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We study the relevance of various scalar equations, such as inviscid Burgers’, Korteweg–
de Vries (KdV), extended KdV, and higher order equations, as asymptotic models for
the propagation of internal waves in a two-fluid system. These scalar evolution equations
may be justified in two ways. The first method consists in approximating the flow by two
uncoupled, counterpropagating waves, each one satisfying such an equation. One also
recovers these equations when focusing on a given direction of propagation, and seeking
unidirectional approximate solutions. This second justification is more restrictive as for
the admissible initial data, but yields greater accuracy. Additionally, we present several
new coupled asymptotic models: a Green–Naghdi type model, its simplified version in
the so-called Camassa–Holm regime, and a weakly decoupled model. All of the models
are rigorously justified in the sense of consistency.
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1. Introduction

1.1. Motivation

In this paper, we study asymptotic models for the propagation of internal waves in
a two-fluid system, which consists in two layers of immiscible, homogeneous, ideal,
incompressible and irrotational fluid under the only influence of gravity. We assume
that there is no topography (the bottom is flat) and that the surface is fixed as a
flat rigid lid, although the case of a free surface could be handled with our method.
The interface between the two layers of fluid is given as the graph of a function,
ζ(t, x), which expresses the deviation from its rest position {(x, z), z = 0} at the
spatial coordinate x and at time t. As we will focus on scalar models, we restrict
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Fig. 1. Sketch of the domain, and full Euler system.

ourselves to the case of horizontal dimension one. The governing equations of such
a system, describing the evolution of the deformation of the interface, ζ(t, x), as
well as the velocity flow inside the two layers of fluid is sketched in Fig. 1 (see Sec. 2
for more details).

The mathematical theory for this system of equations (the so-called full Euler
system) is extremely challenging; see Ref. 46 in particular. This has led to exten-
sive works concerning simplified, asymptotic models, aiming at capturing the main
characteristics of the flow with much simpler equations, provided that some given
parameters are small. Such relevant dimensionless parameters in oceanographic sit-
uations includea

ε =
a

d1
; µ =

d2
1

λ2
;

where ε measures the amplitude of the deformation at the interface with respect to
the depth of the layers of fluid, and µ measures the shallowness of the domain of
the fluid, when compared with the typical wavelength of the deformation. Among
other works, we would like to highlight Ref. 9, where many asymptotic models are
presented and rigorously justified, in a wide range of regimes. In each case, the
resulting model consists in two relatively simple evolution equations coupling the
shear velocity and the deformation at the interface.

However, in this work, we are mainly interested in scalar models, which can
be used in particular (but not only as we shall see) to describe the unidirectional
propagation of gravity waves. The derivation and study of such models have a very

aOf course, these two dimensionless parameters describe only part of the many different regimes
that may be considered; see (1.1) for the precise regime we consider in this work. Other relevant
regimes are quickly discussed thereafter and we refer to the survey article of Helfrich and Melville33

and references therein for the oceanographic significance of asymptotic models in our regime.
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rich and ancient history, starting with the work of Boussinesq12 and Korteweg–de
Vries44 which introduce the famous Korteweg–de Vries equation

∂tu+ c∂xu+ αu∂xu+ ν∂3
xu = 0, (KdV)

in the context of propagation of surface gravity waves, above one layer of homoge-
neous fluid (which we refer as “water-wave problem”). However, let us note that the
complete rigorous justification of such model is recent.39,59,8 Such a justification is
to be understood in the following sense: in the long wave regime

ε ∼ µ� 1,

the flow can be accurately approximated as a decomposition into two counterprop-
agating waves, each component satisfying a KdV equation (or more generally, with
the same order of accuracy, a Benjamin–Bona–Mahony equation6,56):

∂tu+ c∂xu+ αu∂xu+ νx∂
3
xu− νt∂

2
x∂tu = 0. (BBM)

The situation is similar in the case of two layers of immiscible fluid, with a rigid
lid (as well as in the case of two layers with a free surface, except the flow is then
decomposed into four propagating waves), and corresponding results are presented
in Ref. 25.

Of course the coefficients (c, α, ν, etc.) depend on the situation, and a striking
difference between the water-wave case and the case of internal waves is that in
the latter case, there exists a critical ratio for the two layers of fluid (depending on
the ratio of the mass densities) for which the nonlinearity coefficient α vanishes.
In that case, heuristic arguments support the inclusion of the next order (cubic)
nonlinearity, which yields the modified KdV equation (see Ref. 54 and references
therein):

∂tu+ c∂xu+ α2u
2∂xu+ νx∂

3
xu− νt∂

2
x∂tu = 0. (mKdV)

For the cubic nonlinearity to be of the same order of magnitude as the dispersive
terms, this urges to consider the so-called (referring to Ref. 20 for this nonstandard
denomination) Camassa–Holm regime:

ε2 ∼ µ� 1.

Note that this regime is interesting by itself as it allows larger amplitude waves
than the long wave regime, and in particular yields models developing finite time
breaking wave singularities.19,20 Thus we ask: Can we extend to the Camassa–Holm
regime the rigorous justification of the small amplitude (long wave) one?

As we shall see, the answer is not straightforward, as several evolution equa-
tions are in competition. In addition to the equations already presented above, we
consider the extended KdV (or Gardner) equation

∂tu+ c∂xu+ α1u∂xu+ α2u
2∂xu+ νx∂

3
xu− νt∂

2
x∂tu = 0, (eKdV)

as presented in Refs. 38, 23, 50, studied in Refs. 31, 55, 57 (among other works),
and tested against experiments in Refs. 43, 34, 49. More generally, we work with
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the higher order model

∂tu+ c∂xu+ α1u∂xu+ α2u
2∂xu+ α3u

3∂xu+ νx∂
3
xu− νt∂

2
x∂tu

+ ∂x(κ1u∂
2
xu+ κ2(∂xu)2) = 0. (CL)

Such a model has been presented and justified (in the water-wave setting, and in the
Camassa–Holm regime) in Ref. 20; we therefore designate it as Constantin–Lannes
equation. This equation is related, though slightly different from the Camassa–Holm
equation obtained for example in Refs. 14, 37 or higher order models (see various
such models formally derived in Refs. 64, 27, 28, 17, 32, 53, 26, 21, concerning the
water wave or internal wave problem). However, each of these works is limited to
the restrictive assumption that only one direction of propagation is nonzero.

We propose to study in detail the justification of the decomposition of the flow
(although the unidirectional case is also treated) as presented above, and in the
case of internal waves with a rigid lid. Our results are expressed in a very general
setting: assuming only

µ� 1 and ε� 1,

and expressing the accuracy of the different models as a function of these parame-
ters. Although this complicates the expression of our results, and renders the proofs
fairly technical, such choice allows to cover general regimes, including the long-wave
as well as the Camassa–Holm regimes, described above. We recover in particular
the relevance of the KdV approximation in the long wave regime. In the Camassa–
Holm regime, the conclusion is not as definite, but depends on the criticality of the
depth ratio, the localization in space of the initial data, as well as the time-scale
which is considered.

1.2. Main results and outline of the paper

As motivated above, the aim of this paper is to construct and rigorously justify
asymptotic models for the system of equations, presented in Fig. 1, and which
describe the behavior of two layers of immiscible, homogeneous, ideal, incompress-
ible fluid under the sole influence of gravity. The derivation of such equations is not
new; we briefly recall it in Sec. 2.1, and refer to Ref. 9 for more details.

The so-called full Euler system can be written as two evolution equations using
Zakharov’s canonical variables, namely ζ the deformation of the interface from
its rest position, and the trace of a velocity potential at the interface. Such a
formulation is built upon the so-called Dirichlet-to-Neumann operators, solving
Laplace’s equation on the two domains of fluid, with suitable Neumann or Dirichlet
boundary conditions.

Lastly, we non-dimensionalize the system in order to put forward the relevant
dimensionless parameters of the system, and in particular ε, the nonlinearity param-
eter, and µ, the shallowness parameter. We restrict our study to the following set
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of parameters:

P ≡ {(µ, ε, δ, γ), 0 ≤ µ ≤ µmax, 0 ≤ ε ≤ εmax, δ ∈ (δmin, δmax), 0 ≤ γ < 1}, (1.1)

where µmax, εmax, δmin, δmax are positive, finite. Here, δ ≡ d1
d2

denotes the depth
ratio, and γ ≡ ρ1

ρ2
is the mass density ratio.

As expressed above, our asymptotic models rely on the assumption that µ� 1
and ε� 1. More precisely, our results hold for any (µ, ε, δ, γ) ∈ P , with µmax, εmax

not necessarily small, but our approximate solutions are accurate if and only if both
ε and µ are small.

Of course, the choice of our regime inevitably restricts the scope of our results,
and the validity of our approximate models. In particular, even if we attach a
great attention to impose as weak a constraint as possible on the nonlinearity and
shallowness parameters in (1.1), we forbid the depth ratio to approach zero or
infinity. In particular, this is incompatible with the intermediate long wave regime
(ILW) or Benjamin–Ono regime (BO). It would be of great interest to extend our
results to such regimes, since the equivalent model to our Green–Naghdi coupled
model has been derived in Ref. 66, together with the proof of energy estimates
allowing to handle the full justification process as described below. Let us also
recall that one can find a very large family of coupled models in Ref. 9, associated
with a wide range of regimes, and all justified in the sense of consistency.

Finally, we would like to emphasize that our results are especially adapted to
parameters restricted in the so-called Camassa–Holm regime:

PCH ≡ {(µ, ε, δ, γ), 0 ≤ µ ≤ µmax, 0 ≤ ε ≤M
√
µ, δ ∈ (δmin, δmax), 0 ≤ γ < 1},

(1.2)

with M positive, finite.

The Green–Naghdi coupled model . The first step of our analysis is to construct a
shallow-water (µ� 1) high-order, coupled asymptotic model: the so-called Green–
Naghdi model.

The key ingredient is to obtain an expansion of the aforementioned Dirichlet-to-
Neumann operators, with respect to the shallowness parameter, µ. Such an expan-
sion is provided in the (one layer) water-wave case in Ref. 2 (Proposition 3.8), and
a first-order expansion in the bi-fluidic case is obtained in Ref. 9 (let us also men-
tion that the case of two layers of immiscible fluid with a free surface is treated in
Ref. 24). We offer a second order expansion of the Dirichlet-to-Neumann operators,
precisely disclosed in Proposition 2.2.

When replacing the Dirichlet-to-Neumann operators by their truncated
expansion, and after straightforward computations, one is able to deduce the Green–
Naghdi model, that we disclose below. Our system has two unknowns: ζ representing
the deformation of the interface, and v̄ the shear layer-mean velocity, as defined by
v̄ ≡ u2−γu1, where u1, u2 are the horizontal velocities integrated across the vertical
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layer in each fluid:

u1(t, x) =
1

h1(t, x)

∫ 1

εζ(t,x)

∂xφ1(t, x, z)dz,

u2(t, x) =
1

h2(t, x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x, z)dz.

Precisely, our Green–Naghdi model is the following.



∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

∂t(v̄ + µQ[h1, h2]v̄) + (γ + δ)∂xζ +
ε

2
∂x

(
h1

2 − γh2
2

(h1 + γh2)2
|v̄|2
)

= µε∂x(R[h1, h2]v̄),

(1.3)

where h1 = 1 − εζ and h2 = 1
δ + εζ are the depth of, respectively, the upper and

the lower layer, and where we define the following operators:

Q[h1, h2]V ≡ −1
3h1h2

(
h1∂x

(
h2

3∂x

(
h1V

h1 + γh2

))

+ γh2∂x

(
h1

3∂x

(
h2V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1
2

((
h2∂x

(
h1V

h1 + γh2

))2

− γ

(
h1∂x

(
h2V

h1 + γh2

))2
)

+
1
3

V

h1 + γh2

(
h1

h2
∂x

(
h2

3∂x

(
h1V

h1 + γh2

))

− γ
h2

h1
∂x

(
h1

3∂x

(
h2V

h1 + γh2

)))
.

This system is related to the one introduced by Choi and Camassa,17 and is the two-
layers counterpart of the water-wave Green–Naghdi model introduced in Ref. 30,
and fully justified in Refs. 2, 48, 36 and 47. We present here the first rigorous
justification of the two-layer Green–Naghdi model, in the sense of consistency.

Proposition 1.1. Let Up ≡ (ζp, ψp)p∈P be a family of solutions of the full Euler
system (2.4), such that ζp ∈ W 1([0, T );Hs+9/2), ∂xψ

p ∈ W 1([0, T );Hs+11/2) with
s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to p ∈ P ; see (1.1). Moreover,
assume that there exists h > 0 such that

h1 ≡ 1 − εζp ≥ h > 0, h2 ≡ 1
δ

+ εζp ≥ h > 0.
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Define v̄p ≡ u2 − γu1 as above. Then (ζp, v̄p) satisfies (1.3), up to a remainder R,
bounded by

‖R‖L∞([0,T );Hs) ≤ µ2C,

with C = C(h−1, εmax, µmax, δ
−1
min, δmax, ‖ζp‖

W 1([0,T );Hs+ 9
2 )
, ‖∂xψ

p‖
W 1([0,T );Hs+ 11

2 )
).

Here, and in the following, we denote by C(λ1, λ2, . . .) any positive constant,
depending on the parameters λ1, λ2, . . . , and whose dependence on λj is assumed
to be nondecreasing. C0 is a positive constant, which does not depend on all the
other parameters involved, and we write A = O(B) if A ≤ C0B, and A ≈ B if
A = O(B) and B = O(A).

For 0 < T ≤ ∞ and f(t, x) defined on [0, T ] × R, we write f ∈ L∞([0, T ];Hs)
if f is uniformly (with respect to t ∈ [0, T ]) bounded in Hs = Hs(R) the L2-based
Sobolev space. Its norm is denoted ‖ · ‖L∞([0,T );Hs), whereas the Sobolev norms are
denoted with simple bars: | · |Hs . Finally, W 1([0, T );Hs+1) is the space of functions
f(t, x) ∈ L∞([0, T ];Hs+1) such that ∂tf ∈ L∞([0, T ];Hs), endowed with the norm
‖f‖W 1([0,T );Hs+1) ≡ ‖f‖L∞([0,T );Hs+1) + ‖∂tf‖L∞([0,T );Hs).

Consistency and full justification. Consistency results, such as Proposition 1.1, are
part of the procedure that leads to a full justification of asymptotic models, as it
has been achieved in the water-wave case.2 A model is said to be fully justified
(following the terminology of Ref. 47) if the Cauchy problem of both the full Euler
system and the asymptotic model is well-posed for a given class of initial data, and
over the relevant time scale; and if the solutions with corresponding initial data
remain close. As described in Ref. 46, the full justification of (1.3) follows from:

• (Consistency) One proves that families of solutions to the full Euler system,
existing and controlled over the relevant time scale, solves the Green–Naghdi
model (1.3) up to a small residual. This is Proposition 1.1.

• (Existence) One proves that families of solutions to the full Euler system as
above do exist. This difficult step is ensured by Theorem 5 (or Theorem 6 for
large times) in Ref. 46, provided that a small surface tension is added, and that
an additional stability criterion is satisfied (see details therein).

• (Convergence) One proves that the solutions of the full Euler system, and the
ones of the Green–Naghdi model (1.3) with the corresponding initial data remain
close, over the relevant time scale.

The last step requires the well-posedness of the Cauchy problem for the Green–
Naghdi model (1.3), as well as the stability of its solutions with respect to per-
turbations. More precisely, we require that functions satisfying the Green–Naghdi
model up to a small residual remain close to the exact solution with the corre-
sponding initial data, so that the first two steps of our procedure (consistency
and existence) yield the conclusion (convergence), and therefore the full justifica-
tion to the Green–Naghdi model. See Theorem 7 in Ref. 46 for the application of
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such procedure for the full justification of the so-called shallow-water/shallow-water
asymptotic model, which corresponds to (1.3), when withdrawing O(µ) terms.

The different models throughout this work are justified through consistency
results, with respect to the Green–Naghdi model (1.3). Let us define precisely below
what we designate by consistency in the core of this paper.

Definition 1.2. (Consistency) Let (ζp, vp)p∈P be a family of pair of functions,
uniformly bounded in L∞([0, T );Hs+s̄) (s̄ ≥ 0 to be determined), depending on
parameters p ∈ P ; see (1.1).

