuring that the two solutions are close. These two results typically call
for robust energy estimates on exact and approximate solutions.

Somewhat surprisingly, the well-posedness theory concerning the Cauchy
problem for the Green-Naghdi system is in some sense less satisfactory
than the corresponding one for the water waves system. Again, the liter-
ature on the latter problem is too vast to summarize, and we only men-
tion the result of [4, 27] and [32, Theorem 4.16]. Indeed, the latter pay
attention to the various dimensionless parameters of the system, and in
particular obtain results which hold uniformly with respect to the shallow-
water parameter. The outcome of these results is that provided that the
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initial data is sufficiently regular (measured through Sobolev spaces) and
satisfy physical assumptions —the so-called non-cavitation and Rayleigh-
Taylor criteria— then there exists a unique solution of the water waves
system preserving the regularity of the initial data. Moreover, the maximal
time of existence may be bounded from below uniformly with respect to
the shallow-water parameter; see details therein. Such result is very much
nontrivial as the limit of small shallow-water parameter is singular in some
sense. Similar results have been proved for the Green-Naghdi system in
horizontal dimension d = 1 in [38] (for flat bottom) and [29] (for general
bathymetries). An apparent obstruction prevents to implement the strat-
egy in dimension d = 2; see the discussion therein. Alvarez-Samaniego and
Lannes [5] proved an existence and uniqueness result in the general set-
ting and on the correct time-scale but their proof relies on a Nash-Moser
scheme, and as such involves a loss of derivatives between the regularity
of the initial data and the control of the solution at positive times. The
main result of this paper is to show that this loss of derivatives is in fact
not necessary, and that the Cauchy problem for the Green-Naghdi system
is well-posed in the sense of Hadamard in Sobolev-type spaces.

1.2. Strategy

Let us now introduce the system of equations at stake. In order to ease the
discussion and notations, we restrict the study to the horizontal space X ∈
Rd with d = 2, although the results are easily adapted to the setting d = 1,
thus yielding another proof of the result in [29]. The non-dimensionalized
Green-Naghdi system may be written (see [33, 32])


∂tζ +∇ · (hu) = 0,(
Id + µT [h, βb]

)
∂tu +∇ζ + ε(u · ∇)u + µε

(
Q[h,u] +Qb[h, βb,u]

)
= 0,
(1.1)

with h = 1 + εζ − βb and

T [h, βb]u def= −1
3h∇(h3∇ · u) + 1

2h
(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ β2(∇b · u)∇b, (1.2)
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and

Q[h,u] def= −1
3h∇

(
h3((u · ∇)(∇ · u)− (∇ · u)2)),

Qb[h, βb,u] def= β

2h
(
∇
(
h2(u · ∇)2b

)
− h2((u · ∇)(∇ · u)− (∇ · u)2)∇b)

+ β2((u · ∇)2b
)
∇b.

Here, the unknowns are ζ(t,X) ∈ R and u(t,X) ∈ Rd (representing respec-
tively the dimensionless surface deformation and layer-averaged horizontal
velocity), b(X) ∈ R is the fixed bottom topography (so that h(t,X) repre-
sents the depth of the fluid layer) and ε, β, µ are dimensionless parameters.

As aforementioned, by setting µ = 0 in (1.1), one recovers the Saint-
Venant system, which is an archetype of first-order quasilinear systems of
conservation laws. Our strategy in the following is to adapt to the Green-
Naghdi equations the well-known techniques — and in particular a priori
energy estimates — developed for such systems. Such energy estimates are
obviously not guaranteed, due to the presence of the additional third-order
nonlinear operators. The key ingredient of this work is the extraction of a
quasilinear structure of (1.1), from which energy estimates can be deduced,
and eventually a standard Picard iteration scheme can be set up.

Such a “quasilinearization” is also the key ingredient in the proof of the
local existence of solutions to the water waves system [32, Theorem 4.16].
However, the structure of the water waves system and the one of the Green-
Naghdi system look different, due to the fact that they use different un-
knowns. Indeed, the second equation in (1.1) describes the time-evolution
of the layer-averaged horizontal velocity, while the Zakharov/Craig-Sulem
formulation of the water waves system involves the trace of the velocity
potential at the surface. To our opinion, the main contribution of this work
is the demonstration that when expressed in a different set of variables,
the Green-Naghdi system possesses a structure which is very similar to the
water waves one; and that one can take advantage of this fact to adapt
the proof of the local well-posedness of the latter to the one of the former.

To be more precise, we work on another formulation for system (1.1):
∂tζ +∇ · (hu) = 0,
(
∂t + εu⊥ curl

)
v +∇ζ + ε

2∇(|u|2) = µε∇
(
R[h,u] +Rb[h, βb,u]

)
,

(1.3)
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where we denote curl(v1, v2) def= ∂1v2 − ∂2v1 and (u1, u2)⊥ def= (−u2, u1),

R[h,u] def= u
3h · ∇(h3∇ · u) + 1

2h
2(∇ · u)2, (1.4)

Rb[h, βb,u] def= −1
2

(u
h
· ∇
(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u + (β∇b · u)2

)
(1.5)

and v is defined (recalling the definition of the operator T in (1.2)) by

hv = hu + µhT [h, βb]u def= T[h, βb]u. (1.6)

In the following, we study system (1.3) as evolution equations for the vari-
ables ζ and v, with u = u[h, βb,v] being uniquely defined (see Lemma 2.3
thereafter) by (1.6), and deduce the well-posedness of (1.1) from the one
of (1.3).

That system (1.3) is equivalent to (1.1) is certainly not straightforward,
and we detail the calculations in Section 6. Physically speaking, the vari-
able v approximates (in the shallow-water regime, µ � 1) vww = ∇ψww
where ψww is the trace of the velocity potential at the surface, and thus
system (1.3) is more directly comparable to the water waves system. In
particular, the Hamiltonian structure of system (1.3), as brought to light
in [26, 37], is a direct counterpart of the celebrated one of the water waves
system, and we show in Appendix B how system (1.3) can be quickly de-
rived thanks to the Hamiltonian formalism. This allows to obtain preserved
quantities of the system in a straightforward way (see [50] and references
therein). Most importantly for our purposes, this allows us to follow the
strategy of the proof for the local existence of a solution to the water waves
system in [27, 32], and to obtain the corresponding local existence result
for system (1.3). More precisely, the variables ζ,v allow to define the ana-
logue of Alinhac’s “good unknowns” [3] for the water waves system (see
e.g. [2]) on which energy estimates can be established. We then extend
the analysis so as to prove the well-posedness of the Cauchy problem, in
the sense of Hadamard.

After the completion of this work, it was pointed to us that the use of
system (1.3) was not necessary (and may be an over-complicated strat-
egy) to derive a priori energy estimates. For the sake of completeness, we
sketch in Appendix A the computations which provide such a priori esti-
mates directly on system (1.1) and would yield an alternative proof of our
main results. As a matter of fact, a sketch of such proof was given in [21].
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However, we believe that the similarity of structure between the Green-
Naghdi system and the one of the water waves system that we exhibit and
exploit in this work is an interesting feature. It may serve as a pedagogical
tool to get a grasp at some properties of the latter without technical diffi-
culties related to the Dirichlet-to-Neumann operator. Incidentally, we do
not claim the discovery of formulation (1.3); see [35] and references given
therein, as well as in Appendix B.

1.3. Main results

Let us now present the main results of this work. Here and thereafter, we
fix the parameters ε, β ≥ 0 and µ ∈ (0, µ?) with µ? > 0. The validity of the
Green-Naghdi system as an asymptotic model for the water waves system
stems from assuming µ� 1 while ε, β = O(1) —see [32] for details— but
we do not make use of such restriction in this work. However, we shall
always assume that

0 < h? < h(εζ(x), βb(x)) < h? <∞, h(εζ, βb) def= 1 + εζ − βb. (1.7)

We work with the following functional spaces, defined for n ∈ N by

Hn def= {ζ ∈ L2(Rd),
∣∣ζ∣∣2

Hn

def=
n∑
|α|=0

∣∣∂αu
∣∣2
L2 <∞},

Ḣn def= {b ∈ L2
loc(Rd), ∇b ∈ (Hn−1)d},

Xn def= {u ∈ L2(Rd)d,
∣∣u∣∣2

Xn

def=
n∑
|α|=0

∣∣∂αu
∣∣2
L2 + µ

∣∣∂α∇ · u∣∣2
L2 <∞},

Y n def= {v ∈ (X0)′,
∣∣v∣∣2

Y n
def=

n∑
|α|=0

∣∣∂αv
∣∣2
(X0)′ <∞}.

Here, α ∈ Nd is a multi-index, (X0)′ is the topological dual space of
X0, endowed with the norm of the strong topology; and we denote by〈
v,u

〉
(X0)′ the (X0)′ −X0 duality bracket.

Given variables λi ∈ R+, we denote C(λ1, λ2, . . . ) a multivariate poly-
nomial with non-negative coefficients, and F (λ1, λ2, . . . ) a multivariate
polynomial with non-negative coefficients and zero constant term. Since
such notations are used for upper bounds and will take variables restricted
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to line segments, C should be regarded as a constant and F as a linear
functional.

Theorem 1.1 (Well-posedness of the Green-Naghdi system). Let N ≥ 4,
b ∈ ḢN+2 and (ζ0,u0) ∈ HN ×XN satisfying (1.7) with h?, h? > 0. Then
there exists T > 0 and a unique (ζ,u) ∈ C([0, T ];HN ×XN ) satisfy-
ing (1.1) with initial data (ζ,u) |t=0 = (ζ0,u0). Moreover, one can restrict

T−1 = C(µ?, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
HN , ε

∣∣u0
∣∣
XN ) > 0

such that, for any t ∈ [0, T ], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

sup
t∈[0,T ]

(∣∣ζ∣∣2
HN +

∣∣u∣∣2
XN

)
≤ C×

(∣∣ζ0
∣∣2
HN +

∣∣u0
∣∣2
XN

)
,

where C = C(µ?, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
HN , ε

∣∣u0
∣∣
XN ), and such that the

map (ζ0,u0) ∈ HN ×XN 7→ (ζ,u) ∈ C([0, T ];HN ×XN ) is continuous.

The full justification of the Green-Naghdi system is a consequence of
the local existence and uniqueness result for the water waves system ([32,
Th. 4.16]), its consistency with the Green-Naghdi system ([32, Prop. 5.8]),
the well-posedness of the Cauchy problem for the Green-Naghdi system
(Theorem 1.1) as well as a stability result ensuring the Lipschitz depen-
dence of the error with respect to perturbations of the system (Proposi-
tion 5.2, thereafter). The following result improves [32, Th. 6.15] by the
level of regularity required on the initial data.

Theorem 1.2 (Full justification of the Green-Naghdi system). Let N ≥ 7
and assume that (ζww, ψww) ∈ C([0, Tww];HN×ḢN+1) is a solution to the
water waves system (B.3) (recall that such solutions exist for a large class
of initial data by [32, Th. 4.16]) such that (1.7) holds with b ∈ HN+2(Rd).

Denote ζ0 = (ζww) |t=0 and h0 = 1 + εζ0 − βb, ψ0 = (ψww) |t=0 and
u0 = T[h0, βb]−1(h0∇ψ0); and M = supt∈[0,Tww]

(∣∣ζww
∣∣
HN +

∣∣∇ψww
∣∣
HN

)
.

Then there exists T > 0 and (ζGN,uGN) ∈ C([0, T ];HN ×XN ) unique
strong solution to the Green-Naghdi system (1.1) with initial data (ζ0,u0),
by Theorem 1.1; and one can restrict

T−1 = C(µ?, h−1
? , h?)F (β

∣∣b∣∣
HN+2 , εM) > 0

such that for any t ∈ [0,min(T, Tww)],∣∣ζww − ζGN
∣∣
HN−6 +

∣∣∇ψww − vGN
∣∣
Y N−6 ≤ Cµ2 t,

with C = C(µ?, h−1
? , h?, β

∣∣b∣∣
HN+2 , εM), and vGN is defined by (1.6).
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Remark 1.3. The functional spaces arise as natural energy spaces for the
quasilinear structure of system (1.3) that we exhibit in this work. The
regularity assumption N ≥ 4 is most certainly not optimal. By the method
of our proof, we are restricted to N ∈ N, and we cannot hope to obtain a
lower threshold than in the pure quasilinear setting, namely N > d/2 + 1.
That N = 3 is not allowed when d = 2 comes from technical limitations
in various places.

Since our proof is based solely on the structural properties of the system
and on energy estimates (in particular, no dispersive estimates are used),
it may be adapted almost verbatim to the periodic situation. Although we
have not checked all the technical details, we also expect that the strategy
may be extended to the more general situation of Kato’s uniformly local
Sobolev spaces [30].

Remark 1.4. Applying the operator curl to (1.3)2, one observes the identity

∂t curl v + ε∇ · (u curl v) = 0.

Thus standard energy estimates on conservation laws [8] yield, for any
t ∈ [0, T ], ∣∣curl v

∣∣
HN−1(t) ≤

∣∣curl v0
∣∣
HN−1 exp(ελt)

with λ .
∣∣u∣∣

HN ≤
∣∣u∣∣

XN . Thus a byproduct of Theorem 1.1 is that ini-
tial smallness of the “generalized vorticity” [40, 24], curl v, propagates for
large positive times —and remains trivial if it vanishes initially, as in The-
orem 1.2. As already mentioned, the variable v physically approximates
∇ψww where ψww is the trace of the velocity potential at the surface. It is
therefore physically relevant to assume

curl v = curl
(
u + µT [h, βb]u

)
≡ 0.

This two-dimensional irrotationality condition is a direct consequence of
the three-dimensional irrotationality assumption on the velocity flow inside
the fluid layer. Outside of this irrotational framework, we believe that the
Green-Naghdi system is not a valid model, and refer to [14] for a thorough
discussion in this situation.

Outline. The body of the paper is dedicated to the proof of Theorem 1.1.
In Section 2, we provide some technical results concerning our functional
spaces and the operator T. We then exhibit the quasilinear system sat-
isfied by the derivatives of any regular solution to (1.3) in Section 3.
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This quasilinear formulation allows to obtain a priori energy estimates
in Section 4. Finally, we make use of these energy estimates for proving
the well-posedness of the Cauchy problem for system (1.3) in Section 5.
The equivalence between formulation (1.3) and (1.1) is stated in Proposi-
tion 6.1. Theorems 1.1 and 1.2 follow as direct consequence of the results in
Section 5 and Proposition 6.1, and we complete the proofs in Section 6. In
Appendix A, we roughly sketch of how energy estimates could be obtained
directly on formulation (1.1). We also provide a quick discussion on the
derivation and Hamiltonian formulation of system (1.3) in Appendix B.
We conclude this section with some independent remarks.

Large time well-posedness and asymptotics. A very natural ques-
tion in the oceanographic context concerns the large time asymptotic be-
havior of solutions to the Green-Naghdi system for small data. After a
straightforward rescaling of (1.1), the problem is naturally formulated in
terms of solutions to the system
∂tζ + 1

ε∇ · (hu) = 0, h
def= 1 + εζ − βb,(

Id + µT [h, βb]
)
∂tu + 1

ε∇ζ + (u · ∇)u + µ
(
Q[h,u] +Qb[h, βb,u]

)
= 0.
(1.8)

Is the Cauchy problem for (1.8) locally well-posed, uniformly with respect
to the small parameter ε? Is it globally well-posed for ε small enough? Can
we exhibit “averaged” equations asymptotically describing a slow coherent
evolution of the solution?

This type of singular limit has been widely studied in particular in the
context of the low Mach number limit; see e.g. [22, 1] and references
therein. As a matter of fact, when β = µ = 0, one recognizes the incom-
pressible limit for the isentropic two-dimensional Euler equations, and it is
tempting to elaborate on the analogy. One would then expect the solutions
to (1.8) to be asymptotically described (as ε→ 0) as the superposition of
two components, described thereafter.

(1) The “incompressible” component, being defined as the solution to
∇ · ((1− βb)u) = 0,(
Id + µT [1− βb, βb]

)
∂tu + (u · ∇)u

+µ
(
Q[1− βb,u] +Qb[1− βb, βb,u]

)
= −∇p,

(1.9)
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where the “pressure” p in (1.9)2 is the Lagrange multiplier associ-
ated to the “incompressibility” constraint (1.9)1.

(2) The “acoustic” component, being defined as the solution to
∂tζ + 1

ε∇ · ((1− βb)u) = 0,(
Id + µT [1− βb, βb]

)
∂tu + 1

ε∇ζ = 0,
(1.10)

with initial data satisfying curl(u + µT [1− βb, βb]u) |t=0 = 0.

System (1.9) was derived in [12, 13], and is usually referred to as the great-
lake equations. Its well-posedness, extending the theory concerning the
two-dimensional incompressible Euler equations, was subsequently pro-
vided in [36, 44]. However, these authors apparently overlooked the role of
the irrotationality assumption discussed in Remark 1.4, as the only func-
tions satisfying the constraint (1.9)1 as well as the irrotationality condition
curl(u+µT [1−βb, βb]u) = 0 are in fact trivial. In other words, in the irro-
tational framework that is the only one so far for which the Green-Naghdi
system is rigorously justified, the incompressible (or rigid-lid) component
vanishes; see also [43] for a similar discussion on the water waves system.
One thus expects that the flow is asymptotically described by (1.10) only,
in the limit ε→ 0 and in the irrotational setting.

However, when trying to adapt the usual strategy for rigorously prov-
ing such behavior, one immediately encounters a serious difficulty in the
physically relevant situation of non-trivial topography, which transpires in
the the fact that our lower bound for the existence time in Theorem 1.1
depends on the size of the bottom variations in addition to the size of the
initial data. When transcribed to system (1.8), this means that we are not
able to obtain a lower bound on the existence time of its solutions which
is uniform with respect to ε, unless β = O(ε).

