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Abstract The rigid-lid approximation is a commonly used simplification in the study
of density-stratified fluids in oceanography. Roughly speaking, one assumes that the
displacements of the surface are negligible compared with interface displacements. In
this paper, we offer a rigorous justification of this approximation in the case of two shal-
low layers of immiscible fluids with constant and quasi-equal mass density. More pre-
cisely, we control the difference between the solutions of the Cauchy problem predicted
by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configu-
ration. We show that in the limit of a small density contrast, the flow may be accurately
described as the superposition of a baroclinic (or slow) mode, which is well predicted
by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial small-
ness persists for large time. We also describe explicitly the first-order behavior of the
deformation of the surface and discuss the case of a nonsmall initial barotropic mode.

Keywords Internal waves · Rigid-lid approximation · Boussinesq approximation ·
Asymptotic analysis · Hyperbolic system

1 Introduction

1.1 Motivation

The mass density of water in the ocean is not constant due to variations in temperature
and salinity. As a matter of fact, one typically observes a sharp separation between
a layer of warm, relatively fresh water above a layer of cold, more salty water. The
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interface between these two layers may experience great deformations that are mostly
invisible at the surface but account for important oceanographic features, such as
internal solitary waves or the dead-water phenomenon (e.g., Gill 1982; Jackson 2004;
Helfrich and Melville 2006 and references therein). The study of these internal waves
has attracted a considerable amount of attention in recent decades and led to a vast
collection of various models. To simplify the setting, two approximations are com-
monly used in the literature—the rigid-lid and Boussinesq approximations. Roughly
speaking, the rigid-lid approximation consists in neglecting the surface displacements
compared to interface displacements, while the Boussinesq approximation relies on
the assumption that the density differences between the two layers is small. Admit-
tedly, these two assumptions are related: a fixed amount of energy generates a much
smaller displacement at the air/water interface than at the fresh/salty water interface
because the ratio of mass densities across the interface is negligible in the former case
compared to the latter.

The ambition of this article is to offer a rigorous justification of the foregoing
presumption. We restrict ourselves to one of the simplest possible settings, that is, two
infinite, two-dimensional layers of immiscible fluids with constant density above a
flat bottom. Moreover, we consider sufficiently shallow layers so that the hydrostatic
approximation is valid; thus we study the so-called Saint-Venant (1871) or shallow-
water equations. Even in that much simplified setting, we will come across serious
difficulties that derive from the fact that the typical surface wave speed, as predicted
by the linearized system, is much greater than the typical interface wave speed, in
particular in the limit of a vanishing density contrast. Thus, within the terms neglected
in the rigid-lid approximation are contributions whose velocity blows up in the limit
we consider. As a matter of fact, even the well-posedness of the Cauchy problem for
the Saint-Venant system in the free-surface configuration on a relevant time scale (i.e.,
nonvanishing with the density contrast) is challenging.

To our knowledge, very few works have been concerned with the validity of the
aforementioned approximations, despite the early concerns expressed by Long (1965)
and Benjamin (1966). Grimshaw et al. (2002), Craig et al. (2005), Craig et al. (2010),
and Duchêne (2010) derive and compare asymptotic models in both the rigid-lid and
free-surface settings. However, they do not directly compare solutions of the two
models with corresponding initial data but rather parameters of their models, or explicit
solutions (solitary waves). Moreover, and perhaps more importantly, their analysis is
restricted to weakly nonlinear waves, so that the deformation of both the surface and
interface is assumed to be small. Recently, Leonardi (2011) studied in much detail the
validity of the rigid-lid approximation in a linearized setting and without explicitly
looking at the limit of small density differences. Conversely, our study accounts for
fully nonlinear waves and directly compares the solutions predicted by the rigid-lid
and free-surface systems in the limit of a vanishing density contrast.

1.2 Presentation of Models, and Main Result

In this section, we present the two models we study—the shallow-water (or Saint-
Venant) system in free-surface and rigid-lid configurations (Fig. 1). We briefly describe
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(a) (b)

Fig. 1 Sketch of the domain in the two different situations at stake

some early properties of these models and state our main result in Theorem 1.2. There
follows an outline of the present paper and some notations used therein.

Free-surface system. Let us first introduce the shallow-water model with a free
surface, which we simply refer to as the free-surface system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α∂tζ1 + ∂x (h1u1) + ∂x (h2u2) = 0,

∂tζ2 + ∂x (h2u2) = 0,

∂t u1 + α
δ+γ
1−γ

∂xζ1 + ε
2∂x

(|u1|2
) = 0,

∂t u2 + (δ + γ )∂xζ2 + γα
δ+γ
1−γ

∂xζ1 + ε
2∂x

(|u2|2
) = 0,

(1.1)

where we use the notation h1 = 1 + εαζ1 − εζ2 and h2 = 1
δ

+ εζ2.
This system was obtained1 in Choi and Camassa (1996), Craig et al. (2005) and

justified in Duchêne (2010) as an asymptotic model (in the shallow-water regime) for
a system of two layers of immiscible, homogeneous, ideal, incompressible fluid under
the sole influence of gravity (the so-called full Euler system). It describes the evolution
of the deformation of the surface, ζ1, the interface, ζ2, and the horizontal velocity of
the fluid in the upper (resp. lower) layer, u1 (resp. u2).2 More precisely, the two layers
are assumed to be connected, infinite in the horizontal dimension x ∈ R, delimited
below by a flat bottom and by the graph of functions ζ1(t, x), ζ2(t, x) (Fig. 1).

The parameters α, δ, γ, ε are dimensionless parameters that describe the character-
istics of the flow. More precisely:

δ represents the ratio of the upper-layer to the lower-layer depth;
γ represents the ratio of the mass density between the two fluids;
ε represents the maximal deformation of the interface divided by the upper-layer

depth;

1 The models presented in these works are not limited to a flat bottom or horizontal dimension d = 1.
They present different constants in the velocity equations. This is due to a different choice of scaling in
the nondimensionalizing step. We chose our scaling in order to set the typical velocity of the internal wave
(obtained by solving explicitly the linear system, i.e., setting α = ε = 0) as c0 = ±1, consistently with the
rigid-lid system (1.2).
2 The Saint-Venant model is usually derived using the so-called hydrostatic approximation. Equivalently,
one may assume that the horizontal scale is large compared with the vertical scale, so that the horizontal
velocity field is accurately described as constant throughout the depth of each layer of fluid.
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α represents the ratio of the maximal deformation of the surface to that of the
interface.

In particular, h1 denotes the depth of the upper layer and h2 the depth of the lower
layer.

Remark 1.1 Another dimensionless parameter plays an important role but is not visible
here, although it is essential for the construction and relevance of the shallow-water
models. If we denote by μ the ratio of the depth of the two layers to a characteristic
horizontal length, then one assumes μ � 1, and all terms of size O(μ2) are neglected
in (1.1).

An additional dimensionless parameter is ubiquitous in the present work and
obtained as a combination of the aforementioned parameters. It turns out to be con-
venient to express the assumption that the density contrast between the two fluids is
small with

� � 1 ; � ≡
√

1 − γ

γ + δ
.

We conclude the presentation of the free-surface system by mentioning that sys-
tem (1.1) is obviously a system of four conservation laws but also induces at least two
other conserved quantities. Indeed, as noticed in Barros et al. (2007), after manipulat-
ing the equations, one may obtain the following identities:

• Conservation of horizontal momentum:

∂t (γ h1u1 + h2u2) + ∂x p + ∂x (γ h1|u1|2 + h2|u2|2) = 0,

where p is the “pressure”: p = 1
2

(
γ

δ+γ
1−γ

(h1 + h2)
2 + (γ + δ)h2

2

)
.

• Conservation of energy:

∂t E + ∂x

(
1

2
(γ h1|u1|2u1 + h2|u2|2u2) + γ h2

1u1 + h2
2u2 + γ h1h2(u1 + u2)

)

= 0,

where we use the notation E ≡ 1
2γ h1|u1|2 + 1

2 h2|u2|2 + p.

Rigid-lid system. The model corresponding to (1.1) in the rigid-lid configuration,
which we refer to as the rigid-lid system, is

⎧
⎨

⎩

∂tη + ∂x

(
h1h2

h1+γ h2
v
)

= 0,

∂tv + (γ + δ)∂xη + ε
2∂x

(
h2

1−γ h2
2

(h1+γ h2)2 |v|2
)

= 0.
(1.2)

Here, η represents the deformation of the interface and v the shear velocity, namely,
v = u2 − γ u1; see below and Fig. 1. Again, h1 and h2 denote the depth of the upper
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(resp. lower) layers, and thus h1 = 1 − εη and h2 = 1/δ + εη. The parameters γ, δ, ε

are defined as previously.
System (1.2) has been justified as an asymptotic model in the shallow-water regime

in Bona et al. (2008),3 starting from the full Euler system in the rigid-lid configuration.
Let us show how to formally recover (1.2) from (1.1). Set ζ1 ≡ 0 (or, equivalently,
α = 0) in (1.1). It follows in particular from the first equation that

∂x (h1u1) + ∂x (h2u2) = 0. (1.3)

Since h1u1 and h2u2 are scalar functions vanishing at infinity, we deduce the identity
h1u1 = −h2u2. Thus, when we define v ≡ u2 − γ u1, we obtain

u1 ≡ −h2v

h1 + γ h2
and u2 ≡ h1v

h1 + γ h2
. (1.4)

It is now clear that the second equation and a linear combination of the last two
equations of (1.1) yield (1.2) (with η ≡ ζ2). We aim to give a rigorous confirmation
of the preceding calculations.

Main result. We state here the main result of the present work.

Theorem 1.2 Let s ≥ s0 + 1, s0 > 1/2, and δmin, δmax, γmin > 0. Consider
(α, δ, ε, γ ) ∈ P , with

P ≡ {
(α, δ, ε, γ ), 0 ≤ α ≤ 1, δmin ≤ δ ≤ δmax, 0 < ε ≤ 1,

γmin ≤ γ < 1
}
.

Let ζ 0
1 , ζ 0

2 , u0
1, u0

2 ∈ Hs+1(R) satisfy the following hypotheses:

∣
∣ζ 0

2

∣
∣

Hs+1 + ∣
∣u0

2 − γ u0
1

∣
∣

Hs+1 ≤ M and
α

�

∣
∣ζ 0

1

∣
∣

Hs+1 + ∣
∣γ h1u0

1 + h2u0
2

∣
∣

Hs+1 ≤ M �, (1.5)

as well as (denoting h0
1 ≡ 1 + εαζ 0

1 − εζ 0
2 and h0

2 ≡ δ−1 + εζ 0
2 )

∀x ∈ R, min
{

h0
1(x) ; h0

2(x) − ε2 |u0
2(x) − u0

1(x)|2
γ + δ

;

(h0
1(x) + γ h0

2(x))3 − ε2 γ (1 + δ−1)2|u0
2(x) − γ u0

1(x)|2
γ + δ

}
≥ h0 > 0, (1.6)

3 The justification provided in Bona et al. (2008)—as well as in Duchêne (2010) in the free-surface
configuration—is in the sense of consistency: sufficiently smooth solutions of the full Euler system satisfy
the equations of (1.2) up to small, i.e., O(μ2), remainder terms. The rigorous, full justification follows
from the well-posedness of both the full Euler system and the shallow-water model, as well as a stability
result, which make it possible to compare the solutions of both systems with corresponding initial data on
the relevant time scale. In the rigid-lid situation, Lannes (2013) recently solved the difficult problem of the
well-posedness of the full Euler system, consequently completing the full justification of (1.2); see Lannes
(2013), Theorem 7. No such result is available in the bifluidic, free-surface configuration.
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where 0 < h0, M < ∞ are fixed.
Then there exist T −1, C, positive, depending only and nondecreasingly on

M, h−1
0 , δ−1

min, δmax, γ
−1
min and 1

s0− 1
2

, such that the following assertions hold.

1. There exists a unique solution, (η, v) ∈ C([0, T/(εM)]; Hs+1(R)2) ∩ C1([0, T/

(εM)]; Hs(R)2) to (1.2), with initial data (η |t=0 = ζ 0
2 , v |t=0 = u0

2 − γ u0
1).

2. There exists a unique solution, (ζ1, ζ2, u1, u2) ∈ C([0, Tmax); Hs+1(R)4) ∩
C1([0, Tmax); Hs(R)4) to (1.1), with initial data (ζ 0

1 , ζ 0
2 , u0

1, u0
2), and Tmax ≥

T/ max{εM, �}.
3. One has, for any 0 ≤ t ≤ T/ max{εM, �},

α

�

∥
∥ζ1

∥
∥

L∞([0,t];Hs )
+ ∥

∥γ h1u1 + h2u2
∥
∥

L∞([0,t];Hs )
≤ C M �

and

∥
∥η − ζ2

∥
∥

L∞([0,t];Hs )
+ ∥

∥v − (u2 − γ u1)
∥
∥

L∞([0,t];Hs )
≤ C M �.

Remark 1.3 The restriction on the maximal time of existence for the solution of the
free-surface system, Tmax ≥ T/ max{εM, �}, as opposed to the classical Tmax ≥
T/(εM), is purely technical and does not reveal any limitation that would appear in the
weakly nonlinear case, εM = O(�). In contrast, we know that in the latter case (Propo-
sition 2.2 and Remark 2.4), system (1.1) is well-posed over time Tmax � (εM)−1,
without the additional condition in (1.5). Moreover, it would not be difficult to obtain
an asymptotic description of the solution similar to that obtained by Duchêne (2010)
(without the dispersion terms), namely that the flow may be accurately approximated
as a superposition of four independent waves, each driven by an inviscid Burgers
equation. The solution of the rigid-lid system (1.2) conforms to a similar description
(with only two counterpropagating waves); thus the two solutions are easily com-
pared. We present in Sect. 4 a similar decomposition of the flow allowing for stronger
nonlinearities; see in particular Theorem 4.5 and Proposition 4.6.

To acknowledge the fact that we are interested in strong nonlinearities, and to
facilitate reading, we set ε ≡ 1 in what follows.

Remark 1.4 The factor α
�

in front of ζ1 is natural in our context. Indeed, one easily
deduces from the aforementioned conservation of energy for (1.1) that

∫

R

E(x) − E(∞) dx ≈ γ

�2

∣
∣αζ1

∣
∣2
L2 + ∣

∣ζ2
∣
∣2
L2 + γ

∣
∣u1

∣
∣2
L2 + ∣

∣u2
∣
∣2
L2

is constant in time, so that without any further assumption than a finite initial energy
we know that γ 1/2 α

�

∣
∣ζ1

∣
∣
L2 remains bounded as long as the solution is well defined.

For simplicity’s sake, we set α ≡ � in what follows.
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Let us emphasize again the consequences of the assumptions made on the preceding
remarks. The set of parameters we consider throughout the rest of the paper is

P ≡
{

(α, δ, ε, γ ), α=�≡
√

1 − γ

γ + δ
, δmin ≤ δ ≤ δmax, ε=1, 0<γ < 1

}

,

with fixed 0 < δmin ≤ δmax < ∞. The interesting limit is therefore � → 0 or,
equivalently, γ → 1. Except for Sect. 2 and the appendix, we additionally impose
0 < γmin ≤ γ , with γmin fixed. The assumptions ε = 1 and α = � do not lack
in generality because one can recover the general case, and in particular the set of
parameters in the statement of Theorem 1.2, after applying straightforward scaling
factors on the unknowns.

Remark 1.5 Notice that we do not impose any smallness on the parameter �. Of
course, for nonsmall �, our result does not improve already existing results in the
literature, namely the well-posedness of the Cauchy problem in Sobolev spaces for
free-surface and rigid-lid systems (Sect. 2). In that case, one does not expect the
free-surface solution to be accurately described by the rigid-lid solution. In other
words, the rigid-lid approximation is not valid if � is not small; see, for example,
the discussion and numerical simulations in Duchêne (2011). When � is small, the
essential assumption is the second inequality in (1.5), which can be viewed as an
assumption of well-prepared initial data: it ensures that the time derivative of the
flow is initially bounded, uniformly for � small. Such assumptions are standard in
the analysis of singularly perturbed systems; see, e.g., Klainerman and Majda (1981),
Browning and Kreiss (1982).

Remark 1.6 A natural extension of our work would consist in treating the situation
of the horizontal dimension d = 2. The free-surface system in that case would have
the same quasilinear structure as (1.1), and a symmetrizer was exhibited in Duchêne
(2010). In contrast, the rigid-lid system as constructed in Bona et al. (2008) is quite
different as it involves a nonlocal operator constructed from the orthogonal projector
onto the gradient vector fields of L2(Rd)d . This can be seen from the fact that Eq. (1.3),
imposed by the rigid-lid hypothesis, becomes ∇ · (h1u1 + h2u2) = 0, which does not
enforce h1u1 +h2u2 = 0 when u1, u2 map R

2 to R
2 (and, in particular, (1.4) does not

hold in general). Let us note, however, that the well-posedness of the shallow-water
system in the rigid-lid configuration when d = 2 was established in Guyenne et al.
(2010), Bresch and Renardy (2011). Interestingly, the system considered in Bresch and
Renardy (2011), which is formulated differently than in Bona et al. (2008), Guyenne
et al. (2010) and admits nonirrotational velocity fields, offers a clear approximate
solution (in the sense of consistency) to the Saint-Venant system in the free-surface
configuration.