We say that (ζp, vp) is consistent with Green–Naghdi system (1.3) at precision
O(εp), of order s and on [0, T ), if (ζp, vp) satisfies, for εp sufficiently small,



∂tζ
p + ∂x

(
h1h2

h1 + γh2
vp

)
= εpr1,

∂t(vp + µQ[h1, h2]vp) + (γ + δ)∂xζ
p +

ε

2
∂x

(
h1

2 − γh2
2

(h1 + γh2)2
|vp|2

)
−µε∂x(R[h1, h2]v̄p) = εpr2,

where h1 = 1 − εζp and h2 = 1
δ + εζp, and where

‖(r1, r2)‖L∞([0,T );Hs×Hs) ≤ C

with C = C(µmax, εmax, δ
−1
min, δmax, ‖ζp‖L∞([0,T );Hs+s̄), ‖vp‖L∞([0,T );Hs+s̄)).

Of course, one can apply the procedure described above to any consistent
approximate solutions of the Green–Naghdi system. Consequently, our approxi-
mate solutions, described in Propositions 1.6, 1.12 and 1.13, are fully justified as
approximate solutions of the Green–Naghdi model, and therefore as approximate
solutions of the full Euler system (2.4), provided the Green–Naghdi system (1.3),
or any equivalently consistent model, enjoys the following property.

Hypothesis 1.3. (Well-posedness and stability) Let (ε, µ, δ, γ) = p ∈ P , as in (1.1),
and Up

0 ∈ Hs+s̄, with s and s̄ sufficiently large. Then the following holds.

(1) There exist T > 0 and unique strong solutions of the Green–Naghdi sys-
tem (1.3), Up

GN , such that Up
GN |t=0 = Up

0 and Up
GN is uniformly bounded

on W 1([0, T );Hs).
(2) Let Up, satisfying Up|t=0 = Up

0 |t=0, be consistent (in the sense of Definition 1.2)
with Green–Naghdi system (1.3) on [0, T ], of order s, at precision O(ε). Then
the difference between the two families of functions is estimated as

‖Up − Up
GN‖L∞([0,t];Hs) ≤ Cεt,

with C = C(‖Up
GN‖L∞([0,T ];Hs), ‖Up‖L∞([0,T ];Hs+s̄), δ

−1
min, δmax, εmax, µmax).

Both of the properties in Hypothesis 1.3 typically follow from energy estimates
on the Green–Naghdi system. Such a result has been obtained for a well-chosen
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Green–Naghdi system in the case of the water-wave problem in Refs. 48, 3 and
36. In the two-layer setting, the result has been proved for an equivalent system
(the so-called symmetric Boussinesq/Boussinesq model) in the long wave regime,
ε = O(µ).25 ,b Such result can be extended to the Camassa–Holm regime (1.2), and
will be the object of a future publication.

Let us emphasize that Hypothesis 1.3 is not necessary for our results to hold,
but only to complete the full justification procedure described above. However, such
a result is very useful to perceive the accuracy of our approximate solutions (in the
sense of convergence) that one expects, especially for the decoupled approximations
in Propositions 1.12 and 1.13. Thus in the discussion of our results in Secs. 4
and 5.3, we assume that Hypothesis 1.3 holds. Numerical simulations are in perfect
agreement with the resulting estimates.

The scalar models . Let us describe the different scalar evolution equations which
are considered in this paper. The higher-order model we study is the Constantin–
Lannes equation (CL):

(1 − µβ∂2
x)∂tv + εα1v∂xv + ε2α2v

2∂xv + ε3α3v
3∂xv

+µν∂3
xv + µε∂x(κ1v∂

2
xv + κ2(∂xv)2) = 0, (1.4)

where β, αi (i = 1, 2, 3), ν, κ1, κ2, are fixed parameters.
Note that the Constantin–Lannes equation can be seen as a generalization of

classical lower order models (obtained when neglecting higher-order terms, or equiv-
alently setting some parameters to zero). In the following, we consider

• the inviscid Burgers equation (iB):

∂tv + εα1v∂xv = 0;

• the Korteweg–de Vries (or Benjamin–Bona–Mahony6) equation (KdV):

(1 − µβ∂2
x)∂tv + εα1v∂xv + µν∂3

xv = 0;

• the extended Korteweg–de Vries equation (eKdV):

(1 − µβ∂2
x)∂tv + εα1v∂xv + ε2α2v

2∂xv + µν∂3
xv = 0.

Our first result regarding these scalar evolution equations, concerns the long
time well-posedness of the Cauchy problem, and the persistence in time of the
localization in space of initial data. We treat simultaneously all scalar models by
allowing parameters in (1.4) to vanish. However, we require that µβ > 0, as our
proof relies heavily on a priori estimates of the solution in the following scaled
Sobolev norm:

|u|2
Hs+1

µβ

≡ |u|2Hs + µβ|u|2Hs+1 , for some s ≥ 0.

bAlthough the results of Ref. 25 are dedicated to the two-layer case with a free surface, the method
can easily be adapted to the simpler rigid lid situation. Let us also mention Ref. 58 for an extensive
study of the very similar Boussinesq models in the water-wave case.



October 25, 2013 10:42 WSPC/103-M3AS 1350046

10 V. Duchêne

We also make use of the closed functional subspaces Xs
n,µ ⊂ Hs+2n, endowed with

the following weighted Sobolev norm:

|u|Xs
n,µ

=
n∑

j=0

|xju|
H

s+2(n−j)
µ

.

Proposition 1.4. (Well-posedness and persistence) Let u0 ∈ Hs+1, with s ≥ s0 >

3/2. Let the parameters be such that β, µ, ε > 0, and define M > 0 such that

β +
1
β

+ µ+ ε+ |α1| + |α2| + |α3| + |ν| + |κ| + |ι| ≤M.

Then there exists T = C(M, |u0|Hs+1
µ

) > 0 and a unique u ∈ C0([0, T/ε);Hs+1
µ ) ∩

C1([0, T/ε);Hs
µ) such that u satisfies (1.4) and initial condition u|t=0 = u0.

Moreover, u satisfies the following energy estimate for 0 ≤ t ≤ T/ε:

‖∂tu‖L∞([0,T/ε);Hs
µ) + ‖u‖L∞([0,T/ε);Hs+1

µ ) ≤ C(M, |u0|Hs+1
µ

).

Assume additionally that for fixed n, k ∈ N, one has xju0 ∈ Hs+s̄, with 0 ≤ j ≤ n

and s̄ = k + 1 + 2(n − j). Then there exists T = C(M,n, k,
∑n

j=0 |xju0|Hs+s̄
µ

) > 0
such that for 0 ≤ t ≤ T × min(1/ε, 1/µ), one has

‖xn∂k∂tu‖L∞([0,t);Hs
µ) + ‖xn∂ku‖L∞([0,t);Hs+1

µ ) ≤ C


M,n, k,

n∑
j=0

|xju0|Hs+s̄
µ


.

In particular, one has, for 0 ≤ t ≤ T × min(1/ε, 1/µ),

‖∂tu‖L∞([0,t);Xs
n,µ) + ‖u‖L∞([0,t);Xs+1

n,µ ) ≤ C(M,n, |u0|Xs+1
n,µ

).

Remark 1.5. The well-posedness of the Cauchy problem for inviscid Burgers, KdV
and eKdV equations are well-known (see for example Refs. 11, 40, 41, 29, 18 and
references therein), and actually do not require µβ > 0. The case of Constantin–
Lannes equation is provided in Proposition 4 in Ref. 20.

The persistence of the solution in weighted Sobolev norms for the Constantin–
Lannes equation is new, as far as we know. Similar results in the case of (eventually
extended) Korteweg–de Vries equations are obtained in slightly different setting
(for the most part using weighted L2 spaces intersected with non-weighted Sobolev
spaces Hs, s > 0); see Refs. 35, 10, 59, 63, 15, 51, 52 and 13.

As mentioned previously, we consider two different approaches concerning the
justification of scalar equations such as (1.4), to construct approximate solutions to
the Green–Naghdi system (1.3), and therefore as asymptotic models for the propa-
gation of internal waves. The first justification, that we call unidirectional approx-
imation, consists in adjusting carefully the initial data so that solutions of (1.3)
provide a good approximation of the flow. The second justification states that any
initial perturbation of the flow can be approximately decomposed into the sum of
two decoupled waves, each of them satisfying a scalar equation. Controlling the
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precision of such decoupled approximation is of course more difficult, and the uni-
directional approximation gains in precision what it lacks in generality.

These two approaches have been successfully developed in the (one layer) water
wave situation (see Ref. 47 and references therein), and extended to the bifluidic
case in the long wave regime in Ref. 25. Our results may therefore be considered as
a continuation of these earlier works.

Unidirectional propagation. This result follows the strategy developed for the
water-wave problem in Refs. 37 and 20. We prove that if one chooses carefully
the initial perturbation (deformation of the interface as well as shear layer-mean
velocity), then the flow can be approximated as a solution of the Constantin–Lannes
equation (1.4), with a great accuracy.

Proposition 1.6. Set λ, θ ∈ R, and ζ0 ∈ Hs+5 with s ≥ s0 > 3/2. For (ε, µ, δ, γ) =
p ∈ P , as defined in (1.1), denote (ζp)p∈P the unique solution of the equation

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ + µνθ,λ
x ∂3

xζ − µνθ,λ
t ∂2

x∂tζ

+µε∂x(κθ,λ
1 ζ∂2

xζ + κθ
2(∂xζ)2) = 0,

where parameters αi (i = 1, 2, 3), νθ,λ
x , νθ,λ

t , κθ,λ
1 , κθ

2, are precisely enclosed in
Proposition 4.1. For given Ms+5, h > 0, assume that there exists Ts+5 > 0 such
that

Ts+5 = max(T ≥ 0 such that ‖ζp‖L∞([0,T );Hs+5) ≤Ms+5),

and for any (t, x) ∈ [0, Ts+5) × R,

h1(t, x) = 1 − εζp(t, x) > h > 0, h2(t, x) =
1
δ

+ εζp(t, x) > h > 0.

Then define vp as vp = h1+γh2
h1h2

v[ζp], with

v[ζ] = ζ + ε
α1

2
ζ2 + ε2

α2

3
ζ3 + ε3

α3

4
ζ4 + µν∂2

xζ + µε(κ1ζ∂
2
xζ + κ2(∂xζ)2),

where parameters α1, α2, α3 are as above, and ν = ν0,0
x , κ1 = κ0,0

1 , κ2 = κ0
2.

Then (ζp, vp) is consistent with Green–Naghdi equations (1.3), of order s and
on [0, Ts+5), with precision O(ε), where

ε = C(Ms+5, h
−1, δ−1

min, δmax, εmax, µmax, |λ|, |θ|) × max(ε4, µ2).

Remark 1.7. When γ → 0 and δ → 1, one recovers the one-fluid model introduced
by Constantin and Lannes in Ref. 20, with q = 1−θ

6 and λ = 0, using notations
therein. In the bi-fluidic case, Choi and Camassa [17, Appendix A] obtained a very
similar result.

Remark 1.8. Our approximation consists in solving a scalar evolution equation
for the deformation at the interface, followed by a reconstruction of the shear
layer-mean velocity from the deformation (in particular, the initial shear velocity is
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determined by the initial deformation). Following Ref. 20, a similar strategy would
consist in looking for an evolution equation for the shear layer-mean velocity, and
reconstruct the deformation at the interface. We decide not to present the outcome
of such strategy, as the result is very similar, and calculations are somewhat heavier
in that case.

Remark 1.9. As discussed in Ref. 20 (Proposition 5), specific values of parameters
in (4.1) yield equations with different properties, especially concerning the behavior
near the maximal time of definition (if it is finite). Indeed, the proof of Proposition 5
in Ref. 20 can easily be adapted to more general coefficients, and one obtains:

• If νθ,λ
t > 0, κθ,λ

1 = 2κθ
2 > 0 and α3 > 0, then singularities can develop in finite

time only in the form of surging wave breaking. In other words, if the maximal
time of existence of ζ is finite, T <∞, then

sup
t∈[0,T ),x∈R

{|ζ(t, x)|} <∞ and sup
x∈R

{∂xζ(t, x)} ↑ ∞ as t ↑ T.

• If νθ,λ
t > 0, κθ,λ

1 = 2κθ
2 < 0 and α3 < 0, then singularities can develop in finite

time only in the form of plunging wave breaking. In other words, if the maximal
time of existence of ζ is finite, T <∞, then

sup
t∈[0,T ),x∈R

{|ζ(t, x)|} <∞ and inf
x∈R

{∂xζ(t, x)} ↓ −∞ as t ↑ T.

Identity κθ,λ
1 = 2κθ

2 holds in the line θ − λ = 1/2, and in that case, νθ,λ
t > 0 if and

only if θ > 1/4. Restricting to θ ≤ 1 as natural values for the use of BBM trick, one
can easily check that if γ = 0, then singularities may occur only as surging wave
breaking, as it is the case in the one-layer situation. On the contrary, if γ ∼ 1, as is
the case in a weakly stratified ocean (small variation of densities) then singularities
will occur as surging wave breaking if δ > 1 (thicker upper layer), and plunging
wave breaking will occur for δ < 1 (thicker lower layer).

The decoupled approximation. We now turn to the case of a generic initial pertur-
bation of the flow. When neglecting any term of size O(ε+ µ) in (1.3), one obtains
a simple wave equation for ζ, v̄, which predicts that the flow splits into two coun-
terpropagating waves, each one moving at velocity c = ±1. Our aim is to provide
a higher precision model, by allowing each of these waves to satisfy a scalar evo-
lution equation. The strategy presented here has been used in Ref. 8, where the
authors present a similar rigorous justification of the KdV equation as asymptotic
model for the (one fluid) water wave problem in the long wave regime (see Ref. 25
for the bi-fluidic case). As discussed earlier on, a major difference of the bifluidic
case is the existence of a critical ratio, for which the quadratic nonlinearity in our
models vanish. This is our main motivation for the present work, which extends
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the previous results to more general regimes, allowing greater nonlinearities, and
higher order scalar equations. More precisely, we define the following.

Definition 1.10. (Constantin–Lannes decoupled approximation) Let ζ0, v0 be
given scalar functions, and set parameters (ε, µ, γ, δ) ∈ P , as defined in (1.1), and
(λ, θ) ∈ R

2. The Constantin–Lannes decoupled approximation is then

UCL ≡ (v+(t, x− t) + v−(t, x + t), (γ + δ)(v+(t, x− t) − v−(t, x+ t))),

where v±|t=0 = 1
2 (ζ0 ± v0

γ+δ )|t=0 and v± = (1 ± µλ∂2
x)−1vλ± with vλ± satisfying

∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± ε2α2(vλ

±)2∂xv
λ
± ± ε3αθ,λ

3 (vλ
±)3∂xv±

±µνθ,λ
x ∂3

xv
λ
± − µνθ,λ

t ∂2
x∂tv

λ
± ± µε∂x(κθ,λ

1 vλ
±∂

2
xv

λ
± + κθ

2(∂xv
λ
±)2) = 0, (1.5)

with parameters disclosed precisely in (5.11).

As mentioned above, the Constantin–Lannes equation is the higher order model
we consider. It is not obvious that such precise model offers a significantly better
approximation than lower-order models. As a matter of fact, this is generically not
the case, as discussed in Sec. 5.3 (see Remark 1.15, below). Thus we also consider
models with formally lower order accuracy.

Definition 1.11. (Lower order decoupled approximations) Let ζ0, v0 be given
scalar functions, and set parameters (ε, µ, γ, δ) ∈ P , (λ, θ) ∈ R

2. A decoupled
approximate solution of the system (1.3) is

U ≡ (v+(t, x− t) + v−(t, x+ t), (γ + δ)(v+(t, x− t) − v−(t, x+ t))),

where v±|t=0 = 1
2 (ζ0 ± v0

γ+δ ) and v± = (1 ± µλ∂2
x)−1vλ± with vλ± satisfying a scalar

evolution equation. In what follows, we consider

• the inviscid Burgers equation:

∂tv
λ
± ± εα1v

λ
±∂xv

λ
± = 0;

• the Korteweg–de Vries (or more precisely Benjamin–Bona–Mahony) equation:

∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± µνθ,λ

x ∂3
xv

λ
± − µνθ,λ

t ∂2
x∂tv

λ
± = 0;

• the extended Korteweg–de Vries equation:

∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± ε2α2(vλ

±)2∂xv
λ
± ± µνθ,λ

x ∂3
xv

λ
± − µνθ,λ

t ∂2
x∂tv

λ
± = 0;

where the parameters are the same as in Definition 1.10.