For the Saint-Venant system, that is setting µ = 0, Bresch and Mé-
tivier [11] have obtained such a uniform lower bound without any restric-
tion on the amplitude bathymetry. The strategy consists in estimating first
the time derivatives of the solution, and then using the system to deduce
estimates on space derivatives. A related strategy (in the sense that we
look for operators commuting with the singular component of the system)
amounts to remark that for any n ∈ N, one can control the L2-norm of

ζn
def= (∇ · (1− b)∇)nζ, un

def= (∇(1− b)∇·)nu

10
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by exhibiting the quasilinear system satisfied by (ζn,un) and applying
simple energy estimates. This allows to control the H2n-norm of ζ,u, pro-
vided that the initial data and bottom topography are sufficiently regular.
One expects a similar strategy to work for the water waves system (partial
results have been obtained by the method of time derivatives in [41]), that
is to control

ζn
def= ( 1

µ
Gµ[0, βb])nζ, ψn

def= ( 1
µ
Gµ[0, βb])nψ

where Gµ is the Dirichlet-to-Neumann operator, recalled in Appendix B.
Since Gµ is an operator of order 1, controlling ζn, ψn indeed allows to con-
trol higher regularities on ζ, ψ. The strategy however fails for the Green-
Naghdi system, as the corresponding operator, namely (see Appendix B)

1
µ
Gµ[0, βb]• ≈ −∇ ·

(
(1− βb)T[1− βb, βb]−1{(1− βb)∇ •

})
is of order 0. One could easily propose different systems that do not suffer
from such a shortcoming, by adding the effect of surface tension as in [41],
or modifying the system without hurting its consistency as in [42]. This is
however out of the scope of the present work, and we leave the question
of uniform lower bounds for the existence time of solutions to (1.8) as an
open problem.

Other models. We expect that our strategy may be of interest to other
models for surface gravity waves. Since our result holds uniformly with
respect to µ ∈ (0, 1), we may deduce the well-posedness of the Saint-Venant
system. This result is of course a direct application of the standard theory
on quasilinear hyperbolic systems [8]. In the other direction, it would be
interesting to apply our strategy to the higher-order models derived by
Matsuno [39], which enrich the Saint-Venant and Green-Naghdi systems
with models of arbitrary high order, while preserving the structure of which
we take advantage in this work. Similarly, one can derive models with
improved frequency dispersion while preserving the structure of the Green-
Naghdi model, by modifying the approximate Hamiltonian in Appendix B.
Such a strategy was applied by the authors in the one-dimensional and
bilayer situation in [20]. Interestingly, since such models can be tuned to
fit the dispersion relation of the water waves system, they do not suffer
from the shortcoming described above, so that large-time well-posedness
is expected to hold even in the presence of a non-trivial bathymetry.
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Let us clarify however that our strategy does not require the Hamilton-
ian structure, but only exploits the ability to construct “good unknowns”
through ζ,v and their derivatives. Thus even models which are derived
through careless approximations may preserve the quasilinear structure
which is necessary for our energy estimates. Such is the case for the
Boussinesq-Peregrine system (see [45, 32, 42]), which consists in a simplifi-
cation of the Green-Naghdi system obtained by withdrawing contributions
of size O(µε) while keeping O(µβ) ones:

∂tζ +∇ · (hu) = 0,

∂t
(
u + µT [1− βb, βb]u

)
+∇ζ + ε(u · ∇)u = 0.

(1.11)

Because the elliptic operator Id +µT [1−βb, βb] does not depend on time,
solving numerically the Boussinesq-Peregrine system is much less costly
than solving the Green-Naghdi system; see [35, 34]. It turns out that the
proof of Theorem 1.1 does extend to the Boussinesq-Peregrine system with
straightforward modifications (all on the side of simplification). More pre-
cisely, we obtain the well-posedness of system (1.11) after applying the
change of variable

v def= u + µT [1− βb, βb]u (1.12)
and extracting the quasilinear system satisfied by ∂αζ and ∂αv.

Theorem 1.5 (Well-posedness and full justification of the Boussinesq-Pere-
grine system). Theorem 1.1 holds replacing system (1.1) with system (1.11).
The full justification in the sense of Theorem 1.2 holds as well, controlling
the error as∣∣ζww − ζBP

∣∣
HN−6 +

∣∣∇ψww − vBP
∣∣
Y N−6 ≤ C (µ2 + µε) t,

with ζBP,uBP the unique strong solution to (1.11) and vBP defined by (1.12),
and the other notations are as in Theorem 1.2.

Compared with [42, Th. 2.1], our result provides a larger lower bound
on the time of existence, and does not rely on the assumption ε = O(µ).

2. Preliminary results

In this section, we fix parameters n ∈ N, α ∈ Nd, and dimension d ∈ {1, 2}.
We denote a . b for a ≤ Cb where C is a constant depending (non-
decreasingly) only on n, d, and possibly |α| and µ. We denote

〈
A
〉
n>r

= A

12
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if n > r and
〈
A
〉
n>r

= 0 otherwise, and a ∨ b = max(a, b). The results
are tailored for the dimension d = 2 (through the repeated use of the
continuous Sobolev embedding H2 ⊂ L∞ for instance) but hold as well
when d = 1. They are not meant to be sharp, but only sufficient for our
needs. The call for “tame” estimates stems from the Bona-Smith technique
enforcing continuity properties stated in Proposition 5.3; rougher estimates
would be sufficient for the existence and uniqueness of solutions, as in
Proposition 5.1.

Lemma 2.1. The continuous embeddings Hn+1(Rd)d ⊂ Xn ⊂ Hn(Rd)d
and Hn(Rd)d ⊂ Y n ⊂ Hn−1(Rd)d hold. The following inequalities hold as
soon as the right-hand side is finite:∣∣u∣∣

Hn ≤
∣∣u∣∣

Xn ,
∣∣u∣∣

Xn .
∣∣u∣∣

Hn+1 , (2.1)∣∣v∣∣
Hn−1 .

∣∣v∣∣
Y n
,

∣∣v∣∣
Y n
≤
∣∣v∣∣

Hn . (2.2)

We also have the non-uniform continuous embedding∣∣∇f ∣∣
Y n
.

1
√
µ

∣∣f ∣∣
Hn ,

∣∣∇ · u∣∣
Hn .

1
√
µ

∣∣u∣∣
Xn . (2.3)

Proof. The continuous embeddingsH1(Rd)d ⊂ X0 ⊂ L2(Rd)d are straight-
forward, and the corresponding L2(Rd)d ⊂ Y 0 ⊂ H−1(Rd)d follow by du-
ality. The estimate (2.3) with n = 0 is easily checked, as for any u ∈ X0,

|
〈
∇f,u

〉
(X0)′ | = |

(
f,∇ · u

)
L2 | ≤

1
√
µ

∣∣f ∣∣
L2

∣∣u∣∣
X0 .

The case n ∈ N? is reduced to the case n = 0 by considering ∂αu, ∂αv, ∂αf
with 0 ≤ |α| ≤ n. �

Lemma 2.2. Let f ∈ H2∨n(Rd) and g ∈ Hn(Rd). Then fg ∈ Hn(Rd)∣∣fg∣∣
Hn .

∣∣f ∣∣
H2

∣∣g∣∣
Hn +

〈∣∣f ∣∣
Hn

∣∣g∣∣
H2

〉
n>2. (2.4)

The above holds as well allowing exceptionally the value n = −1.
Let f ∈ L∞(Rd) ∩ Ḣ3∨n(Rd) and g ∈ Hn(Rd). Then fg ∈ Hn(Rd) and∣∣fg∣∣

Hn .
(∣∣f ∣∣

L∞
+
∣∣∇f ∣∣

H2

)∣∣g∣∣
Hn +

〈∣∣∇f ∣∣
Hn−1

∣∣g∣∣
H2

〉
n>2. (2.5)

If, moreover, f ≥ f0 > 0, then f−1g ∈ Hn(Rd) and∣∣f−1g
∣∣
Hn ≤ C(f−1

0 ,
∣∣f ∣∣

L∞
,
∣∣∇f ∣∣

H2)
(∣∣g∣∣

Hn +
〈∣∣∇f ∣∣

Hn−1

∣∣g∣∣
H2

〉
n>2

)
. (2.6)

13
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Let f ∈ L∞(Rd) ∩ Ḣ3∨n+1(Rd) and u ∈ Xn. Then fu ∈ Xn and∣∣fu
∣∣
Xn .

(∣∣f ∣∣
L∞

+
∣∣∇f ∣∣

H2

)∣∣u∣∣
Xn +

〈∣∣∇f ∣∣
Hn

∣∣u∣∣
X2

〉
n>2. (2.7)

Let f ∈ L∞(Rd) ∩ Ḣ3∨n(Rd), and v ∈ Y n. One has fv ∈ Y n and∣∣fv
∣∣
Y n
.
(∣∣f ∣∣

L∞
+
∣∣∇f ∣∣

H2

)∣∣v∣∣
Y n

+
〈∣∣∇f ∣∣

Hn−1

∣∣v∣∣
H2

〉
n>2. (2.8)

Proof. Estimate (2.4) is well-known; see [32, Prop. B.2] for instance. As
for (2.5), the cases n ∈ {0, 1, 2} are straightforward, using Leibniz rule and
the continuous Sobolev embedding H2 ⊂ L∞. When n > 2, we decompose
Leibniz rule as follows: for any 1 ≤ |α| ≤ n,

∂α(fg) = f∂αg +
∑

β+γ=α
|β|≥1,|γ|≥0

(
α

β

)
(∂βf)(∂γg).

Since |β| ≥ 1 and using the standard bilinear estimate for (see e.g. [52,
Prop. 3.6]) , one has∣∣(∂βf)(∂γg)

∣∣
L2 .

∣∣∇f ∣∣
L∞

∣∣g∣∣
H|β|+|γ|−1 +

∣∣∇f ∣∣
H|β|+|γ|−1

∣∣g∣∣
L∞
,

and the result follows. Estimate (2.6) is obtained in the same way, and us-
ing the induction hypothesis to control the contribution of

∣∣∇(f−1)
∣∣
H|β|+|γ|−1 .

As for (2.7), we use∣∣fu
∣∣
Xn .

∣∣fu
∣∣
Hn +√µ

∣∣f∇ · u∣∣
Hn +√µ

∣∣∇f · u∣∣
Hn ,

with product estimates (2.4) and (2.5), as well as the continuous embed-
ding (2.1) in Lemma 2.1. Finally, we notice that fv ∈ Y 0 = (X0)′ and∣∣fv

∣∣
Y 0 .

(∣∣f ∣∣
L∞

+
∣∣∇f ∣∣

H2

)∣∣v∣∣(X0)′ since for any u ∈ X0,

|
〈
fv,u

〉
(X0)′ | ≤

∣∣v∣∣(X0)′
∣∣fu

∣∣
X0 .

∣∣v∣∣(X0)′
(∣∣f ∣∣

L∞
+
∣∣∇f ∣∣

H2

)∣∣u∣∣
X0 .

For n ∈ {0, 1}, we write∣∣fv
∣∣
Y n+1 .

∣∣fv
∣∣
Y n

+
∑
|α|=1

∣∣f∂αv
∣∣
Y n

+
∣∣(∂αf)v

∣∣
Hn ,

where we used (2.2) in Lemma 2.1. Estimate (2.8) follows by finite induc-
tion, using (2.4) and again (2.2). For n > 2, we use Leibniz rule and the
bilinear estimate as above:∣∣(∂βf)(∂γv)

∣∣
Y 0 .

∣∣(∂βf)(∂γv)
∣∣
L2 ≤

∣∣∇f ∣∣
H2

∣∣v∣∣
Hn−1 +

∣∣∇f ∣∣
Hn−1

∣∣v∣∣
H2 .

Estimate (2.8) follows from using again the embedding (2.2). The proof is
complete. �
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Let us now exhibit elliptic estimates concerning the operator T, defined
in (1.2),(1.6).

Lemma 2.3. Let b ∈ Ḣ3(Rd) and h ∈ Ḣ2(Rd) be such that (1.7) holds.
Then T[h, βb] ∈ L(X0; (X0)′) and is symmetric:

∀u1,u2 ∈ X0,
〈
T[h, βb]u1,u2

〉
(X0)′ =

〈
T[h, βb]u2,u1

〉
(X0)′ .

Moreover, one has

∀u1,u2 ∈ X0, |
〈
T[h, βb]u1,u2

〉
(X0)′ | ≤ C(µ, h?, β

∣∣∇b∣∣
L∞

)
∣∣u1
∣∣
X0

∣∣u2
∣∣
X0 ,

∀u ∈ X0,
∣∣u∣∣2

X0 ≤ C(h−1
? )
〈
T[h, βb]u,u

〉
(X0)′ .

In particular, T[h, βb] : X0 → (X0)′ is a topological isomorphism and

∀v ∈ (X0)′,
∣∣T[h, βb]−1v

∣∣
X0 ≤ C(h−1

? )
∣∣v∣∣(X0)′ .

Proof. We establish the estimates for u,u1,u2 ∈ S(Rd)d so that all the
terms are well-defined, and the ((X0)′−X0) duality product coincides with
the L2 inner product. The result for less regular functions is obtained by
density of S(Rd)d in X0 and continuous linear extension.

By definition of T in (1.6) and after integration by parts, one has

(
T[h, βb]u1,u2

)
L2 =

∫
Rd
hu1 · u2 + µ

3h
3(∇ · u1)(∇ · u2)

− µ2h
2((∇·u2)(β∇b ·u1) + (β∇b ·u2)(∇·u1)

)
+µh(β∇b ·u1)(β∇b ·u2),

from which the symmetry is evident. The first estimate of the Lemma
follows by Cauchy-Schwarz inequality. The second one is obvious when
rewriting(

T[h, βb]u,u
)
L2 =

∫
Rd
h|u|2 + µ

12h
3|∇ · u|2 + µ

4h|h∇ · u− 2β∇b · u|2.

This shows that T[h, βb] : X0 → (X0)′ is continuous and coercive, so
that the operator version of Lax-Milgram theorem ensures that T[h, βb] is
an isomorphism. The continuity of the inverse follows from the coercivity
of T[h, βb]:∣∣u∣∣2

X0 ≤ C(h−1
? )|

〈
T[h, βb]u,u

〉
(X0)′ | ≤ C(h−1

? )
∣∣T[h, βb]u

∣∣
(X0)′

∣∣u∣∣
X0 ,

and setting u = T[h, βb]−1v above. �

15



V. Duchêne & S. Israwi

Lemma 2.4. Let b ∈ Ḣ4(Rd) and h ∈ Ḣ3(Rd) be such that (1.7) holds;
and let v ∈ Y n. Then T[h, βb]−1v ∈ Xn and∣∣T[h, βb]−1v

∣∣
Xn ≤ C

(∣∣v∣∣
Y n

+
〈∣∣∇h∣∣

Hn−1

∣∣v∣∣
Y 2

〉
n>2

)
with C = C(µ, h−1

? , h?,
∣∣∇h∣∣

H2 , β
∣∣∇b∣∣

H3).

Proof. Let v ∈ S(Rd)d, and denote for simplicity T
def= T[h, βb]. One has,

for Λn = (Id−∆)n/2,[
Λn,T−1]v = −T−1[Λn,T]T−1v.

By definition of T and since Λn commutes with space differentiation, we
have for any u,w ∈ S(Rd)d,

|
([

Λn,T
]
u,w

)
L2 | =

([
Λn, h

]
u,w

)
L2 + µ

3
([

Λn, h3]∇ · u,∇ ·w)
L2

− µ

2
(
[Λn, h2(β∇b)·]u,∇ ·w

)
L2

− µ

2
(
[Λn, h2(β∇b)]∇ · u,w

)
L2

+ µ
(
[Λn, h(β∇b)(β∇b)·]u,w

)
L2 .

Commutator estimates (see e.g. [32, Corollary B.9]) and product esti-
mate (2.5) yield

|
([

Λn,T
]
u,w

)
L2 | ≤ C

(∣∣Λn−1u
∣∣
X0 +

〈∣∣∇h∣∣
Hn−1

∣∣Λ2u
∣∣
X0

〉
n>2

)∣∣w∣∣
X0 .

By density and continuity arguments, we infer that for any u ∈ Xn−1,[
Λn,T

]
u ∈ (X0)′ and∣∣[Λn,T]u∣∣(X0)′ ≤ C

(∣∣u∣∣
Xn−1 +

〈∣∣∇h∣∣
Hn−1

∣∣u∣∣
X2

〉
n>2

)
.

Combining the above and by Lemma 2.3, we find∣∣T−1v
∣∣
Xn =

∣∣T−1Λnv− T−1[Λn,T]T−1v
∣∣
X0

≤ C(h−1
? )
∣∣Λnv−

[
Λn,T

]
T−1v

∣∣
(X0)′

≤ C
(∣∣v∣∣

Y n
+
∣∣T−1v

∣∣
Xn−1 +

〈∣∣∇h∣∣
Hn−1

∣∣T−1v
∣∣
X2

〉
n>2

)
.

The result follows by induction on n, and by density of S(Rd)d in Y n. �
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We now exhibit some expansions of the operators at stake in system (1.3),
which are crucial to extract its quasilinear formulation, displayed in Propo-
sition 3.1 below.

Lemma 2.5. For any f, g ∈ Ḣ3∨n+|α|−1(Rd) with n ∈ N and |α| ≥ 1, one
has ∣∣∂α(fg)− f∂αg

∣∣
Hn .

