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Abstract
We consider the Isobe–Kakinumamodel for water waves, which is obtained as the sys-
tem of Euler–Lagrange equations for a Lagrangian approximating Luke’s Lagrangian
for water waves. We show that the Isobe–Kakinuma model also enjoys a Hamiltonian
structure analogous to the one exhibited byV. E. Zakharov on the full water wave prob-
lem and, moreover, that the Hamiltonian of the Isobe–Kakinuma model is a higher
order shallow water approximation to the one of the full water wave problem.
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1 Introduction

We consider a model for the motion of water in a moving domain of the (n + 1)-
dimensional Euclidean space. The water wave problem is mathematically formulated
as a free boundary problem for an irrotational flow of an inviscid, incompressible,
and homogeneous fluid under a vertical gravitational field. Let t be the time, x =
(x1, . . . , xn) the horizontal spatial coordinates, and z the vertical spatial coordinate.
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We assume that the water surface and the bottom are represented as z = η(x, t) and
z = −h+b(x), respectively,whereη(x, t) is the surface elevation, h is themean depth,
and b(x) represents the bottom topography.We denote by�(t),Γ (t), andΣ the water
region, the water surface, and the bottom of the water at time t , respectively. Then,
the motion of the water is described by the velocity potential Φ(x, z, t) satisfying
Laplace’s equation

ΔΦ + ∂2z Φ = 0 in �(t), t > 0, (1.1)

where Δ = ∂2x1 + · · · + ∂2xn . The boundary conditions on the water surface are given
by

⎧
⎨

⎩

∂tη + ∇Φ · ∇η − ∂zΦ = 0 on Γ (t), t > 0,

∂tΦ + 1

2

(|∇Φ|2 + (∂zΦ)2
) + gη = 0 on Γ (t), t > 0,

(1.2)

where∇ = (∂x1, . . . , ∂xn )
T, and g is the gravitational constant. The first equation is the

kinematic condition on the water surface and the second one is Bernoulli’s equation.
Finally, the boundary condition on the bottom of the water is given by

∇Φ · ∇b − ∂zΦ = 0 on Σ, t > 0, (1.3)

which is the kinematic condition on the fixed and impermeable bottom. These are the
basic equations for the water wave problem.

We put

φ(x, t) = Φ(x, η(x, t), t), (1.4)

which is the trace of the velocity potential on the water surface. Then, the basic
equations for water waves (1.1)–(1.3) are transformed equivalently into

⎧
⎪⎨

⎪⎩

∂tη − Λ(η, b)φ = 0 on Rn, t > 0,

∂tφ + gη + 1

2
|∇φ|2 − 1

2

(
Λ(η, b)φ + ∇η · ∇φ

)2

1 + |∇η|2 = 0 on Rn, t > 0,
(1.5)

where Λ(η, b) is the Dirichlet-to-Neumann map for Laplace’s equation. Namely, it is
defined by

Λ(η, b)φ = (∂zΦ)|z=η − ∇η · (∇Φ)|z=η,

where Φ is the unique solution to the boundary value problem of Laplace’s equation
(1.1) under the boundary conditions (1.3)–(1.4).
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As iswell-known, thewater wave problem has a conserved energy E = Ekin+Epot,
where Ekin is the kinetic energy

Ekin = 1

2
ρ

∫∫

�(t)

(|∇Φ(x, z, t)|2 + (∂zΦ(x, z, t))2
)
dxdz

= 1

2
ρ

∫

Rn
φ(x, t)(Λ(η, b)φ)(x, t) dx,

and Epot is the potential energy

Epot = 1

2
ρg

∫

Rn
η(x, t)2 dx

due to the gravity. Here, ρ is a constant density of the water.
Zakharov [24] found that the water wave system has a Hamiltonian structure and η

and φ are the canonical variables. The HamiltonianH is essentially the total energy,
that is,H = 1

ρ
E . He showed that the basic equations for water waves (1.1)–(1.3) are

transformed equivalently into Hamilton’s canonical equations

∂tη = δH

δφ
, ∂tφ = −δH

δη
.

Although Zakharov did not use explicitly the Dirichlet-to-Neumann map Λ(η, b),
the above canonical equations are exactly the same as (1.5). Craig and Sulem [9]
introduced the Dirichlet-to-Neumann map explicitly and derived (1.5). Therefore,
nowadays (1.5) is often called the Zakharov–Craig–Sulem formulation of the water
wave problem. Since then, Craig and his collaborators [3–8] have used the Hamil-
tonian structure of the water wave problem to analyze long-wave and modulation
approximations. Let us also mention the recent work of Craig [2], which generalizes
the Hamiltonian formulation of water waves described above to a general coordinati-
zation of the free surface allowing overturning wave profiles.