Let us now state our main results, concerning the justification of the decoupled
scalar approximations.

Proposition 1.12. (Consistency) Let ζ0, v0 ∈ Hs+6, with s ≥ s0 > 3/2. For
(ε, µ, δ, γ) = p ∈ P , as defined in (1.1), we denote Up

CL the unique solution of
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the CL approximation, as defined in Definition 1.10. For some given M�
s+6 > 0,

sufficiently large, assume that there exists T � > 0 and a family (Up
CL)p∈P with

T � ≡ max(T ≥ 0 s.t. ‖Up
CL‖L∞([0,T );Hs+6) + ‖∂tU

p
CL‖L∞([0,T );Hs+5) ≤M�

s+6).

Then there exists U c = U c[Up
CL] such that U ≡ Up

CL +U c is consistent with Green–
Naghdi equations (1.3) of order s on [0, t] for t < T �, at precision O(ε�

CL) where

ε�
CL = Cmax(ε2(δ2 − γ)2, ε4, µ2)(1 +

√
t),

with C = C(M�
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|), and the corrector term U c is esti-
mated as

‖U c‖L∞([0,T �];Hs) + ‖∂tU
c‖L∞([0,T �];Hs) ≤ Cmax(ε(δ2 − γ), ε2, µ)min(t,

√
t).

Additionally, if there exists α > 1/2, M 	
s+6, T

	 > 0 such that

6∑
k=0

‖(1 + x2)α∂k
xU

p
CL‖L∞([0,T �);Hs)

+
5∑

k=0

‖(1 + x2)α∂k
x∂tU

p
CL‖L∞([0,T �);Hs) ≤M 	

s+6,

then U ≡ Up
CL + U c is consistent with Green–Naghdi equations (1.3) of order s on

[0, t] for t < T 	, at precision O(ε	
CL) where

ε	
CL = C max(ε2(δ2 − γ)2, ε4, µ2),

with C = C(M 	
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|) and U c is uniformly estimated as

‖U c‖L∞([0,T �];Hs) + ‖∂tU
c‖L∞([0,T �];Hs) ≤ Cmax(ε(δ2 − γ), ε2, µ)min(t, 1).

Equivalent results can be obtained when following the exact same strategy, but
using lower order equations describe the evolution of the decoupled waves, v±. We
detail below the accuracy of such approximations.

Proposition 1.13. Assume that the hypotheses of Proposition 1.12 hold. Denote
Up

eKdV , U
p
KdV and Up

iB , respectively, the solutions of the eKdV, KdV and iB
approximations, as defined in Definition 1.11. In each case, we assume that the
decoupled approximation is uniformly estimated in [0, T �], as in Proposition 1.12.
Then

(1) there exists U c = U c[Up
eKdV ] such that U ≡ Up

eKdV + U c is consistent with
Green–Naghdi equations (1.3) of order s on [0, t] for t < T �, at precision
O(ε�

eKdV ):

ε�
eKdV = C × (max(ε2(δ2 − γ)2, ε4, µ2)(1 +

√
t) + max(ε3, µε));
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(2) there exists U c = U c[Up
KdV ] such that U ≡ Up

KdV +U c is consistent with Green–
Naghdi equations (1.3) of order s on [0, t] for t < T �, at precision O(ε�

KdV ):

ε�
KdV = C × (max(ε2(δ2 − γ)2, ε4, µ2)(1 +

√
t) + ε2);

(3) there exists U c = U c[Up
iB ] such that U ≡ Up

iB + U c is consistent with Green–
Naghdi equations (1.3) of order s on [0, t] for t < T �, at precision O(ε�

iB ):

ε�
iB = C × (max(ε2(δ2 − γ)2, ε4, µ2)(1 +

√
t) + max(ε2, µ));

where C = C(M 	
s+6, δ

−1
min, δmax, εmax, µmax, |λ|, |θ|). Each time, the corrector term

U c is estimated as follows :

‖U c‖L∞([0,T �];Hs) + ‖∂tU
c‖L∞([0,T �];Hs) ≤ Cmax(ε(δ2 − γ), ε2, µ)min(t,

√
t).

Moreover, if the decoupled approximation is sufficiently localized in space, then
all the estimates are improved as in the second part of the Proposition 1.12 (that is
replacing

√
t by 1).

Remark 1.14. The function U c, which depends only on the decoupled waves v±,
is a first order corrector which allows to take into account the leading order cou-
pling effects, and therefore reach the desired accuracy. Its construction and precise
definition is explicitly displayed in the proof of the proposition; see Sec. 5.2, and in
particular Definition 5.5. The approximate solution given by U ≡ Up

CL +U c can be
seen as a weakly coupled model of independent interest, in the spirit of Ref. 65.

Remark 1.15. In the estimates presented in Propositions 1.12 and 1.13, the terms
growing in O(

√
t) come from coupling effects between the two propagating waves,

that are neglected in our decoupled models; this is why the accuracy is significantly
better if the initial data is localized in space, as the two counterpropagating waves
will be located far away from each other after some time.

Uniformly bounded terms are the contribution of unidirectional errors, gener-
ated by the different manipulations on the equation (e.g. BBM trick), and eventually
neglected terms in lower order approximations for Proposition 1.13, below.

The magnitude of each contribution, and therefore the accuracy of the decoupled
approximation, depends on

• the evolution equation considered (CL, eKdV, KdV, etc.);
• the size of the parameters ε, µ as well as δ2 − γ (critical ratio);
• the localization in space of the initial data;
• the time-scale considered.

In that respect, it is not obvious to decide which approximation is the best to
consider, that is what is the simplest equation leading to the highest accuracy. We
discuss several important cases (long-wave regime, Camassa–Holm regime with crit-
ical or non-critical ratio) in Sec. 5.3, with several numerical simulations to support
our conclusions.
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Long time behavior . A notable difference in the statement of our results, when
compared with previous work in Refs. 8, 25, 20, is that our estimates in Proposi-
tions 1.12 and 1.13 (and similarly Proposition 1.6) are valid as long as the solution
of the approximate scalar model is defined and uniformly estimated. Let us note
first that Proposition 1.4 ensures that these results are not empty, but on the con-
trary are valid for long times (provided that νθ,λ

t > 0 and the initial data sufficiently
smooth). More precisely, one has straightforwardly the following result.

Corollary 1.16. (Existence and magnitude of T �, T 	) Let (ζ0, v0) = U0 ∈
Hs+7, s ≥ s0 > 3/2, and let p ∈ P , with additional restriction νθ,λ

t > ν0 > 0.
Then there exists C1, C2 = C(µmax, εmax, δ

−1
min, δmax, |λ|, |θ|, ν−1

0 , |U0|Hs+7
µ

),
independent of p, such that for any M�

s+6 ≥ C1, the decoupled approximate solutions
defined in Propositions 1.12 and 1.13 are uniquely defined and satisfy the uniform
bound of the proposition, with

T � ≥ C2/ε.

If U0 ∈ Xs+7
2 , there is C1, C2 = C(µmax, εmax, δ

−1
min, δmax, |λ|, |θ|, ν−1

0 , |U0|Xs+7
2,µ

)

such that for any M 	
s+6 ≥ C1, one has

T 	 ≥ C2/max(ε, µ).

One question, which is essential in the discussion of Sec. 5.3, is whether these
above estimates are optimal, or in the contrary can be extended to longer times.
Let us discuss below some elements of answer.

First, it is well known that inviscid Burgers equation ∂tu+u∂xu will generate a
shock in finite time, for any nontrivial, decreasing at infinity initial data. A simple
scaling arguments shows that the inviscid Burgers decoupled approximation will
therefore generate shocks in finite time T ≈ 1/ε. On the contrary, using conservation
laws of the KdV equation, one can extend local well-posedness result inherited
from the hyperbolic energy method, to global well-posedness in sufficiently regular
spaces Hs, s ≥ 1 (see Ref. 42 among many other works). The same result holds
for the modified KdV (when the power of the nonlinearity is non-quadratic but
sub-critical), and is therefore valid for extended Korteweg–de Vries equations in
Definition 1.11, provided νθ,λ

t = 0.1

Concerning higher order models, it is known that Camassa–Holm family of
equations, related to (1.4), can develop singularities in finite time in the form of
wave breaking.19,13 In Ref. 20, the authors show that wave breaking of solutions
to (1.4) occurs for a specific set of parameters, at hyperbolic time T ≈ 1/ε, provided
that the initial data is sufficiently large in L∞ norm. However, as the justification
of our model assumes that the initial deformation is bounded in Sobolev norm,
uniformly with respect to the parameters, assumptions of Ref. 20 (Proposition 6)
cannot be justified. Thus the problem of the well-posedness of Constantin–Lannes
equation for longer time than the one expressed in Proposition 1.4 is still open, as
far as we know.
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As for the localization in space, it is clear that our models, as they include dis-
persive terms, cannot be uniformly controlled in weighted Sobolev norms, globally
in time. However, as the two counterpropagating waves move away from each other
while their spatial localization weakens, it does not seem out of reach to extend
Propositions 1.12 and 1.13 in order to uniformly control the coupling effects for
very long time. On the other hand, in order to complete the full justification of
our asymptotic models as described above, one has to obtain Hypothesis 1.3 over
times greater than the typical hyperbolic time scale O(1/ε). Thus the dispersive
properties of the scalar models we consider, which are largely overlooked in this
work but have been extensively studied in the literature, will play a predominant
role in the behavior of the system at very long time. To conclude, let us note that,
despite all the aforementioned difficulties, numerical simulations in Sec. 5.3 indi-
cate that our uniform estimate in Proposition 1.12 remains valid for times of order
O(ε−3/2).

Outline of the paper . The precise presentation and justification of the governing
(full Euler) equations of our system is introduced in Sec. 2. Using the shallowness
assumption (µ � 1), we then introduce the so-called Green–Naghdi model (1.3),
as written out above. Several equivalently precise models are constructed, using
different variables; a short analysis on the linear well-posedness of these systems
supports the choice of the shear layer-mean velocity, which yields (1.3).

The well-posedness of the scalar models we consider, as well as the persistence
of spatial decay of its solutions (Proposition 1.4), is proved in Sec. 3.

In Sec. 4, we turn to the case of the unidirectional approximation, and prove
Proposition 1.6. We then numerically investigate if the quite restricting condition on
the initial data arises naturally, that is if after some time, the flow generated by any
initial perturbation will eventually decompose into two almost purely unidirectional
waves.

Finally, Sec. 5 is dedicated to the study of the decoupled models. In Sec. 5.1, we
present a formal argument which allows to derive the decoupled approximations, as
defined precisely in Definitions 1.10 and 1.11. As an intermediary step, we introduce
a coupled asymptotic model, which we believe is of independent interest: (5.3a)–
(5.3b) is a simplified version of the Green–Naghdi equation, with the same precision
in the Camassa–Holm regime (1.2), as stated in Proposition 5.2. The main result,
Proposition 1.12, is proved in Sec. 5.2. Finally, Sec. 5.3 contains a discussion con-
cerning the competition between the different scalar models, in various scenarios,
supported by numerical simulations.

2. Derivation of the Green–Naghdi System

This section is dedicated to the construction and justification of the Green–
Naghdi model (1.3), which is the groundwork of our study. We first briefly recall
the so-called full Euler system (2.1), governing the evolution of two layers of
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immiscible, homogeneous, ideal, incompressible fluid under the sole influence of
gravity. Following Craig–Sulem,22 the system can be written as two evolution equa-
tions (2.3) coupling Zakharov’s canonical variables,67 thanks to the use of Dirichlet-
to-Neumann operators (Definition 2.1).

After non-dimensionalizing our system of equations in order to make apparent
of the dimensionless parameters at stake, we expand the Dirichlet-to-Neumann
operators with respect to the shallowness, parameter, µ (Proposition 2.2). Green–
Naghdi models are obtained when replacing the Dirichlet-to-Neumann operators by
their truncated expansion, and one obtains successively (2.14), (2.17) and (2.19).
These systems are equivalent, but handle different velocity variables as unknowns.
The latter is the system we base our study on, i.e. (1.3), and considers the shear
layer-mean velocity, obtained after integrating the velocity potential across the
vertical layer in each fluid.c

All of these asymptotic models are justified by a consistency result, stating that
solutions of the full Euler system satisfy Green–Naghdi asymptotic models up to a
small remainder, of size O(µ2).

2.1. The full Euler system

The system we study consists in two layers of immiscible fluid, compelled below by
a flat bottom and above by a flat, rigid lid (see Fig. 1). We restrict ourselves to the
two-dimensional case, i.e. to horizontal dimension d = 1. The domains of the two
fluids are infinite in the horizontal dimension, and the fluids are at rest at infinity.
The depth of the upper and lower layers are, respectively, d1 and d2.

We assume that the interface between the two fluids is given as the graph of a
function ζ(t, x) which expresses the deviation from its rest position {(x, z), z = 0}
at the horizontal spatial coordinate x and at time t. Therefore, at each time t ≥ 0,
the domains of the upper and lower fluid (denoted, respectively, Ωt

1 and Ωt
2), are

given by

Ωt
1 = {(x, z) ∈ R

d × R, ζ(t, x) ≤ z ≤ d1},

Ωt
2 = {(x, z) ∈ R

d × R,−d2 ≤ z ≤ ζ(t, x)}.

We assume that the two domains are strictly connected, that is

d1 + ζ(t, x) ≥ h > 0, d2 + ζ(t, x) ≥ h > 0.

cNote that one cannot write the full Euler system in the simple form of two evolution equations

using layer-mean velocity variables, as the pressure cannot be eliminated from the equation. The
formulation of the Green–Naghdi system with the shear layer-mean velocity relies on the assump-
tion of shallow water, µ � 1, which allows to approximate Zakharov’s canonical variables in terms
of layer-mean velocity variables. In Refs. 16 and 17, Choi and Camassa formally construct similar
Green–Naghdi models using layer-mean velocity variables from start to finish.
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We denote by (ρ1,v1) and (ρ2,v2) the mass density and velocity fields of,
respectively, the upper and the lower fluid. The two fluid are assumed to be
homogeneous and incompressible, so that the mass densities ρ1, ρ2 are constant,
and the velocity fields v1, v2 are divergence free. As we assume the flows to
be irrotational, one can express the velocity field as gradients of a potential:
vi(t, x, z) = ∇x,zφi(t, x, z) (i = 1, 2), and the velocity potentials satisfy Laplace’s
equation

∂2
xφi + ∂2

zφi = 0.

The fluids being ideal, they satisfy the Euler equations; the momentum equa-
tions can be integrated, which yields Bernoulli’s equation:

∂tφi +
1
2
|∇x,zφi|2 = −P

ρi
− gz in Ωt

i (i = 1, 2),

where P denotes the pressure inside the fluid.
From the assumption that no fluid particle crosses the surface, the bottom or

the interface, one deduces kinematic boundary conditions, and the set of equations
is closed by the continuity of the pressure at the interface, assuming that there is
no surface tension.d

Altogether, the governing equations of our problem are the following:


∂2
xφi + ∂2

zφi = 0 in Ωt
i, i = 1, 2,

∂tφi +
1
2
|∇x,zφi|2 = − P

ρi
− gz in Ωt

i, i = 1, 2,

∂zφ1 = 0 on Γt ≡ {(x, z), z = d1},

∂tζ =
√

1 + |∂xζ|2∂nφ1 =
√

1 + |∂xζ|2∂nφ2 on Γ ≡ {(x, z), z = ζ(t, x)},

∂zφ2 = 0 on Γb ≡ {(x, z), z = −d2},

P continous on Γ,

(2.1)

where n is the unit upward normal vector at the interface.