∣∣∇f ∣∣
H2∨n+|α|−1

∣∣g∣∣
Hn+|α|−1 .

Proof. Using Leibniz rule, we only have to estimate∣∣(∂βf)(∂γg)
∣∣
L2 for |β|+ |γ| ≤ n+ |α| and |β| ≥ 1.

If |β| = 1, then |γ| ≤ n + |α| − 1, and we find by continuous Sobolev
embedding H2 ⊂ L∞∣∣(∂βf)(∂γg)

∣∣
L2 .

∣∣∂βf ∣∣
H2

∣∣∂γg∣∣
L2 .

If |β| = 2, then |γ| ≤ n + |α| − 2, and standard product estimate (see
e.g. [32, Prop. B.2]) yields∣∣(∂βf)(∂γg)

∣∣
L2 .

∣∣∂βf ∣∣
H1

∣∣∂γg∣∣
H1 .

If |β| > 2, then |γ| ≤ n + |α| − 3, and we find by continuous Sobolev
embedding H2 ⊂ L∞∣∣(∂βf)(∂γg)

∣∣
L2 .

∣∣∂βf ∣∣
L2

∣∣∂γg∣∣
H2 .

This concludes the proof. �

Lemma 2.6. For any f ∈ Ḣ4∨n+|α|−1(Rd) and v ∈ Y n+|α|−1 with n ∈ N
and |α| ≥ 1, one has∣∣∂α(fv)− f∂αv

∣∣
Y n
.
∣∣∇f ∣∣

H3∨n+|α|−1

∣∣v∣∣
Y n+|α|−1 .

Proof. Using Leibniz rule, we only have to estimate∣∣(∂βf)(∂γv)
∣∣
Y 0 for |β|+ |γ| ≤ n+ |α| and |β| ≥ 1.

If |β| = 1, then |γ| ≤ n+ |α| − 1, and we use the product estimate (2.8) in
Lemma 2.2 to deduce∣∣(∂βf)(∂γv)

∣∣
Y 0 .

∣∣∂βf ∣∣
H3

∣∣∂γv
∣∣
Y 0 .

For |β| = 2, |β| = 3 and |β| > 3, we proceed as in the proof of Lemma 2.5,
and using (2.2) in Lemma 2.1: by the continuous embedding L2 ⊂ Y 0

we fall into the L2 setting, and the continuous embedding Y n+|α|−1 ⊂
Hn+|α|−2 allows to control

∣∣∂γv
∣∣
H|β|−2 ≤

∣∣∂γv
∣∣
Hn+|α|−2 . �
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Lemma 2.7. For any f, g ∈ Ḣ3∨n+|α|−1(Rd) with n ∈ {0, 1} and |α| ≥ 1,
one has∣∣∂α(fg)− g∂αf − f∂αg

∣∣
Hn .

∣∣∇f ∣∣
H2

∣∣∇g∣∣
Hn+|α|−2 +

∣∣∇f ∣∣
Hn+|α|−2

∣∣∇g∣∣
H2 .

Proof. The result for n = 0 follows from Leibniz rule:

∂α(fg)− g∂αf − f∂αg =
∑

β+γ=α
|β|≥1,|γ|≥1

(
α

β

)
(∂βf)(∂γg),

and we use the standard bilinear estimate [52, Prop. 3.6] to estimate∣∣(∂βf)(∂γg)
∣∣
L2 .

∣∣∇f ∣∣
L∞

∣∣∇g∣∣
H|β|+|γ|−2 +

∣∣∇f ∣∣
H|β|+|γ|−2

∣∣∇g∣∣
L∞
,

together with the continuous embedding H2 ⊂ L∞. The case n = 1 is
obtained in the same way after differentiating the above identity. �

Lemma 2.8. For any f ∈ Ḣ4∨n+|α|−1(Rd),v ∈ Y 4∨n+|α|−1 with n ∈ {0, 1}
and |α| ≥ 1, one has∣∣∂α(fv)− v∂αf − f∂αv

∣∣
Y n
.
∣∣∇f ∣∣

H3

∣∣v∣∣
Y n+|α|−1 +

∣∣∇f ∣∣
Hn+|α|−2

∣∣v∣∣
Y 4 .

Proof. If α = 1, then the result is obvious. For |α| ≥ 2, we use Leibniz rule
as above. When |β| = 1, then by (2.8) in Lemma 2.2,∣∣(∂βf)(∂γv)

∣∣
Y 0 .

(∣∣∂βf ∣∣
L∞

+
∣∣∂β∇f ∣∣

H2)
∣∣∂γv

∣∣
Y 0 .

∣∣∇f ∣∣
H3

∣∣v∣∣
Y |α|−1 .

When |β| ≥ 2, we use the standard bilinear estimate as above:∣∣(∂βf)(∂γv)
∣∣
L2 .

∣∣Λ∇f ∣∣
L∞

∣∣Λv
∣∣
H|β|+|γ|−3 +

∣∣Λ∇f ∣∣
H|β|+|γ|−3

∣∣Λv
∣∣
L∞
.

This yields the desired estimate for n = 0, by the continuous embedding
H2 ⊂ L∞ and (2.2) in Lemma 2.1. The case n = 1 is obtained similarly. �

In the following Lemmata, similar expansions are carried on the oper-
ators T and T−1, in particular exhibiting the shape derivatives of these
operators.

Lemma 2.9. Let |α| ≥ 1, n ∈ {0, 1}. Let ζ ∈ H3∨n+|α|−1(Rd), b ∈
Ḣ4∨n+|α|+1(Rd) be such that (1.7) holds, and u ∈ X3∨n+|α|−1. Define

dhT[h, βb](f,u) def= fu−µ∇(h2f∇·u)+µ∇
(
fh(β∇b) ·u

)
−µfh(β∇b)∇·u.

(2.9)
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Then∣∣∂α(T[h, βb]u
)
− T[h, βb]∂αu− εdhT[h, βb](∂αζ,u)

∣∣
Y n

≤ C(µ, h?)F (β
∣∣∇b∣∣

H3∨n+|α| , ε
∣∣∇ζ∣∣

H2 , ε
∣∣u∣∣

X3)
(∣∣∇ζ∣∣

Hn+|α|−2+
∣∣u∣∣

Xn+|α|−1

)
.

Proof. Assume first that u ∈ S(Rd)d, and denote

r def= ∂α
(
T[h, βb]u

)
− T[h, βb]∂αu− εdhT[h, βb](∂αζ,u).

By definition of T in (1.6), integration by parts and since Λn commutes
with spatial differentiation, one has for any w ∈ X0,〈
Λnr,w

〉
(X0)′ =

(
Λn{∂α(hu)− h∂αu− ε∂αζu},w

)
L2

+ µ
1
3
(
Λn{∂α(h3∇ · u)− h3∂α∇ · u− 3εh2(∂αζ)∇ · u},∇ ·w

)
L2

− µ1
2
(
Λn{∂α(h2(β∇b) · u)− h2(β∇b) · ∂αu− 2εh(∂αζ)(β∇b) · u},∇ ·w

)
L2

− µ1
2
(
Λn{∂α(h2(β∇b)∇ · u)− h2(β∇b)∇ · ∂αu− 2εh(∂αζ)(β∇b)∇ · u},w

)
L2

+ µ
(
Λn{∂α(hβ2(∇b · u)∇b)− hβ2(∇b · ∂αu)∇b− ε(∂αζ)β2(∇b · u)∇b},w

)
L2

def=
(
Λnr1,w

)
L2 +√µ

(
Λnr2,∇ ·w

)
L2

The two contributions are estimated using Lemmata 2.5 and 2.7, product
estimates (2.4) and (2.5) and the continuous embedding H2 ⊂ L∞. For
instance, by Lemma 2.7, one has∣∣∂α(ζu)− ζ∂αu− ∂αζu

∣∣
Hn .

∣∣∇ζ∣∣
H2

∣∣u∣∣
Hn+|α|−1 +

∣∣∇ζ∣∣
Hn+|α|−2

∣∣u∣∣
H3

and by Lemma 2.5,∣∣∂α(bu)− b∂αu
∣∣
Hn .

∣∣∇b∣∣
H2∨n+|α|−1

∣∣u∣∣
Hn+|α|−1 ,

and (2.1) in Lemma 2.1 allows to complete the estimate of the first con-
tribution. The other terms are treated similarly, using first Lemma 2.5 to
commute the differentiation operator with bottom contributions, product
estimates (2.4) and (2.5) to estimate the commutator, and then Lemma 2.7
to deal with surface contributions.

Altogether, one finds that
∣∣r1∣∣

Hn and
∣∣r2∣∣

Hn are estimated as in the
statement. By Cauchy-Schwarz inequality and duality, we deduce that
r ∈ Y n and

∣∣r∣∣
Y n

satisfies the same estimate. The result for u ∈ X3∨n+|α|−1

follows by density and continuous linear extension. �
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Lemma 2.10. Let |α| ≥ 1, n ∈ {0, 1}. Let b ∈ Ḣ4∨n+|α|+1(Rd) and
ζ ∈ H3∨n+|α|−1(Rd) be such that (1.7) holds, and v ∈ Y 3∨n+|α|−1. Denote
T = T[h, βb] and dhT = dhT[h, βb] defined in (2.9). Then one has∣∣∂α(T−1v

)
− T−1∂αv + εT−1{dhT(∂αζ,T−1v)

}∣∣
Xn

≤ C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3∨n+|α| , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
X3)

(∣∣∇ζ∣∣
Hn+|α|−2+

∣∣v∣∣
Y n+|α|−1

)
.

Proof. Let us denote r = ∂α
(
T−1v

)
− T−1∂αv + εT−1{dhT(∂αζ,T−1v)

}
and u = T−1v. One has

r = T−1T∂α
(
T−1v

)
− T−1∂α

(
TT−1v

)
+ εT−1{dhT(∂αζ,T−1v)

}
= −T−1

{
∂α
(
Tu
)
− T∂αu− εdhT(∂αζ,u)

} def= −T−1r̃.

By Lemma 2.4 and Lemma 2.9, one has∣∣r∣∣
Xn ≤ C(µ, h−1

? , h?,
∣∣∇h∣∣

H2 , β
∣∣∇b∣∣

H3)
∣∣r̃∣∣

Y n

≤ C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3∨n+|α| , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
X3)

×
(∣∣∇ζ∣∣

Hn+|α|−2 +
∣∣u∣∣

Xn+|α|−1

)
and for m = 3 or m = n+ |α| − 1,∣∣u∣∣

Xm ≤ C(µ, h−1
? , h?, β

∣∣∇b∣∣
H3 , ε

∣∣∇ζ∣∣
H2)

(∣∣v∣∣
Ym

+
〈∣∣∇h∣∣

Hm−1

∣∣v∣∣
Y 2

〉
m>2

)
.

This concludes the proof. �

We conclude this section with the following result which is essential
for estimating the difference between two approximate solutions (in later
Proposition 5.2 for instance).

Lemma 2.11. Let n ∈ N, b ∈ Ḣ4∨n+1(Rd) and ζ, ζ̃ ∈ H3∨n(Rd) be such
that (1.7) holds, and v ∈ Y 2∨n. Then, denoting h = 1 + εζ − βb and
h̃ = 1 + εζ̃ − βb, one has∣∣T[h, βb]−1v− T[h̃, βb]−1v

∣∣
Xn ≤ C

∣∣v∣∣
Y 2∨n

∣∣ζ − ζ̃∣∣
Hn

with C = C(µ, h−1
? , h?,

∣∣∇b∣∣
H3∨n ,

∣∣∇h∣∣
H2∨n−1 ,

∣∣∇h̃∣∣
H2∨n−1).

Proof. We rewrite

T[h, βb]−1v− T[h̃, βb]−1v = T[h̃, βb]−1(T[h̃, βb]− T[h, βb]
)
T[h, βb]−1v.
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By Lemma 2.4, one has∣∣T[h, βb]−1v
∣∣
Xn ≤ C(µ, h−1

? , h?,
∣∣∇h∣∣

H2∨n−1 , β
∣∣∇b∣∣

H3)
∣∣v∣∣

Y n
.

Using the definition (1.6), one has

T[h̃, βb]u− T[h, βb]u = ε(ζ − ζ̃)u− µ

3∇
(
(h3 − h̃3)∇ · u

)
+ µ

2∇
(
(h2 − h̃2)(β∇b · u)

)
− µ

2 (h− h̃)(β∇b)∇ · u.

By (2.2) and (2.1) in Lemma 2.1 and (2.4) in Lemma 2.2, one has imme-
diately ∣∣ε(ζ − ζ̃)u

∣∣
Y n
. ε

∣∣u∣∣
X2∨n

∣∣ζ − ζ̃∣∣
Hn .

Using now (2.3) in Lemma 2.1, we find

µ
∣∣∇((h3 − h̃3)∇ · u

)∣∣
Y n
≤ √µ

∣∣(h3 − h̃3)∇ · u
∣∣
Hn ≤

∣∣u∣∣
X2∨n

∣∣h3 − h̃3∣∣
Hn

≤ εC(
∣∣∇h∣∣

H2∨n−1 ,
∣∣∇h̃∣∣

H2∨n−1)
∣∣u∣∣

X2∨n

∣∣ζ − ζ̃∣∣
Hn .

The other terms are treated similarly, and we find∣∣T[h̃, βb]u− T[h, βb]u
∣∣
Y n
≤ C

∣∣u∣∣
X2∨n

∣∣ζ − ζ̃∣∣
Hn .

The proof is completed when collecting the above and applying once again
Lemma 2.4. �

3. The quasilinear system

The result below is the key ingredient of our proof. We extract the quasi-
linear structure of system (1.3) in terms of “good unknowns”, from which
energy estimates will be deduced in subsequent Section 4. The strategy
consists in differentiating system (1.3) several times, and estimate lower
order contributions thanks to the formulas obtained in Section 2. How-
ever, in order not to break the structure of the first equation, we are led
(as for the water waves system [27, 32]) to introduce an appropriate ve-
locity variable which is a combination of the original variables and their
derivatives.

Proposition 3.1. Let α be a non-trivial multi-index and ζ ∈ H4∨|α|(Rd),
b ∈ Ḣ5∨|α|+2(Rd) be such that (1.7) holds, and v ∈ Y 4∨|α|, satisfying (1.3).
Denote w def= −h∇ · u + β∇b · u and

ζ(α)
def= ∂αζ ; v(α)

def= ∂αv− µε∇(w∂αζ). (3.1)
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Then ζ(α),v(α) satisfy
∂tζ(α) + ε∇ · (uζ(α)) +∇ · (hu(α)) = r(α),

(∂t + εu⊥ curl)v(α) +∇ζ(α) + ε∇(u · v(α)) = r(α),
(3.2)

where we denote

u def= T[h, βb]−1(hv) and u(α)
def= T[h, βb]−1(hv(α)),

and r(α), r(α) satisfy the estimates∣∣r(α)
∣∣
L2 +

∣∣r(α)
∣∣
Y 0 ≤ F

(∣∣ζ∣∣
H|α|

+
∣∣v∣∣

Y |α|
+
∣∣curl v

∣∣
H|α|−1

)
(3.3)

with F = C(µ, h−1
? , h?)F

(
β
∣∣∇b∣∣

H4∨|α|+1 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣v∣∣

Y 4 , ε
∣∣curl v

∣∣
H3

)
.

Moreover, if we denote ζ̃, ṽ satisfying the same assumptions and r̃(α), r̃(α)
the corresponding residuals, then one has∣∣r(α) − r̃(α)

∣∣
L2 +

∣∣r(α) − r̃(α)
∣∣
Y 0

≤ F̃
(∣∣ζ − ζ̃∣∣

H|α|
+
∣∣v− ṽ

∣∣
Y |α|

+
∣∣curl v− curl ṽ

∣∣
H|α|−1

)
(3.4)

with

F̃ = C(µ, h−1
? , h?)F

(
β
∣∣∇b∣∣

H4∨|α|+1 , ε
∣∣ζ∣∣

H4∨|α| , ε
∣∣v∣∣

Y 4∨|α| , ε
∣∣curl v

∣∣
H3∨|α|−1 ,

ε
∣∣ζ̃∣∣

H4∨|α| , ε
∣∣ṽ∣∣

Y 4∨|α| , ε
∣∣curl ṽ

∣∣
H3∨|α|−1

)
.

Remark 3.2. One recovers the quasilinear structure of the water waves
system, as exhibited in [32, Sec. 4.2], up to two differences. Firstly, the
advection velocity is u instead of U (using the notation introduced in
Appendix B). This was to be expected, comparing the formulation of the
Green-Naghdi system (B.11) with the corresponding formulation of the
water waves system (B.12).

Secondly, from the comparison of the aforementioned formulations, one
would expect (3.2)2 to exhibit a component of the form

∇(aζ) with a
def= 1 + µε∂tw + µε2V · ∇w,

with the hyperbolicity condition a > 0 accounting for the Rayleigh-Taylor
criterion, (−∂zP )z=εζ > 0; see the discussion in [32, Sec. 4.3.5]. In our
system, we simply set a ≡ 1 since the additional contributions can be
discarded, thanks to our energy norm and the µ prefactor, by (2.3) in
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Lemma 2.1. In other words, using the notation of the proof below, one can
check that

∇ζ(α) ∼Y 0 ∇
((

1 + µε(∂t + εu · ∇)w
)
ζ(α)

)
.

Thus the Rayleigh-Taylor criterion for water waves, which is automatically
satisfied for small values of the parameter µ, disappears in the Green-
Naghdi system (for any values of µ).