Remark 1.7 The case of a (sufficiently regular) nonflat bottom topography can be
treated following the strategy of this work, after straightforward arrangements. Indeed,
the hyperbolic structure of systems (1.1) and (1.2) is not altered when the topography is
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taken into account, and the only modification is the appearance of a “source” term of the
form f(U )∂x b, where f is a vector-valued function depending only on U , the unknown
vector-field, and b is the bottom topography. Note, however, that the decomposition
between the fast and slow modes introduced in Sect. 4 would not be valid because the
persistence of spatial localization (e.g., Lemma 4.4) would not hold with the additional
source term.

Remark 1.8 Contrary to the shallow-water systems (1.1) and (1.2), the corresponding
full Euler system is ill-posed in Sobolev spaces in the absence of surface (or interface)
tension due to the so-called Kelvin–Helmholtz instabilities. In Lannes (2013), Lannes
shows that, at least in the rigid-lid configuration, a small amount of interface ten-
sion may be sufficient to regularize the high-frequency component of the flow, hence
ensuring the existence and uniqueness of a solution to the initial-value problem over
large times. By selecting the low-frequency component of the flow, the shallow-water
assumption tames the Kelvin–Helmholtz instabilities and allows for our systems to be
well-posed even without the corresponding surface tension components. Conditions
(1.6), or more precisely the restrictions on the magnitude of the shear velocity that
define the domain of hyperbolicity of systems (1.1) and (1.2), are reminiscent of these
instabilities.

Outline of the paper. Section 2 is dedicated to some preliminary results on the
Cauchy problem for systems (1.1) and (1.2), obtained through classical techniques
on quasilinear, hyperbolic systems. Indeed, one easily checks that systems (1.1) and
(1.2) are Friedrichs-symmetrizable under reasonable assumptions on the data. As a
matter of fact, the Cauchy problem for (1.2) was studied in detail in Guyenne et al.
(2010); Bresch and Renardy (2011) (with the much more difficult case of horizontal
dimension d = 2), and we recall their result in Proposition 2.1.

In the same way, one easily obtains the well-posedness of the Cauchy problem for
the free-surface system (1.1) through standard energy methods; we state the result in
Proposition 2.2, and postpone its proof to the appendix. However, the resulting time
of existence is only of size T � �. One objective of our work is to obtain a control of
the energy over a large time scale (i.e., uniform with respect to � small) and describe
the asymptotic behavior of the solution when � vanishes.

Note that Proposition 2.2 also contains the usual blow-up criterion, so that item 2
in Theorem 1.2 is a consequence of the control of the solution on the relevant time
scale. Thus it suffices to prove item 3, and the entire statement follows. Section 3 is
dedicated to the proof of item 3.

Finally, in Sect. 4, we discuss several natural developments around Theorem 1.2:

• The construction of a first-order corrector term in order to obtain greater precision.
In particular, we describe the asymptotic behavior of a small deformation at the
surface.

• The case of ill-prepared initial data, that is, data failing to meet the smallness
assumption in (1.5).

On both counts, the relevant notion lies in a decomposition between the fast and slow
modes (or barotropic and baroclinic modes), which we define precisely subsequently.

123

Author's personal copy



J Nonlinear Sci (2014) 24:579–632 587

Finally, Sect. 4.3 also contains a discussion on the various results of the present work,
supported with numerical simulations.

Notations. If not specified, C0 denotes a nonnegative constant whose exact expres-
sion is of no importance. In the present work, C0 almost always depends nondecreas-
ingly on δ−1

min, δmax, γ
−1
min and often on 1

s0−1/2 , such dependency being nonnecessarily
specified. The notation a � b or a = O(b) means a ≤ C0b, and a ≈ b means a � b
and b � a, while a ∼ b means a

b → 1 (� → 0).
We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters

λ1, λ2,…, and whose dependence on the λ j is always assumed to be nondecreasing.
The real inner product of any functions f1 and f2 in the Hilbert space of square-

integrable functions, L2 = L2(R), is denoted by

(
f1 , f2

) =
∫

R

f1(x) f2(x) dx .

The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable
functions f , and

∣
∣ f

∣
∣
L∞ = ess sup

x∈R

| f (x)| < ∞.

For any real s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tempered
distributions, f , endowed with the norm | f |Hs = |�s f |L2 < ∞, where � is the
fractional derivative � = (Id −∂2

x )1/2.
For any U ≡ (ζ1, ζ2, u1, u2)

� ∈ Hs(R)4 and 0 < γ < 1, we introduce the
following norm:

∣
∣U

∣
∣2

Xs = γ
∣
∣ζ1

∣
∣2

Hs + ∣
∣ζ2

∣
∣2

Hs + γ
∣
∣u1

∣
∣2

Hs + ∣
∣u2

∣
∣2

Hs .

Except in Sect. 2 and the appendix, we assume that γ is uniformly bounded from
below, so that Xs is equivalent to the standard Hs(R)4-norm.

For any functions u = u(t, x) and v(t, x) defined on [0, T ) × R with some T > 0,
we denote the inner product, the L2-norm, and the Sobolev norms with respect to the
spatial variable x , with

(
u, v

) = (
u(t, ·), v(t, ·)), ∣∣u∣∣L2 = ∣

∣u(t, ·)∣∣L2 , and |u|Hs =
|u(t, ·)|Hs , respectively.

For T > 0 and X a functional space, we denote by L∞([0, T ); X) the space of
functions such that u(t, ·) is controlled in X , uniformly for t ∈ [0, T ). This space is
endowed with the following norm:

∥
∥u

∥
∥

L∞([0,T );X)
= ess sup

t∈[0,T )

|u(t, ·)|X < ∞.

Finally, Ck([0, T ); X) denotes the space of k-times continuously differentiable func-
tions in X .
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2 Preliminary Results

In this section, we present some results concerning the Cauchy problem related to the
free-surface and rigid-lid systems, respectively (1.1) and (1.2), in Sobolev spaces.

Proposition 2.1 (Well-posedness result concerning the rigid-lid system)
Let s ≥ s0 + 1, s0 > 1/2, and let U 0 = (ζ 0, v0)� ∈ Hs(R)2 be such that there

exists h0 > 0 with

h1 ≡ 1 − η ≥ h0 > 0, h2 ≡ 1

δ
+ η ≥ h0 > 0,

γ + δ − γ
(1 + δ−1)2

(h1 + γ h2)3 |v|2 ≥ h0 > 0. (2.1)

There exists Tmax > 0 and a unique URL = (η, v)� ∈ C([0, Tmax); Hs(R)2) ∩
C1([0, Tmax); Hs−1(R)2), maximal solution to (1.2) (with ε = 1), with initial data
URL |t=0 = U 0.

Moreover, there exists constants 0 < C0, T −1 ≤ ∣
∣U 0

∣
∣

Hs (R)2 C(
∣
∣U 0

∣
∣

Hs (R)2 , h−1
0 ,

δ−1
min, δmax) such that one has Tmax ≥ T , and for any t ∈ [0, T ],

∣
∣URL(t, ·)∣∣Hs (R)2 + ∣

∣∂tURL(t, ·)∣∣Hs−1(R)2 ≤ C0 exp(C0 t),

and U (t, ·) satisfies (2.1) uniformly for any t ∈ [0, T ] (with h0/2 replacing h0).

This result was precisely expressed in Guyenne et al. (2010), Theorem 1, and follows
from standard techniques on quasilinear, Friedrichs-symmetrizable systems. More
precisely, the existence and uniqueness of a solution follow from energy estimates
on the linearized equation, of which the preceding estimate is a particular case. To
assert the well-posedness in the sense of Hadamard, one should also state that the
flow depends continuously upon the initial data. Such a result holds: one may control
the energy of the difference between two solutions corresponding to different initial
data, provided these initial data are sufficiently regular. Precise blow-up conditions,
specifying the possible scenarios within the ones stated subsequently in Proposition 2.2
are also presented in Guyenne et al. (2010), Corollary 1.

Let us now turn to the free-surface system, (1.1). Recall that we set α = � =
√

1−γ
γ+δ

and ε = 1, so that the system may be written as

∂tU + A[U ]∂xU = 0,

with U ≡ (ζ1, ζ2, u1, u2)
� and

A[U ] ≡

⎛

⎜
⎜
⎜
⎝

u1
u2−u1

�
1+�ζ1−ζ2

�
δ−1+ζ2

�

0 u2 0 δ−1 + ζ2
1
�

0 u1 0
γ
�

δ + γ 0 u2

⎞

⎟
⎟
⎟
⎠

= A0 + A1(U ),
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where A0 is a constant 4×4 matrix, and A1(·) is a linear mapping into 4×4 matrices.
As we show in the appendix, the preceding system admits an explicit symmetrizer,

S[U ], that is definite positive provided U ≡ (ζ1, ζ2, u1, u2)
� satisfies some conditions

similar to (2.1), namely

∀x ∈ R, h1(x) ≥ h0 > 0 ; h2(x) − |u2(x) − u1(x)|2
γ + δ

≥ h0 > 0, (2.2)

where we recall h1 ≡ 1 + �ζ1 − ζ2 and h2 ≡ δ−1 − ζ2.
However, one clearly sees that the system exhibits 1/� factors, which pass on the

constants in the energy estimates, thereby lowering the a priori time of existence. We
state subsequently in Proposition 2.2 the well-posedness of the Cauchy problem as
given by standard energy methods on quasilinear, Friedrichs-symmetrizable systems;
note that the time of existence of the solution is restricted to the poor Tmax � �. This
time scale is intuitively seen from a change of variable: define U (t, ·) ≡ Ũ (t/�, ·), so
that Ũ satisfies

∂τ Ũ + �A[Ũ ]∂xŨ = 0,

and one has �A[U ] ≡ �A0 + �A1(U ), with the matrix �A0 and the linear mapping
�A1(·) being both uniformly bounded with respect to � � 1.

Proposition 2.2 (Naive well-posedness result for the free-surface system) Let s ≥
s0 + 1, s0 > 1/2, and let U 0 ≡ (ζ 0

1 , ζ 0
2 , u0

1, u0
2)

� ∈ Xs be such that (2.2) holds with
h0 > 0.

There exist Tmax > 0 and U = (ζ 0
1 , ζ 0

2 , u0
1, u0

2)
� ∈ C([0, Tmax); Hs(R)4) ∩

C1([0, Tmax); Hs−1(R)4), unique maximal solution to (1.1) (with α = �, ε = 1),
with initial data U |t=0 = U 0.

Moreover, there exist positive constants 0 < C0, T −1 ≤ ∣
∣U 0

∣
∣

Xs C(
∣
∣U 0

∣
∣

Xs , h−1
0 ,

δ−1
min, δmax) such that one has Tmax ≥ T �, U (t, ·) satisfies (2.2) for any t ∈ [0, T �]

(with h0/2 replacing h0), and

∀t ∈ [0, T �], ∣
∣U (t, ·)∣∣Xs + �

∣
∣∂tU (t, ·)∣∣Xs−1 ≤ C0 exp(C0 �−1 t).

Finally, if Tmax < ∞, then at least one of the following holds:

• ∣
∣U

∣
∣
L∞([0,t]×R)4 or

∣
∣∂xU

∣
∣
L∞([0,t]×R)4 blows up as t ↗ Tmax; or

• at least one of the conditions in (2.2) ceases to be true at t = Tmax.

The proof of Proposition 2.2 is postponed to the appendix so as not to interrupt the
flow of the text.

Remark 2.3 Condition (2.2) is a sufficient condition for hyperbolicity, in the sense that
it ensures that the symmetrizer we define and use in the appendix is positive definite.
We do not claim that this condition defines exactly the domain of hyperbolicity of
system (1.1) (contrary to (2.1) for the rigid-lid system (1.2)); see (Abgrall and Karni
2009; Castro-Díaz et al. 2011; Stewart and Dellar 2013) for a more detailed analysis
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on this point. In particular, one would expect the hyperbolic domain of the free-surface
system to asymptotically correspond to (2.1) in the limit � → 0, which is not the case
as (2.2) is more stringent.

Remark 2.4 Note that a uniform time of existence, T � 1, is recovered for sufficiently
small initial data:

∣
∣U0

∣
∣

Xs = O(�). This result can be viewed through the following

change of unknowns: U ≡ �Ŭ . The function Ŭ satisfies

∂t Ŭ + A[�Ŭ ]∂xŬ = 0,

and A[�Ŭ ] ≡ A0 +�A1(Ŭ ). The fact that the constant operator A0∂x is not uniformly
bounded with respect to � � 1 does not prevent solutions from existing in a time
domain independent of � because it does not contribute to commutator estimates. This
simple observation motivates the strategy we use to prove Theorem 1.2, as described
in Sect. 3.

3 Proof of Main Result

This section is dedicated to the proof of Theorem 1.2. Our first ingredient consists in
constructing a system equivalent to (1.1) but whose nonlinear contribution is uniformly
bounded with respect to �. To construct such a system, we shall use different variables.
Considering the conservation of horizontal momentum presented in Sect. 1.2, we
introduce the horizontal momentum, m ≡ γ h1u1 + h2u2, and the shear velocity,
us ≡ u2 − γ u1. One has immediately

us ≡ u2 − γ u1 and m ≡ γ h1u1 + h2u2 (3.1)

if and only if

u1 = m − h2us

γ (h1 + h2)
and u2 = m + h1us

h1 + h2
. (3.2)

Straightforward manipulations of system (1.1) yield the new system of conservation
laws we consider:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ1 + 1
�
∂x m + 1−γ

γ �
∂x

(
h1

m−h2us
h1+h2

)
= 0,

∂tζ2 + ∂x

(
h2

h1+h2
(h1us + m)

)
= 0,

∂t us + (δ + γ )∂xζ2 + 1

2
∂x

(
γ (m+h1us )

2−(m−h2us )
2

γ (h1+h2)2

)
= 0,

∂t m + γ h1+h2
�

∂xζ1 + (γ + δ)h2∂xζ2 + ∂x

(
h1(m−h2us )

2+γ h2(m+h1us )
2

γ (h1+h2)2

)
= 0.

(3.3)

We still refer to this system as a the free-surface system. Systems (3.3) and (1.1) are
equivalent in the following sense.
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Proposition 3.1 Let s ≥ s0 + 1, s0 > 1/2. Let V ≡ (ζ1, ζ2, us, m)� ∈
C([0, T ]; Hs(R)4) be a strong solution to (3.3), with T > 0. Assume that for any
t ∈ [0, T ] one has

∃h0 > 0 such that min
x∈R,t∈[0,T ]

{
h1(t, x) + h2(t, x) = 1 + δ−1 + �ζ1(t, x)

} ≥ h0>0.

Then U ≡ (ζ1, ζ2, u1, u2)
� ∈ C([0, T ]; Hs(R)4), where u1 and u2 are given by (3.2),

is a strong solution to (1.1).
Conversely, if a given U ≡ (ζ1, ζ2, u1, u2)

� ∈ C([0, T ]; Hs(R)4) is a strong
solution to (1.1) and the preceding nonvanishing depth condition holds, then V ≡
(ζ1, ζ2, us, m)� ∈ C([0, T ]; Hs(R)4)), given by (3.1), is a strong solution to (3.3).

Proof The existence and regularity of U ∈ C([0, T ]; Hs(R)4) (resp. V ∈
C([0, T ]; Hs(R)4)) are deduced from the corresponding control of V (resp. U ), using
product estimates in Lemma 5.1, as well as Corollary 5.2. As usual, one deduces
from the system satisfied by, say, V —namely (3.3)—the corresponding estimate
∂t V ∈ C([0, T ]; Hs−1(R)4), and ∂tU ∈ C([0, T ]; Hs−1(R)4) follows. The fact that
U satisfies (1.1) if V satisfies (3.3), and vice versa, demands somewhat tedious but
straightforward computations, which we leave to the reader. ��
Remark 3.2 We do not claim here that the aforementioned solutions are unique. The
uniqueness of a solution to (1.1) is given in Proposition 2.2 and requires additional con-
ditions on the initial data, namely (2.2). We prove subsequently that these conditions
are also sufficient to ensure the uniqueness of a solution to (3.3); see Lemma 3.6.

Strategy and discussion. We see two benefits in considering (3.3) in lieu of (1.1).
First, the rigid-lid system, which was encrypted in (1.1), is now apparent in (3.3).
This will be helpful, although not necessary, for the construction of the approximate
solution in the following subsection. More importantly, one sees that the only terms
factored by �−1 in (3.3) are constant. This second property is crucial for our analysis
and justifies the use of (3.3).