Rewriting the system as evolution equations . The system (2.1) can be reduced into
two evolution equations coupling Zakharov’s canonical variables, namely the defor-
mation of the free interface from its rest position, ζ, and the trace of the upper
potential at the interface, ψ:

ψ ≡ φ1(t, x, ζ(t, x)).

dThe surface tension effects should be included for our system to be well-posed. However, the
surface tension is very small in practice, and does not play any role in our asymptotic analysis.
See Ref. 46 for an in-depth study of this phenomenon.
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The potentials φ1 and φ2 are uniquely deduced from (ζ, ψ) as the unique solutions
of the following Laplace’s problemse:


(∂2

x + ∂2
z )φ1 = 0 in Ω1,

φ1 = ψ on Γ,

∂zφ1 = 0 on Γt,

and




(∂2
x + ∂2

z )φ2 = 0 in Ω2,

∂nφ2 = ∂nφ1 on Γt,

∂zφ2 = 0 on Γb.

(2.2)

More precisely, we define the so-called Dirichlet–Neumann operators.

Definition 2.1. (Dirichlet–Neumann operators) Let ζ ∈ W 1,∞(R), and ∂xψ ∈
H1/2(R). Then we define

G[ζ]ψ =
√

1 + |∂xζ|2(∂nφ1)|z=ζ = (∂zφ1)|z=ζ − (∂xζ)(∂xφ1)|z=ζ ,

H [ζ]ψ = ∂x(φ2|z=ζ) = ∂x(φ2(t, x, ζ(t, x))),

where φ1 and φ2 are uniquely defined (up to a constant for φ2) as the solutions in
H2(R) of (2.2).

The well-posedness of Laplace’s problem (2.2), and therefore the Dirichlet–
Neumann operators, follow from classical arguments (see, for example, Ref. 47).

One can then rewrite the conservation of momentum equations in (2.1) at the
interface, thanks to chain rule:

∂t(φi|z=ζ) + gζ +
1
2
|∂x(φ2|z=ζ)|2 +

(G[ζ]ψ + (∂xζ)(∂x(φ2|z=ζ))2

2(1 + |∂xζ|2)
=
P |z=ζ

ρi
.

Using the continuity of the pressure at the interface, one deduces from the identities
above

∂t(ρ2H [ζ]ψ − ρ1∂xψ) + g(ρ2 − ρ1)∂xζ +
1
2
∂x(ρ2|H [ζ]ψ|2 − γ|∂xψ|2)

= ∂xN (ζ, ψ),

where N is defined as

N (ζ, ψ) ≡ ρ1(G[ζ]ψ + (∂xζ)(∂xψ))2 − ρ2(G[ζ]ψ + (∂xζ)H [ζ]ψ)2

2(1 + |∂xζ|2)
.

The kinematic boundary condition at the interface is obvious, and the sys-
tem (2.1) is therefore rewritten as


∂t(ρ2H [ζ]ψ − ρ1∂xψ) + g(ρ2 − ρ1)∂xζ +

1
2
∂x(ρ2|H [ζ]ψ|2 − ρ1|∂xψ|2)

= ∂xN (ζ, ψ),

∂tζ = G[ζ]ψ,

(2.3)

which is exactly system (9) in Ref. 9.

eThe solution of the second Laplace’s problem is defined up to a constant, which does not play
any role in our analysis.



October 25, 2013 10:42 WSPC/103-M3AS 1350046

Decoupled and Unidirectional Asymptotic Models for Internal Waves 21

Nondimensionalization of the system. Thanks to an appropriate scaling, the two-
layer full Euler system (2.3) can be written in dimensionless form. The study of the
linearized system (see Ref. 46, for example), which can be solved explicitly, leads
to a well-adapted rescaling.

Let a be the maximum amplitude of the deformation of the interface. We denote
by λ a characteristic horizontal length, say the wavelength of the interface. Then
the typical velocity of small propagating internal waves (or wave celerity) is

c0 =

√
g
(ρ2 − ρ1)d1d2

ρ2d1 + ρ1d2
.

Consequently, we introduce the dimensionless variablesf

z̃ ≡ z

d1
, x̃ ≡ x

λ
, t̃ ≡ c0

λ
t,

the dimensionless unknowns

ζ̃(x̃) ≡ ζ(x)
a

, ψ̃(x̃) ≡ d1

aλc0
ψ(x),

and the four independent dimensionless parameters

γ =
ρ1

ρ2
, ε ≡ a

d1
, µ ≡ d2

1

λ2
, δ ≡ d1

d2
.

With this rescaling, the system (2.3) becomes (we withdraw the tildes for the sake
of readability)


∂tζ −

1
µ
Gµψ = 0,

∂t(Hµψ − γ∂xψ) + (γ + δ)∂xζ +
ε

2
∂x(|Hµψ|2 − γ|∂xψ|2) = µε∂xNµ,

(2.4)

with

Nµ ≡
( 1

µG
µψ + ε(∂xζ)Hµψ)2 − γ( 1

µG
µψ + ε(∂xζ)(∂xψ))2

2(1 + µ|ε∂xζ|2)
,

and the dimensionless Dirichlet-to-Neumann operators defined by

Gµψ ≡
√

1 + |ε∂xζ|2(∂nφ1)|z=εζ = −µε(∂xζ)(∂xφ1)|z=εζ + (∂zφ1)|z=εζ ,

Hµψ ≡ ∂x(φ1|z=εζ) = (∂xφ1)|z=εζ + ε(∂xζ)(∂zφ1)|z=εζ ,

where φ1 and φ2 are the solutions of the rescaled Laplace problems


(µ∂2
x + ∂2

z )φ1 = 0 in Ω1 ≡ {(x, z) ∈ R
2, εζ(x) < z < 1},

∂zφ1 = 0 on Γt ≡ {z = 1},
φ2 = ψ on Γ ≡ {z = εζ},

(2.5)

fWe choose d1 as the reference vertical length. By doing so, we implicitly assume that the two
layers of fluid have comparable depth; thus the depth ratio, δ, do not approach zero or infinity.



October 25, 2013 10:42 WSPC/103-M3AS 1350046

22 V. Duchêne




(µ∂2
x + ∂2

z )φ2 = 0 in Ω2 ≡
{

(x, z) ∈ R
2,−1

δ
< z < εζ

}
,

∂nφ1 = ∂nφ2 on Γ2,

∂zφ2 = 0 on Γb ≡
{
z = −1

δ

}
.

(2.6)

Similarly as in Definition 2.1, the Dirichlet–Neumann operators are well defined,
provided that ζ ∈ W 1,∞(R), ∂xψ ∈ H1/2(R), and the following condition holds:
there exists h > 0 such that

h1 ≡ 1 − εζ ≥ h > 0, h2 ≡ 1
δ

+ εζ ≥ h > 0. (2.7)

Any reference of the full Euler system in the following concerns system (2.4) with
operators defined as above.

2.2. Asymptotic models

Our aim is now to obtain asymptotic models for the full Euler system (2.4), using
smallness of dimensionless parameters. In the following, we will consider the case
of shallow water, namely

µ� 1.

The key ingredient comes from expansions of the Dirichlet–Neumann operators, in
terms of µ. Replacing the operators by the leading order terms of these expansions
allow to obtain the desired asymptotic models, which are consequently justified in
the sense of consistency.

As a second step, we rewrite the equations using the shear layer-mean velocity
as unknown. One benefit of such a choice is that it yields to a much better behavior
concerning the linear well-posedness, as we discuss at the end of this section.

Our method has been used by Alvarez–Samaniego and Lannes2 in the case of
the water-wave problem (one layer of fluid, with free surface), and lead the authors
to a complete rigorous justification of the so-called Green–Naghdi equations.30 In
the case of two layers with a free surface, a shallow water model (first order) and
Boussinesq-type models (in the long wave regime) have been derived and justified
in the sense of consistency in Ref. 9; the analysis below is therefore an extension
of their work. Similar models as our Green–Naghdi system have been formally
obtained in Ref. 17, as well as in Ref. 53 (with the additional assumption of γ ≈ 1)
and in Ref. 21, but it is the first time to our knowledge that a rigorous justification
is provided. Let us also mention the work concerning the case of two layers of fluid
with an interface and a free surface: Green–Naghdi-type models have been derived
in Refs. 4 and 5, and justified in the sense of consistency in Ref. 24. One could
formally recover our models from (44) and (60) in Ref. 24 by imposing the surface
to be flat.
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Expansion of the Dirichlet–Neumann operators . The main ingredients of the fol-
lowing result are given in Ref. 9, and we extend their result one order further.

Proposition 2.2. (Expansion of the Dirichlet–Neumann operators) Let s ≥ s0 +
1/2, with s0 > 1/2. Let ψ be such that ∂xψ ∈ Hs+11/2(R), and ζ ∈ Hs+9/2(R). Let
h1 = 1 − εζ and h2 = 1/δ + εζ such that (2.7) is satisfied. Then∣∣∣∣ 1µGµψ − ∂x(h1∂xψ)

∣∣∣∣
Hs

≤ µC1, (2.8)

∣∣∣∣ 1µGµψ − ∂x(h1∂xψ) − µ
1
3
∂2

x(h1
3∂2

xψ)
∣∣∣∣
Hs

≤ µ2C3, (2.9)

∣∣∣∣Hµψ +
h1

h2
∂xψ

∣∣∣∣
Hs

≤ µC0, (2.10)

∣∣∣∣Hµψ +
h1

h2
∂xψ − µ

3h2
∂x

(
h2

3∂x

(
h1

h2
∂xψ

)
− h1

3∂2
xψ

)∣∣∣∣
Hs

≤ µ2C2, (2.11)

with Cj = C(h−1, εmax, µmax, δ
−1
min, δmax, |ζ|Hs+3/2+j , |∂xψ|Hs+5/2+j ). The estimates

are uniform with respect to the parameters (µ, ε, γ, δ) ∈ P , as defined in (1.1).

Proof. As remarked in Ref. 9, the operator Gµψ can be deduced from similar
operator in the (one layer) water wave case with flat bottom:

Gµψ = −G[−εζ]ψ,
where G is defined in Ref. 2 (Sec. 3), and estimates (2.8), (2.9) follows from Propo-
sition 3.8 therein.

Estimate (2.10) is given in Ref. 9, and we obtain (2.11) using the same method,
expanding one order further. Let us detail the strategy.

The first step consists in rewriting the scaled Laplace problem (2.6) into a
variable-coefficient, boundary-value problem on the flat strip S := R × (−1, 0)
using the diffeomorphism

S → Ω2,

σ : (x, z) �→ σ(x, z) ≡ (x, (1/δ + εζ)z + εζ).

Now, one can check9,24 that φ2 solves (2.6) if and only if φ2 ≡ φ2 ◦ σ satisfies{
∇x,z ·Qµ[εζ]∇x,zφ2 = 0 in S

∂nφ2|z=0 = Gµψ ∂nφ2|z=−1 = 0,
(2.12)

with

Qµ[εζ] ≡


 µ∂zσ −µ∂xσ

−µ∂xσ
1+µ|∂xσ|2

∂zσ




=

(
0 0

0 1
1/δ+εζ

)
+ µ


 1/δ + εζ −(z + 1)ε∂xζ

−(z + 1)ε∂xζ
|(z+1)ε∂xζ|2

1/δ+εζ


,
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and where ∂nφ2 stands for the upward conormal derivative associated to the elliptic
operator involved:

∂nφ2|z=z0 =
(

0
1

)
·Q∇x,zφ2|z=z0 .

The asymptotic expansion of the Dirichlet–Neumann operator Hµ is deduced from
the identity

Hµψ = ∂x(φ2|z=0).

The second step consists in computing the formal expansion of φ2 the solution
of (2.12), as

φ2 = φ(0) + µφ(1) + µ2φ(2) + µ3φr.

One can solve (2.12) at each order, using the obvious expansion of Qµ, as well as
the known expansion of the operator Gµψ. This yields explicit formulas for φ(i),
and the estimate follows from adequate control of the residual φr .

At first order, one has

∂z

(
1

1/δ + εζ
∂zφ

(0)

)
= 0 in S

1
1/δ + εζ

∂zφ
(0)|z=0 = 0

1
1/δ + εζ

∂zφ
(0)|z=−1 = 0,

so that φ(0)(x, z) = φ(0)(x) is independent of z. At next order, one has (denoting
h2(x) = 1/δ + εζ(x))


1
h2
∂2

zφ
(1) = −∇x,z ·


 h2 −(z + 1)ε∂xζ

−(z + 1)ε∂xζ
|(z+1)ε∂xζ|2

h2


∇x,zφ

(0) = −h2∂
2
xφ

(0) in S

1
h2
∂zφ

(1)|z=0 = (ε∂xζ)(∂xφ
0) + ∂x(h1∂xψ)

1
h2
∂zφ

(0)|z=−1 = 0,

where we used that φ(0) is independent of z. The above system is a second order
ordinary differential equation, which is solvable under the condition

∂x(h1∂xψ) = −∂x(h2∂xφ
(0)),

and whose solution is then

φ(1)(x, z) = −1
2
(z + 1)2h2

2∂2
xφ

(0) + φ
(1)
0 (x),

with φ
(1)
0 (x) being a function independent of z, to be determined later. Note that

since the horizontal dimension is one,g and using the fact that the fluids are at rest

gIn the 2d case, one should introduce a non-local operator using the orthogonal projection onto
the gradient vector fields, as in Ref. 9.
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at infinity, integrating the compatibility conditions yields

∂xφ
(0) = −h1

h2
∂xψ.

Let us turn to the next order. One has


1
h2
∂2

zφ
(2) = −h2∂

2
xφ

(1)
0 + (z + 1)2F (x) in S

1
h2
∂zφ

(1)|z=0 = G(x) + (∂xh2)(∂xφ
(1)
0 ) +

1
3
∂2

x(h1
3∂2

xψ)
1
h2
∂zφ

(0)|z=−1 = 0,

with

F (x) =
h2

3

2
∂4

xφ
(0) and G(x) = −1

6
∂x(h2

3)∂3
xφ

(0).

Solving the first identity with boundary condition ∂zφ
(0)|z=−1 = 0 yields

φ(2)(x, z) = − (z + 1)2

2
h2

2∂2
xφ

(1)
0 F (x) +

(z + 1)4

12
h2F (x) + φ

(2)
0 (x),

with φ
(2)
0 (x) independent of z (and which can be set to zero for simplicity), and

solving the boundary condition at z = 0 yields the compatibility condition:

−h2∂
2
xφ

(1)
0 +

1
3
F (x) = G(x) + (∂xh2)(∂xφ

(1)
0 ) +

1
3
∂2

x(h1
3∂2

xψ),

or, equivalently,

∂x(h2∂xφ
(1)
0 ) =

1
6
∂x(h2

3∂3
xφ

(0)) − 1
3
∂2

x(h1
3∂2

xψ).

Finally, integrating this identity and using the expression of ∂xφ
(0) obtained above,

one deduces

h2∂xφ
(1)
0 = −1

3
∂x(h1

3∂2
xψ) − 1

6
h2

3∂2
x

(
h1

h2
∂xψ

)
.

The final step is as follows. Let us define

φ2,app ≡ φ(0) + µφ(1),

where φ(0) and φ(1) have been obtained by the above calculations. Note that

Happ = ∂x(φ2,app|z=0) = ∂xφ
(0)(x) + µ∂x

(
−1

2
h2

2∂2
xφ

(0) + φ
(1)
0 (x)

)

= −h1

h2
∂xψ +

µ

3h2
∂x

(
−h1

3∂2
xψ + h2

3∂x

(
h1

h2
∂xψ

))
,

which is exactly the expansion in (2.11). Therefore, the result follows from an
adequate estimate on

u ≡ ∂x(φ2|z=0) − ∂x(φ2,app|z=0).
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Let us first note that one has straightforwardly

|φ(2)|Hs ≤ C(h−1, εmax, µmax, |ζ|Hs+9/2 , |∂xψ|Hs+11/2).

Then, using previous calculations, v ≡ φ2 − φ2,app − µ2φ(2) satisfies the system

∇x,z ·Qµ[εζ]∇x,zv = µ2∇x,z · h in S

∂nφ2|z=0 = V + µ2

(
0
1

)
· h|z=0 ∂nφ2|z=−1 = µ2

(
0
1

)
· h|z=−1,

(2.13)

with h = Qµ∇x,zφ
(2), and V = Gµψ+µ∂x(h1∂xψ) +µ2 1

3∂
2
x(h1

3∂2
xψ), so that (2.9)

yields

|V |Hs ≤ µ3C(h−1, εmax, µmax, |ζ|Hs+9/2 , |∂xψ|Hs+11/2).