Proof. Let us first remark that by (2.8) in Lemma 2.2, one has for any
v ∈ Y n and n ∈ N,∣∣hv

∣∣
Y n
≤ C(h?)(1 +

∣∣∇h∣∣
H2)

∣∣v∣∣
Y n

+
〈∣∣∇h∣∣

Hn−1

∣∣v∣∣
Y 2

〉
n>2. (3.5)

Using Lemma 2.4, it follows u = T[h, βb]−1(hv) ∈ Xn and∣∣u∣∣
Xn ≤ C(µ, h−1

? , h?, β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H2)
(∣∣v∣∣

Y n
+
〈∣∣∇h∣∣

Hn−1

∣∣v∣∣
Y 2

〉
n>2

)
.

(3.6)
We now enter into the detailed calculations. For simplicity, we denote

a ∼L2 b ⇐⇒ a− b = r,

a ∼Y 0 b ⇐⇒ a− b = r

with
∣∣r∣∣

L2 and
∣∣r∣∣

Y 0 satisfying (3.3).

First equation.We start by differentiating α-times the first equation of (1.3):

∂tζ(α) + ∂α∇ · (hu) = 0.

By Lemma 2.7 for the surface contribution and Lemma 2.5 for the bottom
contribution (with n = 1), and using (2.1) in Lemma 2.1 and (3.6), one
finds

∂α∇ · (hu) ∼L2 ∇ · (h∂αu) + ε∇ · (u∂αζ).
Now, we use (2.5) in Lemma 2.2, (2.1) in Lemma 2.1, Lemma 2.10 and (3.5),
so that

∇ · (h∂αu) ∼L2 ∇ ·
(
hT[h, βb]−1{∂α(hv)− εdhT[h, βb](∂αζ,u)

})
.

Using (2.1) and (2.2) in Lemma 2.1, Lemma 2.4, and proceeding as above
but with Lemma 2.8 for the surface contribution and Lemma 2.6 for the
bottom contribution, we find

∇ ·
(
hT[h, βb]−1{∂α(hv)

})
∼L2 ∇ ·

(
hT[h, βb]−1{h∂αv + ε(∂αζ)v

})
.
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In order to deal with the second contribution, we use the identity (see the
definition (1.6))

v = u− µ

3h∇(h3∇·u)+ µ

2h∇
(
h2(β∇b)·u

)
−µ2h(β∇b)∇·u+µβ2(∇b·u)∇b.

By the extra µ prefactor, we can use now (2.3) and (2.2) in Lemma 2.1,
Lemmata 2.2 and 2.3 as well as (3.6) to deduce

ε∇ ·
(
hT[h, βb]−1{(∂αζ)v

})
∼L2 ε∇ ·

(
hT[h, βb]−1{(∂αζ)u

})
.

Finally, recalling (2.9), and proceeding as above, we find

ε∇ ·
(
hT[h, βb]−1{dhT[h, βb](∂αζ,u)

})
∼L2 ε∇ ·

(
hT[h, βb]−1{(∂αζ)u− µh∇

(
(∂αζ)(h∇ · u− β∇b · u)

)})
.

Collecting the above information and using the definition of u(α), we ob-
tain, as desired,

∂α∂tζ = −∂α∇ · (hu) ∼L2 −∇ · (hu(α))− ε∇ · (uζ(α)). (3.7)

Second equation. Now we differentiate the second equation of (1.3):

∂t∂
αv + ∂α

(
∇ζ + εu⊥ curl v + ε

2∇(|u|2)
)

= µε∂α∇
(
R[h,u] +Rb[h, βb,u]

)
.

By (2.2) and (2.1) in Lemma 2.1, Lemma 2.7 with n = 1 and (3.6), one
has

ε

2∂
α∇(|u|2) ∼Y 0 ε∇(u · ∂αu).

Recalling the definition (1.4)-(1.5), we use (2.3) in Lemma 2.1, Lemma 2.7
with n = 0 and Sobolev embedding H2 ⊂ L∞, product estimates (2.5)
and (2.6) in Lemma 2.2 and finally (3.6), to deduce

µε∂α∇
(
R[h,u] +Rb[h, βb,u]

)
∼Y 0

µε∇
( u

3h · ∂
α∇(h3∇ · u)− 1

2
u
h
· ∂α∇

(
h2(β∇b · u)

))
.

Recalling once again the identity

v = u− µ

3h∇(h3∇·u)+ µ

2h∇
(
h2(β∇b)·u

)
−µ2h(β∇b)∇·u+µβ2(∇b·u)∇b,

and proceeding as previously for the remainder terms, we deduce

ε∂α∇
(1
2 |u|

2 − µR[h,u]− µRb[h, βb,u]
)
∼Y 0 ε∇(u · ∂αv).
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Now, by (2.2) in Lemma 2.1 and Lemma 2.7 with n = 0, Sobolev embed-
ding H2 ⊂ L∞ and (3.6), we find

ε∂α(u⊥ curl v) ∼Y 0 εu⊥(curl ∂αv),

and the combination yields

∂t∂
αv ∼Y 0 −∂α∇ζ − ε∇(u · ∂αv)− εu⊥(curl ∂αv).

In order to conclude, we consider

∂t(v(α) − ∂αv) = −µε∂t∇(w∂αζ).

By continuous Sobolev embedding H2 ⊂ L∞, one has∣∣∂tw∣∣L∞ ≤ C(h?, β
∣∣∇b∣∣

H2)(
∣∣∂tu∣∣X2 +

∣∣∂tζ∣∣H2).

Using the identity

∂tu = T[h, βb]−1∂t(hv)− εT[h, βb]−1{dhT[h, βb](∂tζ,u)
}
,

plugging the expressions of ∂tζ, ∂tv as given by (1.3), and by Lemmata 2.1
and 2.2, Lemma 2.11 with n = 2, as well as (3.6), we deduce

∂t(v(α) − ∂αv) ∼Y 0 −µε∇(w∂t∂αζ).

Finally, using (3.7) and (2.3) in Lemma 2.1, we find after straightforward
manipulations and proceeding as above,

µε∇(w∂t∂αζ) ∼Y 0 −µε2∇(w∇ · (uζ(α)))− µε∇(w∇ · (hu(α)))
∼Y 0 −µε2∇(u · ∇(wζ(α))).

Collecting the above information yields

∂tv(α) ∼Y 0 −∂α∇ζ − ε∇(u · ∂αv)− εu⊥(curl ∂αv) + µε2∇(u · ∇(wζ(α)))
= −∂α∇ζ − ε∇(u · v(α))− εu⊥(curl v(α)). (3.8)

Estimates (3.7) and (3.8) provide the first estimate of the statement,
namely (3.3).

The second estimate of the statement is obtained identically. Since all
contributions on the remainders involve either products or the operator
T−1, we can express the difference as a sum of terms of the same form but
involving at least once ζ − ζ̃ or v − ṽ, or estimated by Lemma 2.11. For
instance, we find the corresponding estimate for (3.5) and (3.6) as follows.
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Denote h = 1 + εζ − βb and h̃ = 1 + εζ̃ − βb. By (2.2) in Lemma 2.1
and (2.4) and (2.8) in Lemma 2.2,∣∣hv− h̃ṽ

∣∣
Y n
≤
∣∣h(v− ṽ)

∣∣
Y n

+ ε
∣∣(ζ − ζ̃)ṽ

∣∣
Y n

≤ C(µ, h?,
∣∣∇h∣∣

H2∨n−1 , ε
∣∣ṽ∣∣

Y 3∨n)
(∣∣v− ṽ

∣∣
Y n

+
∣∣ζ − ζ̃∣∣

Hn

)
.

Applying this to u = T−1[h, βb](hv), ũ = T−1[h̃, βb](h̃ṽ) and by Lemma 2.4
and Lemma 2.11, it follows∣∣u− ũ

∣∣
Xn ≤

(∣∣v− ṽ
∣∣
Y n

+
∣∣ζ − ζ̃∣∣

Hn

)
× C(µ, h−1

? , h?,
∣∣∇b∣∣

H3∨n ,
∣∣∇h∣∣

H2∨n−1 ,
∣∣∇h̃∣∣

H2∨n−1 , ε
∣∣v∣∣

Y 2∨n , ε
∣∣ṽ∣∣

Y 3∨n).
It is now a tedious but straightforward task to follow the steps of the proof
and check that the estimate (3.4) holds. �

4. A priori energy estimates

This section is dedicated to a priori energy estimates on the quasilinearized
system (3.2) (or rather a mollified version; see below), which we make use
in the proof of the existence and uniqueness of solutions to system (1.3) in
subsequent Section 5. It is convenient to introduce the following notation,
for n ∈ N:

En(ζ,v) def=
∣∣ζ∣∣2

Hn +
∣∣v∣∣2

Y n
.

We wish to show that the regularity induced by En is propagated by the
flow of the Green-Naghdi system (1.3) provided n is chosen sufficiently
large. However, the natural energy of our system is determined by the sym-
metrizer associated with the quasilinear system (3.2) satisfied by ζ(α),v(α).
This leads us to define

Fn(ζ,v) def=
∑

0≤|α|≤n
F [h, βb](ζ(α),v(α)).

with ζ(α),v(α) given by (3.1) and

F [h, βb](ζ(α),v(α))
def=
∣∣ζ(α)

∣∣2
L2 +

〈
v(α), hu(α)

〉
(X0)′ ,

where we recall that u(α)
def= T[h, βb]−1(hv(α)). By convention, we denote

ζ(0)
def= ζ and v(0)

def= v. We denote F(ζ(α),v(α)) = F [h, βb](ζ(α),v(α)) in
the following for the sake of readability.
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It is not obvious that controlling F(ζ(α),v(α)) for 0 ≤ |α| ≤ n allows
to control En(ζ,v) and conversely, and this is what we investigate in the
following Lemmata.

Lemma 4.1. Let b ∈ Ḣ3(Rd) and ζ ∈ H3(Rd) be such that (1.7) holds,
and let ζ ∈ L2(Rd),v ∈ Y 0. Then u def= T[h, βb]−1(hv) ∈ X0 is uniquely
defined, and one has

C−1 ∣∣u∣∣
X0 ≤

∣∣v∣∣
Y 0 ≤ C

∣∣u∣∣
X0 ,

and
C−1F(ζ,v) ≤ E0(ζ,v) ≤ CF(ζ,v),

with C = C(µ, h−1
? , h?, β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2).

Proof. The estimates follow from Lemma 2.3 and (2.5),(2.6) and (2.8) in
Lemma 2.2. �

Lemma 4.2. Let n ∈ N? and b ∈ Ḣ4(Rd), ζ ∈ H4∨n(Rd) be such that (1.7)
holds. Assume v ∈ Y 4∨n and define ζ(α),v(α) as in (3.1). Then one has

Fn(ζ,v) ≤ C(µ, h−1
? , h?, β

∣∣∇b∣∣
H3 , ε

2E4(ζ,v)) En(ζ,v).

Conversely, if v ∈ Y 4 is such that v(α) ∈ Y 0 for any 1 ≤ |α| ≤ n, then
v ∈ Y n and

En(ζ,v) ≤ C(µ, h−1
? , h?, β

∣∣∇b∣∣
H3 , ε

2F4(ζ,v)) Fn(ζ,v).

Proof. By Lemma 4.1, it suffices to prove the estimates replacing Fn with

Ẽn(ζ,v) def=
∑

0≤|α|≤n
E0(ζ(α),v(α)).

Recall definition (3.1): ζ(α)
def= ∂αζ and v(α)

def= ∂αv − µε∇(w∂αζ) with
w

def= −h∇ · u + β∇b · u. By Lemma 2.2 and Lemma 2.4, one has for any
m ∈ {0, 1, 2},

√
µ
∣∣w∣∣

Hm ≤ C(µ, h?, β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2)
∣∣u∣∣

Xm

≤ C(µ, h−1
? , h?, β

∣∣∇b∣∣
H3 , ε

∣∣ζ∣∣
H3)

∣∣v∣∣
Ym

.

Now, by (2.3) in Lemma 2.1 and continuous Sobolev embedding H2 ⊂ L∞,
one has

µε
∣∣∇(wζ(α))

∣∣
Y 0 . ε

√
µ
∣∣wζ(α)

∣∣
L2 . ε

√
µ
∣∣w∣∣

H2

∣∣ζ(α)
∣∣
L2 .

We immediately deduce the first inequality of the statement.
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For the converse, we first use that if |α| ≤ 2, one has

µε
∣∣∇(wζ(α))

∣∣
Y 0 . ε

√
µ
∣∣wζ(α)

∣∣
L2 . ε

√
µ
∣∣ζ(α)

∣∣
H2

∣∣w∣∣
L2 ≤

√
µ
∣∣w∣∣

L2

∣∣εζ∣∣
H4 .

This yields for n ∈ {0, 1, 2},

∣∣v∣∣2
Y n
≤ C(µ, h−1

? , h?, β
∣∣∇b∣∣

H3 , ε
∣∣ζ∣∣

H4)×

 ∑
0≤|α|≤n

∣∣v(α)
∣∣2
Y 0

 .
Then, for |α| > 2, we use as previously

µε
∣∣∇(wζ(α))

∣∣
Y 0 . ε

√
µ
∣∣wζ(α)

∣∣
L2 . ε

√
µ
∣∣w∣∣

H2

∣∣ζ(α)
∣∣
L2 .

We deduce that for n ≥ 3,

∣∣v∣∣2
Y n
≤ C(µ, h−1

? , h?, β
∣∣∇b∣∣

H3 , ε
∣∣ζ∣∣

H4 , ε
∣∣v∣∣

Y 2)×

 ∑
0≤|α|≤n

E0(ζ(α),v(α))

 ,
so that the second inequality of the statement follows. �

In the following, we provide energy estimates for regular solutions of a
mollified version of the Green-Naghdi system (1.3), namely
∂tζ + J ι∇ · (hu) = rι,

∂tv + J ι
(
∇ζ + εu⊥ curl v + ε

2∇
(
|u|2

)
− µε∇

(
R[h,u] +Rb[h, βb,u]

))
= rι,

(4.1)
where u def= T[h, βb]−1(hv) as well as its associated quasilinear system (see
Proposition 3.1)

∂tζ(α) + J ι
(
ε∇ · (uζ(α)) +∇ · (hu(α))

)
= rι(α),

∂tv(α) + J ι
(
∇ζ(α) + εu⊥ curl v(α) + ε∇(u · v(α))

)
= rι(α),

(4.2)

where we denote u(α)
def= T[h, βb]−1(hv(α)). Here and thereafter, J ι is a

Friedrichs mollifier, defined as the Fourier multiplier J ι = ϕ(ι|D|), where
ι ∈ (0, 1) is a parameter and ϕ is a smooth function taking values in [0, 1],
compactly supported and equal to 1 in a neighborhood of the origin. By
convention we write J0 ≡ Id and J ι(u1, u2) = (J ιu1, J

ιu2). The following
properties will be used repeatedly:
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Lemma 4.3. Let n ≤ m ∈ N, ι, ι1, ι2 ∈ (0, 1), and define the Fourier
multiplier J ι as above. Then for any f ∈ Hn(Rd) and v ∈ Y n, one has
J ιf ∈ Hm(Rd), J ιv ∈ Y m and∣∣f−J ιf ∣∣

Hn+ι−1∣∣f−J ιf ∣∣
Hn−1 +

∣∣v−J ιv∣∣
Y n

+ι−1∣∣v−J ιv∣∣
Y n−1 → 0 (ι→ 0).

(4.3)
The above holds for fn → f in Hn and vn → v in Y n, uniformly with
respect to n ∈ N. Moreover, there exists a constant C, depending only on
ϕ, such that∣∣J ιf ∣∣

Hn ≤
∣∣f ∣∣

Hn ,
∣∣J ιv∣∣

Y n
≤
∣∣v∣∣

Y n
, (4.4)∣∣J ιf ∣∣

Hm ≤ C ιn−m
∣∣f ∣∣

Hn ,
∣∣J ιv∣∣

Ym
≤ C ιn−m

∣∣v∣∣
Y n
, (4.5)∣∣(J ι2−J ι1)f

∣∣
Hn−1 +

∣∣(J ι2−J ι1)v
∣∣
Y n−1 ≤ C |ι2− ι1|

(∣∣f ∣∣
Hn +

∣∣v∣∣
Y n

)
. (4.6)

Moreover, if f ∈ H3(Rd) and g ∈ Hn−1(Rd), there exists Cn, depending
only on ϕ and n such that∣∣[J ι, f ]g

∣∣
Hn ≤ C

∣∣∇f ∣∣
H2∨n−1

∣∣g∣∣
Hn−1 . (4.7)

Proof. The first estimates in Hn are straightforward by Fourier analysis
(see [9, Lemma 5]). The estimates in Y n follow by duality and using that
J ι is symmetric and commutes with spatial derivatives. The last estimate
is a consequence of [32, Corollary B.9] and (4.4). �

Propositions 4.4 and 4.5 below provide a priori energy inequalities for
sufficiently regular solutions of (4.1) and (4.2). Again, these estimates are
uniform with respect to ι ∈ (0, 1), and in particular hold as well for J ι = Id.

Proposition 4.4. Let b ∈ Ḣ4(Rd), (ζ,v) ∈ C1([0, T ];H3(Rd)1+d) be
such that (1.7) holds and satisfy system (4.1) with residuals (rι, rι) ∈
C0([0, T ];L2(Rd)1+d). Then for any t ∈ [0, T ],

d
dtF(ζ,v) ≤ FF(ζ,v) + C

(
F(rι, rι)F(ζ,v)

)1/2

where we denote F = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3 , ε

∣∣∂tζ∣∣H3 , ε
∣∣∇ζ∣∣

H2 , ε
∣∣v∣∣

H3)
and C = C(µ, h−1

? , h?, β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2), independent of ι ∈ (0, 1).