On the other hand, as was shown by Luke [19], the water wave problem has also a
variational structure. His Lagrangian density is of the form

L (Φ, η) =
∫ η(x,t)

−h+b(x)

(

∂tΦ(x, z, t) + 1

2

(|∇Φ(x, z, t)|2 + (∂zΦ(x, z, t))2
)
)

dz

+ 1

2
g
(
η(x, t)

)2 (1.6)

and the action function is given by

J (Φ, η) =
∫ t1

t0

∫

Rn
L (Φ, η) dx dt .
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In fact, the corresponding Euler–Lagrange equations are exactly the basic equations
for water waves (1.1)–(1.3).We refer toMiles [21] for the relation between Zakharov’s
Hamiltonian and Luke’s Lagrangian.

Isobe [13,14] and Kakinuma [15–17] obtained a family of systems of equations
after replacing the velocity potential Φ in Luke’s Lagrangian by

Φapp(x, z, t) =
N∑

i=0

Ψi (z; b)φi (x, t),

where {Ψi } is a given appropriate function system in the vertical coordinate z and may
depend on the bottom topography b and (φ0, φ1, . . . , φN ) are unknown variables. The
Isobe–Kakinuma model is a system of Euler–Lagrange equations corresponding to
the action function

J app(φ0, φ1, . . . , φN , η) =
∫ t1

t0

∫

Rn
L (Φapp, η) dxdt . (1.7)

We have to choose the function system {Ψi } carefully for the Isobe–Kakinuma
model to produce good approximations to the water wave problem. One possible
choice is the bases of the Taylor series of the velocity potential Φ(x, z, t)with respect
to the vertical spatial coordinate z around the bottom. Such an expansion has been
already used by Boussinesq [1] in the case of the flat bottom and, for instance, by Mei
and Le Méhauté [20] for general bottom topographies. The corresponding choice of
the function system is given by

Ψi (z; b) =
{

(z + h)2i in the case of the flat bottom,

(z + h − b(x))i in the case of the variable bottom.

Here we note that the latter choice is valid also for the case of the flat bottom.
However, it turns out that the terms of odd degree do not play any important role in
such a case so that the former choice is more adequate. To treat both cases at the same
time, we adopt the approximation

Φapp(x, z, t) =
N∑

i=0

(z + h − b(x))pi φi (x, t), (1.8)

where p0, p1, . . . , pN are integers satisfying 0 = p0 < p1 < · · · < pN . Plug-
ging (1.8) into the action function (1.7), the corresponding Euler–Lagrange equation
yields the Isobe–Kakinuma model of the form
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H pi ∂tη +
N∑

j=0

{

∇ ·
(

1

pi + p j + 1
H pi+p j+1∇φ j − p j

pi + p j
H pi+p j φ j∇b

)

+ pi
pi + p j

H pi+p j ∇b · ∇φ j − pi p j

pi + p j − 1
H pi+p j−1(1 + |∇b|2)φ j

}

= 0

for i = 0, 1, . . . , N ,
N∑

j=0

H pj ∂tφ j + gη

+1

2

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣
∣
∣

N∑

j=0

(H pj ∇φ j − p j H
p j−1φ j∇b)

∣
∣
∣
∣
∣
∣

2

+
⎛

⎝
N∑

j=0

p j H
p j−1φ j

⎞

⎠

2
⎫
⎪⎬

⎪⎭
= 0,

(1.9)

where H(x, t) = h + η(x, t) − b(x) is the depth of the water. Here and in what
follows we use the notational convention 0/0 = 0. This system consists of (N + 1)
evolution equations for η and only one evolution equation for (N + 1) unknowns
(φ0, φ1, . . . , φN ), so that this is an overdetermined and underdetermined composite
system. However, the total number of the unknowns is equal to the total number of
the equations.

As explained in subsequent sections, it has already been shown that the initial value
problem to the Isobe–Kakinumamodel is well-posed locally in time in Sobolev spaces
and under appropriate conditions on the initial data and that the model provides higher
order approximate solutions in the strongly nonlinear and shallow water regime.

The main purpose of this paper is to show that the Isobe–Kakinuma model (1.9)
also enjoys a canonical Hamiltonian structure which is analogous to the one of the
water waves problem. In particular, the Hamiltonian is a higher order shallow water
approximation of the original Hamiltonian of the water waves problem.

2 Preliminaries

Since the hypersurface t = 0 in the space-time Rn ×R is characteristic for the Isobe–
Kakinumamodel (1.9), the initial value problem to themodel is not solvable in general.
In fact, if the problem has a solution (η, φ0, . . . , φN ), then by eliminating the time
derivative ∂tη from the equations we see that the solution has to satisfy the relations

H pi
N∑

j=0

∇ ·
(

1

p j + 1
H pj+1∇φ j − p j

p j
H p j φ j∇b

)

=
N∑

j=0

{

∇ ·
(

1

pi + p j + 1
H pi+p j+1∇φ j − p j

pi + p j
H pi+p j φ j∇b

)