One can now apply Proposition 3 of Ref. 9, after straightforward adjustments, and
deduce

|∂x(v|z=0)|Hs ≤ µ2C(h−1, εmax, µmax, |ζ|Hs+9/2 , |∂xψ|Hs+11/2).

The proposition is proved.

The Green–Naghdi models . Let us now plug the expansions of Proposition 2.2 into
the full Euler system (2.4), and withdraw O(µ2) terms. One obtains


∂tζ − ∂x(h1∂xψ) − µ
1
3
∂2

x(h1
3∂2

xψ) = 0,

∂t

(
−h1 + γh2

h2
∂xψ + µ

1
h2
∂x(P∂xψ)

)
+ (γ + δ)∂xζ

+
ε

2
∂x

(∣∣∣∣−h1

h2
∂xψ + µ

1
h2
∂x(P∂xψ)

∣∣∣∣
2

− γ|∂xψ|2
)

= µε∂x(N [h1, h2]∂xψ),

(2.14)

where we denote P∂xψ = P [h1, h2]∂xψ, and with the following operators

P [h1, h2]V ≡ 1
3

(
h2

3∂x

(
h1

h2
V

)
− h1

3∂xV

)
,

N [h1, h2]V ≡ 1
2

((
∂x(h1V ) − ε(∂xζ)

h1

h2
V

)2

− γ(h1∂
2
xψ)2

)
.

Our model is justified by the following consistency result.

Proposition 2.3. Let Up ≡ (ζp, ψp)p∈P be a family of solutions of the full
Euler system (2.4), such that (2.7) holds, and ζp ∈ W 1([0, T );Hs+9/2), ∂xψ

p ∈
W 1([0, T );Hs+11/2) with s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to
p ∈ P ; see (1.1). Then Up satisfies (2.14), up to a remainder R, bounded by

‖R‖L∞([0,T );Hs) ≤ µ2C,
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with

C = C(h−1, εmax, µmax, δ
−1
min, δmax, ‖ζp‖

W 1([0,T );Hs+ 9
2 )
, ‖∂xψ

p‖
W 1([0,T );Hs+ 11

2 )
).

Proof. When substituting Up into (2.14), and after some straightforward com-
putation, one can clearly estimate the remainder using the expansions of the
Dirichlet–Neumann operators in Proposition 2.2. The only nontrivial term comes
from ∂t(Hµψp − γ∂xψ

p), which requires the corresponding expansion of ∂t(Hµψp).
This can be obtained as in Proposition 2.2, using the elliptic problems satisfied
by the time derivative of the potentials. The expansion follows in the same way,
provided that ζp ∈ W 1([0, T );Hs+9/2), ∂xψ

p ∈ W 1([0, T );Hs+11/2). See the proof
of Proposition 2.12 in Ref. 24 for more details.

In Ref. 9, the authors use the shear velocity as for the velocity variable:

v ≡ ∂x((φ2 − γφ1)|z=εζ) = Hµψ − γ∂xψ. (2.15)

The expansion of Hµ in (2.11) allows to approximate ∂xψ as a function of v:

∂xψ = − h2

h1 + γh2
v + µ

1
h1 + γh2

∂x

(
P [h1, h2]

(
− h2

h1 + γh2
v

))
+ O(µ2). (2.16)

Here and in the following, we use the notation O(·) for estimates as in Proposi-
tion 2.2.

Substituting (2.15) into (2.14), and again withdrawing O(µ2) terms, yields

∂tζ + ∂x

(
h1h2

h1 + γh2
v

)
− µ∂x(Q[h1, h2]v) = 0,

∂tv + (γ + δ)∂xζ +
ε

2
∂x

(
h1

2 − γh2
2

(h1 + γh2)2
|v|2
)

= µε∂x(R[h1, h2]v),

(2.17)

with the following operators:

Q[h1, h2]V ≡ −1
3(h1 + γh2)

(
h1∂x

(
h2

3∂x

(
h1V

h1 + γh2

))

+ γh2∂x

(
h1

3∂x

(
h2V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1
2

((
h2∂x

(
h1V

h1 + γh2

))2

− γ

(
h1∂x

(
h2V

h1 + γh2

))2
)

+ γ
h1 + h2

3(h1 + γh2)2
V ∂x

(
h2

3∂x

(
h1V

h1 + γh2

)
− h1

3∂x

(
h2V

h1 + γh2

))
.

System (2.17) is justified as an asymptotic model for the full Euler system (2.4),
by a consistency result, with the same precision as (2.14).
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Proposition 2.4. Let Up ≡ (ζp, ψp)p∈P be a family of solutions of the full
Euler system (2.4), such that (2.7) holds, and ζp ∈ W 1([0, T );Hs+9/2), ∂xψ

p ∈
W 1([0, T );Hs+11/2) with s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to
p ∈ P ; see (1.1). Define vp as in (2.15). Then (ζp, vp) satisfies (2.17), up to a
remainder R, bounded by

‖R‖L∞([0,T );Hs) ≤ µ2C,

with

C = C(h−1, εmax, µmax, δ
−1
min, δmax, ‖ζp‖

W 1([0,T );Hs+ 9
2 )
, ‖∂xψ

p‖
W 1([0,T );Hs+ 11

2 )
).

The proof of Proposition 2.4 is identical to the proof of Proposition 2.3, once one
obtains a rigorous statement of (2.16) in W 1([0, T ];Hs+1) norm, thus we omit it.

Using layer-mean velocities . As we have seen, several different velocity variables are
natural when expressing the Green–Naghdi equations. In the following, we choose
to use, as in Refs. 16 and 17 for example, the shear layer-mean velocity, defined by

v̄ ≡ u2 − γu1, (2.18)

where u1, u2 are the layer-mean velocities integrated across the vertical layer in
each fluid:

u1(t, x) =
1

h1(t, x)

∫ 1

εζ(t,x)

∂xφ1(t, x, z)dz,

u2(t, x) =
1

h2(t, x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x, z)dz.

We see two main benefits for such a choice. First, the equation describing the
evolution of the deformation of the interface is an exact equation, and not an O(µ2)
approximation. What is more, the system obtained using layer-mean velocities have
a better behavior as for the linear well-posedness. These two facts shall be discussed
in more details below.

When integrating Laplace’s equation in (2.1) against a test function ϕ̃(x, z) =
ϕ(x) on the lower domain Ω2, and using boundary kinematic equations, one has

0 =
∫∫

Ω2

ϕ̃(µ∂2
x + ∂2

z )φ2 = −
∫∫

Ω2

∇µ
x,zϕ̃ · ∇µ

x,zφ2 +
∫

Γ

ϕ∂nφ2 −
∫

Γb

ϕ∂zφ2

= −
∫

R

dx
√
µ∂xϕ

∫ εζ

−1/δ

√
µ∂xφ2(x, z)dz −

∫
R

dxGµψ,

where ∇µx,z = (
√
µ∂x, ∂z)T , so that one deduces that for any x ∈ R,

−∂x(h2u2) =
1
µ
Gµψ.
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One obtains in the same way (but using the upper fluid domain)

∂x(h1u1) =
1
µ
Gµψ.

One deduces from the above two identities, imposing zero boundary conditions
at infinity (the fluid is at rest at infinity),

h2u2 = −h1u1 and v̄ =
h1 + γh2

h1
u2 = −h1 + γh2

h2
u1.

It follows that the first equation in (2.4) becomes

∂tζ =
1
µ
Gµψ = −∂x

(
h1h2

h1 + γh2
v̄

)
.

Let us emphasize again that this identity is exact, as opposed to the O(µ2) approx-
imations in previous asymptotic models.

One also deduces an expansion of v̄ in terms of v, using Proposition 2.2 (or,
equivalently, identifying the above identity with the first line of (2.17)). It follows

v = v̄ + µ
h1 + γh2

h1h2
Q[h1, h2]v̄ + O(µ2).

System (2.17) therefore becomes

∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

∂t(v̄ + µQ[h1, h2]v̄) + (γ + δ)∂xζ +
ε

2
∂x

(
h1

2 − γh2
2

(h1 + γh2)2
|v̄|2
)

= µε∂x(R[h1, h2]v̄),

(2.19)

with the following operators:

Q[h1, h2]V ≡ −1
3h1h2

(
h1∂x

(
h2

3∂x

(
h1V

h1 + γh2

))
+ γh2∂x

(
h1

3∂x

(
h2V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1
2

((
h2∂x

(
h1V

h1 + γh2

))2

− γ

(
h1∂x

(
h2V

h1 + γh2

))2
)

+
1
3

V

h1 + γh2

(
h1

h2
∂x

(
h2

3∂x

(
h1V

h1 + γh2

))

− γ
h2

h1
∂x

(
h1

3∂x

(
h2V

h1 + γh2

)))
.

This system is exactly our Green–Naghdi system (1.3), as presented in the Intro-
duction. One obtains Proposition 1.1, namely the consistency of the solutions of
the full Euler system towards our Green–Naghdi model, in the same way as Propo-
sitions 2.3 and 2.4 above, after several technical but straightforward computations.

We prove below that system (2.19) is linearly well-posed, as opposed to
system (2.17).
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Linear dispersion relations . The linearized system from (2.17) is

∂tζ +

1
γ + δ

∂xv + µ
1 + γδ

3δ(δ + γ)2
∂3

xv = 0,

∂tv + (γ + δ)∂xζ = 0.

Let us look for solutions of the form ζ = ζ0ei(kx−ωt), v = v0ei(kx−ωt). This leads to
the algebraic system


−iωζ0 +

ik

γ + δ
v0 − µik3 1 + γδ

3δ(γ + δ)2
v0 = 0,

−iωv̄0 + ik(γ + δ)ζ0 = 0,

which yields the dispersion relation (with ωv0 = k(γ + δ)ζ0)

ω2 = k2 − µk4 1 + γδ

3δ(γ + δ)
.

This equation does not have any real solution ω(k) if µk2 1+γδ
3δ(γ+δ) > 1, thus the

system (2.17) is linearly ill-posed.
The linearized system from (2.19) is


∂tζ +

1
γ + δ

∂xv̄ = 0,

∂t

(
v̄ − µ

1 + γδ

3δ(γ + δ)
∂2

xv̄

)
+ (γ + δ)∂xζ = 0.

Same calculations as above yield the algebraic system

−iωζ0 +

ik

γ + δ
v̄0 = 0,

−iω
(
v̄0 + µk2 1 + γδ

3δ(γ + δ)
v̄0

)
+ ik(γ + δ)ζ0 = 0,

so that ωζ0 = k
γ+δ v̄

0 and the dispersion relation is

ω2

(
1 + µk2 1 + γδ

3δ(γ + δ)

)
= k2.

This equation always has solutions: ω±(k) = ±k(1 + µk2 1+γδ
3δ(γ+δ) )

−1/2.
Thus the system using layer-mean velocity variables (namely (2.19), or identi-

cally (1.3)) is linearly well-posed.

3. Well-Posedness of Our Scalar Evolution Equations;
Proof of Proposition 1.4

This section is dedicated to the study of the well-posedness of the Cauchy problem
as well as the persistence of spatial localization (expressed by weighted Sobolev
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norms), for the following equation:

(1 − µβ∂2
x)∂tu+ εα1u∂xu+ ε2α2u

2∂xu+ ε3α3u
3∂xu

+µν∂3
xu+ µε∂x(κu∂2

xu+ ι(∂xu)2) = 0, (3.1)

where αi (i = 1, 2, 3), ν, κ, ι are fixed parameters (possibly zero) and β, µ, ε > 0.
More precisely, we prove the assertions of Proposition 1.4, recalled below.

Proposition 3.1. (Well-posedness and persistence) Let u0 ∈ Hs+1, with s ≥ s0 >

3/2. Let the parameters be such that β, µ, ε > 0, and define M > 0 such that

β +
1
β

+ µ+ ε+ |α1| + |α2| + |α3| + |ν| + |κ| + |ι| ≤M.

Then there exists T = C(M, |u0|Hs+1
µ

) > 0 and a unique u ∈ C0([0, T/ε);Hs+1
µ ) ∩

C1([0, T/ε);Hs
µ) such that u satisfies (3.1) and initial condition u|t=0 = u0.

Moreover, u satisfies the energy estimate for 0 ≤ t ≤ T/ε:

‖∂tu‖L∞([0,T/ε);Hs
µ) + ‖u‖L∞([0,T/ε);Hs+1

µ ) ≤ C(M, |u0|Hs+1
µ

). (3.2)

Assume additionally that for fixed n, k ∈ N, one has xju0 ∈ Hs+s̄, with 0 ≤ j ≤ n

and s̄ = k + 1 + 2(n− j). Then there exists T = C(M,n, k,
∑n

j=0 |xju0|Hs+s̄
µ

) > 0
such that for 0 ≤ t ≤ T × min(1/ε, 1/µ), one has

‖xn∂k∂tu‖L∞([0,t);Hs
µ) + ‖xn∂ku‖L∞([0,t);Hs+1

µ ) ≤ C


M,n, k,

n∑
j=0

|xju0|Hs+s̄
µ


.

In particular, one has, for 0 ≤ t ≤ T × min(1/ε, 1/µ),

‖∂tu‖L∞([0,t);Xs
n,µ) + ‖u‖L∞([0,t);Xs+1

n,µ ) ≤ C(M,n, |u0|Xs+1
n,µ

). (3.3)

Proof. The existence and uniqueness of u ∈ C0([0, T/ε);Hs+1
µ ) ∩C1([0, T/ε);Hs

µ)
such that u satisfies (3.1) and initial condition u|t=0 = u0 ∈ Hs s ≥ s0 > 3/2 has
been obtained in Ref. 20 (where the authors used slightly different parameters).

The proof is based on an iterative scheme, which relies heavily on the following
energy estimate:

1
1 + β−1

|u|Hs+1
µ

≤ (|u(t, ·)|2Hs + βµ|u(t, ·)|2Hs+1)1/2 ≡ Es(u)(t)

≤ C(M, |u0|Hs+1
µ

),

which is proved to be valid for t ≤ Tε ≡ ε−1C(M, |u0|Hs+1
µ

). One proves in the same
way

1
1 + β−1

|∂tu|Hs
µ
≤ Es−1(∂tu)(t) ≤ C(M,Es(u)) ≤ C(M, |u0|Hs+1

µ
),

so that the estimate (3.2) follows.
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In order to obtain the estimates in the weighted Sobolev norms, we introduce the
function vn = xnu, where u satisfies (3.1). We will prove that estimate (3.4), below,
holds for any n, k ∈ N, and for 0 ≤ t ≤ Tε,µ ≡ C(M,n, k,

∑n
j=0 |xn−ju0|Hs+k+2j+1

µ
)×

min(1/ε, 1/µ) by induction on n ∈ N. Proposition 3.1 is a straightforward
consequence.

‖xn∂k∂tu‖L∞([0,t);Hs
µ) + ‖xn∂ku‖L∞([0,t);Hs+1

µ )

≤ C


M,n, k,

n∑
j=0

|xn−ju0|Hs+k+2j+1
µ


. (3.4)

The case n = 1. One can easily check that v1 ≡ xu satisfies the equation

(1 − µβ∂2
x)∂tv1 + εα1v1∂xu+ ε2α2v1u∂xu+ ε3α3v1u

2∂xu

+µν∂3
xv1 + µε∂x(κv1∂2

xu+ ι(∂xv1)(∂xu)) = R[u], (3.5)

with

R[u] ≡ −2µβ∂x∂tu+ 3µν∂2
xu+ µε((κ+ ι)u∂2

xu+ 2ι(∂xu)2).

When taking the (L2-)inner product of (3.5) with Λ2sv1, one obtains (using that
the operator Λs is symmetric for the (L2-)inner product, and ∂x is anti-symmetric)

1
2
d

dt
(Es(v1))2 + (Λs(εα1v1∂xu+ ε2α2v1u∂xu+ ε3α3v1u

2∂xu),Λsv1)

−µε((κv1∂2
xu+ ι(∂xv1)(∂xu)),Λs∂xv1) = (ΛsR[u],Λsv1).

Now, we use that u is uniformly bounded through (3.2) for t ≤ Tε.