Proof. The regularity assumptions on the data and the assumption (1.7)
are sufficient to ensure that all the terms and calculations (including inte-
gration by parts) below are well-defined. We test the first equation of the
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system (4.1) against ζ ∈ C0([0, T ];L2(Rd)), and the second one against
hu = hT[h, βb]−1(hv) ∈ C0([0, T ];X0). It follows

1
2

d
dtF(ζ,v) = A1 +A2,ι +A3,ι +A4

with, using the symmetry of the operator T[h, βb]−1,

A1 def= 1
2
(
v, [∂t, hT[h, βb]−1h]v

)
L2

A2,ι def= −ε
(
J ι
(
u⊥ curl v + 1

2∇
(
|u|2

)
− µ∇

(
R[h,u] +Rb[h, βb,u])

)
, hu

)
L2

A3,ι def= −
(
J ι∇ · (hu), ζ

)
L2 −

(
J ι∇ζ, hu

)
L2

A4 def=
(
rι, ζ

)
L2 +

(
rι, hu

)
L2 .

Since J ι is symmetric and commutes with differential operators, one has
A3,ι ≡ 0 after integrating by parts. The contributions of A1 and A4 are
treated in details in the proof of Proposition 4.5; see (4.8) and (4.12),
below, with Lemma 4.1. As for A2,ι, one obtains rough estimates as follows.

By continuous Sobolev embedding H2 ⊂ L∞ and (2.5) in Lemma 2.2,∣∣ε∇ · (hu)
∣∣
L∞
.
∣∣h× (εu)

∣∣
H3 ≤ C(h?)F (β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
H3)

and therefore, by (4.4) in Lemma 4.3 and Cauchy-Schwarz inequality,

|ε
(
J ι(1

2 |u|
2),∇ · (hu)

)
L2 | ≤ C(h?)F (β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
H3)

∣∣u∣∣2
L2 .

Similarly, recalling the definition (1.4)-(1.5), one obtains as above
√
µε
∣∣R[h,u]+Rb[h, βb,u]

∣∣
L2 ≤ C(µ, h−1

? , h?)F (β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2 , ε
∣∣u∣∣

X3)
∣∣u∣∣

X0

and
√
µ
∣∣∇ · (hu)

∣∣
L2 ≤

√
µ
∣∣∇h∣∣

L∞

∣∣u∣∣
L2 +√µ

∣∣h∣∣
L∞

∣∣∇ · u∣∣
L2

≤ C(µ, h?, β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2)
∣∣u∣∣

X0 .

Finally, one has by Cauchy-Schwarz inequality and continuous Sobolev
embedding H2 ⊂ L∞

|
(
J ι(u⊥ curl v), hu

)
L2 | ≤ C(h?)

∣∣curl v
∣∣
H2

∣∣u∣∣2
L2 .

It follows, by (2.1) in Lemma 2.1,

|A2,ι| ≤ C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
X3 , ε

∣∣curl v
∣∣
H2)

∣∣u∣∣2
X0 .

We conclude by Lemma 2.4 and (2.8) in Lemma 2.2, and Lemma 4.1. �
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Proposition 4.5. Let (ζ,u) ∈ C0([0, T ];H4(Rd)1+d)∩C1([0, T ];H3(Rd)1+d)
and b ∈ Ḣ4 be such that (1.7) holds, and (ζ(α),v(α)) ∈ C0([0, T ];H1(Rd)1+d)
satisfying system (4.2) with remainders (rι(α), rι(α)) ∈ C

0([0, T ];L2(Rd)1+d).
Then one has for any t ∈ [0, T ],

d
dtF(ζ(α),v(α)) ≤ FF(ζ(α),v(α)) + C

(
F(rι(α), rι(α))F(ζ(α),v(α))

)1/2

where we denote F = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3 , ε

∣∣∂tζ∣∣H3 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣u∣∣

H3)
and C = C(µ, h−1

? , h?, β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2), independent of ι ∈ (0, 1).

Proof. The regularity assumptions on the data and the assumption (1.7)
are sufficient to ensure that all the terms and calculations below are well-
defined. We test the first equation of (4.2) against ζ(α) ∈ C0([0, T ];L2) and
the second against hu(α) = hT[h, βb]−1(hv(α)) ∈ C0([0, T ];X0). It follows

1
2

d
dtF(ζ(α),v(α)) = A1

(α) +A2,ι
(α) +A3,ι

(α) +A4
(α)

with, using the symmetry of the operator T[h, βb]−1,

A1
(α)

def= 1
2
(
v(α), [∂t, hT[h, βb]−1h]v(α)

)
L2

A2,ι
(α)

def= −ε
(
J ι∇ · (uζ(α)), ζ(α)

)
L2 − ε

(
J ι(u⊥ curl v(α) +∇(u · v(α))), hu(α)

)
L2

A3,ι
(α)

def= −
(
J ι∇ · (hu(α)), ζ(α)

)
L2 −

(
J ι∇ζ(α), hu(α)

)
L2

A4
(α)

def=
(
r1,ι

(α), ζ(α)
)
L2 +

(
r2,ι

(α), hu(α)
)
L2 .

We now estimate each contribution in terms of
∣∣v(α)

∣∣
Y 0 ,

∣∣u(α)
∣∣
X0 ,

∣∣ζ(α)
∣∣
L2 .

Estimate on A1
(α). We use the explicit formula for the commutator

1
2
(
v(α), [∂t, hT[h, βb]−1h]v(α)

)
L2

=
(
v(α), (∂th)T[h, βb]−1{hv(α)}

)
L2 + 1

2
(
v(α), h[∂t,T[h, βb]−1]hv(α)

)
L2

=
(
(∂th)v(α),u(α)

)
L2 −

1
2
(
u(α), [∂t,T[h, βb]]u(α)

)
L2

=
(
(∂th)v(α),u(α)

)
L2 −

1
2
(
u(α), (∂th)u(α)

)
L2

− µ

2
(
∇ · u(α), (h2∂th)∇ · u(α)

)
L2 + µ

(
(h∂th)∇ · u(α), (β∇b) · u(α)

)
L2
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where we used the symmetry of T[h, βb]−1 and the definitions (1.6),(1.2).
Since ∂th = ε∂tζ, we deduce by (2.8) in Lemma 2.2, continuous Sobolev
embedding H2 ⊂ L∞ and Cauchy-Schwarz inequality,

|A1
(α)| ≤ C(µ, h?, β

∣∣∇b∣∣
H2)×

(∣∣ε∂tζ∣∣H3

∣∣u(α)
∣∣
X0

∣∣v(α)
∣∣
Y 0 +

∣∣ε∂tζ∣∣H2

∣∣u(α)
∣∣2
X0

)
.

(4.8)
Estimate on A2,ι

(α). First remark that, since J ι is symmetric and commutes
with differential operators, one has after integrating by parts

A2,ι,i
(α)

def= −ε
(
J ι∇ · (uζ(α)), ζ(α)

)
L2 = ε

(
ζ(α),u · ∇J ιζ(α)

)
L2

and therefore, averaging the left-hand side and the right-hand side,

A2,ι,i
(α)

def= −1
2ε
(
J ι(ζ(α)∇ · u), ζ(α)

)
L2 −

1
2ε
(
ζ(α), [J ι,u·]∇ζ(α)

)
L2 .

By the product and commutator estimates (4.4) and (4.7) in Lemma 4.3,
and applying Cauchy-Schwarz inequality and continuous Sobolev embed-
ding H2 ⊂ L∞, we get

|A2,i
(α)| . ε

∣∣u∣∣
H3 ×

∣∣ζ(α)
∣∣2
L2 , (4.9)

uniformly with respect to ι ∈ (0, 1).
The second contribution, namely

A2,ι,ii
(α)

def=
(
J ι(u⊥ curl v(α) +∇(u · v(α))), hT[h, βb]−1(hv(α))

)
L2 ,

is by far the most involved (notice that in the case of the water waves
system, the corresponding term requires a specific attention as well; see [32,
Prop. 3.30]). We prove in Lemma 4.6, below, that

|A2,ι,ii
(α) | ≤ C(µ, h−1

? , h?)F (β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣u∣∣

H3)×
∣∣v(α)

∣∣2
Y 0 . (4.10)

Estimate on A3,ι
(α). Thanks to our choice of the symmetrizer and since

J ι is symmetric and commutes with differential operators, one has after
integrating by parts

A3,ι
(α) ≡ 0. (4.11)

Estimate on A4
(α). By Cauchy-Schwarz inequality and (2.7) in Lemma 2.2,

|A4
(α)| ≤ C(h?, β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2)×

(∣∣ζ(α)
∣∣2
L2 +

∣∣u(α)
∣∣2
X0

)1/2E0(r1
(α), r

2
(α)).
(4.12)

Estimates (4.8)–(4.12), with Lemma 4.1 yield the desired result. �
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We conclude this section with the proof of estimate (4.10), which is
essential in the proof of Proposition 4.5.

Lemma 4.6. Under the assumptions of Proposition 4.5, one has

ε|
(
J ι(u⊥ curl v(α) +∇(u · v(α))), hT[h, βb]−1(hv(α))

)
L2 | ≤ F

∣∣v(α)
∣∣2
Y 0 ,

with F = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3 , ε

∣∣∇ζ∣∣
H3 , ε

∣∣u∣∣
H3), uniformly with re-

spect to ι ∈ (0, 1).

Proof. We denote u(α)
def= T[h, βb]−1(hv(α)) and use the identity valid for

any U and V sufficiently regular two-dimensional vector fields

∇(U · V ) = (U · ∇)V + (V · ∇)U − V ⊥ curlU − U⊥ curlV. (4.13)

Thus we have

Bι def=
(
J ι(u⊥ curl v(α) +∇(u · v(α))), hu(α)

)
L2

=
(
(u · ∇)v(α) + (v(α) · ∇)u− v⊥(α) curl u, J ι(hu(α))

)
L2

= −
(
(u · ∇h)v(α), J

ιu(α)
)
L2

+
(
(u · ∇)(hv(α)) + (hv(α) · ∇)u− (hv(α))⊥ curl u, J ιu(α)

)
L2

+
(
(u · ∇)v(α) + (v(α) · ∇)u− v⊥(α) curl u, [J ι, h]u(α)

)
L2 .

The first term in Bι is controlled by Cauchy-Schwarz inequality, (2.4)
and (2.8) in Lemma 2.2 and (4.4) in Lemma 4.3:

ε|Bι
0|

def= ε|
(
(u · ∇h)v(α), J

ιu(α)
)
L2 |

≤ F (β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣u∣∣

H3)
∣∣v(α)

∣∣
Y 0

∣∣u(α)
∣∣
X0 . (4.14)

For the second term, we plug the identity (recall the definition of T[h, βb]
in (1.2) and (1.6))

hv(α) = hu(α)−
µ

3∇(h3∇·u(α))+µ

2
(
∇
(
h2(β∇b)·u(α)

)
−h2(β∇b)∇·u(α)

)
+ µhβ2(∇b · u(α))∇b

and consider separately the four contributions.
One has

Bι
1

def=
(
(u·∇)(hu(α)), J ιu(α)

)
L2 +

(
(hu(α) ·∇)u−(hu(α))⊥ curl u, J ιu(α)

)
L2 .
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Integrating by parts the advection operator and averaging yields

(
(u · ∇)(hu(α)), J ιu(α)

)
L2 = 1

2
(
u(α), [J ι, (hu · ∇)]u(α)

)
L2

+ 1
2
(
(u · ∇h)u(α), J

ιu(α)
)
L2 −

1
2
(
u(α), (h∇ · u)J ιu(α)

)
L2 .

All components are now estimated by Cauchy-Schwarz inequality and con-
tinuous Sobolev embedding H2 ⊂ L∞ as well as (4.4),(4.7) in Lemma 4.3:

ε|Bι
1| ≤ C(h?)F (β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
H3)

∣∣u(α)
∣∣2
L2 . (4.15)

One has, denoting V = ∇(h3∇ · u(α)),

Bι
2

def= −µ3
(
(u · ∇)V + (V · ∇)u− (V ⊥ curl u, J ιu(α)

)
L2

= µ

3
(
u · V, J ι∇ · u(α)

)
L2

= −µ6
(
(h3∇ · u− 3h2u · ∇h)∇ · u(α), J

ι∇ · u(α)
)
L2

+ µ

6
(
∇ · u(α), [J ι, h3u] · ∇(∇ · u(α))

)
L2 ,

where we used the identity (4.13) (notice that curlV = 0) and integration
by parts. We conclude as above

ε|Bι
2| ≤ µC(h?)F (β

∣∣∇b∣∣
H2 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
H3)

∣∣∇ · u(α)
∣∣2
L2 . (4.16)

One has, denoting for readability F def= h2(β∇b) and V = ∇(F · u(α)),

Bι
3

def= µ

2
(
(u · ∇)V + (V · ∇)u− (V ⊥ curl u, J ιu(α)

)
L2

− µ

2
(
(u · ∇)(F∇ · u(α)) + ((F∇ · u(α)) · ∇)u− (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2

= −µ2
(
u · V, J ι∇ · u(α)

)
L2 −

µ

2
(
(u · ∇)(F∇ · u(α)), J ιu(α)

)
L2

− µ

2
(
((F∇ · u(α)) · ∇)u− (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2

= µ

2
(
F · u(α),u · (J ι∇∇ · u(α))

)
L2 −

µ

2
(
F (u · ∇∇ · u(α)), J ιu(α)

)
L2

+ µ

2
(
F · u(α), (∇ · u)J ι∇ · u(α)

)
L2 −

µ

2
(
(∇ · u(α))(u · ∇)F, J ιu(α)

)
L2

− µ

2
(
((F∇ · u(α)) · ∇)u− (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2 ,
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where we used again the identity (4.13), and integration by parts. All
the components are estimated as above by Cauchy-Schwarz inequality,
continuous Sobolev embedding H2 ⊂ L∞, (4.4) as well as (4.7) for the
first line. It follows
ε|Bι

3| ≤ µC(h?)F (β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H2 , ε
∣∣u∣∣

H3)
∣∣u(α)

∣∣
L2

∣∣∇ · u(α)
∣∣
L2 . (4.17)

One has
Bι

4
def= µβ2((u · ∇)(h(∇b · u(α))∇b), J ιu(α)

)
L2

+
(
h(∇b · u(α))(∇b · ∇)u− h(∇b · u(α))(∇b)⊥ curl u, J ιu(α)

)
L2 .

The second component is estimated by Cauchy-Schwarz inequality, con-
tinuous Sobolev embedding H2 ⊂ L∞ and (4.4); and the first one after
integrating by parts, averaging and repeated use of the commutator esti-
mate (4.7). One obtains eventually

ε|Bι
4| ≤ µC(h?)F (β

∣∣∇b∣∣
H3 , ε

∣∣∇ζ∣∣
H2 , ε

∣∣u∣∣
H3)

∣∣u(α)
∣∣2
L2 . (4.18)

We have one last term to estimate, namely

Bι
5

def=
(
(u · ∇)v(α) + (v(α) · ∇)u− v⊥(α) curl u, [J ι, h]u(α)

)
L2 .

By (4.7) and (2.4) in Lemma 2.2, and (2.2) in Lemma 2.1, one has

ε|
(
(v(α) · ∇)u− v⊥(α) curl u, [J ι, h]u(α)

)
L2 |

≤ F (β
∣∣∇b∣∣

H2 , ε
∣∣∇ζ∣∣

H2 , ε
∣∣u∣∣

H3)
∣∣v(α)

∣∣
Y 0

∣∣u(α)
∣∣
L2 .

Then, one has, integrating by parts,

ε|
(
(u · ∇)v(α), [J ι, h]u(α)

)
L2 |

≤ ε|
(
v(α), (∇ · u)[J ι, h]u(α)

)
L2 |+ ε|

(
v(α), (u · ∇)[J ι, h]u(α)

)
L2 |.

The first term is estimated as above, and the second by duality, since∣∣(u · ∇)[J ι, h]u(α)
∣∣
X0 . ε

∣∣(u · ∇)[J ι, h]u(α)
∣∣
L2 +√µε

∣∣∇ · ((u · ∇)[J ι, h]u(α))
∣∣
L2

≤ C(µ)F (β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣u∣∣

H3)
∣∣u(α)

∣∣
X0 ,

where we used (4.7) and continuous Sobolev embedding H2 ⊂ L∞. Thus
ε|Bι

5| ≤ C(µ)F (β
∣∣∇b∣∣

H3 , ε
∣∣∇ζ∣∣

H3 , ε
∣∣u∣∣

H3)
∣∣v(α)

∣∣
Y 0

∣∣u(α)
∣∣
L2 . (4.19)

Collecting estimates (4.14)–(4.19) and using Lemma 4.1, we deduce that
εBι = ε(Bι

0 +Bι
1 +Bι

2 +Bι
3 +Bι

4 +Bι
5)

is estimated as in the statement. This concludes the proof. �
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5. Well-posedness

We are now in position to prove our main results concerning the Cauchy
problem for (1.3).

Proposition 5.1 (Existence and uniqueness). Let N ≥ 4, b ∈ ḢN+2 and
(ζ0,v0) ∈ HN × Y N satisfying (1.7) with h?, h? > 0, and curl v0 ∈ HN−1.
Then there exists T > 0 and a unique (ζ,v) ∈ L∞(0, T ;HN × Y N ) ∩
C([0, T ];H2 × (H1)d) satisfying (1.3) and (ζ,v) |t=0 = (ζ0,v0). Moreover,
one can restrict

T−1 = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
H4 , ε

∣∣v0
∣∣
Y 4 , ε

∣∣curl v0
∣∣
H3) > 0

such that, for any t ∈ [0, T ], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

EN (ζ,v) +
∣∣curl v

∣∣2
HN−1 ≤ C0

(
EN (ζ0,v0) +

∣∣curl v0
∣∣2
HN−1

)
with C0 = C(µ, h−1

? , h?, β
∣∣∇b∣∣

HN+1 , ε
∣∣ζ0
∣∣
H4 , ε

∣∣v0
∣∣
Y 4 , ε

∣∣curl v0
∣∣
H3).