Let us briefly sketch the key arguments in the proof of Theorem 1.2 before contin-
uing with the detailed analysis in the following subsections. We first introduce some
notations, which are used henceforth. We rewrite the hyperbolic system (3.3) as

∂t V +
(

1

�
L� + B[V ]

)

∂x V = 0, (3.4)

with V ≡ (ζ1, ζ2, us, m)�, and where

• 1
�

L� represents the linear component of the system (see precise expression subse-
quently);

• B[·] contains a nonlinear contribution: it is uniformly bounded with respect to �.

In Sect. 3.1, we construct an approximate solution, Vapp, satisfying (3.3), as well
as the initial data, up to a small remainder. Thus defining W ≡ V − Vapp, where V is
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the exact solution, one has

∂t W + 1

�

(
L� + �B[Vapp + W ]) ∂x W = R, (3.5)

with W |t=0 and R small [typically of size O(�)]. Our aim is to prove that W remains
small for large time scales (i.e., bounded from below uniformly with respect to �), and
Theorem 1.2 quickly follows (Sect. 3.3).

When compared with the classical theory of Friedrichs-symmetrizable quasilinear
systems, the main issue we face when controlling W in the natural energy space lies
in the two following facts:

(i) One must control the contribution from the unbounded component 1
�

L� in the

energy space, which may generate a destructive O(�−1) factor; and
(ii) One cannot use the equation to deduce a uniform control of ∂t W from the cor-

responding control of ∂x W because, once again, this would yield a destructive
O(�−1) factor.

These two difficulties are only apparent, as shown by a careful study of the system
symmetrizer. In Sect. 3.2, we introduce and study the symmetrizer, T [·], as well
as ϒ[·] ≡ T [·]( 1

�
L� + B[·]). In particular, one can check that (roughly speaking)

ϒ[·] ≡ 1
�
ϒ0 +O(1), with ϒ0 a constant matrix, so that differentiation or commutation

with the operator ϒ[·] is actually bounded; thus issue (i) can be addressed.

Issue (ii) requires a more specific analysis. We introduce � ≡
⎛

⎝

0
1

1
0

⎞

⎠, the

orthogonal projector onto the kernel of L(0), denoting L(0) = limγ→1 L�; see below.
It follows that

∣
∣�∂t W

∣
∣

Xs−1 �
∣
∣W

∣
∣

Xs , uniformly with respect to small �. As for the
other component, one shows that T [·](Id −�) = T0+O(�), with T0 a constant matrix,
so a factor of size O(�) is gained following differentiation or commutation with this
operator.

The detailed energy estimates are computed in Sect. 3.3.
There is an intuitive explanation for why the preceding claims hold. By precisely

analyzing the 4 × 4 matrix L�,

L� ≡

⎛

⎜
⎜
⎝

0 0 γ−1
γ (δ+1)

γ+δ
γ (δ+1)

0 0 �
1+δ

�
1+δ

0 �(γ + δ) 0 0
γ (1 + δ−1) �

δ+γ
δ

0 0

⎞

⎟
⎟
⎠ ,

one may check that for � sufficiently small, L� has four distinct, real eigenvalues:

λ
f
±(�) = ±

√
1 + δ−1 + O(�2) ; λs±(�) = ±� + O(�3).

The linear theory thus predicts that the flow can be decomposed as the superposition

of four waves, propagating at velocity c f
± ∼ ±

√
1+δ−1

�
, and cs± ∼ ±1, which we call
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the fast mode (resp. slow mode). Roughly speaking, the slow mode corresponds to
the flow predicted by the rigid-lid system, and the terms neglected in the rigid-lid
approximation correspond to the fast mode.

An important feature of the free-surface system, which is revealed by our change
of variable, is that the fast and slow modes are supported on (approximately) orthog-
onal components, which is responsible for the fact that coupling effects between the
two modes are small. More precisely, if we use the notation L(0) ≡ limγ→1 L� ≡
⎛

⎝

1
0

0
1 + δ−1

⎞

⎠, then we can easily check that the eigenvectors corresponding to

the two nonzero eigenvalues of L(0) are orthogonal to the kernel of L(0). Therefore,
roughly speaking, the slow mode is supported by the variables ζ2 and us , while the
fast mode is supported by the variables ζ1 and m. We take advantage of this fact by
treating separately the slow-mode terms [multiplying by �, the orthogonal projector
onto the kernel of L(0)] and fast-mode terms [multiplying by Id −�, the orthogonal
projector onto the space spanned by the other eigenvectors of L(0)]. The former contri-
butions are easily controlled because time differentiation does not induce a destructive
O(�−1) factor. As for the latter, the property T [·](Id −�) = T0 + O(�) reflects the
fact that the corresponding eigenvalues are well separated; thus the perturbation by
�B[·] typically yields deviations of size O(�), following standard perturbation theory
Kato (1995). Finally, the desired property on ϒ[·] is easily checked:

ϒ[·] ≡ T [·]�
(

1

�
L� + B[·]

)

+ T [·](Id −�)

(
1

�
L� + B[·]

)

= 1

�
T0(Id −�)L� + O(1).

We refer the reader to Sect. 4 for a more precise investigation of the decomposition
of the flow into fast and slow modes, and numerical illustrations.

3.1 Construction of Approximate Solution

In this section, we construct an approximate solution to the free-surface system (3.3)
using the corresponding solution to the rigid-lid system (1.2), as defined below.

Let us recall that henceforth, we assume that γ is uniformly bounded from below:
γ ≥ γmin > 0. In particular, the norm Xs is equivalent to the standard Hs(R)4-norm
and will be used as such.

Definition 3.3 (Rigid-lid approximate solution) For given initial data ζ 0
2 , u0

s satisfying
(2.1), the rigid-lid approximate solution corresponding to (ζ 0

2 , u0
s )

� is denoted VRL ≡
(0, η, v, 0)�, where V ≡ (η, v)� is the unique solution to the rigid-lid system (1.2)
with V |t=0 ≡ (ζ 0

2 , u0
s )

�.

Proposition 3.4 Let s ≥ s0, s0 > 1/2, and let ζ 0
2 , u0

s ∈ Hs+1(R), satisfy-
ing (2.1) with h0 > 0, and

∣
∣(ζ 0

2 , u0
s )

�∣
∣

Hs+1×Hs+1 ≤ M. Then there exists 0 <

T −1, C1, C2, C3 ≤ M C
(
M, h−1

0 , δ−1
min, δmax, γ

−1
min

)
, with the following statements:
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• VRL ∈ C([0, T ]; Xs+1)∩C1([0, T ]; Xs) is well defined as previously and satisfies

∀t ∈ [0, T ], ∣
∣VRL

∣
∣

Xs+1 + ∣
∣∂t VRL

∣
∣

Xs ≤ C1. (3.6)

• There exists Vrem ∈ C([0, T ]; Xs+1) ∩ C1([0, T ]; Xs), with

∀t ∈ [0, T ], ∣
∣Vrem

∣
∣

Xs+1 + ∣
∣∂t Vrem

∣
∣

Xs ≤ C2 �, (3.7)

such that Vapp ≡ VRL + Vrem satisfies (3.3), up to a remainder term R, with

∥
∥R

∥
∥

L∞([0,T ];Xs )
≤ C3 �

(
M + �

)
. (3.8)

Remark 3.5 The explicit formula for Vrem, which is precisely displayed in the sub-
sequent proof, does not play a significant role in this section, except as a technical
artifice to obtain the desired estimate. In particular, it does not appear in Theorem 1.2.
However, as discussed in Sect. 4, it corresponds to a first-order correction of the
approximate solution and is clearly observable in our numerical simulations.

Proof of Proposition 3.4 By Proposition 2.1, there exists C1, T −1 ≤ MC
(M, h−1

0 , δ−1
min, δmax) such that VRL ∈ C([0, T ]; Xs+1) is well defined by Defini-

tion 3.3, and (3.6) holds.
We now plug Vapp ≡ VRL + Vrem into (3.3) and check that one can explicitly define

a function Vrem ≡ Vrem[η, v] such that the remainder term, R, satisfies the estimate of
the proposition. Anticipating the result, we use the notation Vapp ≡ (�ζ̆1, η, v, �2m̆)�
and subsequently

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�∂t ζ̆1 + �∂x m̆ + 1−γ
γ �

∂x

(
h1

�2m̆−h2v
h1+h2

)
= r1,

∂tη + ∂x

(
h2

h1+h2
(h1v + �2m̆)

)
= r2,

∂tv + (δ + γ )∂xη + 1
2∂x

(
γ (�2m̆+h1v)2−(�2m̆−h2v)2

γ (h1+h2)2

)
= r3,

�2∂t m̆ + γ (h1 + h2)∂x ζ̆1 + (γ + δ)h2∂xη

+∂x

(
h1(�

2m̆−h2v)2+γ h2(�
2m̆+h1v)2

γ (h1+h2)2

)
= r4,

(3.9)

with h1 ≡ 1 + �2ζ̆1 − η and h2 ≡ δ−1 + η.
Our aim is to prove that one can choose ζ̆1 and m̆ such that

∣
∣ζ̆1

∣
∣

Hs+1 + ∣
∣m̆

∣
∣

Hs+1 + ∣
∣∂t ζ̆1

∣
∣

Hs + ∣
∣∂t m̆

∣
∣

Hs ≤ C2 (3.10)

and
∣
∣r1

∣
∣

Hs + ∣
∣r2

∣
∣

Hs + ∣
∣r3

∣
∣

Hs + ∣
∣r4

∣
∣

Hs ≤ C3 � (M + �). (3.11)

To facilitate reading of the argument, we first assume that (3.10) holds and see how
ζ̆1, m̆ can be naturally chosen so that (3.11) is satisfied. Our choice for ζ̆1, m̆ is precisely
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stated subsequently in (3.14) and (3.16), and checking that (3.10) is actually satisfied
is then a straightforward consequence of (3.6).

Recall that, by definition, (η, v)� satisfies (1.2). In particular, from the first equation
in (1.2) one deduces

r2 = ∂x

(
h1h2v

h1 + h2
− h1h2v

h1 + γ h2

)

+ �2∂x

(
h2m̆

h1 + h2

)

,

where we denote by h1 ≡ 1 − η the depth of the upper layer in the rigid-lid approxi-
mation.

Recall that VRL satisfies (3.6) and (2.1). Thus one can apply the product estimates
in Lemma 5.1 and Corollary 5.2 [also recall that, by definition, 1 − γ = �2(γ + δ)]
to deduce

∥
∥r2

∥
∥

L∞([0,T/M];Hs )
≤ M�2 C(M, h−1

0 , C2, δ
−1
min, δmax), (3.12)

where we used the a priori estimate (3.10).
Similarly, one deduces from the second equation in (1.2) that

r3 = 1

2
∂x

({
γ h2

1 − h2
2

γ (h1 + h2)2 − h2
1 − γ h2

2

(h1 + γ h2)2

}

v2

+γ (�2m̆ + h1v)2 − γ 2h2
1v

2 + h2
2v

2 − (�2m̆ − h2v)2

γ (h1 + h2)2

)

,

so that one has, as previously,

∥
∥r3

∥
∥

L∞([0,T/M];Hs )
≤ M�2 C(M, h−1

0 , C2, δ
−1
min, δmax, γ

−1
min). (3.13)

Let us now look at the fourth equation in (3.9). We have

γ (h1 + h2)∂x ζ̆1 + (γ + δ)h2∂xη + ∂x

(
h1h2(γ h1 + h2)v

2

γ (h1 + h2)2

)

= ∂x

(

γ
(
(1 + δ−1)ζ̆1 + �2

2
ζ̆ 2

1

) + (γ + δ)
(
δ−1η + 1

2
η2) + h1h2(γ h1 + h2)v

2

γ (h1 + h2)2

)

.

It is now clear that we can choose

ζ̆1 ≡ −(
η + δ

2
η2) − (1 − η)(δ−1 + η)v2

(1 + δ−1)2 , (3.14)

so that the preceding expression is of size O(�2). More precisely, and using once again
(3.10), we have

∥
∥r4

∥
∥

L∞([0,T/M];Hs )
≤ M�2 C(M, h−1

0 , C2, δ
−1
min, δmax, γ

−1
min). (3.15)
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We conclude with the first equation in (3.9). Using that �2 = 1−γ
γ+δ

, we have

r1 = �

(

∂t ζ̆1 + ∂x m̆ + γ + δ

γ
∂x

(

h1
�2m̆ − h2v

h1 + h2

))

.

We now recall that (η, v)� satisfies (1.2), so that we deduce explicitly ∂t ζ̆1 from (3.14),
and

∣
∣
∣
∣∂t ζ̆1 − ∂x

(
h1h2v

h1 + γ h2

)∣
∣
∣
∣

Hs
≤ M2 C(M, h−1

0 , C2, δ
−1
min, δmax, γ

−1
min).

Now, we can check that by choosing

m̆ ≡ δ

1 + δ
v, (3.16)

it follows that

∣
∣
∣
∣

h1h2v

h1 + γ h2
+ m̆ − γ + δ

γ

h1h2v

h1 + h2

∣
∣
∣
∣

Hs

≤ (M2 + M�2) C(M, h−1
0 , C2, δ

−1
min, δmax, γ

−1
min),

so that estimates (3.6) and (3.10) yield

∥
∥r1

∥
∥

L∞([0,T/M];Hs )
� (M2� + M�2) C(M, h−1

0 , C2, δ
−1
min, δmax, γ

−1
min). (3.17)

Estimates (3.12), (3.13), (3.15), and (3.17) give the desired estimate: (3.11) or,
equivalently, (3.8). Moreover, one easily deduces from the estimate concerning VRL in
(3.6) the corresponding estimate on Vrem ≡ (�ζ̆1, 0, 0, �2m̆)�: (3.10) or, equivalently,
(3.7). Proposition 3.4 is proved. ��

3.2 Properties of System and Its Symmetrizer

This section is dedicated to the preliminary results on the new free-surface system
(3.3) and its symmetrizer, which will allow for an energy analysis in the following
subsection.

Recall that (3.3) was constructed from (1.1) through a change of variables: for any
U ∈ (ζ1, ζ2, u1, u2)

� solution to (1.1), we uniquely associate the V ≡ (ζ1, ζ2, us, m)�
solution to (3.3) through a change of variable (3.1) (Lemma 3.1). In other words, we
have an explicit

F : X → X
(ζ1, ζ2, us, m)� �→ (ζ1, ζ2, u1, u2)

�

123

Author's personal copy



J Nonlinear Sci (2014) 24:579–632 597

[in this section, the space X may be L∞(R)4 or Hs(R)4, s > 1/2], which is one-to-one
and onto, provided the nonvanishing depth condition is satisfied:

∃h0 > 0 S.t. min
x∈R,t∈[0,T ]

{
h1(t, x)+h2(t, x)=1 + δ−1+�ζ1(t, x)

}≥h0 > 0. (3.18)

It follows that, recalling the notation for (1.1) as

∂tU + A[U ]∂xU = 0,

we may rewrite (3.3) (after multiplication by the appropriate operator)

dF[V ]∂t V + A[F(V )]dF[V ]∂x V = 0,

where dF[V ] is the Jacobian matrix of F . In other words, recalling the earlier notation
in (3.4), we have

∂t V +
(

1

�
L� + B[V ]

)

∂x V = 0 with
1

�
L� + B[V ] = (dF[V ])−1 A[F(V )].

Thus the symmetrizer of the new system (3.3) is readily available from that of sys-
tem (1.1).

Lemma 3.6 Let S[·] be a symmetrizer of (1.1), e.g., (5.2). Then the operator T [·] ≡
(dF[·])�S[F(·)]dF[·] is a symmetrizer of (3.3). Moreover, T [V ] is definite positive
if and only if F(V ) satisfies (2.2).

Proof For any V ∈ X , the operator T [V ] is obviously symmetric. Moreover, T [V ] is
definite positive if and only if S[F(V )] is definite positive since one has

∀x ∈ R
4, T [V ]x · x = S[F(V )](dF[V ]x) · (dF[V ]x), (3.19)

and dF[V ] is invertible provided V satisfies (3.18). Let us note that the hyperbolicity
condition (2.2) is obviously more stringent than (3.18).

Finally, it is straightforward to check that

T [V ]
(

1

�
L� + B[V ]

)

= (dF[V ])�S[F(V )]A[F(V )]dF[V ]

is symmetric, and this concludes the proof. ��
We conclude that one can construct an explicit symmetrizer of system (3.3) using

S[·] given in (5.2). However, this symmetrizer has a quite complicated expression,
and we do not display it here. We will only present the necessary properties of the
operators of interest, which are easily checked using a computer algebra system, such
as Maple.
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Lemma 3.7 Let V, W ∈ X, satisfying (3.18), and 1
�

L�+B[·]≡(dF[·])−1 A[F(·)]dF[·]
defined previously. Then one has

∥
∥B[V ]∥∥X ≤ C0

∣
∣V

∣
∣

X ,
∥
∥B[V ] − B[W ]∥∥X ≤ C0

∣
∣V − W

∣
∣

X , (3.20)

with C0 = C(
∣
∣V

∣
∣

X ,
∣
∣W

∣
∣

X , δ−1
min, δmax, γ

−1
min), and where we denote

∥
∥A

∥
∥

X ≡
supV ∈X\{0}

∣
∣AV

∣
∣

X∣
∣V

∣
∣

X

.