• Using Cauchy–Schwarz inequality, and Moser estimates: |fg|Hs ≤ C|f |Hs |g|Hs

for s ≥ s0 > 1/2, one has

|(Λs(εα1v1∂xu+ ε2α2v1u∂xu+ ε3α3v1u
2∂xu),Λsv1)|

≤ |v1|2HsC(|u|Hs+1) ≤ C(M, |u0|Hs+2
µ

)(Es(v1))2.

• In the same way, and using the definition (Es(·))2 = |·|2Hs +βµ|·|2Hs+1 ≥ 1
C |·|2

Hs+1
µ

,
one has for s ≥ s0 > 3/2,

|(Λs(κv1∂2
xu+ ι(∂xv1)(∂xu)),Λs∂xv1)|

≤ C|v1|Hs+1(|v1|Hs |u|Hs+2 + |v1|Hs+1 |u|Hs+1) ≤ 1
µ
C(M, |u0|Hs+2

µ
)(Es(v1))2.

• Finally, one can check

|(ΛsR[u],Λsv1)| ≤ µ|v1|HsC(|u|Hs+2 + |∂tu|Hs+1) ≤ µC(M, |u0|Hs+3
µ

)Es(v1).

Altogether, one obtains the following differential inequality, valid for all t ≤ Tε:

1
2
d

dt
(Es(v1))2 ≤ εC(M, |u0|Hs+2

µ
)(Es(v1))2 + µC(M, |u0|Hs+3

µ
)Es(v1).
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Gronwall–Biharis inequality (see Ref. 61 for example) allows one to deduce:

Es(v1)(t) ≤ Es(v1)|t=0 +
µ

ε
C(M, |u0|Hs+3

µ
)(exp(C(M, |u0|Hs+2

µ
)εt) − 1).

When restricting t to t ≤ Tε,µ ≡ C(M, |u0|Hs+2
µ

)×min(1/ε, 1/µ), it follows that for
any s ≥ s0 > 3/2,

|xu|Hs+1
µ

≤ |xu0|Hs+1
µ

+ C(M, |u0|Hs+3
µ

).

In order to control the time derivative of v1, we take the (L2-)inner product
of (3.5) with Λ2s−2(∂tv1). Estimating each term as above, one obtains

(Es−1(∂tv1))2 ≤ ε|v1|Hs−1 |∂tv1|Hs−1C(|u|Hs) + µν|(Λs−1∂2
xv,Λ

s−1∂x∂tv1)|

+µεC|∂tv1|Hs(|v1|Hs−1 |u|Hs+1

+ |v1|Hs+1 |u|Hs) + |(Λs−1R[u],Λs−1∂tv1)|

≤ Es−1(∂tv1)(C(M, |u0|Hs+1
µ

)Es(v1) + µC(M, |u0|Hs+2
µ

)).

Estimate (3.4) thus follows for n = 1 and k = 0.
We now turn to x∂k

xu, for k ∈ N, k ≥ 1. Note that

x∂k
xu = ∂k

x(xu) − k∂k−1
x u,

so that

|x∂k
xu|Hs+1

µ
≤ |xu|Hs+k+1

µ
+ k|u|Hs+k

µ
.

One deduces, for 0 ≤ t ≤ T (M)min(1/ε, 1/µ),

|x∂ku|Hs+1
µ

≤ |xu|Hs+k+1
µ

+ C1(M, |u0|Hs+k+3
µ

).

In the same way, one has x∂k
x∂tu = ∂k

x(x∂tu) − k∂k−1
x ∂tu, so that estimate (3.4)

hold for n = 1 and any k ∈ N.

The case n ≥ 2. Let us assume that (3.4) holds for any k ∈ N and n ≤ m− 1 (with
m ≥ 2). One can easily check that vm satisfies the equation

(1 − µβ∂2
x)∂tvm + εα1vm∂xu+ ε2α2vmu∂xu+ ε3α3vmu

2∂xu

+µν∂3
xvm + µε∂x(κvm∂

2
xu+ ι(∂xvm)(∂xu)) = Rm[u], (3.6)

with

Rm[u] ≡ −2µβmxm−1∂x∂tu− 2µβm(m− 1)xm−2∂tu

+ 3µνmxm−1∂2
xu+ 3µνm(m− 1)xm−2∂xu+ µνm(m− 1)(m− 2)xm−3u

+µεmxm−1((κ+ ι)u∂2
xu+ 2ι(∂xu)2) + µεm(m− 1)xm−2ιu∂xu.
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Taking the (L2-)inner product of (3.6) with Λ2s(vm), one obtains as above

1
2
d

dt
(Es(vm))2 ≤ εC(M, |u0|Hs+2

µ
)(Es(vm))2 + |(ΛsRm[u],Λsvm)|.

Now, one can easily check

|(ΛsRm[u],Λsvm)| ≤ µC(m)|vm|HsC(|xm−1∂x∂tu|Hs + |xm−2∂tu|Hs

+ |xm−1∂2
xu|Hs + |xm−2∂xu|Hs + |xm−3u|Hs)

≤ µEs(vm)C


M,m,

m−1∑
j=0

|xm−1−ju0|Hs+2j+1
µ


.

As above, Gronwall–Biharis inequality allows to deduce

Es(vm)(t) ≤ Es(vm)|t=0 + C


M,m,

m−1∑
j=0

|xm−1−ju0|Hs+2j+1
µ


,

for any 0 ≤ t ≤ Tε,µ ≡ C(M,m,
∑m−1

j=0 |xm−1−ju0|Hs+2j+1
µ

) × min(1/ε, 1/µ) and for
any s ≥ s0 > 3/2. Therefore,

|xmu|Hs+1
µ

≤ C


M,m,

m∑
j=0

|xm−ju0|Hs+2j+1
µ


 for 0 ≤ t ≤ Tε,µ. (3.7)

The similar estimate on the time derivative of vm, is obtained as above by taking
the (L2-)inner product of (3.6) with Λ2s−2(∂tvm). Estimate (3.4) follows for any
n = m and k = 0.

We now turn to xm∂k
xu. Note that for any k ∈ N, k ≥ 1,

xm∂k
xu = ∂k

x(xmu) −
k−1∑
j=0

(
k

j

)
(∂k−j

x xm)(∂j
xu)

so that

|x∂k
xu|Hs+1

µ
≤ |xmu|Hs+k+1

µ
+ C(k,m)

k−1∑
j=min(0,k−m)

|xm−k+j∂j
xu|Hs+1

µ
.

Using (3.7), one deduces by induction on k that

|xm∂ku|Hs+1
µ

≤ C


M,m,

m∑
j=0

|xm−ju0|Hs+k+2j+1
µ




+
k−1∑

j=min(0,k−m)

C

(
M,m− k + j, j,

m−k+j∑
i=0

|xm−k+j−iu0|Hs+j+2i+1
µ

)

≤ C


M,m, k,

m∑
j=0

|xm−ju0|Hs+k+2j+1
µ


 for 0 ≤ t ≤ Tε,µ.
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In the same way, one estimates xm∂k
x∂tu by induction, using Leibniz rule of differ-

entiation. Estimate (3.4) therefore holds for n = m and any k ∈ N.
By induction, we proved that (3.4) holds for any k ∈ N and n ∈ N. Esti-

mate (3.3) follows as a direct consequence (from case k = 0), and Proposition 3.1 is
proved.

4. Unidirectional Propagation

In this section, we show that if one chooses carefully the initial perturbation (defor-
mation of the interface as well as shear layer-mean velocity), then the flow is uni-
directional, in the sense that one can construct an extremely precise approximate
solution, driven by a simple unidirectional scalar equation. This study follows the
strategy developed for the water-wave problem in Refs. 20 and 37.

The precise result, which has been displayed in the Introduction (Proposi-
tion 1.6), is recalled below, followed by its proof and a brief discussion.

Proposition 4.1. Set λ, θ ∈ R, and ζ0 ∈ Hs+5 with s ≥ s0 > 3/2. For (ε, µ, δ, γ) =
p ∈ P , as defined in (1.1), denote (ζp)p∈P the unique solution of the equation

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ + µνθ,λ
x ∂3

xζ − µνθ,λ
t ∂2

x∂tζ

+µε∂x(κθ,λ
1 ζ∂2

xζ + κθ
2(∂xζ)2) = 0, (4.1)

with parameters

α1 =
3
2
δ2 − γ

γ + δ
, α2 =

21(δ2 − γ)2

8(γ + δ)2
− 3

δ3 + γ

γ + δ
,

α3 =
71(δ2 − γ)3

16(γ + δ)3
− 37(δ2 − γ)(δ3 + γ)

4(γ + δ)2
+

5(δ4 − γ)
γ + δ

,

νθ,λ
x = (1 − θ − λ)

1 + γδ

6δ(γ + δ)
, νθ,λ

t = (θ + λ)
1 + γδ

6δ(γ + δ)
,

κθ,λ
1 =

(14 − 6(θ + λ))(δ2 − γ)(1 + γδ)
24δ(γ + δ)2

− 1 − γ

6(γ + δ)
,

κθ
2 =

(17 − 12θ)(δ2 − γ)(1 + γδ)
48δ(γ + δ)2

− 1 − γ

12(γ + δ)
.

For given Ms+5, h > 0, assume that there exists Ts+5 > 0 such that

Ts+5 = max(T ≥ 0 such that ‖ζp‖L∞([0,T );Hs+5) ≤Ms+5),

and for any (t, x) ∈ [0, Ts+5) × R,

h1(t, x) = 1 − εζp(t, x) > h > 0, h2(t, x) =
1
δ

+ εζp(t, x) > h > 0.



October 25, 2013 10:42 WSPC/103-M3AS 1350046

36 V. Duchêne

Then define vp as vp = h1+γh2
h1h2

v[ζp], with

v[ζ] = ζ + ε
α1

2
ζ2 + ε2

α2

3
ζ3 + ε3

α3

4
ζ4 + µν∂2

xζ + µε(κ1ζ∂
2
xζ + κ2(∂xζ)2), (4.2)

where parameters α1, α2, α3 are as above, and ν = ν0,0
x , κ1 = κ0,0

1 , κ2 = κ0
2.

Then (ζp, vp) is consistent with Green–Naghdi equations (1.3), of order s and
on [0, Ts+5), with precision O(ε), where

ε = C(Ms+5, h
−1, δ−1

min, δmax, εmax, µmax, |λ|, |θ|) × max(ε4, µ2).

Proof. In order to simplify the calculations, we use the Green–Naghdi system (1.3)
expressed using the variables (ζ, v) where we define v = h1h2

h1+γh2
v̄. The system reads



∂tζ + ∂xv = 0,

∂t

(
h1 + γh2

h1h2
v + µQ[h1, h2]v

)
+ (γ + δ)∂xζ +

ε

2
∂x

(
h1

2 − γh2
2

(h1h2)2
|v|2
)

= µε∂x(R[h1, h2]v),

(4.3)

with the following operators:

Q[h1, h2]V ≡ −1
3h1h2

(
h1∂x

(
h2

3∂x

(
V

h2

))
+ γh2∂x

(
h1

3∂x

(
V

h1

)))
,

R[h1, h2]V ≡ 1
2

((
h2∂x

(
V

h2

))2

− γ

(
h1∂x

(
V

h1

))2
)

+
1
3
V

(
h1

h2
∂x

(
h2

3∂x

(
V

h2

))
− γ

h2

h1
∂x

(
h1

3∂x

(
V

h1

)))
.

Using this system simplifies considerably the analysis. Indeed, it is clear that if
ζ is to satisfy the following scalar evolution equation,

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ

+µν∂3
xζ + µε∂x(κ1ζ∂

2
xζ + κ2(∂xζ)2) = 0, (4.4)

then v shall satisfy (using the first equation of (4.3), and the fact that the system
is at rest at infinity: ζ, v → 0 when x→ ±∞)

v = ζ + ε
α1

2
ζ2 + ε2

α2

3
ζ3 + ε3

α3

4
ζ4 + µνx∂

2
xζ + µε(κ1ζ∂

2
xζ + κ2(∂xζ)2). (4.5)

Now we will show that one can choose coefficients α1, α2, etc. such that the second
equation of (4.3) is satisfied up to a small remainder.

Indeed, when substituting (4.4) and (4.5), and expanding in terms of ε and µ,
one obtains

ε(3(δ2 − γ) − 2(δ + γ)α1)ζ∂xζ

− ε2(6(δ3 + γ) − 5(δ2 − γ)α1 + (α1
2 + 2α2)(γ + δ))ζ2∂xζ



October 25, 2013 10:42 WSPC/103-M3AS 1350046

Decoupled and Unidirectional Asymptotic Models for Internal Waves 37

+ ε3(10(δ4 − γ) − 9(δ3 + γ)α1 + (2α1
2 + 14/3α2)(δ2 − γ)

− 2(α3 + α1α2)(δ + γ))ζ3∂xζ + µ

(
1 + γδ

3δ
− 2νx(δ + γ)

)
∂3

xζ

+ µε

(
4(δ2 − γ)νx − 2(α1ν + κ1)(δ + γ) − 1 − γ

3
+

2(1 + γδ)
3δ

α1

)
ζ∂3

xζ

+ µε

(
2(δ2 − γ)νx − (3α1νx + 2κ1 + 4κ2)(δ + γ) − 2(1 − γ)

3

+
2(1 + γδ)

δ
α1

)
∂xζ∂

2
xζ = R, (4.6)

where the remainder R can be estimated, provided h1 ≥ h > 0 and h2 ≥ h > 0, as

|R|Hs ≤ C(|ζ|Hs+5 , h−1, δ−1
min, δmax, εmax, µmax) × max(ε4, µ2).

The left-hand side of (4.6) vanishes when choosing the parameters as in Propo-
sition 4.1, with θ = λ = 0.

The cases θ �= 0 and λ �= 0 are obtained using the so-called BBM trick and
near-identity change of variables, as precisely described in Sec. 5.1. We detail the
calculations below, using for simplicity the notation Os̄(ε) for any term bounded
by εC(|ζ|Hs+s̄ ).

BBM trick . We make use of the first order approximation in (4.4):

∂tζ + ∂xζ + εα1ζ∂xζ = O3(max(µ, ε2)),

so that one has, for any θ ∈ R,

∂xζ = (1 − θ)∂xζ − θ(∂tζ + εα1ζ∂xζ) + O3(max(µ, ε2)).

Substituting this identity into (4.4) yields

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ + µ(1 − θ)ν∂3
xζ − µθν∂2

x∂tζ

+µε∂x((κ1 − θνα1)ζ∂2
xζ + (κ2 − θνα1)(∂xζ)2)

= O5(max(µ2, µε2)). (4.7)

Conversely, ζθ, a solution of (4.7) (with zero on the right-hand side), satisfies (4.4)
with a remainder bounded by O5(max(µ2, µε2)). One can easily check that, defining
vθ as a function of ζθ through (4.5), (ζθ, vθ) satisfies (4.6) up to a remainder Rθ =
O5(max(µ2, µε2)). Proposition 4.1 is now proved for θ ∈ R and λ = 0.

Near identity change of variable. Let us consider

ζθ,λ ≡ ζθ − µνλ∂2
xζθ,
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where we recall ν = 1+γδ
6δ(γ+δ) , and with ζθ satisfying (4.7) (with zero on the right-

hand side). Then ζθ,λ satisfies

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ + µ((1 − θ)ν − λν)∂3
xζ

−µ(θν + λν)∂2
x∂tζ + µε∂x((κ1 − θνα1 − λνα1)ζ∂2

xζ + (κ2 − θνα1)(∂xζ)2)

= O5(max(µ2, µε2)). (4.8)

Again, it is now straightforward though technical to check that, denoting ζθ,λ the
solution of (4.8) and defining vθ,λ as a function of ζθ,λ through (4.5), then (ζθ,λ, vθ,λ)
satisfies (4.6) up to a remainder Rθ,λ = O5(max(µ2, µε2)). Proposition 4.1 is now
proved for any θ, λ ∈ R.

Discussion. Note that the accuracy of the unidirectional approximate solution,
described in Proposition 4.1 is considerably better than the one of the decoupled
model; see Proposition 1.12. As a matter of fact, the accuracy of the unidirectional
approximation is as good as the solution of the coupled Green–Naghdi model, in
the Camassa–Holm regime ε2 = O(µ). More precisely, provided Hypothesis 1.3 is
valid, one obtains the following result (to compare with Corollary 5.8, below).