Proof. Construction. The construction of a solution is fairly classical, and
follows the line of [32, Sec. 4.3.4]. Consider the mollified system (4.1)
with right-hand side rι = 0, rι = 0 and mollified initial data (ζι0,vι0) def=
(J ιζ0, J

ιv0). Obviously, for any ι ∈ (0, 1), ζι0,vι0 ∈ Hn with arbitrary
large n ∈ N. By the Cauchy-Lipschitz theorem on Banach spaces, there
exists a unique (smooth) solution to (4.1) with initial data (ζι0,vι0), that
we denote U ι def= (ζι,vι), defined on the maximal time interval [0, T ι). For
any multi-index α ∈ Nd, denote

ζι(α)
def= ∂αζι and vι(α)

def= ∂αvι − µε∇(wι∂αζι)

where wι def= −hι∇·uι+β∇b·uι, hι def= 1+εζι−βb, uι def= T[hι, βb]−1(hιvι).
By proceeding exactly as in the proof of Proposition 3.1, one easily checks
that U ι satisfies the quasilinear mollified system (4.2) with

rι(α) = J ιr(α)(ζι,vι) and rι(α) = J ιr(α)(ζι,vι) + µε∇r′,ι(α),

where r(α) and r(α) are given in Proposition 3.1, and

r′,ι(α) = −(Id− J ι)
(
ζι(α)∂tw

ι)− [J ι, wι]∂α∇ · (hιuι).

By using (2.2) in Lemma 2.1, one has

µε
∣∣∇r′,ι(α)

∣∣
Y 0 . ε

√
µ
∣∣r′,ι(α)

∣∣
L2 ,

36



WP OF GREEN-NAGHDI AND BOUSSINESQ-PEREGRINE

which, by (4.4) and (4.7) in Lemma 4.3 and using bounds obtained in the
proof of Proposition 3.1, is easily seen to satisfy the same estimate as r(α)
(this is a simplification with regards to the proof of [32, Sec. 4.3.4]; see
Remark 4.26 therein). Thus we have, for any 1 ≤ |α| ≤ N ,∣∣rι(α)

∣∣
L2 +

∣∣rι(α)
∣∣
Y 0 ≤ F

(∣∣ζι∣∣
H|α|

+
∣∣vι∣∣

Y |α|
+
∣∣curl vι

∣∣
H|α|−1

)
with F = C(µ, h−1

? , h?)F
(
β
∣∣∇b∣∣

HN+1 , ε
∣∣∇ζι∣∣

H3 , ε
∣∣vι∣∣

Y 4 , ε
∣∣curl vι

∣∣
H3

)
. It fol-

lows, applying Proposition 4.4 and Proposition 4.5,
d
dtF

N (ζι,vι) ≤ F FN (ζι,vι)

+ F
(∣∣ζι∣∣

HN +
∣∣vι∣∣

Y N
+
∣∣curl vι

∣∣
HN−1

)
FN (ζι,vι)1/2

with F as above, using that by (4.1)1, (4.4) in Lemma 4.3, Lemma 2.4
and (2.7),(2.8) in Lemma 2.2,∣∣∂tζι∣∣H3 ≤

∣∣hιuι∣∣
H4 ≤ C(µ, h−1

? , h?, ε
∣∣∇ζι∣∣

H3 , β
∣∣∇b∣∣

H3)
∣∣vι∣∣

Y 4 .

Notice that (1.7) propagates for large time since

1 + εζι − βb = 1 + εζι0 − βb+ ε

∫ t

0
∂tζ

ι ≥ h? − ε
∫ t

0

∣∣∂tζ∣∣L∞ .
Finally, applying the operator curl to (4.1)2 (recall rι = 0, rι = 0), one has

∂t curl vι + εJ ι∇ · (uι curl vι) = 0.
Proceeding as in Proposition 3.1 to show that curl ∂αvι satisfies the same
conservation law up to a tame remainder term, testing against curl ∂αvι
to deduce energy estimates and summing over 0 ≤ |α| ≤ N − 1 yields

d
dt
∣∣curl vι

∣∣2
HN−1 . ε

∣∣uι∣∣
H4

∣∣curl vι
∣∣2
HN−1 + ε

∣∣curl v
∣∣
H3

∣∣uι∣∣
HN

∣∣curl vι
∣∣
HN−1 .

Altogether, using Gronwall-type estimates, Lemmata 4.2 and 4.4 and
straightforward arguments (see for instance [32, p. 109] for details), one
deduces that there exists T > 0 with

T−1 = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
H4 , ε

∣∣v0
∣∣
Y 4 , ε

∣∣curl v0
∣∣
H3) > 0

such that for any ι ∈ (0, 1), T ι > T ; and for any t ∈ [0, T ],

EN (ζι,vι) +
∣∣curl vι

∣∣2
HN−1 ≤ C0

(
EN (ζ0,v0) +

∣∣curl v0
∣∣2
HN−1

)
(5.1)

with C0 = C(µ, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
H4 , ε

∣∣v0
∣∣
Y 4 , ε

∣∣curl v0
∣∣
H3), and (1.7)

holds for hι = 1 + εζι − βb with h̃? = h?/2 and h̃? = 2h?.
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Notice that the time interval [0, T ] and energy estimates are uniform
with respect to ι ∈ (0, 1). We shall prove below that the sequence (ζι,vι)
defines a Cauchy sequence whose limit provides the desired solution.

Convergence. Denote ζ def= ζι2 − ζι1 and v def= vι1 − vι2 . Then (ζ,v)
satisfies
∂tζ + J ι2∇ · (hu) = J ι2r + (J ι1 − J ι2)r,

∂tv + J ι2
(
∇ζ + εu⊥ curl v + ε

2∇
(
|u|2

)
− µε∇

(
R[h,u] +Rb[h, βb,u]

))
= J ι2r + (J ι1 − J ι2)r,

(5.2)
with notation h = 1 + εζ − βb and u def= T[h, βb]−1(hv), and

r = ∇ · (hu) +∇ · (hι1uι1)−∇ · (hι2uι2), r = ∇ · (hι1uι1),

r = ε
(
u⊥ curl v + (uι1)⊥ curl vι1 − (uι2)⊥ curl vι2

)
+ ε

2∇
(
|u|2 + |uι1 |2 − |uι2 |2

)
− µε∇

(
R[h,u] +R[hι1 ,uι1 ]−R[hι2 ,uι2 ]

)
− µε∇

(
Rb[h, βb,u] +Rb[hι1 , βb,uι1 ]−Rb[hι2 , βb,uι2 ]

)
,

r = ∇ζι1 + ε(uι1)⊥ curl vι1 + ε

2∇
(
|uι1 |2

)
− µε∇

(
R[hι1 ,uι1 ] +Rb[hι1 , βb,uι1 ]

)
.

By using the previously obtained energy estimates (5.1), Lemma 2.4 and
Lemma 2.11, one has∣∣u∣∣

X1 +
∣∣uι1 − uι2

∣∣
X1 ≤ C0 E1(ζ,v)1/2

where we denote, here and thereafter,

C0 = C(µ, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
H4 , ε

∣∣v0
∣∣
Y 4 , ε

∣∣curl v0
∣∣
H3).

It follows, after straightforward computations and using Lemmata 2.1, 2.2
and (4.6) in Lemma 4.3,∣∣J ι2r∣∣

L2 +
∣∣J ι2r

∣∣
Y 0 ≤ C0

(
E1(ζ,v)1/2 +

∣∣curl v
∣∣
L2

)
.

By (4.6) in Lemma 4.3, we have immediately∣∣(J ι1 − J ι2)r
∣∣
L2 +

∣∣(J ι1 − J ι2)r
∣∣
Y 0 ≤ C0 |ι2 − ι1|.

38



WP OF GREEN-NAGHDI AND BOUSSINESQ-PEREGRINE

In the same way, setting 1 ≤ |α| ≤ 2, then ζ(α)
def= ∂αζι2 − ∂αζι1 and

v(α)
def= vι2(α) − vι1(α) satisfy

∂tζ(α) + J ι2
(
ε∇ · (uι2ζ(α)) +∇ ·

(
hι2T[hι2 , βb]−1(hι2v(α))

))
= J ι2r(α) + (J ι1 − J ι2)r(α),

∂tv(α) + J ι2
(
∇ζ(α) + ε(uι2)⊥ curl v(α) + ε∇

(
uι2 · v(α)

))
= J ι2r(α) + (J ι1 − J ι2)r(α) + µε∇(r′,ι2(α) − r

′,ι1
(α)),

(5.3)

where
r(α) = ∇ ·

(
ε(uι1 − uι2)ζι1(α) + hι1T[hι1 , βb]−1(hι1vι1(α))− h

ι2T[hι2 , βb]−1(hι2vι1(α))
)

+ r(α)(ζι2 ,vι2)− r(α)(ζι1 ,vι1),
r(α) = ε∇ · (uι1ζι1(α)) +∇ · (hι1uι1(α))− r(α)(ζι1 ,vι1),

r(α) = ε(uι1 − uι2)⊥ curl vι1(α) + ε∇
(
(uι1 − uι2) · vι1(α)

)
+ r(α)(ζι2 ,vι2)− r(α)(ζι1 ,vι1),

r(α) = ε(uι1)⊥ curl vι1(α) + ε∇
(
uι1 · vι1(α)

)
− r(α)(ζι1 ,vι1).

In order to estimate the right-hand side, notice first that |α|+ 2 ≤ 4 ≤ N ,
one has by (5.1), (2.2) in Lemma 2.1, (2.4) in Lemma 2.2 and Lemma 2.4:∣∣ζι1(α)

∣∣
H2 +

∣∣vι1(α)
∣∣
Y 2 +

∣∣uι1(α)
∣∣
X2 ≤ C0.

Moreover, we already indicated
∣∣uι1−uι2

∣∣
X1 ≤ C0 E1(ζ,v)1/2 and by (3.4)

in Proposition 3.1,∣∣r(α)(ζι1 ,vι1)− r(α)(ζι2 ,vι2)
∣∣
L2 +

∣∣r(α)(ζι1 ,vι1)− r(α)(ζι2 ,vι2)
∣∣
Y 0

≤ C0
(
E2(ζ,v)1/2 +

∣∣curl v
∣∣
H1

)
.

It follows, by (4.4) in Lemma 4.3 and Lemmata 2.1, 2.2, 2.3 2.4 and 2.11,∣∣J ι2r(α)
∣∣
L2 +

∣∣J ι2r(α)
∣∣
Y 0 ≤ C0

(
E2(ζ,v)1/2 +

∣∣curl v
∣∣
H1

)
and, by (5.1) and (4.6) in Lemma 4.3,∣∣(J ι1 − J ι2)r(α)

∣∣
L2 +

∣∣(J ι1 − J ι2)r(α)
∣∣
Y 0 ≤ C0 |ι2 − ι1|.

Following the same remark as above, we control the last contribution:

µε
∣∣∇r′,ι2(α) −∇r

′,ι1
(α)
∣∣
Y 0 ≤

√
µε
∣∣r′,ι2(α) − r

′,ι1
(α)
∣∣
L2 ≤ C0

(
E2(ζ,v)1/2 + |ι2 − ι1|

)
.
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Thus applying Proposition 4.4 to (5.2), Proposition 4.5 to (5.3) and adapt-
ing Lemma 4.2, one has

d
dtF

2(ζ,v) ≤ C0
(
F2(ζ,v) +

∣∣curl v
∣∣2
H1 + |ι2 − ι1|F2(ζ,v)1/2

)
.

with the notation F2(ζ,v) def=
∑

0≤|α|≤2F [hι2 , βb](ζ(α),v(α)). Notice also
the identity

∂t curl v + εJ ι2∇ · (uι2 curl v) = J ι2∇ · ((uι1 − uι2) curl vι1)
+ ε(J ι1 − J ι2)∇ · (uι1 curl vι1),

so that, proceeding as above,
d
dt
∣∣curl v

∣∣2
H1 ≤ C0

(
F2(ζ,v) +

∣∣curl v
∣∣2
H1 + |ι2 − ι1|F2(ζ,v)1/2

)
.

Applying Gronwall’s Lemma and since, by (4.6) in Lemma 4.3, one has∣∣ζι20 − ζ
ι1
0
∣∣
H2 +

∣∣vι20 − vι10
∣∣
H2 . |ι2 − ι1|EN (ζ0,v0)1/2,

we find that
F2(ζ,v)1/2 +

∣∣curl v
∣∣
H1 ≤ C0|ι2 − ι1|(1 + t) exp(C0t).

Slightly adapting the proof Lemma 4.2 and thanks to (5.1) and Lemma 2.4
and 2.11, we deduce∣∣ζι2 − ζι1∣∣

H2 +
∣∣vι2 − vι1

∣∣
Y 2 +

∣∣curl vι2 − curl vι1
∣∣
H1 +

∣∣uι2 − uι1
∣∣
X2

≤ C0|ι2 − ι1|(1 + t) exp(C0t).
The Cauchy sequences are strongly convergent in low regularity Banach
spaces C([0, T ];Hn), and are also bounded thus weakly convergent (up
to a subsequence) in high regularity spaces by (5.1). By uniqueness of the
limit, there exists (ζ,v, w,u, v) ∈ L∞(0, T ;HN×Y N×HN−1×XN×HN )
such that (1.7) holds with h̃? = h?/2 and h̃? = 2h?, satisfying the desired
energy estimates and, as ι→ 0,
sup
t∈[0,T ]

(∣∣ζι−ζ∣∣
H2+

∣∣vι−v
∣∣
H1+

∣∣curl vι−w
∣∣
H2+

∣∣uι−u
∣∣
H2+

∣∣∇·uι−v∣∣
H2

)
→ 0.

By uniqueness of the limit, w = curl v, v = ∇ · u and u = T[h, βb]−1(hv).
The level of regularity in the above convergence result is sufficient to pass
to the limit in (4.1), so that (ζ,v) is a strong solution to (1.3). That it
satisfies the desired initial data is guaranteed by (4.3) in Lemma 4.3.
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Uniqueness. By considering ζ,v the difference between two solutions
with same initial data, and proceeding exactly as above (with fewer terms
since mollifications are not involved), we find

d
dt
(
F2(ζ,v) +

∣∣curl v
∣∣2
H1

)
≤ C0

(
F2(ζ,v) +

∣∣curl v
∣∣2
H1

)
.

Applying Gronwall’s estimate and since
(
F2(ζ,v) +

∣∣curl v
∣∣2
H1

)
|t=0 = 0,

we deduce ζ = 0,v = 0. This concludes the proof of Proposition 5.1. �

Proposition 5.2 (Stability). Let N ≥ 4 and (b, ζ0,v0) satisfy the as-
sumptions of Proposition 5.1, and denote

M0 =
∣∣ζ0
∣∣
HN +

∣∣v0
∣∣
Y N

+
∣∣curl v0

∣∣
HN

Let 1 ≤ n ≤ N and (ζ̃, ṽ, curl ṽ) ∈ L∞(0, T̃ ;HN+1 × Y N+1 × HN ) ∩
C([0, T̃ ];Hn×Y n×Hn−1) satisfies (1.7) and (1.3) up to some remainders
(r̃, r̃, curl r̃) ∈ L1(0, T̃ ;Hn × Y n ×Hn−1). Denote

M̃ = ess sup
t∈[0,T̃ ]

(∣∣ζ̃∣∣
HN+1 +

∣∣ṽ∣∣
Y N+1 +

∣∣curl ṽ
∣∣
HN

)
.

Then there exists

T−1 = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , εM0, εM̃) > 0,

such that for any t ∈ [0,min(T, T̃ )],(∣∣ζ − ζ̃∣∣
Hn +

∣∣v− ṽ
∣∣
Y n

+
∣∣curl v− curl ṽ

∣∣
Hn−1

)
(t) ≤

C
(∣∣ζ − ζ̃∣∣

Hn +
∣∣v− ṽ

∣∣
Y n

+
∣∣curl v− curl ṽ

∣∣
Hn−1

)
|t=0

+ C
∫ t

0

(∣∣r̃∣∣
Hn +

∣∣r̃∣∣
Y n

+
∣∣curl r̃

∣∣
Hn−1

)
(t′)dt′.

with C = C(µ, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , εM0, εM̃).

Proof. This Lipschitz stability property was already at stake in the con-
vergence part of the proof of Proposition 5.1. We use the same strategy.

Denote ζ def= ζ−ζ̃, v def= v−ṽ, h def= 1+εζ−βb and u def= T[h, βb]−1(hv); as
well as ζ(α)

def= ∂αζ−∂αζ̃, v(α)
def= v(α)−ṽ(α) and u(α)

def= T[h, βb]−1(hv(α)).
Consider the system satisfied by (ζ,v) and (ζ(α),v(α)). Compared with (5.2)
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and (5.3), there are fewer terms in the right-hand side, but they require
more precise estimates. For 1 ≤ |α| ≤ n, one has

∂tζ(α) + ε∇ · (uζ(α)) +∇ · (hu(α))
= r(α) − ∂αr̃ + r(α)(ζ,v)− r(α)(ζ̃, ṽ)

∂tv(α) +∇ζ(α) + εu⊥ curl v(α) + ε∇(u · v(α))
= r(α) − ∂αr̃ + µε∇(w̃∂αr̃) + r(α)(ζ,v)− r(α)(ζ̃, ṽ)

(5.4)

where w̃ def= −h̃∇ · ũ + β∇b · ũ, h̃ def= 1 + εζ̃ − βb, ũ def= T[h̃, βb]−1(h̃ṽ), and

r(α) = ∇ ·
(
ε(ũ− u)ζ̃(α) + h̃T[h̃, βb]−1(h̃ṽ(α))− hT[h, βb]−1(hṽ(α))

)
,

r(α) = ε(ũ− u)⊥ curl ṽ(α) + ε∇
(
(ũ− u) · ṽ(α)

)
.