+ pi
pi + p j

H pi+p j ∇b · ∇φ j − pi p j

pi + p j − 1
H pi+p j−1(1 + |∇b|2)φ j

}

(2.1)
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for i = 1, . . . , N . Therefore, the initial data have to satisfy these relations to allow the
existence of a solution.Murakami and Iguchi [22] andNemoto and Iguchi [23] showed
that the initial value problem to the Isobe–Kakinumamodel (1.9) is well-posed locally
in time in a class of initial data forwhich the relations (2.1) and a generalizedRayleigh–
Taylor sign condition are satisfied. Moreover, Iguchi [11,12] showed that the Isobe–
Kakinuma model (1.9) is a higher order shallow water approximation for the water
wave problem in the strongly nonlinear regime. The Isobe–Kakinuma model (1.9) has
also a conserved energy, which is the total energy given by

E IK(η,φ)

= 1

2
ρ

∫∫

�(t)

(|∇Φapp(x, z, t)|2 + (∂zΦ
app(x, z, t))2

)
dxdz

+ 1

2
ρg

∫

Rn
η(x, t)2 dx

= ρ

2

∫

Rn

⎧
⎨

⎩

N∑

i, j=0

(
1

pi + p j + 1
H pi+p j+1∇φi · ∇φ j

− 2pi
pi + p j

H pi+p j φi∇b · ∇φ j

+ pi p j

pi + p j − 1
H pi+p j−1(1 + |∇b|2)φiφ j

)

+ gη2

⎫
⎬

⎭
dx, (2.2)

where φ = (φ0, φ1, . . . , φN )T.
We introduce second order differential operators Li j = Li j (H , b) for i, j =

0, 1, . . . , N depending on the water depth H and the bottom topography b by

Li jψ j = −∇ ·
(

1

pi + p j + 1
H pi+p j+1∇ψ j − p j

pi + p j
H pi+p j ψ j∇b

)

− pi
pi + p j

H pi+p j ∇b · ∇ψ j + pi p j

pi + p j − 1
H pi+p j−1(1 + |∇b|2)ψ j .

(2.3)

Then, we have L∗
i j = L ji , where L∗

i j is the adjoint operator of Li j in L2(Rn).
Moreover, the Isobe–Kakinuma model (1.9) and the relations (2.1) can be written
simply as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H pi ∂tη −
N∑

j=0

Li j (H , b)φ j = 0 for i = 0, 1, . . . , N ,

N∑

j=0

H pj ∂tφ j + gη + 1

2

(|(∇Φapp)|z=η|2 + ((∂zΦ
app)|z=η)

2) = 0

(2.4)

123



A Hamiltonian Structure of the Isobe–Kakinuma Model...

and

N∑

j=0

(Li j (H , b) − H pi L0 j (H , b))φ j = 0 for i = 1, . . . , N , (2.5)

respectively. It is easy to calculate the variational derivative of the energy function
E IK(η,φ) and to obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

ρ
δφi E

IK =
N∑

j=0

Li j (H , b)φ j for i = 0, 1, . . . , N ,

1

ρ
δηE

IK = 1

2

(|(∇Φapp)|z=η|2 + ((∂zΦ
app)|z=η)

2) + gη.

(2.6)

Therefore, by introducing l(H) = (H p0 , H p1 , . . . , H pN )T, the Isobe–Kakinuma
model (1.9) can also be written simply as

(
0 −l(H)T

l(H) O

)

∂t

(
η

φ

)

= 1

ρ

(
δηE IK

δφE IK

)

. (2.7)

In view of (2.5) we introduce also linear operatorsLi = Li (H , b) for i = 1, . . . , N
depending on the water depth H and the bottom topography b, and acting on ϕ =
(ϕ0, ϕ1, . . . , ϕN )T by

Liϕ =
N∑

j=0

(
Li j (H , b) − H pi L0 j (H , b)

)
ϕ j for i = 1, . . . , N , (2.8)

and putLϕ = (L1ϕ, . . . ,LNϕ)T. Then, the conditions (2.1) can be written simply as

L(H , b)φ = 0. (2.9)

For later use, we put L=L(H , b)=(Li j (H , b))0≤i, j≤N and define L0=L0(H , b) by

L0(H , b)ϕ =
N∑

j=0

L0 j (H , b)ϕ j . (2.10)

Then, the conditions (2.1) are also equivalent to

L(H , b)φ = (
L0(H , b)φ

)
l(H). (2.11)
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Now, for given functions F0 and F = (F1, . . . , FN )T we consider the equations

{
l(H) · ϕ = F0,

L(H , b)ϕ = F.
(2.12)

Let Wm,p = Wm,p(Rn) be the L p-based Sobolev space of order m on Rn and
Hm = Wm,2. The norms of the Sobolev space Hm and of a Banach space X are
denoted by ‖ · ‖m and by ‖ · ‖X , respectively. Set H̊m = {φ ; ∇φ ∈ Hm−1}. The
following lemma was proved in [23].

Lemma 2.1 Let h, c0, M be positive constants and m an integer such that m > n
2 + 1.

There exists a positive constant C such that if η and b satisfy

{ ‖η‖m + ‖b‖Wm,∞ ≤ M,

c0 ≤ H(x) = h + η(x) − b(x) for x ∈ Rn,
(2.13)

then for any F0 ∈ H̊ k and F = (F1, . . . , FN )T ∈ (Hk−2)N with 1 ≤ k ≤ m there
exists a unique solution ϕ = (ϕ0, ϕ1, . . . , ϕN )T ∈ H̊ k × (Hk)N to (2.12). Moreover,
the solution satisfies

‖∇ϕ0‖k−1 + ‖(ϕ1, . . . , ϕN )‖k ≤ C(‖∇F0‖k−1 + ‖(F1, . . . , FN )‖k−2).