Corollary 4.2. (Convergence of unidirectional approximation) For (ε, µ, δ, γ) =
p ∈ P , as defined in (1.1), let Up

GN be a solution of Green–Naghdi equations (1.3)
such that the family (Up

GN ) is uniformly bounded on Hs, s sufficiently large, over
time interval [0, TGN ], and with initial data satisfying (4.2). Assume that hypotheses
of Proposition 4.1 hold, and denote Up

CL the unidirectional approximation defined
therein. Then if Hypothesis 1.3 is true, one has for any t ≤ min(TGN , Ts+5),

‖UCL − US‖L∞([0,t];Hs) ≤ Cmax(ε4, µ2)t,

with C = C(‖Up
GN ‖L∞([0,T ];Hs),Ms+5, h

−1, δ−1
min, δmax, εmax, µmax, |λ|, |θ|).

Such a result is supported by numerical simulations. In Figs. 2 and 3, we compute
the decoupled Constantin–Lannes approximation of Definition 1.10, as well as the
unidirectional approximation described in Proposition 4.1, and compare them with
the solution of the Green–Naghdi system (1.3), in the Camassa–Holm regime ε2 = µ

and for a unidirectional initial data (i.e. such that (4.2) is satisfied at t = 0).
Figure 2 deals with the case of a critical ratio δ2−γ, whereas the ratio is non-critical
in Fig. 3.

Each time, we represent the difference between the Green–Naghdi model and
scalar (unidirectional and decoupled) approximations, with respect to time and for
ε = 0.1, 0.05, 0.035. Values at times t = 10 and 1/ε are marked. In the two right-
hand side panels, we plot the difference in a log–log scale for more values of ε (the
markers reveal the positions which have been simulated), at aforementioned times.
The pink triangles express the convergence rate. The bottom panel reproduces the
difference with respect to the space variable, at final time t = 1/ε.
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(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

(c) Error at time t = 20 for ε = 0.05.

Fig. 2. Unidirectional, localized initial data, critical ratio, Camassa–Holm regime.

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

(c) Error at time t = 20 for ε = 0.05.

Fig. 3. Unidirectional, localized initial data, non-critical ratio, Camassa–Holm regime.
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In Fig. 2, we choose a setup which is favorable to the decoupled approxima-
tion of Definition 1.10: critical ratio δ2 = γ = 0.64 and localized initial data,
ζ|t=0 = exp(−(x/2)2). We see that the unidirectional approximation offers a greater
accuracy than the decoupled approximation. In particular, the decoupled model pre-
dicts a small wave moving on the left (of size O(ε2), as α1 = 0 in (4.2)), which is
not predicted in the unidirectional model, and almost nonexistent in the solution of
the Green–Naghdi system, as we can see in Fig. 2(c). This short-time O(ε2) error of
the CL decomposition is preserved over times of order T = O(1/ε). As for the uni-
directional model, the produced error is clearly, and as predicted by Corollary 4.2,
of size O(ε4t).

In Fig. 3, the ratio is non-critical (δ = 0.5, γ = 0.9), and initial data as previ-
ously. The accuracy of the CL approximate solution of Definition 1.10 is worse
than in the critical case, as the short-time error is of size O(ε). Once again,
the same error estimates hold over times of order T = O(1/ε). The accuracy of
the unidirectional model is not affected, and is still of size O(ε4t): the critical-
ity of the depth-ratio does not play a role in the accuracy of the unidirectional
approximation.

Let us now turn to the following question: is it true that after a certain time, any
perturbation will decompose into two waves, each one satisfying (approximatively)
an equation of the form (4.2)? Our answer is numerical. We use the numerical
simulations of Sec. 5.3.2 (non-critical ratio, localized initial data), and test the
right wave (defined simply as the part of the signal located in the right half-line
x > 0) of the numerical solution of the Green–Naghdi system against (4.2). As we
can see in Fig. 4(a) (where the log of the error is plotted to ease the viewing), even
with such a crude exploration, a very good agreement appears after a given time T0,
which is independent of ε (but rather depends on the thickness, or wavelength of
the initial data). The accuracy of this agreement is in our simulation of size O(ε4),
and valid for long times; see Fig. 4(b).

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

Fig. 4. Validity of (4.2) for generic initial data.
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Numerical scheme. The major difficulty concerning the numerical simulations com-
puted throughout this paper is the fact that as ε decreases (down to 0.035), the
time domain t ∈ [0, 1/ε] (t ∈ [0, ε−3/2] in Sec. 5.3), and therefore the space domain
of computation becomes very large. The decoupled models can be solved very effi-
ciently by using a frame of reference moving with the decoupled wave, but solving
numerically the Green–Naghdi model has to be carried out on the full time/space
domain. Thus we need a scheme which allows a great accuracy, with a relatively
small computation cost. With this in mind, we turn to multi-step, explicit and
spectral methods. The space discretization, and in particular the discrete differen-
tiation matrices use trigonometric polynomial on an equispaced grid, as described
in Ref. 62 (precisely (1.5)). This yields an exponential accuracy with the size of the
grid ∆x, if the signal is smooth (note that the major drawback is that the discrete
differentiation matrices are not sparse). It turns out that setting ∆x = 0.2 is suf-
ficient for the numerical errors to be undetectable. After this space discretization,
one has to solve a system of ordinary differential equations in time, and we use the
Matlab solver ode113, which is based on the explicit, multistep, Adams–Bashforth–
Moulton method,60 with a stringent tolerance of 10−8.

5. Decomposition of the Flow

In this section, our aim is to obtain approximate solutions to (1.3), through a
decomposition of the flow into two independent waves, each one satisfying a scalar
evolution equation. Our aim is dual. First, we want to investigate which scalar
equation each of these waves should satisfy, in order to be as accurate as possible.
Then, we want to estimate the size of the error we commit by neglecting the coupling
between the two components.

We first give a fairly simple formal approach in Sec. 5.1, which allows to heuristi-
cally construct the decoupled equations at stake, and consequently the approximate
solutions (as precisely defined in Definitions 1.10 and 1.11). In Sec. 5.2, we give the
proof of the rigorous justification of such approximations; see Propositions 1.12
and 1.13. Section 5.3 contains a discussion on our result, considering various differ-
ent regimes and decoupled models, and supported with numerical simulations.

5.1. Formal approach

The main idea of the decomposition is that at first order (that is, setting ε = µ = 0),
our system of equations (1.3) is simply a linear wave equation

∂tU +A0∂xU = O(ε, µ), with A0 =

(
0 1

γ+δ

γ + δ 0

)
(5.1)

and U = (ζ, v̄)T . It is straightforward to check that A0 has two distinct eigenval-
ues, therefore, we can find a basis of R

2 such that (5.1) reduces to two decoupled
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equations. More precisely, there exists

P =
(

1 1
γ + δ −(γ + δ)

)
, P−1 =

1
2

(
1 1

γ+δ

1 −1
γ+δ

)

such that P−1A0P =
(

1 0
0 −1

)
.

Now, let us define (ul, ur) = P−1U = 1
2 (ζ + v̄

γ+δ , ζ −
v̄

γ+δ ). Multiplying (5.1) by
P−1 (on the left), and keeping only first order terms, yields

∂t

(
ul

ur

)
+
(

1 0
0 −1

)
∂x

(
ul

ur

)
= O(ε, µ). (5.2)

As a conclusion, the solution U = (ζ, v̄)T may be decomposed in the following way:

U ≈ (ul(x− t) + ur(x+ t), (γ + δ)(ul(x − t) − ur(x+ t)))T .

Now, let us take into account the higher order terms in (1.3). One will make use
of the following straightforward expansions:

h1h2

h1 + γh2
=

1
γ + δ

+ ε
δ2 − γ

(γ + δ)2
ζ − ε2

γδ(δ + 1)2

(γ + δ)3
ζ2

− ε3
γδ2(δ + 1)2(1 − γ)

(γ + δ)4
ζ3 + O(ε4),

h1
2 − γh2

2

(h1 + γh2)2
=

δ2 − γ

(γ + δ)2
− 2ε

γδ(δ + 1)2

(γ + δ)3
ζ − 3ε2

γδ2(δ + 1)2(1 − γ)
(γ + δ)4

ζ2 + O(ε3),

Q[h1, h2]v̄ = − 1 + γδ

3δ(γ + δ)
∂2

xv̄

− ε
(γ + δ)((β − α)v̄∂2

xζ + (α+ 2β)∂x(ζ∂xv̄) − βζ∂2
xv̄)

3
+ O(ε2),

R[h1, h2]v̄ ≡ α

(
1
2
(∂xv̄)2 +

1
3
v̄∂2

xv̄

)
+ O(ε),

with α = 1−γ
(γ+δ)2 and β = (1+γδ)(δ2−γ)

δ(γ+δ)3 .
Using the decomposition as above: (ul, ur) = P−1(ζ, v̄)T = 1

2 (ζ+ v̄
γ+δ , ζ−

v̄
γ+δ ),

and withdrawing every term of size O(µε2, ε4), one can check that the Green–Naghdi
system (1.3) becomes the following coupled system in terms of ul (left-going wave)
and ur (right-going wave):

∂tul + ∂xul + f ε,µ
l (ul, ur) = 0, (5.3a)

∂tur − ∂xur + f ε,µ
r (ul, ur) = 0, (5.3b)
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where f ε,µ
l and f ε,µ

l are defined below:

f ε,µ
l = ε

α1

2
∂x

((
ul +

1
3
ur

)
(ul − ur)

)
+ ε2

α2

3
∂x((ul − ur)ul(ul + ur))

+ ε3
α3

4
∂x

((
ul −

1
5
ur

)
(ul − ur)(ul + ur)2

)
− µν∂2

x∂t(ul − ur)

+µεκ3∂x

(
1
3
(ul − ur)(∂2

xul − ∂2
xur) +

1
2
(∂xul − ∂xur)2

)

−µε∂t

[
κ1(ul∂

2
xul − ur∂

2
xur) + κ2(ur∂

2
xul − ul∂

2
xur)

+
(
κ1 +

κ2

2

)
((∂xul)2 − (∂xur)2)

]
,

f ε,µ
r = −εα1

2
∂x

((
1
3
ul + ur

)
(ur − ul)

)
− ε2

α2

3
∂x((ur − ul)ur(ul + ur))

− ε3
α3

4
∂x

((
ur −

1
5
ul

)
(ur − ul)(ul + ur)2

)
− µν∂2

x∂t(ur − ul)

−µεκ3∂x

(
1
3
(ur − ul)(∂2

xur − ∂2
xul) +

1
2
(∂xur − ∂xul)2

)

−µε∂t

[
κ1(ur∂

2
xur − ul∂

2
xul) + κ2(ul∂

2
xur − ur∂

2
xul)

+
(
κ1 +

κ2

2

)
((∂xur)2 − (∂xul)2)

]
,

and where we used the notation

α1 =
3
2
δ2 − γ

γ + δ
, α2 = −3

γδ(δ + 1)2

(γ + δ)2
, α3 = −5

δ2(δ + 1)2γ(1 − γ)
(γ + δ)3

,

ν =
1
6

1 + γδ

δ(δ + γ)
, κ1 =

(1 + γδ)(δ2 − γ)
3δ(γ + δ)2

, κ2 =
(1 − γ)
3(γ + δ)

, κ3 =
γ − 1

2(γ + δ)
.

(5.4)

Remark 5.1. One could use higher order expansions with respect to the parameter
ε, which would lead to decoupled models with formally higher accuracy. However,
let us note that our results (see discussion in Sec. 5.3) show that the main error
of our decoupled models comes from neglecting coupling terms which arise at low
order, rather than the unidirectional error which is produced by neglecting higher
order terms in the scalar equations. Thus including these higher order terms in the
evolution equation is unlikely to produce substantial improvement.

Proposition 5.2. (Consistency of (5.3a)–(5.3b)) Let (up
l , u

p
r) be strong solutions

of (5.3a)–(5.3b), depending on sets of parameters (ε, µ, δ, γ) = p ∈ P , as defined



October 25, 2013 10:42 WSPC/103-M3AS 1350046

44 V. Duchêne

in (1.1). We assume that for s ≥ s0 > 1/2, up
l , u

p
r ∈ W 1([0, T );Hs+3(R)), uniformly

in p. Additionally, we assume that there exists h > 0 such that

hp
1 ≡ 1 − ε(up

l + up
r) ≥ h > 0, hp

2 ≡ 1
δ

+ ε(up
l + up

r) ≥ h > 0.

Then (ζp, v̄p)T ≡ (up
l + up

r , (γ+ δ)(up
l − up

r)) is consistent with Green–Naghdi equa-
tions (1.3) of order s on [0, T ), at precision O(µε2 + ε4) (in the sense of Defini-
tion 1.2).

Proof. Proposition 5.2 is straightforward once one obtains a rigorous statement
of the expansions of hp

1hp
2

hp
1+γhp

2
,

(hp
1 )2−γ(hp

2)2

(hp
1+γhp

2 )2
, Q[hp

1, h
p
2]v̄

p, R[hp
1, h

p
2]v̄

p, as stated

above, the residual being estimated in W 1([0, T );Hs+1) norm. These expan-
sions are easily checked, provided the assumptions of the proposition (up

l , u
p
r ∈

W 1([0, T );Hs+3(R)), hp
1, h

p
2 ≥ h > 0) are satisfied, and using uniformly continuous

(for s ≥ s0 > 1/2) Sobolev embedding Hs ↪→ L∞.

The decoupled approximation simply consists in neglecting all coupling terms
in (5.3a)–(5.3b), that is replacing f ε,µ

l (ul, ur) by f ε,µ
l (ul, 0), and f ε,µ

r (ul, ur) by
f ε,µ

r (0, ur). This yields

∂tul + ∂xul + εα1ul∂xul + ε2α2u
2
l ∂xul + ε3α3u

3
l ∂xul − µν∂2

x∂tul

−µε∂t(κ1ul∂
2
xul + (κ1 + 1/2κ2)(∂xul)2) + µεκ3∂x

(
1
3
ul∂

2
xul +

1
2
(∂xul)2

)
= 0,

(5.5a)

∂tur − ∂xur − εα1ur∂xur − ε2α2u
2
r∂xur − ε3α3u

3
r∂xur − µν∂2

x∂tur

−µε∂t(κ1ur∂
2
xur + (κ1 + 1/2κ2)(∂xur)2) − µεκ3∂x

(
1
3
ur∂

2
xur +

1
2
(∂xur)2

)
= 0,

(5.5b)

and (5.5a)–(5.5b) are the decoupled equations we consider; see Definition 1.10.
Let us now reckon that one can deduce from (5.5a)–(5.5b) a large family of

formally equivalent models, with different parameters, following the techniques used
for example in Refs. 7, 8, 20, 25, and that we discuss below.

• The BBM trick (from Benjamin–Bona–Mahony6). Keeping only the first order
terms in Eqs. (5.5a)–(5.5b), one has the simple transport equations

∂tul + ∂xul = O(µ, ε) and ∂tur − ∂xur = O(µ, ε).

It follows that one can replace time derivatives in higher order terms (of order
O(µε)) by spatial derivatives (up to a sign), and both equations have formally
the same order of accuracy. In order to simplify, we consider only equations with
spatial derivatives in O(µε) terms (if they exist). In particular, (5.5a)–(5.5b)



October 25, 2013 10:42 WSPC/103-M3AS 1350046

Decoupled and Unidirectional Asymptotic Models for Internal Waves 45

become

∂tul + ∂xul + εα1ul∂xul + ε2α2u
2
l ∂xul + ε3α3ul

3∂xul − µν∂2
x∂tul

+µε∂x((κ1 + 1/3κ3)ul∂
2
xul + (κ1 + 1/2κ2 + 1/2κ3)(∂xul)2) = 0, (5.6a)

∂tur − ∂xur − εα1ur∂xur − ε2α2u
2
r∂xur − ε3α3ur

3∂xur − µν∂2
x∂tur

−µε∂x((κ1 + 1/3κ3)ur∂
2
xur + (κ1 + 1/2κ2 + 1/2κ3)(∂xur)2) = 0. (5.6b)

Following a similar idea, we make use of the low order identity obtained
from (5.6a)–(5.6b):

∂tul + ∂xul + εα1ul∂xul = O(µ, ε2),

so that one has, for any θ ∈ R,

∂tul = θ∂tul + (θ − 1)(∂xul + εα1ul∂xul) + O(µ, ε2).