Proof Recall that B[·] has a complicated expression, but it is explicit; it involves only
products of the components of V or factors of the form 1

h1+h2
. Thus one can apply

Lemma 5.1 and Corollary 5.2 [since (3.18) holds], and the result easily follows. ��
Lemma 3.8 Denote T [·]≡(dF[·])�S[F(·)]dF[·]andϒ[·]≡(dF[·])��[F(·)]dF[·],
with S[·] and �[·] = S[·]A[·] defined in (5.2) and (5.3). Let V ∈ X such that F(V )

satisfies (2.2), with h0 > 0. Then there exists C0 = C(
∣
∣V

∣
∣

X , h−1
0 , δ−1

min, δmax, γ
−1
min)

such that one has the following claims:

1. T [V ], ϒ[V ] are symmetric. T [V ] is positive definite. More precisely, for any
W ∈ L2(R)4 one has

1

C0

∣
∣W

∣
∣2
L2 ≤ (

T [V ]W, W
) ≤ C0

∣
∣W

∣
∣2
L2 . (3.21)

2. T [V ], ϒ[V ] satisfy the following estimates:

∥
∥T [V ]∥∥X ≤ C0;

∥
∥ϒ[V ]∥∥X ≤ �−1C0. (3.22)

3. If V ≡ V (�) and ∂� V ∈ X, then

∥
∥∂�(T [V ])∥∥X ≤ C0

∣
∣∂� V

∣
∣

X ; ∥
∥∂�(ϒ[V ])∥∥X ≤ C0

∣
∣∂� V

∣
∣

X (3.23)

and

∥
∥∂�(T [V ])(Id −�)

∥
∥

X ≤ � C0
∣
∣∂� V

∣
∣

X , (3.24)

recalling the notation � ≡
⎛

⎝

0
1

1
0

⎞

⎠.

Proof That T [V ] is symmetric, positive definite and ϒ[V ] is symmetric was already
stated in Lemma 3.6. Estimate (3.21) follows from Lemma 5.4 and (3.19), recalling
that γ ≥ γmin > 0 ensures that the L2(R)4-norm is equivalent to the X0-norm.

Estimates (3.22) are direct consequences of the corresponding estimates on
S[·], A[·] and F(·), dF[·], which are easily checked. We recall that the necessary prod-
uct estimates in X = L∞(R)4 or X = Hs(R)4 (s > 1/2) are given by Lemma 5.1
and Corollary 5.2. The first estimate in (3.23) is obtained similarly.
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Finally, the second estimate in (3.23) and (3.24) are less obvious but can be checked
with the help of a computer algebra system (we must ensure that all first-order terms
in � are constant). ��

3.3 Completion of Proof

Denote by V a strong solution to the free-surface system (3.3) satisfying the nonvanish-
ing depth condition, (2.1); and denote by Vapp the approximate solution constructed in
Proposition 3.4. One easily checks that W ≡ V − Vapp satisfies the following system:

∂t W + 1

�

(
L� + �B[V ]) ∂x W = R, (3.25)

withR ≡ R−(B[Vapp+W ]−B[Vapp])∂x Vapp, where R is estimated in Proposition 3.4.
The following lemma presents an a priori energy estimate on W satisfying the

preceding system, on which our desired result is based.

Lemma 3.9 Let s ≥ s0 + 1, s0 > 1/2, and let W be a strong solution to (3.25), with
W |t=0 ∈ Xs. Assume that there exists M, T, h0 > 0 such that F(V ) satisfies (2.2)
and

∥
∥V

∥
∥

L∞([0,T ];Xs )
+ ∥

∥∂t V
∥
∥

L∞([0,T ];Xs−1)
≤ M.

Then one has, for all t ∈ [0, T ],
∣
∣W (t, ·)∣∣Xs ≤ C0

∣
∣W (0, ·)∣∣Xs eC0 Mt + C0

t∫

0

eC0 M(t−t ′)∣∣R(t ′, ·)∣∣Xs dt ′, (3.26)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Proof We compute the inner product of (3.25) with T [V ]�2s W and obtain
(
�s T [V ]∂t W,�s W

) + (
�sϒ[V ]∂x W,�s W

) = (
�s T [V ]R,�s W

)
,

where T [·] and ϒ[·] are as defined in the previous subsection.
From the symmetry of T [·] and ϒ[·] one deduces

1

2

d

dt
Es(W ) = 1

2

([
∂t , T [V ]]�s W,�s W

) + 1

2

([
∂x , ϒ[V ]]�s W,�s W

)

− ([
�s, T [V ]]∂t W,�s W

) − ([
�s, ϒ[V ]]∂x W,�s W

) + (
�s T [V ]R,�s W

)
,

(3.27)

where we define

Es(W ) ≡ (
T [V ]�s W,�s W

)
.

We estimate below each of the terms on the right-hand side of (3.27).
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Estimate of
([

∂t , T [V ]]�s W,�s W
)
. From (3.23) in Lemma 3.8 [with X =

L∞(R)4] we have

∣
∣
[
∂t , T [V ]]�s W

∣
∣
L2 ≤ ∣

∣∂t V
∣
∣
L∞C(

∣
∣V

∣
∣
L∞ , δ−1

min, δmax, γ
−1
min

)∣
∣�s W

∣
∣
L2 .

By hypothesis,
∣
∣∂t V

∣
∣

Xs−1 is controlled, and continuous Sobolev embeddings for s −
1 ≥ s0 > 1/2 imply an equivalent control on the L∞-norm. One obtains simply

∣
∣
[
∂t , T [V ]]�s W

∣
∣
L2 ≤ M C(M, h−1

0 , δ−1
min, δmax, γ

−1
min)

∣
∣�s W

∣
∣
L2 .

It follows from the preceding expression and the Cauchy–Schwarz inequality that

∣
∣
([

∂t , T [V ]]�s W,�s W
)∣
∣ ≤ C0 M

∣
∣W

∣
∣2

Xs , (3.28)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Estimate of
([

∂x , ϒ[V ]]�s W,�s W
)
. As previously, the Cauchy–Schwarz inequal-

ity and Lemma 3.8 yield

([
∂x , ϒ[V ]]�s W,�s W

) ≤ ∣
∣∂x V

∣
∣
L∞C(

∣
∣V

∣
∣
L∞ , h−1

0 , δ−1
min, δmax, γ

−1
min)

∣
∣�s W

∣
∣2
L2 ,

which is easily estimated thanks to continuous Sobolev embeddings. One obtains

∣
∣
([

∂x , ϒ[V ]]�s W,�s W
)∣
∣ ≤ C0 M

∣
∣W

∣
∣2

Xs , (3.29)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Estimate of
(
�s T [V ]R,�s W

)
. We apply the Cauchy–Schwarz inequality and

(3.22) in Lemma 3.8. One deduces

(
�s T [V ]R,�s W

) ≤ C0
∣
∣W

∣
∣

Xs

∣
∣R∣

∣
Xs , (3.30)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Estimate of
([

�s, ϒ[V ]]∂x W,�s W
)
. We make use of the Kato–Ponce commutator

estimate recalled in Lemma 5.3. It follows that

∣
∣
[
�s, ϒ[V ]]∂x W

∣
∣
L2(R)4 �

∥
∥∂x (ϒ[V ])∥∥Xs−1

∣
∣∂x W

∣
∣

Xs−1 .

From (3.23) in Lemma 3.8, and since Xs−1 is a Banach algebra, one has

∥
∥∂x (ϒ[V ])∥∥Xs−1 �

∣
∣∂x V

∣
∣

Xs−1C(
∣
∣V

∣
∣

Xs−1 , h−1
0 , δ−1

min, δmax, γ
−1
min)

� M C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

It follows that

∣
∣
([

�s, ϒ[V ]]∂x W,�s W
)∣
∣ ≤ C0 M

∣
∣W

∣
∣2

Xs , (3.31)
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with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Estimate of
([

�s, T [V ]]∂t W,�s W
)
. As previously, the Kato–Ponce commutator

estimate yields

∣
∣
[
�s, T [V ]]∂t W

∣
∣
L2(R)4 �

∥
∥∂x (T [V ])∥∥Xs−1

∣
∣∂t W

∣
∣

Xs−1 � M
∣
∣∂t W

∣
∣

Xs−1 .

Unfortunately, making use of the identity (3.25) only yields
∣
∣∂t W

∣
∣

Xs−1 � 1
�

∣
∣W

∣
∣

Xs ,
which is not sufficient to conclude. Thus we now need to use precisely the structure
of our system, and in particular estimate (3.24). Thus we decompose [�s, T [V ]]∂t W
into two components:

[
�s, T [V ]]∂t W ≡ [

�s, T [V ]]�∂t W + [
�s, T [V ]](Id −�)∂t W.

Let us start with the “slow” contribution,
[
�s, T [V ]]�∂t W . One can use Eq. (3.25)

to control �∂t W uniformly with respect to small �. Indeed, one has

�∂t W = − 1

�
�L�∂x W − �B[V ]∂x W + �R,

so that

∣
∣�∂t W

∣
∣

Xs−1 ≤ ∣
∣ 1

�
�L�∂x W

∣
∣

Xs−1 + ∣
∣B[V ]∂x W

∣
∣

Xs−1 + ∣
∣R∣

∣
Xs−1 ,

≤ (1 + M)C(M, h−1
0 , δ−1

min, δmax, γ
−1
min)

∣
∣∂x W

∣
∣

Xs−1 + ∣
∣R∣

∣
Xs−1 ,

where we used estimate (3.22) in Lemma 3.8 and the property
∥
∥�L�

∥
∥ = O(�). It

follows that

∣
∣
[
�s, T [V ]]�∂t W

∣
∣
L2(R)4 ≤ C0 M

(∣
∣W

∣
∣

Xs + ∣
∣R∣

∣
Xs−1

)
,

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

We continue with the “fast” contribution,
[
�s, T [V ]](Id −�)∂t W . Since (Id −�)

is constant, it commutes with �s , and Kato–Ponce commutator estimates (Lemma 5.3)
yield

∣
∣
[
�s, T [V ]](Id −�)∂t W

∣
∣
L2(R)4 �

∥
∥∂x (T [V ](Id −�))

∥
∥

Hs−1

∣
∣∂t W

∣
∣

Xs .

Now one has as previously

∣
∣∂t W

∣
∣

Xs ≤ C0
( 1

�

∣
∣W

∣
∣

Xs + ∣
∣R∣

∣
Xs−1

)
,

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min). Estimate (3.24) in Lemma 3.8 makes it pos-

sible to recover a factor of size O(�):

∥
∥∂x (T [V ](Id −�))

∥
∥

Hs−1 ≤ C0 M �,
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with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min). Thus we proved

∣
∣
[
�s, T [V ]]�∂t W

∣
∣
L2(R)4 � C0 M

(∣
∣W

∣
∣

Xs + �
∣
∣R∣

∣
Xs−1

)
,

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Altogether, one has, applying the Cauchy–Schwarz inequality,

∣
∣
([

�s, T [V ]]∂t W,�s W
)∣
∣ ≤ C0 M

(∣
∣W

∣
∣

Xs + ∣
∣R∣

∣
Xs−1

)∣
∣W

∣
∣

Xs , (3.32)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).

Plugging (3.28)–(3.32) into (3.27) yields

1

2

d

dt
Es(W ) ≤ C0

(
M

∣
∣W

∣
∣2

Xs + ∣
∣R∣

∣
Xs

∣
∣W

∣
∣

Xs

)
.

Finally, estimate (3.21) in Lemma 3.8 yields

1

2

d

dt
Es(W ) ≤ C ′

0 M Es(W ) + C ′
0

∣
∣R∣

∣
Xs Es(W )1/2,

with C ′
0 = C(M, h−1

0 , δ−1
min, δmax, γ

−1
min), and Lemma 3.9 follows from the Gronwall–

Bihari lemma. ��
Completion of proof of Theorem 1.2. Let us now quickly show how Theorem 1.2

follows from Lemma 3.9. For given initial data as in the theorem, Proposition 2.2
yields the existence of Tmax > 0 and a unique solution U ≡ (ζ1, ζ2, u1, u2)

� ∈
C([0, Tmax); Xs+1) ∩ C1([0, Tmax); Xs) to (1.1) such that U (t, ·) satisfies (2.2) for
t ∈ [0, Tmax). It follows from Proposition 3.1 that the change of variables in (3.1)
yields V ≡ (ζ1, ζ2, us, m)� ∈ C([0, Tmax); Xs+1) ∩ C1([0, Tmax); Xs) as a solution
to (3.3).

Thanks to Proposition 3.4, and since condition (1.6) ensures that (ζ 0
2 , u0

s )
� satisfies

(2.1), one has that Vapp = VRL + Vrem is well defined and controlled for t ∈ [0, T/M].
More precisely, there exists T −1, C1 = C(M, h−1

0 , δ−1
min, δmax, γ

−1
min) such that

sup
t∈[0,T/M]

{∣
∣Vapp(t, ·)

∣
∣

Xs+1 + ∣
∣∂t Vapp(t, ·)

∣
∣

Xs

} ≤ C1 M. (3.33)

Denote W ≡ V − Vapp. By construction, one has

∣
∣W |t=0

∣
∣

Xs + �
∣
∣∂t W |t=0

∣
∣

Xs−1 ≤ C2 � M,

with C2 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min). We introduce the time T � as

T � ≡ sup
{

t ∈ [0, Tmax, T/M], ∥
∥W

∥
∥

L∞([0,t];Xs )

+ �
∥
∥∂t W

∥
∥

L∞([0,t];Xs−1)
≤ 2C2 � M

}
. (3.34)
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One has T � > 0 since W = V − Vapp ∈ C([0, T ]; Xs+1) ∩ C1([0, T ]; Xs); our aim
is to prove that T � is uniformly bounded from below as in Theorem 1.2.

Recall that W satisfies (3.25); thus we apply Lemma 3.9 with

R ≡ R − (B[Vapp + W ] − B[Vapp])∂x Vapp.

Proposition 3.4 yields

∥
∥R

∥
∥

L∞([0,T/M];Xs )
� M�

(
M + �

)
.

Now, using that (Xs,
∣
∣ · ∣∣Xs ) is a Banach algebra, and using (3.20) in Lemma 3.7, one

has

∣
∣(B[Vapp + W ] − B[Vapp])∂x Vapp

∣
∣ � C(

∣
∣Vapp

∣
∣

Xs ,
∣
∣W

∣
∣

Xs )
∣
∣W

∣
∣

Xs

∣
∣∂x Vapp

∣
∣

Xs .

It follows from the preceding estimates that

∥
∥R∥

∥
L∞([0,T �];Xs )

≤ C3(M2� + M�2), (3.35)

with C3 = C(M, h−1
0 δ−1

min, δmax, γ
−1
min).

Finally, we apply (3.26) in Lemma 3.9 [making use of (3.33)–(3.35)] and deduce

∀ 0 ≤ t ≤ T �,
∣
∣W (t, ·)∣∣Xs ≤ C0 M�eC0 Mt + C0(M� + �2)(eC0 Mt − 1) ,

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min). A similar estimate is obtained on ∂t W using

the equation satisfied by W , namely (3.25):

∣
∣∂t W

∣
∣

Xs−1 ≤ 1

�
C(M, h−1

0 , δ−1
min, δmax, γ

−1
min)

∣
∣∂x W

∣
∣

Xs−1 + ∣
∣R∣

∣
Xs−1 .

It follows that there exists T ′ > 0, depending nondecreasingly on M, h−1
0 , δ−1

min, δmax,

γ −1
min, such that one has

T � ≥ min{Tmax, T ′/M, T ′/�}.

Triangular inequalities and (3.33), (3.34) immediately yield

∥
∥ζ2

∥
∥

L∞([0,T �];Hs )
+ ∥

∥us
∥
∥

L∞([0,T �];Hs )
≤ M exp(C0 Mt), (3.36)

∥
∥ζ1

∥
∥

L∞([0,T �];Hs )
+ ∥

∥m
∥
∥

L∞([0,T �];Hs )
≤ M� exp(C0 Mt), (3.37)

∥
∥|∂tζ1| + |∂tζ2| + |∂t us | + |∂t m|∥∥L∞([0,T �];Hs−1)

≤ M exp(C0 Mt), (3.38)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min).
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It follows in particular from (3.38) that for any t ∈ [0, T �] one has

∣
∣h2(t, ·) − h2(0, ·)∣∣Hs−1 ≤ ∣

∣

t∫

0

∂tζ2(t
′, ·) dt ′

∣
∣

Hs−1

≤ C(M, h−1
0 , δ−1

min, δmax, γ
−1
min) M t,

where we recall that h2 ≡ δ−1 + ζ2. Similar estimates on h1 ≡ 1 + �ζ1 −
ζ2 and u1, u2 given by (3.2) show that U (t, ·) satisfies condition (2.2) uni-
formly for t ∈ [0, min{T �, T ′′/M}) (replacing h0 with h0/2), with T ′′−1 =
C(M, h−1

0 , δ−1
min, δmax, γ

−1
min).