Since |α| ≤ N , one has by (2.2) in Lemma 2.1 and Lemmata 2.2 and 2.4
to estimate

∣∣w̃∣∣
H2 ,

ε
∣∣ζ̃(α)

∣∣
H1 + ε

∣∣ṽ(α)
∣∣
Y 1 + ε

∣∣curl ṽ(α)
∣∣
L2

≤ C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
H3 , ε

∣∣ζ̃∣∣
HN+1 , ε

∣∣ṽ∣∣
Y N+1 , ε

∣∣curl ṽ
∣∣
HN ).

Using Lemmata 2.1, 2.2, 2.4, and 2.11, one checks that for m ∈ {0, 1, 2, 3},∣∣u− ũ
∣∣
Hm ≤

∣∣u− ũ
∣∣
Xm ≤ C ×

(∣∣ζ∣∣
Hm +

∣∣v∣∣
Ym

)
with C = C(µ, h−1

? , h?, β
∣∣∇b∣∣

H3 , ε
∣∣ζ∣∣

H3 , ε
∣∣v∣∣

Y 3 , ε
∣∣ζ̃∣∣

H3 , ε
∣∣ṽ∣∣

Y 4). It follows,
using again Lemmata 2.1, 2.2, 2.4, and adapting the proof of Lemma 2.11
to replace

∣∣v∣∣
Y 2∨n

∣∣ζ − ζ̃∣∣
Hn with

∣∣v∣∣
Y n

∣∣ζ − ζ̃∣∣
H2∨n ,∣∣r(α)

∣∣
L2 +

∣∣r(α)
∣∣
Y 0 ≤ ε C

(∣∣ζ∣∣
H3 +

∣∣v∣∣
Y 3

)(∣∣ζ̃(α)
∣∣
H1 +

∣∣ṽ(α)
∣∣
Y 1 +

∣∣curl ṽ(α)
∣∣
L2

)
,

with C as above. Moreover, by (3.4) in Proposition 3.1, one has∣∣r(α)(ζ,v)− r(α)(ζ̃, ṽ)
∣∣
L2 +

∣∣r(α)(ζ,v)− r(α)(ζ̃, ṽ)
∣∣
Y 0

≤ F̃
(∣∣ζ∣∣

H|α|
+
∣∣v∣∣

Y |α|
+
∣∣curl v

∣∣
H|α|−1

)
with

F̃ = C(µ, h−1
? , h?)F

(
β
∣∣∇b∣∣

H4∨|α|+1 , ε
∣∣ζ∣∣

H4∨|α| , ε
∣∣v∣∣

Y 4∨|α| , ε
∣∣curl v

∣∣
H3∨|α|−1 ,

ε
∣∣ζ̃∣∣

H4∨|α| , ε
∣∣ṽ∣∣

Y 4∨|α| , ε
∣∣curl ṽ

∣∣
H3∨|α|−1

)
.
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Finally, using (2.3) in Lemma 2.1, one finds as above∣∣µε∇(w̃∂αr̃)
∣∣
Y 0 ≤ C(µ)

∣∣εw̃∂αr̃∣∣
L2 ≤ C

∣∣∂αr̃∣∣
L2 .

By Proposition 4.5, the energy estimate of Proposition 5.1 and using the
identity ∂tζ = −∇ · (hu) to control

∣∣∂tζ∣∣H3 , we obtain

d
dtF(ζ(α),v(α)) ≤ F

(
F(ζ(α),v(α)) + E3∨|α|(ζ,v) +

∣∣curl v
∣∣2
H|α|−1

)
+ C

(
F(∂αr̃, ∂αr̃)F(ζ(α),v(α))

)1/2
,

where we denote F = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , εM0, εM̃), and C =

C(µ, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , εM0, εM̃).

In order to control curl v, we notice that

∂t curl v + ε∇ · (u curl v) = ε∇ ·
(
(ũ− u) curl ṽ

)
− curl r̃,

so that standard energy estimates yield

d
dt
(∣∣curl v

∣∣2
Hn−1

)
.
∣∣curl v

∣∣
Hn−1

×
(
ε
∣∣u∣∣

H2∨n

∣∣curl v
∣∣
Hn−1 + ε

∣∣ũ− u
∣∣
Hn

∣∣curl ṽ
∣∣
H2∨n +

∣∣curl r̃
∣∣
Hn−1

)
.

Finally, one easily checks that, as in Lemma 4.2, that

En(ζ,v) ≤ C
∑

0≤|α|≤n
F(ζ(α),v(α)) ;

∑
0≤|α|≤n

F(ζ(α),v(α)) ≤ C En(ζ,v).

Thus for any n ≥ 3, adding the above energy estimates for 1 ≤ |α| ≤ n,
the corresponding one based on Proposition 4.4 when α = (0, 0), and by
Gronwall’s Lemma, we find∣∣ζ∣∣

Hn+
∣∣v∣∣

Y n
+
∣∣curl v

∣∣
Hn−1 ≤

(∣∣ζ |t=0

∣∣
Hn+

∣∣v |t=0

∣∣
Y n

+
∣∣curl v |t=0

∣∣
Hn−1

)
eFt

+ C
∫ t

0

(∣∣r̃∣∣
Hn +

∣∣r̃∣∣
Y n

+
∣∣curl r̃

∣∣
Hn−1

)
(t′)eF(t−t′)dt′.

with C,F as above. The proposition is proved for n ≥ 3. The case n ≤ 2
is obtained in the same way, but using the estimates∣∣r(α)

∣∣
L2 +

∣∣r(α)
∣∣
Y 0 ≤ ε C

(∣∣ζ∣∣
H1 +

∣∣v∣∣
Y 1

)(∣∣ζ̃(α)
∣∣
H3 +

∣∣ṽ(α)
∣∣
H3 +

∣∣curl ṽ(α)
∣∣
H2

)
(notice that in that case, |α| ≤ 2 ≤ N + 1− 3). �
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We now conclude this section with continuity results, completing the
well-posedness of the Cauchy problem for system (1.3) in the sense of
Hadamard.
Proposition 5.3 (Well-posedness). Under the hypotheses of Proposition 5.1,
the unique strong solution to (1.3) satisfies additionally (ζ,v, curl v) ∈
C([0, T ];HN × Y N × HN−1). Moreover, the mapping (ζ0,v0 curl v0) ∈
HN × Y N ×HN−1 7→ (ζ,v, curl v) ∈ C([0, T ];HN × Y N ×HN−1) is con-
tinuous.

More precisely, for (ζ0,v0, curl v0) ∈ HN ×Y N ×HN−1 satisfying (1.7)
and (ζ0,n,v0,n, curl v0,n)→ (ζ0,v0, curl v0) in HN × Y N ×HN−1, one can
set T−1 = C(µ, h−1

? , h?) × F (β
∣∣∇b∣∣

HN+1 , ε
∣∣ζ0
∣∣
HN , ε

∣∣v0
∣∣
Y N

,
∣∣curl v0

∣∣
HN−1)

and n0 ∈ N such that for all n ≥ n0, there exists a unique strong so-
lution (ζn,vn) ∈ C([0, T ];HN × Y N ) satisfying (1.3) with initial data
(ζn,vn) |t=0 = (ζ0,n,v0,n), and one has

lim
n→∞

sup
t∈[0,T ]

(∣∣ζn − ζ∣∣HN +
∣∣vn − v

∣∣
Y N

+
∣∣curl vn − curl v

∣∣
HN−1

)
= 0.

Proof. Our proof is based on the Bona-Smith technique [9]. For ι ∈ (0, 1),
denote (ζι,vι) (resp. (ζιn,vιn)) the unique solution to (1.3) with mollified
initial data (ζι0,vι0) def= (J ιζ0, J

ιv0) (resp. (ζι0,n,vι0,n) def= (J ιζ0,n, J
ιv0,n))

in C([0, T ];H2 × (H1)d) ∩ L∞(0, T ;HN × Y N ), as provided by Proposi-
tion 5.1; see Lemma 4.3 for the definition of J ι and relevant properties.
In particular, by (4.4), one can restrict n0 ∈ N such that the energy esti-
mate and lower bound on T stated in Proposition 5.1 hold uniformly with
respect to ι ∈ (0, 1) and n ≥ n0.

We then proceed as in the proof of Proposition 5.2, with (ζ̃, ṽ) = (ζι,vι)
and (r, r) = 0. We thus find that the difference, ζ def= ζ− ζι and v = v−vι
satisfies, for any 3 ≤ m ≤ N ,

d
dt
(
Fm(ζ,v) +

∣∣curl v
∣∣2
Hm−1

)
≤ C0

(
Fm(ζ,v) +

∣∣curl v
∣∣2
Hm−1

)
+ εC0Fm(ζ,v)1/2E3(ζ,v)1/2(∣∣ζι∣∣

Hm+1 +
∣∣vι∣∣

Ym+1 +
∣∣curl vι

∣∣
Hm

)
,

with Fm(ζ,v) def=
∑

0≤|α|≤mF [h, βb](ζ(α),v(α)) where ζ(α)
def= ∂αζ − ∂αζ̃,

v(α)
def= v(α)− ṽ(α), and (using (4.4) in Lemma 4.3 and the energy estimate

in Proposition 5.1)
C0 = C(µ, h−1

? , h?, β
∣∣∇b∣∣

HN+1 , ε
∣∣ζ0
∣∣
HN , ε

∣∣v0
∣∣
Y N

, ε
∣∣curl v0

∣∣
HN−1).
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By (4.5) in Lemma 4.3 and the energy estimate in Proposition 5.1, we find∣∣ζι∣∣
HN+1 +

∣∣vι∣∣
Y N+1 +

∣∣curl vι
∣∣
HN ) ≤ ι−1C0.

Moreover, since 3 + 1 ≤ N , the above differential energy inequality with
m = 3 reads

d
dt
(
FN (ζ,v) +

∣∣curl v
∣∣2
HN−1

)
≤ C0

(
FN (ζ,v) +

∣∣curl v
∣∣2
HN−1 + E3(ζ,v)

)
,

so that, adapting Lemma 4.2 and Gronwall’s Lemma, and finally apply-
ing (4.3) in Lemma 4.3,

sup
t∈[0,T ]

ι−1E3(ζ,v) ≤ C0 exp(C0T )× ι−1E3(ζ0,v0)→ 0 (ι→ 0).

Thus applying Gronwall’s Lemma to the differential energy inequality with
m = N and again adapting Lemma 4.2 yields

lim
ι→0

sup
t∈[0,T ]

(∣∣ζ − ζι∣∣
HN +

∣∣v− vι
∣∣
Y N

+
∣∣curl v− curl vι

∣∣
HN−1

)
= 0,

Using that, for any ι ∈ (0, 1), (ζι,vι) ∈ C([0, T ];HN×Y N ) (by the smooth-
ness of the initial data, Proposition 5.1, and integrating (1.3) with respect
to time), we deduce (ζ,v) ∈ C([0, T ];HN × Y N ).

Now we turn to the continuity of the flow map. The proof above yields
lim
ι→0

sup
t∈[0,T ]

(∣∣ζn − ζιn∣∣HN +
∣∣vn − vιn

∣∣
Y N

+
∣∣curl vn − curl vιn

∣∣
HN−1

)
= 0

uniformly with respect to n ≥ n0 (notice in particular the uniformity with
respect to n in Lemma 4.3). Moreover, proceeding in the same way, we
find the following estimate for (ζι,vι) def= (ζιn− ζι,vιn− vι) with any given
ι ∈ (0, 1):

d
dt
(
FN (ζι,vι) +

∣∣curl vι
∣∣2
HN−1

)
≤ C0

(
FN (ζι,vι) +

∣∣curl vι
∣∣2
HN−1 + ι−1FN (ζι,vι)1/2E3(ζι,vι)1/2).

By Gronwall’s Lemma, adapting Lemma 4.2 and (4.4) in Lemma 4.3, we
immediately deduce

lim
n→∞

sup
t∈[0,T ]

(∣∣ζι − ζιn∣∣HN +
∣∣vι − vιn

∣∣
Y N

+
∣∣curl vι − curl vιn

∣∣
HN−1

)
= 0.

The continuity of the flow map follows from the above limits and triangular
inequality. �
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6. Proof of the main results

We proved in the previous section the well-posedness and stability of the
Cauchy problem for system (1.3). We show in this section how to transcribe
these results to the original formulation of the Green-Naghdi system (1.1).
It is claimed in [12, 39] that (1.3) and (1.1) are equivalent, after “judi-
ciously differentiating by parts” and “lengthy calculations”. Since this fact
is of considerable importance in our work and is rather tedious to check,
we detail the calculations below. We then conclude this section with the
proof of Theorems 1.1 and 1.2.

Proposition 6.1. Let b ∈ Ḣ5(Rd) and ζ ∈ C0([0, T ];H4(Rd)) be such
that (1.7) holds.

Assume u ∈ C0([0, T ];X4) is such that (ζ,u) satisfies (1.1). Then v def=
h−1T[h, βb]u ∈ C0([0, T ];Y 4) is uniquely defined and (ζ,v) satisfies (1.3).

Assume v ∈ C0([0, T ];Y 4) is such that (ζ,v) satisfies (1.3), then u def=
T[h, βb]−1(hv) ∈ C0([0, T ];X4) is uniquely defined and (ζ,u) satisfies (1.1).

Proof. By Lemmata 2.1, 2.2 and 2.5, one easily checks that for any given
u ∈ C0([0, T ];X4) and ζ ∈ C0([0, T ];H4(Rd)) such that (1.7) holds, then
v def= h−1T[h, βb]u ∈ C0([0, T ];Y 4). Conversely, given v def=∈ C0([0, T ];Y 4),
that u def= T[h, βb]−1(hv) is well-defined and satisfies u ∈ C0([0, T ];X4)
follows by Lemmata 2.3 and 2.4. The regularity of time derivatives is pro-
vided by the equations (1.1) or (1.3). This regularity is sufficient to ensure
that all the identities below hold in, say, L2(Rd).

Let us first notice that, by the identity 1
2∇(|u|2) = (u ·∇)u−u⊥ curl u,

all terms of order O(µ) in (1.3) and (1.1) agree. Notice also that, as pointed
out in Appendix B, system (1.3) can be rewritten as (B.11). It follows that
to complete the proof, we only need to show that

[
∂t, T [h, βb]

]
u + εu⊥ curl(T [h, βb]u) + ε∇

(
u · T [h, βb]u− 1

2w
2)

= εQ[h,u] + εQb[h, βb,u], (6.1)

with w def= (β∇b) · u− h∇ · u. We clarify below why (6.1) holds.
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Let us first decompose

T [h, βb]u = 1
h
∇
(
−h3

3 ∇ · u + β

2h
2∇b · u

)
+ β

(
−1

2h∇ · u + β(∇b · u)
)
∇b

def= 1
h
∇f1 + βf2∇b.

We use the identity valid for sufficiently regular scalar functions f, g:

u⊥ curl(f∇g) +∇(u · (f∇g)) = (u · ∇)(f∇g) + f(∇g · ∇)u− (∇g)⊥ curl(u)
= (u · ∇f)∇g + f∇(∇g · u)

to deduce

u⊥ curl(T [h, βb]u) +∇(u · T [h, βb]u)

= −1
h2 (u · ∇h)∇f1 + 1

h
∇(∇f1 · u) + β(u · ∇f2)∇b+ βf2∇(∇b · u).

(6.2)

Now, using that b is time-independent and replacing ∂tζ = −∇ · (hu),

[
∂t, T [h, βb]

]
u = ε∇ · (hu)

h2 ∇f1 + ε

h
∇
(
(h∇ · (hu))(h∇ · u− βu · ∇b)

)
+ εβ

2 (∇ · (hu))(∇ · u)∇b. (6.3)

By (6.2) and (6.3), the desired identity (6.1) becomes

∇ · u
h
∇f1+ 1

h
∇
((
∇f1 + (h2∇ · u)∇h− βh∇ · (hu)∇b

)
· u + h3(∇ · u)2

)
+β

2 (∇·(hu))(∇·u)∇b+β(u·∇f2)∇b+βf2∇(∇b·u)−1
2∇
(
(βu·∇b−h∇·u)2)

= Q[h,u] +Qb[h, βb,u]. (6.4)

The non-topographical contributions in (6.4) (i.e. setting β = 0, including
in f1) are easily seen to match:

−1
3
∇ · u
h
∇(h3∇·u)+ 1

h
∇
(−1

3 h3(∇(∇ · u)
)
· u + h3(∇ · u)2

)
−1

2∇
(
(h∇·u)2)

= −1
3h∇

(
h3((u · ∇)(∇ · u)− (∇ · u)2)) = Q[h,u].

47



V. Duchêne & S. Israwi

The remaining contributions in (6.4) are more involved. Denoting f = ∇·u
and g = β∇b · u,

1
2
f

h
∇(h2g) + 1

h
∇
(1

2u · ∇(h2g)− h(u · ∇h+ hf)g
)

+ β

2 (u · ∇h+ hf)f∇b+ β(u · ∇(g − 1
2hf))∇b

+ (g − 1
2hf)∇g − 1

2∇
(
g2 − 2ghf

)
= 1

2
f

h
∇(h2g) + 1

h
∇
(1

2h
2u · ∇g − h2fg

)
+ β

2hf
2∇b

+ β(u · (∇g − 1
2h∇f))∇b− 1

2hf∇g +∇
(
ghf

)
= 1

2h∇
(
h2u · ∇g

)
− β

2h(u · ∇f)∇b+ β

2hf
2∇b+ β(u · ∇g)∇b

= Qb[h, βb,u].