3 Hamiltonian Structure

In the following, we will fix b ∈ Wm,∞ with m > n
2 + 1. Let (η, φ0, . . . , φN ) be

a solution to the Isobe–Kakinuma model (1.9). As we will see later, the canonical
variables of the Isobe–Kakinuma model are the surface elevation η and the trace of
the approximated velocity potential on the water surface

φ = Φapp|z=η =
N∑

j=0

H pj φ j = l(H) · φ. (3.1)

Then, the relations (2.1) and the above equation are written in the simple form

{
l(H) · φ = φ,

L(H , b)φ = 0.
(3.2)

Therefore, it follows from Lemma 2.1 that once the canonical variables (η, φ) are
given in an appropriate class of functions, φ = (φ0, φ1, . . . , φN )T can be determined
uniquely. In other words, these variables (φ0, φ1, . . . , φN ) depend on the canonical
variables (η, φ) and furthermore they depend on φ linearly so that we can write

φ = S(η, b)φ
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with a linear operator S(η, b) depending on η and b. Since we fixed b, we simply write
S(η) in place of S(η, b) for simplicity.

We proceed to analyze this operator S(η) more precisely. We put

Um
b = {η ∈ Hm ; inf

x∈Rn
(h + η(x) − b(x)) > 0},

which is an open set in Hm . For Banach spaces X and Y , we denote by B(X ;Y )

the set of all linear and bounded operators from X into Y . In view of (2.11), (3.1),
and Lemma 2.1, we see easily the following lemma.

Lemma 3.1 Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. For each

η ∈ Um
b and for k = 1, 2, . . . ,m, the linear operator

S(η) : H̊ k � φ 	→ φ ∈ H̊ k × (Hk)N

is defined, where φ = (φ0, φ1, . . . , φN )T is the unique solution to (3.2). Moreover, we
have S(η) ∈ B(H̊ k; H̊ k × (Hk)N ) and

L(H , b)φ = (
L0(H , b)φ

)
l(H).

Formally, DηS(η)[η̇] the Fréchet derivative of S(η) with respect to η is given by

{
l(H) · ψ̇ = −(

l ′(H) · φ
)
η̇,

L(H , b)ψ̇ = −DHL(H , b)[η̇]φ,
(3.3)

with φ = S(η)φ and ψ̇ = DηS(η)[η̇]φ, where l ′(H) · φ = ∑N
j=1 p j H p j−1φ j ,

DHLi (H)[η̇]φ

=
N∑

j=0

(
DH Li j (H , b)[η̇] − H pi DH L0 j (H , b)[η̇] − pi H

pi−1η̇L0 j (H , b)
)
φ j ,

and

DH Li j (H , b)[η̇]φ j = −∇ · {
η̇(H pi+p j ∇φ j − p j H

pi+p j−1φ j∇b)
}

+ η̇
{−pi H

pi+p j−1∇b · ∇φ j

+ pi p j H
pi+p j−2(1 + |∇b|2)φ j

}
.

Using these equations together with Lemma 2.1 and standard arguments, we can
justify the Fréchet differentiability of S(η) with respect to η. More precisely, we have
the following lemma.

Lemma 3.2 Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the map

Um
b � η 	→ S(η) ∈ B(H̊ k; H̊ k×(Hk)N ) is Fréchet differentiable for k = 1, 2, . . . ,m,

and (3.3) holds.
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As mentioned before, the Isobe–Kakinuma model (1.9) has a conserved quantity
E IK(η,φ) given by (2.2), which is the total energy. Now, we define a Hamiltonian
H IK(η, φ) to the Isobe–Kakinuma model by

H IK(η, φ) = 1

ρ
E IK(η,S(η)φ), (3.4)

which is essentially the total energy in terms of the canonical variables (η, φ).

Lemma 3.3 Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the map

Um
b × H̊1 � (η, φ) 	→ H IK(η, φ) ∈ R is Fréchet differentiable and the variational

derivatives of the Hamiltonian are

{
δφH IK(η, φ) = L0(H , b)φ,

δηH IK(η, φ) = 1
ρ
(δηE IK)(η,φ) − (l ′(H) · φ)L0(H , b)φ,

where φ = S(η)φ.

Proof Let us calculate Fréchet derivatives of the HamiltonianH IK(η, φ). Let us con-
sider first Um

b × H2 � (η, φ) 	→ H IK(η, φ). For any φ̇ ∈ H2, we see that

DφH
IK(η, φ)[φ̇] = 1

ρ
(DφE

IK)(η,S(η)φ)[S(η)φ̇]

= 1

ρ
((δφE

IK)(η,φ),S(η)φ̇)L2

= (L(H , b)φ,S(η)φ̇)L2

= (
(
L0(H , b)φ

)
l(H),S(η)φ̇)L2

= (L0(H , b)φ, l(H) · S(η)φ̇)L2

= (L0(H , b)φ, φ̇)L2 ,

where we used (2.6) and Lemma 3.1. The above calculations are also valid when
(φ, φ̇) ∈ H̊1 × H̊1, provided we replace the L2 inner products with the X ′–X
duality product whereX = H̊1 × (H1)N for the first lines, andX = H̊1 for the last
line. This gives the first equation of the lemma.