From the blow-up conditions stated in Proposition 2.2 and a classical continuity
argument, it is now clear that there exists T > 0, depending only and nondecreasingly
on M, h−1

0 , δ−1
min, δmax, γ

−1
min such that Tmax ≥ T/ max{M, �}.

The estimates in Theorem 1.2 are a straightforward consequence of (3.34), (3.36),
and (3.37) (using Lemma 5.1 and Corollary 5.2), and the proof of Theorem 1.2 is now
complete.

4 Decomposition of the Flow

In this section, we offer partial answers to two of the natural questions arising from
Theorem 1.2:

1. Can we describe more precisely the asymptotic behavior of the solution, and in
particular the leading-order deformation of the surface?

2. Can we extend the result to ill-prepared initial data, that is, data that fail to meet
the smallness assumption in (1.5)?

In both cases, as we shall see, the answer will be given through a decomposition
between fast and slow modes. Such a decomposition is exact in the linear case [ε = 0
in (1.1)] as the system becomes a linear wave equation; therefore the flow is a super-
position of four traveling waves. Diagonalizing 1

�
L� [using the notation introduced

in (3.4)] shows that when � → 0, two of these waves (corresponding to the solution
of the rigid-lid system and mainly supported on variables ζ2 and us) traveling at a
velocity cs± ∼ ±1, while the two other ones (mainly supported on ζ1 and m) travel at

a velocity c f
± ∼ ±√

1 + δ−1/�.
This decomposition is hardly new. In the literature, the two modes are also often

referred to as surface/interface modes, or barotropic/baroclinic modes, since the fast-
mode components share the properties of water waves for one layer of a fluid of con-
stant mass density (Gill 1982). The decomposition is exact in the linear setting and has
been shown to hold approximately in the weakly nonlinear setting; see Duchêne (2011)
and references therein. In that case, the smallness of ε makes it possible to control the
coupling effects between each of the waves (even when additional—small—dispersion
terms are included), provided the initial data are sufficiently spatially localized.

Our aim in this section is to show that this decomposition is quite robust and holds
even when strong nonlinearities are involved. As was already mentioned, such a result
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will rely on a condition of spatial localization of the initial data, which we express
through weighted Sobolev spaces.

In Sect. 4.1, we construct slow- and fast-mode correctors that make it possible to
obtain a higher-order approximate solution of the free-surface system using only the
corresponding solution to the rigid-lid system and the initial data. Thus we improve
the results stated in Proposition 3.4 and Theorem 1.2 with Proposition 4.2 and The-
orem 4.5, respectively. In Sect. 4.2, we extend the consistency result obtained in
Proposition 3.4 to ill-prepared initial data, that is, data allowing nonsmall horizon-
tal momentum and deformation of the surface and, thus, involving a leading-order
slow mode. Unfortunately, we cannot conduct a study as in Sect. 3.3 and deduce the
stronger result corresponding to Theorem 1.2 (although numerical simulations are in
full agreement with such results). Finally, Sect. 4.3 contains numerical simulations
illustrating the aforementioned results and an accompanying discussion.

Remark 4.1 Recall that we set ε = 1 and α = � after Theorem 1.2; see Remarks 1.3
and 1.4. The general setting and, therefore, statements as in Theorem 1.2 are easily
recovered. We also implicitly assume that the constant M , which evaluates the magni-
tude of the initial perturbation, is bounded from below. More specifically, for technical
reasons, we restrict our study to the time interval t ∈ [0, T ], with T −1 bounded, rather
than t ∈ [0, T/M]—although, as discussed in Remark 1.3, we do not expect any
particular limitation to occur when M is small.

As for Theorem 1.2 (Remark 1.5), our statements do not require the parameter � to
be small but are of little interest otherwise. In particular, our strategy of approximating
the flow as the superposition of fast- and a slow-mode approximate solutions relies
heavily on the fact that the fast mode propagates at a velocity |c| � 1/�, so that
coupling effects are strong only during a time interval of size O(�) (since the two
modes are localized away from each other afterward).

If both M and � are not small, then the initial perturbation will give rise to fast
and slow modes of comparable magnitude and velocity. The two modes will therefore
interact in a nontrivial, nonlinear way, and the full free-surface system is required to
accurately describe the flow.

4.1 Improved Approximate Solution

In this section, we show that one can construct a first-order corrector to the rigid-lid
approximate solution given in Theorem 1.2, provided the initial data are bounded
in weighted Sobolev spaces. A key ingredient is the establishment of a fast-mode
corrector, which makes it possible to take into account small initial data supported on
the variables ζ1 and m.

In Proposition 4.2, we provide a higher-order approximate solution to (3.3) in the
sense of consistency, i.e., similarly to Proposition 3.4. One can then apply the strategy
developed in Sect. 3, and one obtains the stronger result expressed subsequently in
Theorem 4.5.

Proposition 4.2 Let s ≥ s0, s0 > 1/2, and let ζ 0
1 , ζ 0

2 , u0
s , m0 ∈ Hs+1(R), satisfying

(1.5),(1.6) [following the change of variable in (3.2)] with given 0 < M, h0 < ∞.
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Assume additionally that there exists σ > 1/2 such that

∣
∣(1 + | · |2)σ ζ 0

1

∣
∣

Hs+1 + ∣
∣(1 + | · |2)σ m0

∣
∣

Hs+1 + �
∣
∣(1 + | · |2)σ ζ 0

2

∣
∣

Hs+1

+ �
∣
∣(1 + | · |2)σ u0

s

∣
∣

Hs+1 ≤ M�.

Then there exists 0 < T −1, C0 ≤ C(M, h−1
0 , 1

2σ−1 , δ−1
min, δmax, γ

−1
min) such that

1. VRL ≡ (0, η, v, 0)� is well defined by Definition 3.3 and satisfies

∀t ∈ [0, T ], ∣
∣VRL

∣
∣

Xs+1 + ∣
∣∂t VRL

∣
∣

Xs ≤ C0 M;

2. V s
cor ≡ (�ζ̆1, 0, 0, 0)� is well defined, with

ζ̆1 ≡ −(
η + δ

2
η2) − (1 − η)(δ−1 + η)v2

(1 + δ−1)2 ;

3. V f
cor is well defined, with

V f
cor(t, x) ≡

⎛

⎜
⎜
⎝

u+(x − c/�t) + u−(x + c/�t)
0
0

c(u+(x − c/�t) − u−(x + c/�t))

⎞

⎟
⎟
⎠ ,

where c ≡ √
1 + δ−1 and u±(x) = 1

2

(
ζ 0

1 − �ζ̆1 |t=0 ± c−1m0
)
;

4. There exists Vrem, with

∀t ∈ [0, T ], ∣
∣Vrem(t, ·)∣∣Xs+1

ul
≤ C0 M ,

such that Vapp ≡ VRL + V s
cor + V f

cor + �2Vrem satisfies (3.3) up to a remainder
term, R, with

T∫

0

∣
∣R(t, ·)∣∣Xs dt ≤ C0 M �2.

Remark 4.3 We denote by (Hs
ul,

∣
∣ · ∣∣Hs

ul
) the uniformly local Sobolev space introduced

in Kato (1975):

∣
∣u

∣
∣

Hs
ul

≡ sup
j∈N

∣
∣χ(· − j)u(·)∣∣Hs ,

where χ is a smooth function satisfying χ ≡ 0 for |x | ≥ 1, χ ≡ 1 for |x | ≤ 1/2,
and

∑
j∈N

χ(x − j) = 1 for any x ∈ R (the space is independent of the choice of χ

satisfying these assumptions).
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We then use the notation (Xs
ul,

∣
∣ · ∣∣Xs

ul
) and (L∞([0, T ]; Xs

ul),
∥
∥ · ∥∥L∞([0,T ];Xs

ul)
),

similarly to the previously defined Sobolev-based spaces.

Proof of Proposition 4.2 The well-posedness and estimate of VRL for t ∈ [0, T ] was
stated in Proposition 3.4 (here and in what follows, unless otherwise stated, we use
the notation T = T̃ /M , where T̃ is the constant used for the time intervals in the
statements of Sect. 3). The definition of the corrector and remainder terms, as well
as the desired estimates, is obtained in three steps. First, we construct a high-order
approximate solution corresponding to the initial data ζ 0

2 , u0
s , using the corresponding

solution to the rigid-lid system, that we will refer to as the slow-mode approximate
solution. Then we see how to construct the fast-mode approximate solution in order
to deal with the inadequacy of the slow-mode approximate solution with regard to the
initial data. Finally, we show that, thanks to the localization in space of the initial data,
the coupling effects between the two modes are weak, so that the superposition of the
two contributions produces the desired approximate solution.

Construction of slow-mode approximate solution. We proceed as in the proof of
Proposition 3.4, but we propose a higher-order definition for the corrector term in
order to attain the improved precision. More precisely, we seek V s

app ≡ VRL + V s
cor +

�2Vrem, with VRL + V s
cor ≡ (�ζ̆1, η, v, 0)� as in the proof of Proposition 3.4 and

Vrem ≡ (0, 0, 0, m̆)� to be determined. Following the same steps as in the proof of
Proposition 3.4, we see that the only difficulty we face lies in the estimate of

r1 = �

(

∂t ζ̆1 + ∂x m̆ + γ + δ

γ
∂x

(

h1
�2m̆ − h2v

h1 + h2

))

,

where VRL ≡ (0, η, v, 0)� is the rigid-lid solution defined in Definition 3.3 and ζ̆1 is
as defined in (3.14). It is therefore natural to set

m̆(t, x) ≡ −
x∫

0

∂t ζ̆1(t, x ′) dx ′ + δh1(t, x)h2(t, x)v(t, x), (4.1)

where we use the notation h1 ≡ 1 − η and h2 ≡ δ−1 + η.
Note that m̆ may not have finite energy since it does not necessarily decay when

x → ±∞. However, recall the estimates of Proposition 3.4:

∀t ∈ [0, T ], ∣
∣VRL

∣
∣

Xs+1 + ∣
∣∂t VRL

∣
∣

Xs � C0 M, (4.2)

∀t ∈ [0, T ], ∣
∣ζ̆1

∣
∣

Hs+1 + ∣
∣∂t ζ̆1

∣
∣

Hs � C0 M. (4.3)

[here and in what follows, we use the notation C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min)].

One deduces

∀t ∈ [0, T ], ∣
∣m̆

∣
∣

Hs+1
ul

+ ∣
∣∂x m̆

∣
∣

Hs � C0 M, (4.4)
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where we use that Hs is continuously embedded in Hs
ul and Hs

ul is a Banach algebra
for all s ≥ s0 (e.g., Lannes 2013, Appendix B.4). The estimate on Vrem, stated in the
proposition, is given by (4.2)–(4.4).

Note that (4.4) yields in particular, for all f ∈ Hs, s ≥ s0, that

∣
∣m̆ f

∣
∣

Hs ≤ ∣
∣m̆�s f

∣
∣
L2 + ∣

∣
[
�s, m̆

]
f
∣
∣
L2 �

∣
∣m̆

∣
∣
L∞

∣
∣ f

∣
∣

Hs

+∣
∣∂x m̆

∣
∣

Hmax{s−1,s0}
∣
∣ f

∣
∣

Hmax{s−1,s0}

� C0 M
∣
∣ f

∣
∣

Hs , (4.5)

where we used the commutator estimate recalled in Lemma 5.3. Using the preceding
estimates, it is now straightforward to check that V s

app ≡ VRL + V s
cor + �2Vrem ≡

(�ζ̆1, η, v, �2m̆)� satisfies (3.3), up to a remainder term, Rs , with

∥
∥Rs

∥
∥

L∞([0,T ];Hs )
� C0 M �2. (4.6)

Here we used the fact that the occurrences of m̆ in (3.3) are of the form ∂x m̆ or m̆ × f ,
with f ∈ Hs , and both of these contributions are bounded in Hs , thanks to (4.4) and
(4.5).

Construction of fast-mode approximate solution. The corrector V f
cor has been

defined as the unique solution to

∂t V
f

cor + 1

�
L(0)∂x V f

cor = 0, where we recall L(0) ≡

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0

1 + δ−1 0 0 0

⎞

⎟
⎟
⎠ ,

with initial data V f
cor |t=0 ≡ (ζ 0

1 − �ζ̆1 |t=0 , 0, 0, m0)�.

Our aim is to prove that V f
cor is an approximate solution to (3.3). Recall that the

system reads

∂t V + 1

�

(
L� + �B[V ]) ∂x V = 0, with

L� ≡

⎛

⎜
⎜
⎝

0 0 γ−1
γ (δ+1)

γ+δ
γ (δ+1)

0 0 �
1+δ

�
1+δ

0 �(γ + δ) 0 0
γ (1 + δ−1) �

δ+γ
δ

0 0

⎞

⎟
⎟
⎠ .

Thus V f
cor satisfies

∂t V
f

cor + 1

�

(
L� + �B[V f

cor]
)

∂x V f
cor = R f ,
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with

R f ≡ 1

�
(L� − L(0))∂x V f

cor + B[V f
cor]∂x V f

cor.

It is obvious that for all t ∈ R, V f
cor satisfies

∣
∣V f

cor(t, ·)
∣
∣

Xs+1 �
∣
∣V f

cor |t=0
∣
∣

Xs+1 ≤ C0 M �, (4.7)

where we used (4.3) and the hypothesis on the initial data of the proposition.
In particular, Lemmas 3.7 and 5.1 yield

∣
∣B[V f

cor]∂x V f
cor

∣
∣

Xs �
∣
∣V f

cor

∣
∣
L∞(R)4

∣
∣V f

cor

∣
∣

Xs+1 ≤ C0 M2 �2. (4.8)

Now we use the fact that (Id −�)V f
cor = V f

cor, where we recall that � represents

the orthogonal projection onto ker(L(0)): Id −� ≡
⎛

⎝

1
0

0
1

⎞

⎠.

It is straightforward to check that

∥
∥(L − L(0))(Id −�)

∥
∥ � �2,

so that

∣
∣ 1

�
(L� − L(0))∂x V f

cor

∣
∣

Xs = ∣
∣ 1

�
(L� − L(0))(Id −�)∂x V f

cor

∣
∣

Xs � C0 M �2. (4.9)

Estimates (4.8) and (4.9) immediately yield the desired result: V f
cor satisfies (3.3),

up to a remainder term, R f , satisfying

∥
∥R f

∥
∥

L∞([0,T ];Hs )
� C0 M �2. (4.10)

Completion of proof. One easily checks that Vapp ≡ V s
app + V f

cor satisfies

∂t Vapp + 1

�

(
L� + �B[Vapp]

)
∂x Vapp = R f + Rs + Rc,

where

Rc ≡ (B[Vapp] − B[V f
cor])∂x V f

cor + (B[Vapp] − B[V s
app])∂x V s

app.

The contribution of R f + Rs is controlled as a result of the preceding calculations;
see (4.6) and (4.10). Thus the only remaining term to control is Rc, which contains
the coupling effects between V f

cor and V s
app.
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Note that, similarly to (3.20) in Lemma 3.7, one can check that estimates (4.2),
(4.3), (4.4), (4.5), and (4.7) yield

∣
∣Rc

∣
∣

Xs ≤ C0 ×
(∥
∥VRL ⊗ ∂x V f

cor

∥
∥

Xs + ∥
∥V f

cor ⊗ ∂x VRL
∥
∥

Xs + M �2
)

, (4.11)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min), and where U ⊗ V denotes the outer product

of U and V .
To control the latter contribution, we make use of the fact that the initial data

are assumed to be spatially localized. Thus V f
cor is the superposition of two spatially

localized waves, with center of mass x ≈ ±c/�t . It follows that the contribution
of the outer products will decay after some time, provided one can prove that VRL
remains spatially localized around x = 0 on the time interval [0, T ]. This is where it
is convenient, although certainly not necessary, to restrict ourselves to the time domain
t ∈ [0, T ], with T bounded, instead of the more stringent t ∈ [0, T̃ /M]. Indeed, as
it roughly propagates with velocity ±1, one cannot expect VRL to remain spatially
localized around x = 0 during the time interval [0, T ], with T � 1/M , uniformly for
M small.

We state and prove in what follows the persistence of the spatial decay that holds
generically for a quasilinear, hyperbolic system and then complete the proof of Propo-
sition 4.2.