Thus the identity (6.1) holds, and the Proposition is proved. �

Proof of Theorem 1.1. Let N ≥ 4, b ∈ ḢN+2 and (ζ0,u0) ∈ HN×XN

satisfying (1.7) with h?, h? > 0. Denote h0 = 1 + εζ0 − βb and

v0 = h−1
0 T[h0, βb]u0 = u0 + µT [h0, βb]u0,

where we recall that the operator T is defined in (1.2). Using Lemma 2.1, 2.2
and 2.5, one easily checks that v0 ∈ Y N , curl v0 ∈ HN−1 and∣∣v0

∣∣
Y N

+
∣∣curl v0

∣∣
HN−1 ≤ C0

(∣∣ζ∣∣
HN +

∣∣u0
∣∣
XN

)
with C0 = C(µ, h−1

? , h?, β
∣∣∇b∣∣

HN+1 , ε
∣∣ζ0
∣∣
HN , ε

∣∣u0
∣∣
XN ). One may thus ap-

ply Propositions 5.1 and 5.3: there exists (ζ,v) ∈ C([0, T ];HN × Y N )
strong solution to (1.3); and one may restrict

T−1 = C(µ, h−1
? , h?)F (β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
HN , ε

∣∣u0
∣∣
XN )

such that, for any t ∈ [0, T ], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

EN (ζ,v) +
∣∣curl v

∣∣2
HN−1 ≤ C0

(
EN (ζ0,v0) +

∣∣curl v0
∣∣2
HN−1

)
.

By Lemmata 2.1,2.4 and 2.11 as well as Proposition 6.1, setting u def=
T[h, βb]−1(hv) defines (ζ,u) ∈ C([0, T ];HN×XN ) strong solution to (1.1),
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and one has

sup
t∈[0,T ]

(∣∣ζ∣∣2
HN +

∣∣u∣∣2
XN

)
≤ C0

(∣∣ζ0
∣∣2
HN +

∣∣u0
∣∣2
XN

)
.

We thus constructed a strong solution to the Cauchy problem for (1.1)
with initial data (ζ0,u0). The uniqueness of the solution follows from the
uniqueness in Proposition 5.1 and Proposition 6.1. The continuity of the
flow map follows from Proposition 5.3 and Lemmata 2.1,2.4 and 2.11. This
concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. By the assumptions of Theorem 1.2, one has
ζ0 ∈ HN ,∇ψ0 ∈ HN and therefore, by Lemmata 2.1, 2.2 and 2.4, u0 ∈ XN

and ∣∣u0
∣∣
XN ≤ C(µ, h−1

? , h?, β
∣∣∇b∣∣

HN−1 , ε
∣∣ζ0
∣∣
HN )

∣∣∇ψ0
∣∣
HN .

Thus Theorem 1.1 applies, (ζGN,uGN) is well-defined, and one can restrict
T as in the Proposition to ensure that

sup
t∈[0,T ]

(∣∣ζGN
∣∣
HN +

∣∣uGN
∣∣
XN

)
≤ C0,

with C0 = C(µ, h−1
? , h?, β

∣∣∇b∣∣
HN+1 , ε

∣∣ζ0
∣∣
HN , ε

∣∣∇ψ0
∣∣
HN ).

Now, slightly adapting the proof of [32, Prop. 5.8] and denoting

vww
def= ∇ψww, uww

def= T[hww, βb]−1(hwwvww)

with hww
def= 1 + εζww−βb, one finds that (ζww,uww) ∈ C(0, T ;HN ×XN )

satisfies (1.1) up to remainder terms rww, rww, with

sup
t∈[0,T ]

(∣∣rww
∣∣
HN−6 +

∣∣rww
∣∣
HN−6

)
≤ µ2 Cww,

with Cww = C(µ, h−1
? , β

∣∣b∣∣
HN , ε

∣∣ζww
∣∣
HN , ε

∣∣∇ψww
∣∣
HN ). Proposition 6.1 im-

mediately extends to non-trivial remainder terms, and it follows that
(ζww,vww) ∈ C([0, T ];HN × Y N ) satisfies (1.3) up to the small remainder
terms rww, rww. We apply Proposition 5.2 and deduce that(∣∣ζww − ζGN

∣∣
HN−6 +

∣∣vww − vGN
∣∣
Y N−6

)
(t) ≤ µ2 C t,

with C as in the statement. This concludes the proof of Theorem 1.2.
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Appendix A. Energy estimates from the original formula-
tion

As mentioned in the introduction, on can obtain energy estimates directly
from system (1.1), rather than from system (1.3), as carried out in this
work. We roughly sketch the different steps below.

Quasilinearization of the system. Let (ζ,u) ∈ C([0, T ];H |α| ×X |α|)
satisfies (1.1), with α a non-zero multi-index and T > 0. Assume that b is
sufficiently smooth, |α| is sufficiently large, and (1.7) holds. Then one can
check that ζ(α)

def= ∂αζ and u(α)
def= ∂αu satisfy

∂tζ(α) + ε∇ · (uζ(α)) +∇ · (hu(α)) = r(α),(
Id + µT [h, βb]

)
∂tu(α) +∇ζ(α) + ε(u · ∇)u(α) + µεQ(α)[h, βb,u]u(α)

= r(α),

(A.1)
with h = 1 + εζ − βb and (abusing notations)

Q(α)[h, βb,u]u(α)
def= −1

3h∇
(
h3((u · ∇)(∇ · u(α))

))
+ β

2h
(
∇
(
h2(u · ∇)(u(α) · ∇b)

)
− h2((u · ∇)(∇ · u(α))

)
∇b
)

+ β2((u · ∇)(u(α) · ∇b)
)
∇b

and where (r(α), r(α)) ∈ C([0, T ];L2 × Y 0) satisfies∣∣r(α)
∣∣
L2 +

∣∣r(α)
∣∣
Y 0 .

∣∣ζ∣∣
H|α|

+
∣∣u∣∣

X|α|
. (A.2)

The system (A.1) satisfied by (ζ(α),u(α)) is nothing but the linearized sys-
tem (1.1) around (ζ,u), from which order-zero operators have been dis-
carded. The estimate (A.2) would follow as in the proof of Proposition 3.1,
and in particular using quasilinearization formulas derived in Section 2.

A priori energy estimates. For sufficiently smooth and finite-energy
solutions of (A.1), we add the L2-inner product of the first equation with
ζ(α) and the one of the second equation with hu(α). After some cancella-
tions, integrations by parts and rearrangements, we find

d
dtF(α) + εG(α) =

∫
Rd
r(α)ζ(α) + hr(α) · u(α) dx, (A.3)
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where

F(α)
def= 1

2

∫
Rd
ζ2

(α) + h|u(α)|2 + µhT [h, βb]u(α) · u(α) dx

and

G(α)
def= 1

2

∫
Rd

(∇ · u)ζ2
(α) −

(
∂tζ +∇ · (hu)

)
|u(α)|2

− µ

3
(
3h2∂tζ +∇ · (h3u)

)
(∇ · u(α))2

+ µ
(
2h∂tζ +∇ · (h2u)

)
(β∇b · u(α))∇ · u(α)

− µ
(
∂tζ +∇ · (hu)

)
(β∇b · u(α))2 dx.

By Lemma 2.3 and Cauchy-Schwarz inequality, we find that∣∣ζ(α)
∣∣2
L2 +

∣∣u(α)
∣∣2
X0 . F(α) and G(α) .

∣∣ζ(α)
∣∣2
L2 +

∣∣u(α)
∣∣2
X0 .

Using (A.2) and again Cauchy-Schwarz inequality, Gronwall’s Lemma to
the differential equation (A.3) yields (locally in time) the control of the
energy F(α). Proceeding as in Sections 4 and 5, one may then set up a
Picard iteration scheme which yields the strong local well-posedness of
the Cauchy problem for system (1.1).

Appendix B. Derivation of the Green-Naghdi system

Our work is based on a non-standard formulation of the Green-Naghdi
system. We would like to motivate the relevance of this formulation (the
verification of the equivalence between the different formulations is pro-
vided in Proposition 6.1). Below, we formally derive the non-standard for-
mulation of the Green-Naghdi system from the Hamiltonian formulation
of the water waves system, by approximating the associated Hamiltonian
functional. This study, which was essentially provided in [12], has the ad-
vantage of revealing in a very straightforward way the Hamiltonian struc-
ture of the non-standard formulation of the Green-Naghdi system (and
therefore the associated conservation laws) and giving a natural physical
interpretation of the variables at stake.

Let us first recall the canonical Hamiltonian structure of the water waves
system as brought to light by [54] and Craig-Sulem [19, 18]. Define the
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following Hamiltonian functional

H(ζ, ψ) def= 1
2

∫
Rd
ζ2 + 1

µ
ψGµ[εζ, βb]ψ (B.1)

where ψ(t,X) = φ(t,X, εζ(t,X)) is the trace of the velocity potential at
the surface, and Gµ is the Dirichlet-to-Neumann operator, defined by

Gµ : ϕ 7→
√

1 + µ|ε∇ζ|2(∂nφ)
∣∣∣z=εζ = (∂zφ)

∣∣∣z=εζ − µ(ε∇ζ) · (∇Xφ)
∣∣∣z=εζ ,

where φ is the unique solution (see e.g. [32] for a detailed and rigorous
analysis) to

µ∆Xφ+ ∂2
zφ = 0 in {(X, z) ∈ Rd+1, −1 + βb(X) ≤ z ≤ εζ(X)},

φ(X, εζ(X)) = ϕ
(∂zφ− µ(β∇b) · (∇Xφ))(X,−1 + βb(X)) = 0.

(B.2)
The operator Gµ is well-defined provided h

def= 1 + εζ − βb ≥ h? > 0,
and one can then show that the Zakharov/Craig-Sulem formulation of the
water waves system simply reads

∂t

(
ζ
ψ

)
=
(

0 Id
−Id 0

)(
δζH
δψH

)
. (B.3)

If one reformulates (in dimension d = 2) the above system using, instead
of the canonical variables (ζ, ψ), the variables ζ and v = (v1, v2)> def= ∇ψ,
then one obtains

∂t

 ζ
v1
v2

 = −

 0 ∂1 ∂2
∂1 0 −q
∂2 q 0

 δζHδv1H
δv2H

 . (B.4)

where q = curl v
h . Of course, in our situation, q ≡ 0 since v = ∇ψ, but

this contribution is kept for the analogy with the Euler or Saint-Venant
Hamiltonian formalism ; see e.g. [49]. Keeping this contribution turns
out to be necessary for comparing with the standard formulation of the
Green-Naghdi system in the general setting; see Proposition 6.1.

Recall that one has the identity [32, Prop. 3.35]

1
µ
Gµ[εζ, βb]ψ = −∇ · (hu), u def= 1

1 + εζ − βb

∫ εζ

−1+βb
∇Xφ(·, z) dz.

(B.5)
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so that the first equation in (B.3) or (B.4) simply reads
∂tζ +∇ · (hu) = 0,

which is the first equation of the Green-Naghdi system. The system is then
completed by constructing an evolution equation for u, containing only
differential operators, which is approximately satisfied by exact solutions
of the water waves system, through asymptotic expansions with respect to
the parameter µ→ 0. This equation has different equivalent formulations
in the literature as the equations have been rediscovered several times;
in this paper we use (1.1), originating from [33, (26)] and justified in the
sense of consistency in [32, Prop. 5.8].

Our strategy here is different: we obtain equations written with the
original variables ζ, ψ (or ζ,v) by using an asymptotic expansion of the
Hamiltonian functional H, and plugging it in (B.3) or (B.4). The strategy
of deriving the Green-Naghdi system using an approximate Hamiltonian
functional or Lagrangian is not new: it was already used in particular
in [53, 17] (leading however to an ill-posed system of Green-Naghdi type)
and in [40] to derive the Green-Naghdi system; see also [12, 31, 15, 16].

Let us recall the Dirichlet-to-Neumann expansion [32, Remark 3.39]
1
µ
Gµ[εζ, βb]ψ = −∇ · (h∇ψ) + µ∇ · (hT [h, βb]∇ψ

)
+O(µ2) (B.6)

with the notation

T [h, b]V def= −1
3h∇(h3∇·V ) + 1

2h
(
∇
(
h2∇b ·V

)
−h2∇b∇·V

)
+∇b(∇b ·V ).

It would therefore be natural to consider the approximate Hamiltonian
functional from (B.1)

H(ζ, ψ) ≈ 1
2

∫
Rd
ζ2 + ψ

(
−∇ · (h∇ψ) + µ∇ · (hT [h, βb]∇ψ

))
.

However, plugging this approximation into (B.3) or (B.4) yields an ill-
posed system (in the sense that the linearized system around the trivial so-
lution ζ = 0, ψ = 0, in the flat-bottom case, exhibits unstable modes whose
amplitude grows exponentially and arbitrarily rapidly for large frequen-
cies). It is interesting to note that the obtained system corresponds to the
one exhibited in [53, (10)-(11)] and [17, (14)-(15)] (in the one-dimension
and flat-bottom situation) and, as pointed out in [40, (1.8a),(1.8b)], it re-
duces to a standard (also ill-posed) Boussinesq (or Kaup) system when
the amplitude is small, that is withdrawing O(µε) terms.
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The ill-posedness of the aforementioned systems can be anticipated from
the fact that the approximate Hamiltonian functional is no longer positive,
whereas the original one is; see [32, Prop. 3.9 and 3.12]. This issue can be
avoided as follows: by (B.5) and (B.6), one has

u = ∇ψ − µT [h, βb]∇ψ +O(µ2), thus ∇ψ = u + µT [h, βb]u +O(µ2).
Now, we notice that the operator T[h, βb] defined by

T[h, βb]u def= hu + µhT [h, βb]u
is a topological isomorphism (see Lemma 2.3), and therefore

u = T[h, βb]−1(h∇ψ) +O(µ2). (B.7)
It is now natural to use the following approximation:

H(ζ, ψ) = 1
2

∫
Rd
ζ2 + (∇ψ) · (hu)

≈ 1
2

∫
Rd
ζ2 + (h∇ψ) · T[h, βb]−1(h∇ψ) def= HGN(ζ, ψ). (B.8)

Now, plugging the new approximate Hamiltonian in (B.3) and (B.4) yields,
respectively,

∂tζ +∇ · (hu) = 0,

∂tψ + ζ + ε
2 |u|

2 = µε
(
R[h,u] +Rb[h, βb,u]

)
,

(B.9)

and
∂tζ +∇ · (hu) = 0,
(
∂t + εu⊥ curl

)
v +∇ζ + ε

2∇(|u|2) = µε∇
(
R[h,u] +Rb[h, βb,u]

)
,

(B.10)
where we denote v = ∇ψ, u def= T[h, βb]−1(h∇ψ), (u1, u2)⊥ def= (−u2, u1),
curl(v1, v2) def= ∂1v2 − ∂2v1, and

R[h,u] def= u
3h · ∇(h3∇ · u) + 1

2h
2(∇ · u)2,

Rb[h, βb,u] def= − 1
2

(u
h
· ∇
(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u + (β∇b · u)2

)
.

System (B.10) is the system we study, and we show in Proposition 6.1
that it is equivalent to the standard formulation of the Green-Naghdi
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system, namely (1.1). System (B.9) is immediately deduced in the sit-
uation curl v = 0, and inherit the canonical Hamiltonian structure of the
Zakharov/Craig-Sulem formulation of the water waves system. Notice that
one can rewrite system (B.10) as

∂tζ +∇ · (hu) = 0,(
∂t + εu⊥ curl

)
v +∇

(
ζ + εu · v− ε

2u · u− εµ
2 w

2) = 0,
(B.11)

with w = (β∇b) · u − h∇ · u. To our knowledge, system (B.11), as a new
formulation for the Green-Naghdi system, has been first brought to light
in [12, (4.3)-(4.4)] (in the flat bottom case, the formulation (B.9) appears
in [40, (6.5)] and [46, (9.12)] but is quickly disregarded in favor of the
aforementioned ill-posed model). It appears also in [31, (5.14)-(5.15)] (in
the irrotational setting), [23, (30)] (in the flat bottom situation) and [39,
(2.9)-(2.34)-(2.35)]. As a matter of fact, the latter references point out that
system (B.11) echoes a formulation of the water waves system. Indeed,
system (B.4) may be equivalently written as

∂tζ +∇ · (hu) = 0,(
∂t + εU⊥ curl

)
v +∇

(
ζ + εU · v− ε

2U · U −
εµ
2 w

2) = 0,
(B.12)

where v,u, U, w are determined from the velocity potential, φ, by

v = ∇
(
φ
∣∣∣z=1+εζ

)
, u = 1

h

∫ 1+εζ

βb
∇φ dz, (U,w) = (∇Xφ, µ−1∂zφ)

∣∣∣z=1+εζ .

System (B.12) is determined by the sole variables ζ and v (and b), after
solving the Laplace problem (B.2). Now, by the identity (B.5) and chain
rule, one has

U = v− µεw∇ζ and w = εU · ∇ζ −∇ · (hu).

It follows in particular

U = v +O(µ) = u +O(µ) and w = (β∇b) · u− h∇ · u +O(µ),

and therefore (B.11) is immediately seen as aO(µ2) approximation of (B.12),
with the abuse of notation u def= T[h, βb]−1(hv) and w def= (β∇b) ·u−h∇·u
being justified by the above approximations.
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