Similarly, for any (η, φ) ∈ Um
b × H̊2 and η̇ ∈ Hm we see that

DηH
IK(η, φ)[η̇] = 1

ρ
(DηE

IK)(η,S(η)φ)[η̇]

+ 1

ρ
(DφE

IK)(η,S(η)φ)[DηS(η)[η̇]φ].
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Here, we have

1

ρ
(DφE

IK)(η,S(η)φ)[DηS(η)[η̇]φ] = 1

ρ
((δφE

IK)(η,φ), DηS(η)[η̇]φ)L2

= (L(H , b)φ, DηS(η)[η̇]φ)L2

= (L0(H , b)φ, l(H) · DηS(η)[η̇]φ)L2

= −(L0(H , b)φ, (l ′(H) · S(η)φ)η̇)L2

= −((l ′(H) · φ)L0(H , b)φ, η̇)L2 ,

where we used the identity

l(H) · DηS(η)[η̇]φ + (l ′(H) · S(η)φ)η̇ = 0,

stemming from (3.3). The above identities are still valid for (η, φ) ∈ Um
b ×H̊1 provided

we replace the L2 inner products with suitable duality products. This concludes the
proof of the Fréchet differentiability, and the second equation of the lemma. �

Now, we are ready to show our main result in this section.

Theorem 3.1 Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the

Isobe–Kakinuma model (1.9) is equivalent to Hamilton’s canonical equations

∂tη = δH IK

δφ
, ∂tφ = −δH IK

δη
, (3.5)

with H IK defined in (3.4) as long as η(·, t) ∈ Um
b and φ(·, t) ∈ H̊1. More precisely,

for any regular solution (η,φ) to the Isobe–Kakinuma model (1.9), if we define φ

by (3.1), then (η, φ) satisfies Hamilton’s canonical equations (3.5). Conversely, for
any regular solution (η, φ) to Hamilton’s canonical equations (3.5), if we define φ by
φ = S(η)φ, then (η,φ) satisfies the Isobe–Kakinuma model (1.9).

Proof Suppose that (η,φ) is a solution to the Isobe–Kakinuma model (1.9). Then, it
satisfies (2.7), particularly, we have

∂tη = L0(H , b)φ. (3.6)

It follows from (3.1) and (2.7) that

∂tφ = l(H) · ∂tφ + (l ′(H) · φ)∂tη

= − 1

ρ
(δηE

IK)(η,φ) + (l ′(H) · φ)L0(H , b)φ.

These equations together with Lemma 3.3 show that (η, φ) satisfies (3.5).
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Conversely, suppose that (η, φ) satisfies Hamilton’s canonical equations (3.5) and
put φ = S(η)φ. Then, it follows from (3.5) and Lemma 3.3 that we have (3.6). This
fact and Lemma 3.1 imply the equation

l(H)∂tη = L(H , b)φ = 1

ρ
δφE

IK(η,φ).

We see also that

l(H) · ∂tφ = ∂tφ − (l ′(H) · φ)∂tη = − 1

ρ
δηE

IK(η,φ),

where we used (3.5) and Lemma 3.3. Therefore, (η,φ) satisfies (2.7), that is, the
Isobe–Kakinuma model (1.9). �

4 Consistency

As aforementioned, it was shown in [11,12] that the Isobe–Kakinuma model (1.9) is a
higher order shallow water approximation for the water wave problem in the strongly
nonlinear regime. In this section,wewill show that the canonicalHamiltonian structure
exhibited in the previous section is consistent with this approximation, in the sense
that the Hamiltonian of the Isobe–Kakinuma model, H IK(η, φ), approximates the
Hamiltonian of the water waves problem, H (η, φ), in the shallow water regime.

To provide quantitative results, we first rewrite the equations in a nondimensional
form. Let λ be the typical wavelength of the wave. Recalling that h is the mean depth,
we introduce the nondimensional aspect ratio

δ = h

λ
,

measuring the shallowness of the water. We then rescale the physical variables by

x = λx̃, z = hz̃, t = λ√
gh

t̃, η = hη̃, b = hb̃, Φ = λ
√
ghΦ̃.