Lemma 4.4 (Persistence of spatial decay) Let s ≥ s0 + 1, s0 > 1/2, and let VRL ≡
(η, v)� be the solution to (1.2), with initial data VRL |t=0 ≡ (η0, v0)� as previously.
Assume moreover that there exists σ > 0 such that one has 〈·〉σ η0, 〈·〉σ v0 ∈ Hs

[where we use the notation 〈x〉 ≡ (1 + |x |2)1/2]. There exists M > 0 such that if∣
∣(η0, v0)�

∣
∣

Hs×Hs ≤ M, then one has

∀t ∈ [0, T ], ∣
∣〈·〉σ η

∣
∣

Hs + ∣
∣〈·〉σ v

∣
∣

Hs

≤ C
(
M, h−1

0 ,
∣
∣〈·〉σ η0

∣
∣

Hs + ∣
∣〈·〉σ v0

∣
∣

Hs , δ
−1
min, δmax

)
.

Proof of Lemma Consider W (t, x) = 〈x〉σ VRL(t, x) (here and in what follows, mul-
tiplying a vector-valued function by 〈x〉σ means that all components are multiplied).
One has

S[VRL]∂t
(〈·〉−σ W

) + �[VRL]∂x
(〈·〉−σ W

) = 0,

where S[·], �[·] are smooth mappings onto the space of 2 × 2 symmetric matrices (S
and � are explicit; see Guyenne et al. 2010 for more details).

It follows, since the multiplication by 〈·〉σ obviously commutes with S[·], �[·], ∂t ,
that

S[VRL]∂t W + �[VRL]∂x W + 〈x〉σ ∂x
(〈x〉−σ

)
�[VRL]W = 0.

S[VRL] is positive definite, so that there exists 0 < c0 < ∞ such that

1

c0

∣
∣W

∣
∣2

Hs (R)2 ≤ Es(W ) ≡ (
S[VRL]�s W,�s W

) ≤ c0
∣
∣W

∣
∣2

Hs (R)2 .
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Using the usual technique for a priori Hs estimates (e.g., Lemma 5.6) we obtain

d

dt
Es(W ) ≤ C

(∣
∣VRL

∣
∣

Xs ,
∣
∣∂t VRL

∣
∣

Xs−1

)
Es(W )

+ C
(∣
∣〈x〉σ ∂x

(〈x〉−σ
)∣
∣

Hs ,
∣
∣VRL

∣
∣

Xs

)
Es(W )1/2.

Now, using the control of VRL ∈ Xs in (4.2), and since we have
∣
∣〈x〉σ ∂x

(〈x〉−σ
)∣
∣

Hs = ∣
∣σ x〈x〉−2

∣
∣

Hs � σ,

it follows from the Gronwall–Bihari inequality that

Es(W ) ≤ Es(W |t=0 ) exp(C0t) +
t∫

0

C1 exp(C0(t − t ′)) dt ′,

with C0, C1 = C
(
M, h−1

0 ,
∣
∣〈·〉σ η0

∣
∣

Hs + ∣
∣〈·〉σ v0

∣
∣

Hs , δ
−1
min, δmax

)
, and the lemma is

proved. ��
Let us now complete the proof of Proposition 4.2. We use the following calculation

to estimate Rc in (4.11). Set s > 1/2, σ > 0, and c �= 0. Let u, v satisfy 〈·〉σ v(t, ·) ∈
Hs , and 〈·〉σ u(·) ∈ Hs . Then we have

∣
∣v(·)u±(· − c/�t)

∣
∣

Hs

�
∣
∣(1 + | · |2)σ v

∣
∣

Hs

∣
∣(1 + | · |2)σ u

∣
∣

Hs

∣
∣(1 + | · |2)−σ (1 + | · −c/�t |2)−σ

∣
∣

Hs ,

and we can check (e.g., Lannes (2003)) that for all σ > 1/2 and T > 0 we have

T∫

0

∣
∣(1 + | · |2)−σ (1 + | · −c/�t ′|2)−σ

∣
∣

Hs dt ′ ≤ C(
1

2σ − 1
,

1

c
) �,

thus uniformly bounded with respect to 1/� and T .
It is now straightforward, applying Lemma 4.4, the definition of V f

cor, (4.7), and the
preceding calculations to (4.11), that the following estimate holds:

T∫

0

∣
∣Rc(t ′, ·)∣∣Xs dt ′ ≤ C0 M �2, (4.12)

with C0 = C(M, h−1
0 , 1

2σ−1 , δ−1
min, δmax, γ

−1
min).

Estimates (4.6), (4.10), and (4.12) complete the proof of Proposition 4.2. ��
Let us conclude this section with the following result, which corresponds to Theo-

rem 1.2 when Proposition 4.2 is used instead of Proposition 3.4.
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Theorem 4.5 Let s ≥ s0 + 1, s0 > 1/2. Let ζ 0
1 , ζ 0

2 , u0
1, u0

2 ∈ Hs+1(R) be such
that (1.6) holds with h0 > 0, and there exists 0 < M < ∞ and σ > 1/2 such that

∣
∣(1 + | · |2)σ ζ 0

2

∣
∣

Hs+1 + ∣
∣(1 + | · |2)σ (u0

2 − γ u0
1)

∣
∣

Hs+1 ≤ M (4.13)

and

∣
∣(1 + | · |2)σ ζ 0

1

∣
∣

Hs+1 + ∣
∣(1 + | · |2)σ (γ h0

1u0
1 + h0

2u0
2

)∣
∣

Hs+1 ≤ M�. (4.14)

Then there exists T −1, C, depending nondecreasingly on M, h−1
0 , 1

s0−1/2 , 1
2σ−1 , δ−1

min,

δmax, γ
−1
min, such that one can uniquely define U ∈ C([0, T ]; Xs+1) ∩ C1([0, T ]; Xs),

the solution to (1.1) with initial data U |t=0 = (ζ 0
1 , ζ 0

2 , u0
1, u0

2)
�, and VRL, V s

cor, V f
cor

as in Proposition 4.2. Denote by Uapp the approximate solution corresponding to

VRL + V s
cor + V f

cor, after the change of variables in (3.2). Then one has

∥
∥U − Uapp

∥
∥

L∞([0,T ];Xs
ul)

≤ C M �2.

Sketch of the proof The existence and uniqueness of U were stated in Theorem 1.2.
The existence and uniqueness of VRL, V s

cor, V f
cor are guaranteed by Proposition 4.2.

Now we can follow the same procedure as described in Sect. 3 (and especially Sect. 3.3)
using the result of Proposition 4.2 instead of the corresponding Proposition 3.4. Note,
however, that the remainder term constructed in Proposition 4.2, Vrem, may not have
a finite Hs norm; thus we need to work with uniformly local Sobolev spaces, defined
in Remark 4.3.

However, as initially remarked by Kato (1975), the energy method for hyperbolic
quasilinear systems in Sobolev spaces extends naturally to uniformly local Sobolev
spaces, without significant changes in the proof (in particular, similar product and
commutator estimates hold; see Lannes (2013), Appendix B; thus we do not go further
into details.

We simply remark that Vapp was constructed so that W ≡ V − Vapp satisfies

∣
∣W |t=0

∣
∣

Xs
ul

� C0 M�2,

where we denote by V ≡ (ζ1, ζ2, us, m)� the solution to (3.3) corresponding to U ,
in terms of the variables defined by (3.1). Consequently, the energy estimate (3.26) in
Lemma 3.9 implies

∀t ∈ [0, T ], ∣
∣W

∣
∣

Xs
ul

� C0 M�2 +
t∫

0

∣
∣R(t ′, ·)∣∣Xs

ul
dt ′,

and Proposition 4.2 immediately yields the desired estimate. ��
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4.2 The Case of Ill-Prepared Initial Data

In this section, we are concerned with the case of ill-prepared initial data, that is,
initial data that fail to meet the smallness assumption in (1.5) or, in other words, that
admit a nonsmall fast mode. Once again, we construct an approximate solution as the
superposition of a slow-mode approximate solution, obtained from the corresponding
solution to the rigid-lid system (1.2), and a fast-mode approximate solution, which we
will present subsequently. There are two main differences from the previous results
due to the fact that the slow-mode approximate solution is no longer of size O(�):

1. Nonlinear effects have a nontrivial effect on the behavior of the fast-mode approx-
imate solution and cannot be neglected.

2. The strategy developed in Sect. 3 is no longer valid because the hypothesis of
Lemma 3.9 is no longer satisfied.

As a consequence of the latter point, we restrict our statement to a consistency result,
namely Proposition 4.6 (below); we cannot deduce an estimate on the difference
between the exact and approximate solutions, as in Theorems 1.2 and 4.5, or even
prove that (1.1) is well-posed on a time interval independent of small �. However,
numerical simulations presented in the next subsection are in full agreement with the
intuitive conjecture that

∥
∥V − VRL − V f

cor

∥
∥

L∞([0,T ];Xs )
= O(�),

with the notations introduced below.

Proposition 4.6 Let s ≥ s0, s0 > 1/2, and ζ 0
1 , ζ 0

2 , u0
s , m0 ∈ Hs+1(R), satisfy-

ing (1.6) [following the change of variable in (3.2)] with given h0 > 0. Assume
additionally that there exists 0 < M < ∞ and σ > 1/2 such that

∣
∣(1 + | · |2)σ ζ 0

1

∣
∣

Hs+2 + ∣
∣(1 + | · |2)σ m0

∣
∣

Hs+2 + ∣
∣(1 + | · |2)σ ζ 0

2

∣
∣

Hs+2

+ ∣
∣(1 + | · |2)σ u0

s

∣
∣

Hs+2 ≤ M.

Then there exists 0 < T −1, C0 ≤ C(M, h−1
0 , 1

2σ−1 , δ−1
min, δmax, γ

−1
min) such that

1. VRL ≡ (0, η, v, 0)� is well defined by Definition 3.3 and satisfies

∀t ∈ [0, T ], ∣
∣VRL

∣
∣

Xs+2 + ∣
∣∂t VRL

∣
∣

Xs+1 ≤ C0 M;

2. V f
cor is well defined with

V f
cor(t, x) ≡

⎛

⎜
⎜
⎝

u+(t, x) + u−(t, x)

0
0

c(u+(t, x) − u−(t, x))

⎞

⎟
⎟
⎠ ,
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where c ≡ √
1 + δ−1, and u± is the unique solution to

∂t u± ± c

�
∂x u± ± 3

2c
u±∂x u± = 0,

with u± |t=0 = 1
2

(
ζ 0

1 ± c−1m0
)
;

3. There exists Vrem with

∀t ∈ [0, T ], ∣
∣Vrem

∣
∣

Xs+1 + �
∣
∣∂t Vrem

∣
∣

Xs ≤ C0 M

such that Vapp ≡ VRL + V f
cor + �Vrem satisfies (3.3), up to a remainder term, R,

with

T∫

0

∣
∣R(t, ·)∣∣Xs dt ≤ C0 M �.

Remark 4.7 The fast-mode contribution V f
cor is different from that defined in Propo-

sition 4.2. Moreover, it is not a corrector term per se since it has the same order of
magnitude as VRL. We decided to use the same notation in order to acknowledge
the following fact: one can replace V f

cor in Proposition 4.2 by the one defined previ-
ously without modifying the rest of the statement; nonlinear effects on the fast-mode
component are negligible in the case of well-prepared initial data.

Proof of Proposition 4.6 We follow the same three steps as in the proof of Proposi-
tion 4.2. We first construct an approximate solution corresponding to the slow mode
and fast mode. Finally, we prove that the coupling effects between the two modes are
weak due to the appropriate spatial localization of the initial data, and therefore the
superposition of the two modes yields an approximate solution.

Construction of slow-mode approximate solution. Proposition 3.4 directly gives
the desired result: using the notation V s

rem ≡ (ζ̆1, 0, 0, �m̆), with ζ̆1, m̆ as defined
in (3.14), (3.16), we have

∀t ∈ [0, T ], ∣
∣VRL

∣
∣

Xs+2 + ∣
∣∂t VRL

∣
∣

Xs+1 � C0 M, (4.15)

∀t ∈ [0, T ], ∣
∣V s

rem

∣
∣

Xs+2 + ∣
∣∂t V

s
rem

∣
∣

Xs+1 � C0 M, (4.16)

and V s
app ≡ VRL + �V s

rem satisfies (3.3) up to a remainder term, Rs , with

∥
∥Rs

∥
∥

L∞([0,T ];Xs+1)
� C0 M(M � + �2) � C0 M � , (4.17)

with C0 = C(M, h−1
0 , δ−1

min, δmax, γ
−1
min). As previously, the first steps of the proof are

valid with T = T̃ /M , but the last step—because it uses the localization in space of
the two modes—requires that T be uniformly bounded.
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Construction of fast-mode approximate solution. We recall that (3.3) reads

∂t V + 1

�

(
L� + �B[V ]) ∂x V = 0,

with V ≡ (ζ1, ζ2, us, m)�. We use the notation L� ≡ L(0) + �L(1) + O(�2), with

L(0) ≡

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0

1 + δ−1 0 0 0

⎞

⎟
⎟
⎠ , L(1) ≡

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1

1+δ
1

1+δ

0 γ + δ 0 0
0 δ+1

δ
0 0

⎞

⎟
⎟
⎠ .

We can also check that B[(ζ1, 0, 0, m)�] ≡ B(1)[(Id −�)V ] + O(�), with

B(1)[(Id −�)V ] ≡

⎛

⎜
⎜
⎝

0 0 0 0
0 δ

δ+1 m 0 0
0 0 δ

δ+1 m 0
ζ1 0 0 2 δ

δ+1 m

⎞

⎟
⎟
⎠ .

In what follows, we seek an approximate solution to

∂t V +
(

1

�
L(0) + L(1) + B(1)[(Id −�)V ]

)

∂x V = 0, (4.18)

with initial data satisfying (Id −�)V |t=0 = V |t=0 .
Our strategy is based on a WKB-type expansion, that is, we seek an approximate

solution to (4.18) under the form

V f
app(t, x) = V f

cor(t, t/�, x) + �V f
rem(t, t/�, x),

where (with a straightforward abuse of notation) V f
app(t, τ, x) is an approximate solu-

tion to

1

�
∂τ V f

app + ∂t V
f

app +
(

1

�
L(0) + L(1) + B(1)[(Id −�)V f

app]
)

∂x V f
app = 0.(4.19)

Based on the fact that at first order (in terms of �) the system (4.19) is a simple
linear equation, ∂τ V + L(0)∂x V = 0, and from the assumption on the initial data

we set V f
cor as the superposition of decoupled waves, supported on the eigenvectors of

L(0) corresponding to nonzero eigenvalues.
The analysis of higher-order terms yields

• the behavior of V f
cor with respect to the large-time-scale variable, t , which takes

into account the nonlinear effects on the propagation of each decoupled wave;
• a remainder term, V f

rem(t, τ, x), that mimics the coupling effects between the two
counterpropagating waves of V f

cor, as well as the “slow-mode component,” �V f
cor.
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The key ingredient in the proof is to show that one can set V f
cor such that V f

rem remains
small for large time scales. This strategy has been applied notably to the rigorous
justification of the Korteweg—de Vries equation as a model for the propagation of
surface waves in the long wave regime (Schneider and Wayne 2000; Bona et al. 2005)
and subsequently to similar problems in the bifluidic setting (Duchêne 2011, 2014).
The strategy is described comprehensively in, for example, Lannes (2013), Chap. 7;
thus we do not provide details of the calculations but simply state the outcome.

It is convenient to introduce here the following eigenvectors of L(0):4

e+ =

⎛

⎜
⎜
⎝

1
0
0
c

⎞

⎟
⎟
⎠ , e− =

⎛

⎜
⎜
⎝

1
0
0

−c

⎞

⎟
⎟
⎠ , e0 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ .

We set

V f
cor(·, τ, x) ≡ u+(·, x − cτ)e+ + u−(·, x + cτ)e−,

where u±(t, y) is uniquely defined by

∂t u± ± 3

2c
u±∂yu± = 0,

with u± |t=0 = 1
2

(
ζ 0

1 ± c−1m0
)
. We check immediately that V f

cor : (t, x) �→
V f

cor(t, t/�, x) is as in the proposition, explaining our (slightly misused) notation.
In the same way, we write

V f
rem(·, τ, x) ≡ r+(t, τ, x)e+ + r−(t, τ, x)e− + r0(t, τ, x)e0,

with functions r+, r−, r0 determined by

∂τ r+(·, τ, x) + c∂xr+(·, τ, x) + 3

4c
∂x

(
u−(·, x − cτ)2)

− 1

2c
∂x

(
u−(·, x − cτ)u+(·, x + cτ)

) = 0,

∂τ r−(·, τ, x) − c∂xr+(·, τ, x) − 3

4c
∂x

(
u+(·, x − cτ)2)

+ 1

2c
∂x

(
u−(·, x − cτ)u+(·, x + cτ)

) = 0,

∂τ r0(·, τ, x) + 1

δc
∂x

(
u+(·, x + cτ) − u−(·, x − cτ)

) = 0,

and V f
rem(·, 0, ·) ≡ 0.

4 Of course a fourth vector—second linearly independent element of ker(L(0))—could be defined, but this
is not necessary in our analysis.
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We can check that V f
app(t, τ, x) = V f

cor(t, τ, x) + �V f
rem(t, τ, x), as defined

previously, satisfies

1

�
∂τ V f

app + ∂t V
f

app +
(

1

�
L(0) + L(1) + B(1)[V f

app]
)

∂x V f
app = R f ,

with R f ≡ �∂t V
f

rem + �L(1)∂x V f
rem + B(1)[V f

app]∂x V f
app − B(1)[V f

cor]∂x V f
cor.

It follows [using (3.20) in Lemma 3.7] that

∣
∣R f

∣
∣

Xs ≤ � C
(∣
∣∂t V

f
rem

∣
∣

Xs ,
∣
∣V f

rem

∣
∣

Xs+1 ,
∣
∣V f

cor

∣
∣

Xs+1

)
. (4.20)

To estimate the preceding quantity, one needs to control V f
rem using the following

two lemmata.

Lemma 4.8 Let s ≥ 0 and f 0 ∈ Hs(R). Then there exists a unique global strong
solution, u(τ, x) ∈ C0(R; Hs) ∩ C1(R; Hs−1), of

{
(∂τ + c1∂x )u = ∂x f
u |t=0 = 0

with

{
(∂τ + c2∂x ) f = 0,

fi |t=0 = f 0,

where c1 �= c2. Moreover, we have the following estimates for all τ ∈ R:

∣
∣u(τ, ·)∣∣Hs (R)

≤ 2

|c1 − c2|
∣
∣ f 0

∣
∣

Hs (R)
.

Lemma 4.9 Let s ≥ s0 > 1/2 and v0
1, v0

2 ∈ Hs(R). Then there exists a unique global
strong solution, u ∈ C0(R; Hs), of

{
(∂τ + c∂x )u = g(v1, v2)

u |t=0 = 0
with ∀i ∈ {1, 2}

{
(∂τ + ci∂x )vi = 0,

vi |t=0 = v0
i ,

where c1 �= c2 and g is a bilinear mapping defined on R
2 and with values in R. Assume,

moreover, that there exists σ > 1/2 such that v0
1(1+|·|2)σ and v0

2(1+|·|2)σ ∈ Hs(R);
then one has the (uniform in time) estimate

∥
∥u

∥
∥

L∞(R;Hs (R))
≤ C(

1

c1 − c2
,

1

σ − 1/2
)
∣
∣v0

1(1 + | · |2)σ ∣∣Hs (R)

∣
∣v0

2(1 + | · |2)σ ∣∣Hs (R)
.

Lemma 4.8 is straightforward, and Lemma 4.9 follows from Proposition 3.5
in Lannes (2003).

Lemmata 4.8 and 4.9 applied to V f
rem immediately yield

∣
∣V f

rem(t, τ, ·)∣∣Xs+1 ≤ C
∣
∣u±(t, ·)∣∣Hs+1(R)

+ C
∣
∣u+(t, ·)(1 + | · |2)σ ∣∣Hs+2(R)

∣
∣u−(t, ·)(1 + | · |2)σ ∣∣Hs+2(R)

.
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We can apply the same arguments to ∂t V
f

rem [differentiating the equations sat-
isfied by r± and r0 with respect to the parameter t and using ∂t u±(t, y) =
∓ 3

2c u±(t, y)∂yu±(t, y)] and obtain
∣
∣∂t V

f
rem(t, τ, ·)∣∣Xs ≤ C

∣
∣u±(t, ·)∣∣Hs+1(R)

+ C
∣
∣u+(t, ·)(1 + | · |2)σ ∣∣Hs+2(R)

∣
∣u−(t, ·)(1 + | · |2)σ ∣∣Hs+2(R)

.

It is not difficult to show that the inviscid Burgers equation propagates locally in
time the localization in space of its solutions (Lemma 4.4), so that we have

∀t ∈ [0, T ], ∣
∣u±(t, ·)(1 + | · |2)σ ∣∣Hs+2(R)

�
∣
∣u±(0, ·)(1 + | · |2)σ ∣∣Hs+2(R)

≤ M,

(4.21)

and thus we have proved

∀(t, τ ) ∈ [0, T ] × R,
∣
∣V f

rem(t, τ, ·)∣∣Xs+1 + ∣
∣∂t V

f
rem(t, τ, ·)∣∣Xs ≤ C0 M,

with C0 = C(M, 1
2σ−1 , δ−1

min, δmax, γ
−1
min).

Finally, we recall that V f
cor ≡ u+(t, x − ct/�)e+ + u−(t, x + ct/�)e− and V f

rem ≡
V f

rem(t, t/�, x) and deduce

∀t ∈ [0, T ], ∣
∣V f

cor

∣
∣

Xs+2 + �
∣
∣∂t V

f
cor

∣
∣

Xs+1 ≤ C0 M, (4.22)

∀t ∈ [0, T ], ∣
∣V f

rem

∣
∣

Xs+1 + �
∣
∣∂t V

f
rem

∣
∣

Xs ≤ C0 M, (4.23)

with C0 = C(M, 1
2σ−1 , δ−1

min, δmax, γ
−1
min).

Therefore, (4.20) simply becomes

∥
∥R f

∥
∥

L∞([0,T ];Xs )
≤ C0 M �, (4.24)

with C0 = C(M, 1
2σ−1 , δ−1

min, δmax, γ
−1
min).

Completion of proof. We can easily check that Vapp ≡ V s
app + V f

app ≡ VRL + V f
cor +

�V s
rem + �V f

rem satisfies

∂t Vapp + 1

�

(
L� + �B[Vapp]

)
∂x Vapp = Rs + Rs + Rc,

where Rs and R f are as defined and estimated previously, and with

Rc ≡ (B[Vapp] − B[V f
app])∂x V f

app + (B[Vapp] − B[V s
app])∂x V s

app.

The contribution of R f + Rs is controlled as a result of the preceding calculations;
see (4.17) and (4.24). Thus the only component to control comes from the coupling
effects between V s

app and V f
app, presented in Rc. Recalling the construction of V s

app ≡
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VRL + �V s
rem and V f

app ≡ V f
cor + �V f

rem and using estimates (4.15), (4.16), (4.22), and
(4.23), we can check that

∣
∣Rc

∣
∣

Xs ≤ C0 ×
(∥
∥VRL ⊗ ∂x V f

cor

∥
∥

Xs + ∥
∥V f

cor ⊗ ∂x VRL
∥
∥

Xs + M�
)

,

with C0 = C(M, h−1
0 , 1

2σ−1 , δ−1
min, δmax, γ

−1
min), and again U ⊗ V is the outer product

of U and V .
We estimate the preceding expression as in the proof of Proposition 4.2 using spatial

localization. For any function v satisfying (1 + | · |2)σ v(t, ·) ∈ Hs we have
∣
∣v(t, ·)u±(t, · ∓ c/�t)

∣
∣

Hs

�
∣
∣(1+| · |2)σ v(t, ·)∣∣Hs

∣
∣(1+| · |2)σ u±(t, ·)∣∣Hs

∣
∣(1+| · |2)−σ (1 + | · ∓c/�t |2)−σ

∣
∣

Hs ,

and we recall that for all σ > 1/2 and t > 0, we have

t∫

0

∣
∣(1 + | · |2)−σ (1 + | · ∓c/�t ′|2)−σ

∣
∣

Hs dt ′ ≤ C
( 1

2σ − 1
,

1

c

)
M �,

thus uniformly bounded with respect to 1/� and T .
Hence it follows from Lemma 4.4 and (4.21) that one can restrict T > 0 such that

T∫

0

∣
∣Rc(t, ·)∣∣Xs dt ≤ C0 M �,

with C0 = C(M, h−1
0 , 1

2σ−1 , δ−1
min, δmax, γ

−1
min). Proposition 4.6 is proved. ��

Remark 4.10 As mentioned previously, we are unable to deduce from Proposition 4.6
a rigorous estimate on the difference between the exact solution and the constructed
approximate solution as in Theorem 1.2 or 4.5. Indeed, the strategy developed in
Sect. 3.3 fails because the solution does not satisfy the assumption of Lemma 3.9
or, more precisely, the estimate on the time derivative, ∂t V . A closer look at the
proof shows that the only problematic term to estimate is

∣
∣
[
∂t , T [V ]]�s W

∣
∣
L2 or,

even more precisely,
∣
∣
[
∂t , T [V ]]��s W

∣
∣
L2 because the supplementary is estimated

through (3.24) in Lemma 3.8. We expect that the following strategy would imply the
desired result: decompose

∣
∣
[
∂t , T [V ]]��s W

∣
∣
L2 �

∥
∥(��s W ) ⊗ �∂t V

∥
∥

L2 + ∥
∥(��s W ) ⊗ (Id −�)∂t V

∥
∥

L2 .

The first term is uniformly bounded because �∂t V roughly corresponds to the slow
mode of the flow; the second term can be estimated using the different spatial local-
ization of �W and (Id −�)V .

Following this strategy would require a few technical results and lengthy calcula-
tions, and hence we do not pursue it. Let us simply remark that the numerical sim-
ulations presented in the following section show perfect agreement with the desired
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Fig. 2 Solution of free-surface system compared with rigid-lid approximate solution

result, namely

∥
∥V − VRL − V f

cor

∥
∥

L∞([0,T ];Xs )
= O(�).

4.3 Discussion and Numerical Simulations

In this section, we illustrate and discuss the results presented in Theorem 1.2 and
Proposition 3.4 (validity of rigid-lid approximation), Proposition 4.2 and Theorem 4.5
(improved approximate solution), and Proposition 4.6 (case of ill-prepared initial data).

In each case, we construct the appropriate approximate solution (VRL, V f
cor, V s

cor)
and compare with the exact solution of the free-surface system (3.3) [which is equiv-
alent to (1.1) with the corresponding variables] for different values of � (and α = �)
while the other parameters are fixed.

More precisely, we set

δ = 1/2 ; ε = 1/2;
γ ∈ {0.75, 0.9, 0.93, 0.95, 0.965, 0.0975, 0.09825, 0.09875, 0.099}.
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Fig. 3 Solution of free-surface system compared with improved approximate solution

The initial data are set as follows:

ζ2 |t=0 = exp
( − (x/2)2) ; us |t=0 = −1

3
exp

( − (x/2)2),

and

ζ1 |t=0 = 0 ; us |t=0 =
{

0 in the well-prepared case;

2 exp
( − (x/2)2

)
in the ill-prepared case.

We compute for times t ∈ [0, T ], with T = 4.
Each figure contains three panels. The upper-left panel represents the initial data.

For the sake of readability, we plot respectively 1+δ−1+εζ1 |t=0 , δ−1+εζ2 |t=0 , 1+
us |t=0 , and m |t=0 . The lower panel represents the solution of the free-surface sys-
tem (3.3) and the corresponding approximate solution of interest (the latter with dotted
lines), at final time T = 4, for γ = 0.9, thus � ≈ 0.2673. Finally, in the upper-right
panel, we plot the normalized discrete l2-norm of the difference between the aforemen-
tioned data in a loglog scale, for several values of � (the markers reveal the positions
that have been computed), at final time T = 4.

The numerical scheme we use takes advantage of spectral methods for the space dis-
cretization (see Trefethen 2000) and thus yields an exponential accuracy with respect
to the size of the grid �x , as long as the signal is smooth (note that the major draw-
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back is that the discrete differentiation matrices are not sparse). We set �x = 0.1
(for x ∈ [−100,100]), which is sufficient for the numerical errors to be undetectable.
We then use the Matlab solver ode45, which is based on the fourth- and fifth-order
Runge–Kutta–Merson method (Shampine and Reichelt 1997), with a tolerance of
10−8, to solve the time-dependent problem.

Well-prepared initial data. In Fig. 2, we present a numerical simulation corre-
sponding to the setting of Theorem 1.2; thus we compare the solution of the free-surface
system with the corresponding solution of the rigid-lid system (or, more precisely, the
rigid-lid approximate solution defined in Definition 3.3). We see straightforwardly
that the free-surface solution closely follows the deformation of the interface and
shear velocity predicted by the rigid-lid approximation, even for a relatively large
value of � (recall γ = 0.9 in Fig. 2c). As a matter of fact, the precision of the approx-
imation is not predicted from Theorem 1.2: as we see from Fig. 2b, the convergence
rate for ζ2 and us is O(�2) whereas Theorem 1.2 predicts only O(�). We can see that
the main error in the rigid-lid approximation is supported on the deformation of the
surface, ζ1, as well as on the horizontal momentum, m (and more precisely the fast
mode of the horizontal momentum).

Of course, such a result is predicted by Theorem 4.5 since the first-order corrector
constructed in Proposition 4.2 follows precisely the preceding description. We show in
Fig. 3 the precision of the improved rigid-lid approximation. We see that the main dif-
ferences between the free-surface solution and the rigid-lid approximate solution have
been recovered. The rate of convergence is now O(�2) for each variable ζ1, ζ2, us, m,
in full accordance with Theorem 4.5.

Ill-prepared initial data. We discuss now the case of ill-prepared initial data, that
is, when ζ1 |t=0 , m |t=0 are not assumed to be small. We chose to assign a nontrivial
initial value only to the horizontal momentum variable m, so that the hypothesis α = �

cannot artificially modify the convergence rate (recall that the surface deviation from
the flat equilibrium value is represented by εαζ1).

We plot in Fig. 4 the difference between the exact solution of the free-surface system
and the approximate solution constructed in Proposition 4.6. As can be seen, there is a
noticeable difference between the two solutions. Moreover, this discrepancy seems to
be mainly located on the fast mode and on the variables ζ1 and m. As a matter of fact,
the variables ζ2 and us present a slightly better convergence rate in Fig. 4b [around
O(�1.2) and O(�1.5), respectively] than predicted by Proposition 4.6, namely O(�).

Such a result suggests the construction of a higher-order approximation, similar to
the case of well-prepared initial data. Indeed, we know from Proposition 4.2 that one
can construct a first-order slow-mode corrector term (�ζ̆1, 0, 0, 0)� and that its initial
value plays a role in the construction of the fast-mode corrector. More precisely,
one must modify the initial data of the fast-mode corrector to ensure that the full
approximate solution satisfies the appropriate initial data. Using both statements of
Propositions 4.2 and 4.6, we define the improved approximation for ill-prepared initial
data as

Vapp = VRL + V s
cor + V f

cor,

where
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Fig. 4 Solution of free-surface system compared with approximate solution for ill-prepared initial data

• VRL ≡ (0, η, v, 0)� is defined by Definition 3.3;

• V s
cor ≡ (�ζ̆1, 0, 0, 0)� is defined by ζ̆1 ≡ −(

η + δ
2η2

) (1−η)(δ−1+η)v2

(1+δ−1)2 ;

• V f
cor is defined by

V f
cor(t, x) ≡

⎛

⎜
⎜
⎝

u+(t, x) + u−(t, x)

0
0

c(u+(t, x) − u−(t, x))

⎞

⎟
⎟
⎠ ,

where c ≡ √
1 + δ−1 and u± is the unique solution to ∂t u±± c

�
∂x u±± 3

2c u±∂x u± = 0,

with u± |t=0 = 1
2

(
ζ 0

1 − �ζ̆1 |t=0 ± c−1m0
)
.

Note that, as was previously mentioned in Remark 4.7, this improved approximation
is equivalent to the one already defined in Proposition 4.2 for well-prepared initial
data. Thus this approximate solution is quite general and robust: it offers the same
precision as our previously constructed approximate solutions in the well-prepared
case (Proposition 4.2) as well as in the ill-prepared case (Proposition 4.6).

We investigate in Fig. 5 the accuracy of this improved approximate solution. Com-
paring Figs. 4c and 5c, one clearly sees that the new approximate solution shows a
better resemblance than the original approximate solution; the main discrepancy seems
to be corrected. However, as one can see from Fig. 5b, this apparent improvement is
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Fig. 5 Solution of free-surface system compared with improved approximate solution for ill-prepared
initial data

not reflected in the convergence rate. Although the produced error is clearly smaller,
the rate is not better than O(�) where ζ1 and m are involved (ζ2 and us are unchanged).
It is not clear to us whether a better approximate solution can be constructed, nor what
explains the slightly better convergence rate on ζ2 and us . Our numerical simulations
indicate that there is a nontrivial coupling between the fast and slow modes at early
times (when both are localized at the same place) and that the contribution of these
coupling effects is of size ≈ �. Thus to take into account these coupling effects, one
may have no other choice than to solve a fully coupled system, at least for a small
time scale, t = O(�).

Acknowledgments The author is grateful to Christophe Cheverry, Jean-François Coulombel, and Frédéric
Rousset for helpful advice and stimulating discussions. This work was partially supported by Project
ANR-13-BS01-0003-01 DYFICOLTI.