Under these rescaling, after dropping the tildes for the sake of readability, the basic
equations for water waves (1.1)–(1.3) are rewritten in a non-dimensional form

ΔΦ + δ−2∂2z Φ = 0 in �(t), t > 0, (4.1)
⎧
⎨

⎩

∂tη + ∇Φ · ∇η − δ−2∂zΦ = 0 on Γ (t), t > 0,

∂tΦ + 1

2

(|∇Φ|2 + δ−2(∂zΦ)2
) + η = 0 on Γ (t), t > 0,

(4.2)

∇Φ · ∇b − δ−2∂zΦ = 0 on Σ, t > 0, (4.3)

denoting�(t),Γ (t), andΣ the rescaled water region, water surface, and bottom of the
water at time t , respectively. Specifically, the rescaled water surface and the bottom
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of the water are represented as z = η(x, t) and z = −1 + b(x), respectively. The
corresponding dimensionless Zakharov–Craig–Sulem formulation is

⎧
⎪⎨

⎪⎩

∂tη − Λδ(η, b)φ = 0 on Rn, t > 0,

∂tφ + η + 1

2
|∇φ|2 − δ2

2

(
Λδ(η, b)φ + ∇η · ∇φ

)2

1 + δ2|∇η|2 = 0 on Rn, t > 0,

(4.4)

where

φ(x, t) = Φ(x, η(x, t), t) (4.5)

is the trace of the velocity potential on the water surface, and Λδ(η, b) is the dimen-
sionless Dirichlet-to-Neumann map for Laplace’s equation, namely, it is defined by

Λδ(η, b)φ = δ−2(∂zΦ)|z=η − ∇η · (∇Φ)|z=η,

where Φ is the unique solution to the boundary value problem of the scaled Laplace’s
equation (4.1) under the boundary conditions (4.3) and (4.5). With this rescaling and
definitions, the Hamiltonian of the water wave system is given by

H δ(η, φ) = 1

2

∫∫

�(t)

(|∇Φ|2 + δ−2(∂zΦ)2
)
dxdz + 1

2

∫

Rn
η2 dx.

To rewrite the Isobe–Kakinuma model (1.9) in dimensionless form, we need to
rescale the unknown variables (φ0, φ1, . . . , φN ), depending on the choice of function
system {Ψi }. In view of (1.8), we rescale them by

φi = λ
√
gh

λpi
φ̃i for i = 0, 1, . . . , N ,

so that

Φapp(x, z, t) = λ
√
gh Φ̃app(x̃, z̃, t̃)

= λ
√
gh

( N∑

i=0

δ pi (z̃ + 1 − b̃(x̃))pi φi (x̃, t̃)

)

. (4.6)

As before, we will henceforth drop the tildes for the sake of readability. It is also
convenient to introduce the notation

φδ
i = δ pi φ̃i for i = 0, 1, . . . , N ,
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so that the Isobe–Kakinuma model (1.9) in rescaled variables is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H pi ∂tη +
N∑

j=0

{

∇ ·
(

1

pi + p j + 1
H pi+p j+1∇φδ

j − p j

pi + p j
H pi+p j φδ

j∇b

)

+ pi
pi + p j

H pi+p j ∇b · ∇φδ
j − pi p j

pi + p j − 1
H pi+p j−1(δ−2 + |∇b|2)φδ

j

}

= 0

for i = 0, 1, . . . , N ,
N∑

j=0

H pj ∂tφ
δ
j + η

+1

2

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣
∣
∣

N∑

j=0

(H pj ∇φδ
j − p j H

p j−1φδ
j∇b)

∣
∣
∣
∣
∣
∣

2

+ δ−2

⎛

⎝
N∑

j=0

p j H
p j−1φδ

j

⎞

⎠

2
⎫
⎪⎬

⎪⎭
= 0,

(4.7)

where H(x, t) = 1+η(x, t)−b(x).We also use the notationsφδ = (φδ
0, φ

δ
1, . . . , φ

δ
N )T

and Lδ = Lδ(H , b) = (Lδ
i j (H , b))0≤i, j≤N , where

Lδ
i jψ j = −∇ ·

(
1

pi + p j + 1
H pi+p j+1∇ψ j − p j

pi + p j
H pi+p j ψ j∇b

)

− pi
pi + p j

H pi+p j ∇b · ∇ψ j

+ pi p j

pi + p j − 1
H pi+p j−1(δ−2 + |∇b|2)ψ j . (4.8)

Then, (4.7) can be written in a compact form

(
0 −l(H)T

l(H) O

)

∂t

(
η

φδ

)

=
(

δηE IK,δ

δφδ E IK,δ

)

, (4.9)

where

E IK,δ(η,φδ)

= 1

2

∫

Rn

⎧
⎨

⎩

N∑

i, j=0

(
1

pi + p j + 1
H pi+p j+1∇φδ

i · ∇φδ
j

− 2pi
pi + p j

H pi+p j φδ
i ∇b · ∇φδ

j

+ pi p j

pi + p j − 1
H pi+p j−1(δ−2 + |∇b|2)φδ

i φ
δ
j

)

+ η2

⎫
⎬

⎭
dx. (4.10)

Then, we define the Hamiltonian

H IK,δ(η, φ) = E IK,δ(η,φδ),
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where φδ is the solution to

{
l(H) · φδ = φ,

Lδ(H , b)φδ = (
Lδ
0(H , b)φδ

)
l(H).

(4.11)

Here, we used the notation Lδ
0 = (Lδ

00, . . . , L
δ
0N ). We recall that φδ is uniquely

determined by (4.11) thanks to Lemma 3.1.
To analyze the consistency of the Hamiltonian in the shallow water regime, we will

further restrict ourselves to the following two cases:

(H1) In the case of the flat bottom b(x) ≡ 0, pi = 2i for i = 0, 1, . . . , N .
(H2) In the case with general bottom topographies, pi = i for i = 0, 1, . . . , N .

We are now in position to state the consistency of the Hamiltonian of the Isobe–
Kakinuma model with respect to Zakharov’s Hamiltonian of the water wave problem
in the shallow water regime.

Theorem 4.1 Let c0, M be positive constants and m > n
2 + 1 an integer such that

m ≥ 4(N + 1) in the case (H1) and m ≥ 4([ N2 ] + 1) in the case (H2). There exists a
positive constant C such that if η ∈ Hm and b ∈ Wm+1,∞ satisfy

{
‖η‖m + ‖b‖Wm+1,∞ ≤ M,

c0 ≤ H(x) = 1 + η(x) − b(x) for x ∈ Rn,

then for any δ ∈ (0, 1] and any φ ∈ H̊m, we have

|H δ(η, φ) − H IK,δ(η, φ)| ≤
{
C‖∇φ‖4N+3‖∇φ‖0 δ4N+2 in the case (H1),

C‖∇φ‖4[ N2 ]+3‖∇φ‖0 δ4[ N2 ]+2 in the case (H2).

Remark 4.1 Theorem 2.4 in [12] states the stronger result that the difference between
exact solutions of the water wave problem obtained in [10,18] and the corresponding
solutions of the Isobe–Kakinuma model is bounded with the same order of precision
as in Theorem 4.1 on the relevant timescale. It is important to notice that this order
of approximation is greater than what we could expect based on the expansion (4.6)
and in particular greater than the one obtained when using the Boussinesq expansion
in the flat bottom case (H1):

φB(t̃, x̃) = Φ̃
app
B (x̃, η(x̃, t̃), t̃) with

Φ̃
app
B (x̃, z̃, t̃) =

N∑

i=0

δ2i (z̃ + 1)2i
(−Δ)iφ0(x̃, t̃)

(2i)! ,

where φ0 is the trace of the velocity potential at the bottom. Using the Boussinesq
expansion we can only expect the approximation to be valid up to an error bounded as
O(δ2N+2), which coincides with the precision of Theorem 4.1 only when N = 0, in
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which case we recover that the shallow water equations, also called the Saint-Venant
equations, provide approximate solutions with precision O(δ2); see [10,18]. Note also
that the corresponding error for the Green–Naghdi equations is bounded as O(δ4) so
that the Isobe–Kakinuma model offers a better approximation than the Green–Naghdi
equations in the strongly nonlinear and shallow water regime even if we adopt the
simplest case N = 1 in the case of the flat bottom and N = 2 in the case of the
variable bottom.

Proof of Theorem 4.1 We will modify slightly the strategy in [12]. We first notice that

H δ(η, φ) = 1

2

∫∫

�

(|∇Φ|2 + δ−2(∂zΦ)2
)
dxdz + 1

2

∫

Rn
η2dx,

H IK,δ(η, φ) = 1

2

∫∫

�

(|∇Φapp|2 + δ−2(∂zΦ
app)2

)
dxdz + 1

2

∫

Rn
η2dx,

where Φ is the unique solution to the boundary value problem of the scaled Laplace’s
equation (4.1) under the boundary conditions (4.3) and (4.5), and the approximate
velocity potential Φapp is defined by

Φapp(x, z) =
N∑

i=0

(z + 1 − b(x))pi φδ
i (x),

where φδ = (φδ
0, φ

δ
1, . . . , φ

δ
N )T is the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N∑

i=0

H pi φδ
i = φ,

N∑

j=0

Lδ
i j (H , b)φδ

j = H pi
N∑

j=0

Lδ
0 j (H , b)φδ

j for i = 0, 1, . . . , N .

We will denote with tildes, as in [12], the functions obtained when replacing N

with 2N + 2. Hence, φ̃
δ = (φ̃δ

0, φ̃
δ
1, . . . , φ̃

δ
2N+2)

T is the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2N+2∑

i=0

H pi φ̃δ
i = φ,

2N+2∑

j=0

Lδ
i j (H , b)φ̃δ

j = H pi
2N+2∑

j=0

Lδ
0 j (H , b)φ̃δ

j for i = 0, 1, . . . , 2N + 2.

We also introduce, as in [12], a modified approximate velocity potential Φ̃app by

Φ̃app(x, z) =
2N+2∑

i=0

(z + 1 − b(x))pi φ̃δ
i (x), (4.12)
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and set Φres = Φ − Φ̃app and ϕδ = (ϕδ
0, ϕ

δ
1, . . . , ϕ

δ
N )T with ϕδ

j = φδ
j − φ̃δ

j for

j = 0, 1, . . . , N . Then, we decompose the difference H δ − H IK,δ as

H δ(η, φ) − H IK,δ(η, φ)

= 1

2

∫∫

�

{(|∇Φ|2 + δ−2(∂zΦ)2
) − (|∇Φ̃app|2 + δ−2(∂zΦ̃

app)2
)}
dxdz

+ 1

2

∫∫

�

{(|∇Φ̃app|2 + δ−2(∂zΦ̃
app)2

) − (|∇Φapp|2 + δ−2(∂zΦ
app)2

)}
dxdz

= I1 + I2.