Appendix: Proof of Proposition 2.2

In this section, we detail the proof of Proposition 2.2, which follows the classical
theory concerning Friedrichs-symmetrizable quasilinear systems. The proof is based
on a priori energy estimates, for which the key ingredients are product and commu-
tator estimates in Sobolev spaces. We first recall such results and refer the reader to,
e.g., Alinhac and Gérard (1991), Lannes (2013) for the proof of Lemmata 5.1 and 5.3.
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Lemma 5.1 (Product estimates) Let s ≥ 0. For all f, g ∈ Hs(R)
⋂

L∞(R), one has

∣
∣ f g

∣
∣

Hs �
∣
∣ f

∣
∣
L∞

∣
∣ g

∣
∣

Hs + ∣
∣ f

∣
∣

Hs

∣
∣ g

∣
∣
L∞ .

If s ≥ s0 > 1/2, then one deduces, thanks to a continuous embedding of Sobolev
spaces,

∣
∣ f g

∣
∣

Hs �
∣
∣ f

∣
∣

Hs

∣
∣ g

∣
∣

Hs .

Let F ∈ C∞(R) such that F(0) = 0. If g ∈ Hs(R)
⋂

L∞(R) with s ≥ 0, then one
has F(g) ∈ Hs(R) and

∣
∣ F(g)

∣
∣

Hs ≤ C(
∣
∣ g

∣
∣
L∞ ,

∣
∣ F

∣
∣
C∞)

∣
∣ g

∣
∣

Hs .

Throughout the paper, we repeatedly make use of the following corollary.

Corollary 5.2 Let f, ζ ∈ L∞ ⋂
Hs, with s ≥ 0 and h(ζ ) ≡ 1−ζ , with h(ζ ) ≥ h0 >

0 for any x ∈ R. Then one has

∣
∣ 1

h(ζ )
f
∣
∣

Hs ≤ C(h−1
0 ,

∣
∣ζ

∣
∣
L∞)

(∣
∣ f

∣
∣

Hs + ∣
∣ζ

∣
∣

Hs

∣
∣ f

∣
∣
L∞

)

∣
∣ f − 1

h(ζ )
f
∣
∣

Hs ≤ C(h−1
0 ,

∣
∣ζ

∣
∣
L∞)

(∣
∣ζ

∣
∣
L∞

∣
∣ f

∣
∣

Hs + ∣
∣ζ

∣
∣

Hs

∣
∣ f

∣
∣
L∞

)
.

Proof We will use the identity

1

h(ζ )
f = 1

1 − ζ
f = f + ζ

1 − ζ
f.

By Lemma 5.1, we deduce

∣
∣ 1

h(ζ )
f
∣
∣

Hs ≤ ∣
∣ f

∣
∣

Hs + ∣
∣ ζ

1 − ζ
f
∣
∣

Hs

�
∣
∣ f

∣
∣

Hs + ∣
∣ ζ

1 − ζ

∣
∣
L∞

∣
∣ f

∣
∣

Hs + ∣
∣ ζ

1 − ζ

∣
∣

Hs

∣
∣ f

∣
∣
L∞ .

The only nontrivial term to estimate is now
∣
∣ ζ

1−ζ

∣
∣

Hs . Using that h(ζ ) = 1−ζ ≥ h0 >

0, we introduce a function F ∈ C∞(R) such that

F(X) =
{

X
1−X if 1 − X ≥ h > 0,

0 if 1 − X ≤ 0.

The function F satisfies the hypotheses of Lemma 5.1, and we have

∣
∣ ζ

1 − ζ

∣
∣

Hs = ∣
∣F(ζ )

∣
∣

Hs ≤ C(
∣
∣ζ

∣
∣
L∞ , h−1

0 )
∣
∣ζ

∣
∣

Hs .
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The first estimate of the lemma is proved. The second estimate is obtained in the same
way using

f − 1

h(ζ )
f = − ζ

1 − ζ
f.

The corollary is proved. ��

The following lemma presents a generalization of the Kato–Ponce (Kato and Ponce
1988) commutator estimates due to Lannes Lannes (2006) (one has

∣
∣ f

∣
∣

Hs instead of
∣
∣∂x f

∣
∣

Hs−1 in the standard Kato–Ponce estimate).

Lemma 5.3 (Commutator estimates) For any s ≥ 0 and ∂x f, g ∈ L∞(R)
⋂

Hs−1(R)

we have

∣
∣ [�s, f ]g ∣

∣
L2 �

∣
∣ ∂x f

∣
∣

Hs−1

∣
∣ g

∣
∣
L∞ + ∣

∣ ∂x f
∣
∣
L∞

∣
∣ g

∣
∣

Hs−1 .

Thanks to the continuous embedding of Sobolev spaces, we have for s ≥ s0+1, s0 > 1
2 ,

∣
∣ [�s, f ]g ∣

∣
L2 �

∣
∣ ∂x f

∣
∣

Hs−1

∣
∣ g

∣
∣

Hs−1 .

Let us now continue with the proof of Proposition 2.2. System (1.1) is quasilinear.
In what follows we prove that it is Friedrichs-symmetrizable under conditions (2.2).
We present below the symmetrizer of the system and compute the necessary energy
estimates in Lemmata 5.5 and 5.6.

System symmetrizer. Recall that (1.1) reads ∂tU + A[U ]∂xU = 0, with

A[U ] ≡

⎛

⎜
⎜
⎜
⎝

u1
u2−u1

�
h1
�

h2
�

0 u2 0 h2
1
�

0 u1 0
γ
�

δ + γ 0 u2

⎞

⎟
⎟
⎟
⎠

, (5.1)

where we use the notation h1 ≡ 1 + �ζ1 − ζ2 and h2 ≡ δ−1 + ζ2. Define

S[U ] ≡

⎛

⎜
⎜
⎝

γ 0 0 0
0 γ + δ 0 u2 − u1
0 0 γ h1 0
0 u2 − u1 0 h2

⎞

⎟
⎟
⎠ . (5.2)
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We can easily check that S[U ]A[U ] ≡ �[U ] and S[U ] are symmetric. More precisely,
we have

�[U ]

≡

⎛

⎜
⎜
⎜
⎜
⎝

γ u1
γ (u2−u1)

�
γ h1
�

γ h2
�

γ (u2−u1)
�

2(γ + δ)(2u2 − u1) 0 (γ + δ)h2 + u2(u2 − u1)
γ h1
�

0 γ h1u1 0
γ h2
�

(γ + δ)h2 + u2(u2 − u1) 0 h2(2u2 − u1)

⎞

⎟
⎟
⎟
⎟
⎠

.

(5.3)

We can easily check that S[U ] is positive definite provided that the following holds:

γ > 0 ; γ + δ > 0 ; h1 > 0 ; h2 − |u2 − u1|2
γ + δ

> 0,

which is guaranteed by condition (2.2).
Energy of our system. The natural energy of our system is

Es(U ) ≡ (
S[U ]�sU,�sU

)

= γ
∣
∣ζ1

∣
∣2

Hs + (γ + δ)
∣
∣ζ2

∣
∣2

Hs + γ

∫

R

h1

∣
∣�su1

∣
∣2

+
∫

R

h2

∣
∣�su2

∣
∣2 + 2

∫

R

(u2 − u1)
{
�su2

}{
�sζ2

}
, (5.4)

with h1 ≡ 1 + �ζ
1
− ζ

2
and h2 ≡ δ−1 + ζ

2
.

In what follows, we specify the equivalence between our energy and the norm Xs

offered by the well-posedness of the symmetrizer. Recall that Xs denotes the space
Hs(R)4, endowed with the following norm:

∣
∣U

∣
∣2

Xs = γ
∣
∣ζ1

∣
∣2

Hs + ∣
∣ζ2

∣
∣2

Hs + γ
∣
∣u1

∣
∣2

Hs + ∣
∣u2

∣
∣2

Hs .

Lemma 5.4 Let s ≥ 0 and ζ ∈ L∞(R), satisfying (2.2). Then Es(U ) is uniformly
equivalent to the | · |Xs -norm. More precisely, there exists positive constants C2 =
C(h−1

0 , δ−1
min) > 0, and C1 = C(

∣
∣h1

∣
∣
L∞ ,

∣
∣h2

∣
∣
L∞ , δmax) > 0 such that

1

C1
Es(U ) ≤ ∣

∣U
∣
∣2

Xs ≤ C2 Es(U ).

Proof The fact that Es(U ) ≤ C1
∣
∣U

∣
∣

Xs is a simple consequence of the Cauchy–
Schwarz inequality, applied to (5.4), where we use that (2.2) yields |u2 − u1|2 <

(γ + δ)h2.
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The other inequality follows directly from (2.2). More precisely, we have

Es(U ) ≥ γ
∣
∣ζ1

∣
∣2

Hs + γ h0

∫

R

∣
∣�su1

∣
∣2

+ (γ + δ)
∣
∣ζ2

∣
∣2

Hs +
∫

R

h2

∣
∣�su2

∣
∣2− 2

∫

R

√
(h2 − h0)(γ + δ)

{
�su2

}{
�sζ2

}
,

and the result is now clear. Lemma 5.4 is proved. ��

We now highlight energy estimates with respect to the linearized system from (1.1),
namely

∂tU + A[U ]∂xU = R , (5.5)

with given U ,R.

Lemma 5.5 (L2 energy estimate) Set T, M > 0. Let U ∈ L∞([0, T ]; X0) sat-
isfy (5.5), with given R ∈ L1([0, T ]; X0), and U satisfying (2.2), with h0 > 0 (for
any t ∈ [0, T ]) as well as

∥
∥U

∥
∥

L∞([0,T ]×R)4 + ∥
∥∂xU

∥
∥

L∞([0,T ]×R)4 + �
∥
∥∂tU

∥
∥

L∞([0,T ]×R)4 ≤ M.

Then there exists C0 ≡ C(M, h−1
0 , δ−1

min, δmax) such that ∀t ∈ [0, T ],

E0(U )(t) ≤ eC0 M�−1t E0(U |t=0 ) + C0

t∫

0

eC0 M�−1(t−t ′)∣∣R(t ′, ·)∣∣Xs dt ′. (5.6)

Proof Let us consider the L2 inner product of (5.5) and S[U ]U :

(
∂tU, S[U ]U) + (

A[U ]∂xU, S[U ]U) = (R, S[U ]U)
.

From the symmetry property of S[U ], �[U ], and using the definition of E0(U ), we
deduce

1

2

d

dt
E0(U ) = 1

2

(
U,

[
∂t , S[U ]]U) − (

�[U ]∂xU, U
) + (R, S[U ]U)

= 1

2

(
U,

[
∂t , S[U ]]U) + 1

2

([
∂x , �[U ]]U, U

) + (R, S[U ]U)
. (5.7)

We now estimate each of the terms on the right-hand side of (5.7).
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Estimate of
(
U,

[
∂t , S[U ]]U)

. We have
(
U,

[
∂t , S[U ]]U) = (

U, dS[∂tU ]U)
, with

dS[∂tU ] ≡

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 ∂t (u2 − u1)

0 0 γ ∂t (�ζ
1
− ζ

2
) 0

0 ∂t (u2 − u1) 0 ∂tζ 2

⎞

⎟
⎟
⎠ .

Using the Cauchy–Schwarz inequality and Lemma 5.4 we have straightforwardly

∣
∣
(
U,

[
∂t , S[U ]]U)∣

∣ ≤ C0
∣
∣∂tU

∣
∣
L∞C−1

2

∣
∣U

∣
∣2

X0 ≤ C0 M �−1 E0(U ), (5.8)

with C0 = C(h−1
0 , δ−1

min, δmax).
Estimate of

([
∂x , �[U ]]U, U

)
. We have

([
∂x , �[U ]]U, U

) = (
U, d�[U ]U)

, with

d�[U ] ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ ∂x u1
γ ∂x (u2−u1)

�

γ ∂x (�ζ1−ζ2)

�

γ ∂x ζ2
�

γ ∂x (u2−u1)
� (γ + δ)∂x (2u2 − u1) 0 ∂x

(
(γ + δ)ζ 2 + u2(u2 − u1)

)

γ ∂x (�ζ1−ζ2)

� 0 γ ∂x (h1u1) 0
γ ∂x ζ2

� ∂x
(
(γ + δ)ζ 2 + u2(u2 − u1)

)
0 2∂x

(
h2(2u2 − u1)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

As previously, the Cauchy–Schwarz inequality and Lemmata 5.1 and 5.4 yield

∣
∣
(
�[U ]∂xU, U

)∣
∣ ≤ C0 M �−1 E0(U ), (5.9)

with C0 = C(M, h−1
0 , δ−1

min, δmax).
Estimate of

(R, S[U ]U)
. By the Cauchy–Schwarz inequality and Lemmata 5.1

and 5.4,

∣
∣
(R, S[U ]U)∣

∣ ≤ C0
∣
∣U

∣
∣

Xs

∣
∣R∣

∣
Xs ≤ C ′

0 Es(U )1/2
∣
∣R∣

∣
Xs , (5.10)

with C0, C ′
0 = C(M, h−1

0 , δ−1
min, δmax).

Estimate (5.6) is now a consequence of the Gronwall–Bihari inequality applied to
the differential inequality obtained when plugging (5.8), (5.9), (5.10) into (5.7). ��

Lemma 5.6 (Hs energy estimate) Set M, T > 0 and s ≥ s0 + 1, s0 > 1/2. Let
U ∈ L∞([0, T ]; Xs) satisfy (5.5), with R ∈ L1([0, T ]; Xs), and U ∈ L∞([0, T ]; Xs)

satisfying (2.2) as well as
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∥
∥U

∥
∥

L∞([0,T ];Xs )
+ �

∥
∥∂tU

∥
∥

L∞([0,T ];Xs−1)
≤ M.

Then there exists C0 ≡ C(M, h−1
0 , δ−1

min, δmax) such that, for all t ∈ [0, T ],

Es(U )(t) ≤ eC0 M�−1
Es(U |t=0 ) + C0

t∫

0

eC0 M�−1(t−t ′)∣∣R(t ′, ·)∣∣Xs dt ′. (5.11)

Proof As previously, we deduce from (5.5) the identity

(
�s∂tU, S[U ]�sU

) + (
�s A[U ]∂xU, S[U ]�sU

) = (
�sR, S[U ]�sU

)
,

where we recall the notation � ≡ (Id −∂2
x )1/2. It follows that

1

2

d

dt
Es(U ) = 1

2

(
�sU,

[
∂t , S[U ]]�sU

) − (
S[U ]�s A[U ]∂xU,�sU

)

+ (
�sR, S[U ]�sU

)

= 1

2

(
�sU,

[
∂t , S[U ]]�sU

) + 1

2

([
∂x , �[U ]]�sU,�sU

)

+ (
�sR, S[U ]�sU

)

− (
S[U ][�s, A[U ]]∂xU,�sU

)
. (5.12)

The first three terms are bounded exactly as previously when replacing U with �sU .
The only novelty lies in the use of continuous Sobolev embeddings, so that

∥
∥U

∥
∥

L∞([0,T ]×R)4 + ∥
∥∂xU

∥
∥

L∞([0,T ]×R)4 �
∥
∥U

∥
∥

L∞([0,T ];Xs )
.

Similarly, we have

�
∥
∥∂tU

∥
∥

L∞([0,T ]×R)4 � �
∥
∥∂tU

∥
∥

L∞([0,T ];Xs−1)
.

The remaining term is estimated as follows. Using the commutator estimate in
Lemma 5.3 we have

∣
∣
[
�s, A[U ]]∂xU

∣
∣
L2 ≤ C

∣
∣∂xU

∣
∣

Hs−1

∣
∣
[
∂x , A[U ]]∣∣Hs−1 ≤ C0 M �−1

∣
∣U

∣
∣

Xs ,

with C0 = C(M, h−1
0 , δ−1

min, δmax). Altogether, we deduce from (5.12)

1

2

d

dt
Es(U ) ≤ C0 M�−1 Es(U ) + C0 Es(U )1/2

∣
∣R∣

∣
Xs .

Estimate (5.11) is now a consequence of the Gronwall–Bihari inequality, and the
lemma is proved. ��
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Completion of Proof of Proposition 2.2 The well-posedness of system (1.1) is now a
consequence of the energy estimates of Lemmata 5.5 and 5.6, following the standard
strategy (we refer the reader to standard textbooks, e.g., Taylor 1997; Alinhac and
Gérard 1991; Métivier 2008, for more details). More precisely, we first show that the
linearized problem (5.5) is well posed, then the solution of the nonlinear problem (1.1)
is obtained as the limit of an iterative scheme:

∂tU
n+1 + A[U n]∂xU n+1 = 0.

The restriction on the time scale t ∈ [0, T �] is necessary to guarantee that (U n)n∈N is a
Cauchy sequence, and in particular that U n is uniformly bounded with respect to n, over
a time domain which can be chosen independent of n. The desired estimate on

∣
∣U

∣
∣

Xs

follows directly from Lemma 5.6, with U = U and R ≡ 0, and the corresponding
estimate on

∣
∣∂tU

∣
∣

Xs is then deduced using (1.1). The uniqueness comes from a similar
estimate on the difference between two solutions, and the blow-up criterion as t →
Tmax if Tmax < ∞ follows from standard continuation arguments. This concludes the
proof of Proposition 2.2. ��
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