We first evaluate I1. It is easy to see that

|I1| ≤ 1

2

{‖∇Φres‖L2(�)

(‖∇Φ‖L2(�) + ‖∇Φ̃app‖L2(�)

)

+ δ−2‖∂zΦres‖L2(�)

(‖∂zΦ‖L2(�) + ‖∂zΦ̃app‖L2(�)

)}
. (4.13)

Using [12, Lemma 8.1] with k = 0 as well as [12, Lemma 6.4] with (k, j) =
(0, 2N + 1) in the case (H1) and [12, Lemma 6.9] with (k, j) = (0, 2[ N2 ] + 1) in the
case (H2), we find

‖∇Φres‖L2(�) + δ−1‖∂zΦres‖L2(�) ≤
{
C‖∇φ‖4N+3 δ4N+3 in the case (H1),

C‖∇φ‖4[ N2 ]+3 δ4[ N2 ]+3 in the case (H2),

provided that m ≥ 4(N + 1) in the case (H1), and m ≥ 4([ N2 ] + 1) in the case (H2).
Here and inwhat follows,C denotes a positive constant depending on N ,m, c0, andM ,
which changes from line to line. On the other hand, it follows from elliptic estimates
given in [10,18] that

‖∇Φ‖L2(�) + δ−1‖∂zΦ‖L2(�) ≤ C‖∇φ‖0.

Moreover, by the definition (4.12) and using [12, Lemma 3.4] with k = 0, we see
that

‖∇Φ̃app‖L2(�) + δ−1‖∂zΦ̃app‖L2(�)

≤ C
(‖∇φ̃δ

0‖0 + ‖(φ̃δ
1, . . . , φ̃

δ
2N+2)‖1 + δ−1‖(φ̃δ

1, . . . , φ̃
δ
2N+2)‖0

)

≤ C
(‖∇φ̃δ

0‖0 + δ−1‖(1 − δ2Δ)
1
2 (φ̃δ

1, . . . , φ̃
δ
2N+2)‖0

)

≤ C‖∇φ‖0.

Plugging the above estimates into (4.13), we obtain

|I1| ≤
{
C‖∇φ‖4N+3‖∇φ‖0 δ4N+3 in the case (H1),

C‖∇φ‖4[ N2 ]+3‖∇φ‖0 δ4[ N2 ]+3 in the case (H2),
(4.14)
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provided that m ≥ 4(N + 1) in the case (H1), and m ≥ 4([ N2 ] + 1) in the case (H2).
We proceed to evaluate I2 by noticing that, after the calculations in [12, p. 2009],

I2 = 1

2

2N+2∑

i=0

2N+2∑

j=0

(
Lδ
i j (H , b)φ̃δ

j , φ̃
δ
i

)

L2 − 1

2

N∑

i=0

N∑

j=0

(
Lδ
i j (H , b)φδ

j , φ
δ
i

)

L2

= 1

2

N∑

j=0

2N+2∑

i=N+1

(
(Lδ

i j (H , b) − H pi Lδ
0 j (H , b))ϕδ

j , φ̃
δ
i

)

L2

− 1

2

2N+2∑

j=N+1

2N+2∑

i=N+1

(
(Lδ

i j (H , b) − H pi Lδ
0 j (H , b))φ̃δ

j , φ̃
δ
i

)

L2 .

Therefore,

|I2| ≤ C
{‖ϕδ‖2N∗+3 + ‖(φ̃δ

N+1, . . . , φ̃
δ
2N+2)‖2N∗+3

+ δ−2(‖ϕδ‖2N∗+1 + ‖(φ̃δ
N+1, . . . , φ̃

δ
2N+2)‖2N∗+1

)}

× ‖(φ̃δ
N+1, . . . , φ̃

δ
2N+2)‖−(2N∗+1)

with N � = N in the case (H1) and N � = [ N2 ] in the case (H2). Using [12, Lemma 6.2]
with (k, j) = (2N+3, N ), (2N+1, N+1), (−2N−1, N+1) in the case (H1) and [12,
Lemma 6.7] with (k, j) = (2[ N2 ]+3, [ N2 ]), (2[ N2 ]+1, [ N2 ]+1), (−2[ N2 ]−1, [ N2 ]+1)
in the case (H2), we obtain

|I2| ≤
{
C‖∇φ‖4N+2‖∇φ‖0 δ4N+2 in the case (H1),

C‖∇φ‖4[ N2 ]+2‖∇φ‖0 δ4[ N2 ]+2 in the case (H2),
(4.15)

provided that m ≥ 4N + 3 in the case (H1), and m ≥ 4[ N2 ] + 3 in the case (H2).
Now, (4.14) and (4.15) give the desired estimate. �
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