Substituting back into (5.6a) and withdrawing O(µ2, µε2) terms yields

∂tul + ∂xul + εα1ul∂xul + ε2α2u
2
l ∂xul + ε3α3ul

3∂xul

−µνθ
t ∂

2
x∂tul + µνθ

x∂
3
xul + µε∂x(κθ

1ul∂
2
xul + κθ

2(∂xul)2) = 0, (5.7a)

∂tur − ∂xur − εα1ur∂xur − ε2α2u
2
r∂xur − ε3α3ur

3∂xur

−µνθ
t ∂

2
x∂tur − µθ

xν∂
3
xur − µε∂x(κθ

1ur∂
2
xur + κθ

2(∂xur)2) = 0, (5.7b)

where we have defined, after parameters (5.4),

νθ
t ≡ θν, νθ

x ≡ (1 − θ)ν, κθ
1 ≡ κ1 +

κ3

3
+ (1 − θ)α1ν,

κθ
2 ≡ κ1 +

κ2

2
+
κ3

2
+ (1 − θ)α1ν.

(5.8)

• Near identity changes of variables. We used system (1.3) as our reference system,
and therefore the unknowns we consider are (ζ, v), where v̄ = u2 − γu1 is the
shear layer-mean velocity. However, other natural variables may also be used,
such as the shear velocity at the interface (leading to system (2.17))

v0 = ∂x((φ2 − γφ1)|z=εζ) = ∂x(φ2(x, r2(x, 0)) − γφ1(x, r1(x, 0))),

(where we use the change of coordinate flattening the fluid domains: ri(x, z̃) =
z̃hi(x) + εζ(x); see Ref. 24), or more generally, using the horizontal derivative of
the potential at specific heights (z1, z2) ∈ [0, 1)× (−1, 0]:

vz1,z2 = ∂x(φ2(x, r2(x, z2)) − γφ1(x, r2(x, z1))).

Using the expansion of the velocity potentials and layer-mean velocities,24 as
well as the identity h1u1 +h2u2 = 0 (obtained through the rigid lid assumption),
yields the following approximation:

vz1,z2 = v̄ + µλz1,z2∂2
xv̄ + µεT z1,z2(ζ, v̄) + O(µ2, µε2),
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with λz1,z2 = − (3z2
2+6z2+2)+γδ(3z2

1−6z1+2)
6δ(γ+δ) , and T z1,z2 a bilinear differential oper-

ator whose precise formulas do not play a significant role in our work as we shall
discuss below. Following this idea, we consider

uλ
l ≡ ul + µλ∂2

xul and uλ
r ≡ ur − µλ∂2

xur.

If (ul, ur) satisfies (5.7a)–(5.7b), then (uλ
l , u

λ
r ) satisfies the following equations,

up to terms of order O(µ2, µε2):

∂tu
λ
l + ∂xu

λ
l + εα1u

λ
l ∂xu

λ
l + ε2α2u

λ
l

2
∂xu

λ
l + ε3α3u

λ
l

3
∂xu

λ
l

−µνθ,λ
t ∂2

x∂tu
λ
l + µνθ,λ

x ∂3
xu

λ
l + µε∂x(κθ,λ

1 uλ
l ∂

2
xu

λ
l + κθ

2(∂xu
λ
l )2) = 0, (5.9a)

∂tu
λ
r − ∂xu

λ
r − εα1u

λ
r∂xu

λ
r − ε2α2u

λ
r

2
∂xu

λ
r − ε3α3u

λ
r

3
∂xu

λ
r

−µνθ,λ
t ∂2

x∂tu
λ
r − µνθ.λ

x ∂3
xu

λ
r − µε∂x(κθ,λ

1 uλ
r∂

2
xu

λ
r + κθ

2(∂xu
λ
r )2) = 0, (5.9b)

where we have defined, after parameters (5.8),

νθ,λ
t ≡ νθ

t + λ, νθ,λ
x ≡ νθ

x − λ, κθ,λ
1 ≡ κθ,λ

1 + α1λ. (5.10)

Note that in order to fit as much as possible with variables (ζ, vz1,z2), one
could have used more complex change of variables, such as

uλ
l ≡ ul + µλ∂2

xul + µε(λ2ul∂
2
xul + λ3∂x(ul

2)),

uλ
r ≡ ur − µλ∂2

xur − µε(λ2ur∂
2
xur + λ3∂x(ur

2)),

with λ = λz1,z2

2(γ+δ) , and λ2, λ3 obtained through T z1,z2 . It turns out that uλ
l and

uλ
r would then satisfy the same equation as above: the new parameters do not

depend on λ2 and λ3, as their contribution is of order O(µε2, µ2ε), after using
BBM trick to suppress higher order derivatives with respect to time. We thus do
not consider such changes of variable.

Ultimately, one obtains the family of approximations described in Defini-
tion 1.10, with the following set of parameters:

α1 =
3
2
δ2 − γ

γ + δ
, α2 = −3

γδ(δ + 1)2

(γ + δ)2
, α3 = −5

δ2(δ + 1)2γ(1 − γ)
(γ + δ)3

,

νθ,λ
t ≡ θ

6
1 + γδ

δ(δ + γ)
+ λ, νθ,λ

x ≡ 1 − θ

6
1 + γδ

δ(δ + γ)
− λ,

κθ,λ
1 ≡ (1 + γδ)(δ2 − γ)

3δ(γ + δ)2

(
1 +

1 − θ

4

)
− (1 − γ)

6(γ + δ)
+ λ

3
2
δ2 − γ

γ + δ
,

κθ
2 ≡ (1 + γδ)(δ2 − γ)

3δ(γ + δ)2

(
1 +

1 − θ

4

)
− (1 − γ)

12(γ + δ)
.

(5.11)
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5.2. Rigorous justification; proof of Proposition 1.12

In this section, we give the rigorous justification of the Constantin–Lannes decou-
pled approximation, as defined in Definition 1.10. More precisely, we prove Propo-
sition 1.12, that we recall below.

Proposition 5.3. (Consistency) Let ζ0, v0 ∈ Hs+6, with s ≥ s0 > 3/2. For
(ε, µ, δ, γ) = p ∈ P , as defined in (1.1), we denote Up

CL the unique solution of
the CL approximation, as defined in Definition 1.10. For some given M�

s+6 > 0,
sufficiently large, assume that there exist T � > 0 and a family (Up

CL)p∈P with

T � ≡ max(T ≥ 0 s.t. ‖Up
CL‖L∞([0,T );Hs+6) + ‖∂tU

p
CL‖L∞([0,T );Hs+5) ≤M�

s+6).

Then there exists U c = U c[Up
CL] such that U ≡ Up

CL +U c is consistent with Green–
Naghdi equations (1.3) of order s on [0, t] for t < T �, at precision O(ε�

CL) where

ε�
CL = Cmax(ε2(δ2 − γ)2, ε4, µ2)(1 +

√
t),

with C = C(M�
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|), and the corrector term U c is esti-
mated as

‖U c‖L∞([0,T �];Hs) + ‖∂tU
c‖L∞([0,T �];Hs) ≤ Cmax(ε(δ2 − γ), ε2, µ)min(t,

√
t).

Additionally, if there exists α > 1/2, M 	
s+6, T

	 > 0 such that

6∑
k=0

‖(1 + x2)α∂k
xU

p
CL‖L∞([0,T �);Hs)

+
5∑

k=0

‖(1 + x2)α∂k
x∂tU

p
CL‖L∞([0,T �);Hs) ≤M 	

s+6,

then U ≡ Up
CL + U c is consistent with Green–Naghdi equations (1.3) of order s on

[0, t] for t < T 	, at precision O(ε	
CL) where

ε	
CL = Cmax(ε2(δ2 − γ)2, ε4, µ2),

with C = C(M 	
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|) and U c is uniformly estimated as

‖U c‖L∞([0,T �];Hs) + ‖∂tU
c‖L∞([0,T �];Hs) ≤ Cmax(ε(δ2 − γ), ε2, µ)min(t, 1).

Remark 5.4. The proof of Proposition 1.13 is identical to the one of Propo-
sition 5.3, presented below. More precisely, the choice of lower-order evolution
equations modifies mostly the last term of (5.16) in Lemma 5.1 (below), as the
contribution of neglected unidirectional terms should be added. The additional
error is therefore uniformly bounded over times [0, T �] and [0, T 	]. The detailed
proof of Proposition 1.13 is omitted.
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Strategy of the proof . Our strategy is the following. Inspired by the calculations of
Sec. 5.1, we seek an approximate solution of (1.3) under the form

Uapp ≡ (v+(t, x− t) + v−(t, x + t), (γ + δ)(v+(t, x− t) − v−(t, x+ t)))

+ σU c[v±],

where v± satisfies the Constantin–Lannes equation (1.5), and U c contains the lead-
ing order coupling terms. The parameter σ is assumed to be small, and we want to
justify our approximate solutions over times of order O(1/σ). Precisely, our aim is
to prove that

(1) the coupling term σU c can be controlled, and grows sublinearly in time;
(2) the approximate function Uapp solves the coupled equation (1.3), up to a small

remainder.

As we shall see, controlling the secular growth of U c requires to consider separately
the short time scale, where the coupling effects may be strong, and long time scale,
where the coupling between two localized waves moving in opposite directions can
be controlled. Thus we introduce the long time scale τ = t/σ, and will seek an
approximate solution of (1.3) as

Uapp(t, x) = Uapp(σt, t, x), with

Uapp(τ, t, x) = (v+(τ, t, x) + v−(τ, t, x), (γ + δ)(v+(τ, t, x) − v−(τ, t, x)))

+ σU c[v±](τ, t, x),

with obvious misuses of notation.
Substituting the Ansatz into the coupled Green–Naghdi equation (1.3) yields at

first order

∂tv+ + ∂xv+ = 0 and ∂tv− − ∂xv− = 0, (5.12)

so that v±(τ, t, x) = ṽ±(τ, x±) ≡ ṽ±(τ, x∓ t).
At next order, and following the calculations of Sec. 5.1, one obtains the decou-

pled equations

σ(1 − µνt∂
2
x)∂τ ṽ± ± εα1ṽ±∂xṽ± ± ε2α2(ṽ±)2∂xṽ± ± ε3α3(ṽ±)3∂xṽ±

±µ(νx + νt)∂3
xṽ± ± µε∂x(κ1ṽ±∂2

xṽ± + κ2(∂xṽ±)2) = 0, (5.13)

where parameters satisfy identities of Definition 1.10. In order to deal with the
coupling terms, we introduce the following first order correction.

Definition 5.5. We denote U c ≡ (uc
+ +uc

−, (γ+δ)(uc
+−uc

−)) where uc
±[v±](τ, t, x)

satisfies initial condition uc
±|t=0 ≡ 0, and equation

σ(∂t + ∂x)uc
+ + f l(ṽ+, ṽ−) − f l(ṽ+, 0) = 0,

σ(∂t − ∂x)uc
− + f r(ṽ+, ṽ−) − f r(0, ṽ−) = 0,

(5.14)

where f l and f r are defined as in (5.3a)–(5.3b).
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Remark 5.6. The above discussion does not take into account the use of near
identity change of variable as described in Sec. 5.1. In that case, we set the initial
data as follows:

ṽ±|τ=0 = (1 ± µλ∂2
x)

(
ζ0 ± v0

γ+δ

2

)
. (5.15)

Thus the function ṽ±(σt, x ∓ t), defined by (5.13) and with initial data (5.15),
satisfies precisely

v±(σt, t, x) = ṽ±(σt, x∓ t) = vλ
±(t, x∓ t),

where vλ
± is the solution of (1.5) as defined in Definition 1.10.

The proof is now as follows. First, we state that the approximate solution,
Uapp(σt, t, x), constructed as above, does satisfy (1.3), up to a small remainder
(although depending on the size of v±, uc

±, and their derivatives). The fact that
v± is uniformly bounded follows from the assumptions of the proposition. The key
ingredient in the proof consists in estimating the growth over long times (that is,
in the variable τ), of uc

± satisfying (5.14). Each of these steps is described in details
in the following.

Construction and accuracy of the approximate solution Uapp. The following lemma
states carefully the definition of our approximate solution Uapp, and its precision
in the sense of consistency.

Lemma 5.1. Let ζ0, v0 ∈ Hs+6, with s ≥ s0 > 3/2, and (ε, µ, δ, γ) = p ∈ P ,
as defined in (1.1). Let vλ

±(τ, t, x) be defined by (5.12), (5.13) and with initial
data (5.15). Then define v±(τ, t, x) as

v±(τ, t, x) = (1 ± µλ∂2
x)−1vλ

±(τ, t, x),

and set

Uapp(τ, t, x) = (v+(τ, t, x) + v−(τ, t, x), (γ + δ)(v+(τ, t, x) − v−(τ, t, x)))

+ σU c[v±](τ, t, x),

where U c is defined in Definition 5.5. Then for ε small enough, Uapp(σt, t, x) satis-
fies the coupled equations (1.3), up to a remainder, R, bounded by

|R|Hs ≤ F (ε4(|v±|Hs+1 + σ|uc
±|Hs+1)

+µε2(|v±|Hs+3 + |∂tv±|Hs+2 + σ|uc
±|Hs+3 + σ|∂tu

c
±|Hs+2) + σ2|∂τu

c
±|Hs

+ εα1σ|uc
±|Hs+1(|v±|Hs+1 + σ|uc

±|Hs+1) + ε2σ(|uc
±|Hs+1 |v±|Hs+1)

+µσ(|∂3
xu

c
±|Hs + |∂2

x∂tu
c
±|Hs)(1 + ε(|∂3

xv±|Hs + |∂2
x∂tv±|Hs))

+ max(ε4, µε2, µ2)C(|v±|Hs+5 + |∂tv±|Hs+4)), (5.16)

with a function F satisfying F (X) ≤ C(M�
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|)X.
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Proof. This result is a direct application of the definitions above, and calculations
presented in Sec. 5.1. More precisely, one obtains

R = R0 + σ2∂τu
c
± + (f(v+ + σuc

+, v− + σuc
−) − f(v+, v−)) + Rθ + Rλ,

where

• R0 is the contribution due to the expansion of h1h2
h1+γh2

, h1
2−γh2

2

(h1+γh2)2
,Q[h1, h2]v̄ and

R[h1, h2]v̄ with respect to parameter ε;
• f is a linear combination of f ε,µ

l and f ε,µ
r as defined in (5.3a)–(5.3b);

• Rθ and Rλ are respectively the components due to the use of the BBM trick and
near-identity change of variable.

Let us detail the first terms leading to R0. We want to control the contribution
of the expansion of h1h2

h1+γh2
, that is, more precisely, estimate

|R(1)
0 |Hs+1 =

∣∣∣∣ h1h2

h1 + γh2
− 1
γ + δ

− ε
δ2 − γ

(γ + δ)2
ζ + ε2

γδ(δ + 1)2

(γ + δ)3
ζ2

+ ε3
γδ2(δ + 1)2(1 − γ)

(γ + δ)4
ζ3

∣∣∣∣
Hs+1

,

where ζ = ζapp = (v++v−+σ(uc
++uc

−)(σt, t, x), and h1 = 1−εζapp, h2 = 1
δ +εζapp.

Note that, as we shall prove that ζapp is bounded in L∞([0, T �);Hs+1), there
exists ε0 > 0 such that for any 0 ≤ ε < ε0, one has

|ζ|L∞ < min(1, 1/δ) and

max
{∣∣∣∣ 1
h1 + γh2

∣∣∣∣
L∞

,

∣∣∣∣∂x

(
1

h1 + γh2

)∣∣∣∣
Hs

}
≤ 1

2(1 + γ/δ)
.

Now, one can easily check that, in that case, R(1)
0 = ε4 P (1)(ζ)

h1+γh2
, where P (1)(X) is

a polynomial of degree 4, and estimate |R(1)
0 |Hs+1 ≤ ε4F (|v±|Hs+1 + σ|uc

±|Hs+1)
follows from classical product estimates in Hs. As h1h2

h1+γh2
gets multiplied by v̄ and

differentiated once, the first term in (5.16) follows.
The contributions due to the expansion of h1

2−γh2
2

(h1+γh2)2
is estimated in the same

way. The contribution due to the expansion of R[h1, h2]v̄ requires more derivatives,
but may be estimated as above by µε2F (|v±|Hs+3 + σ|uc

±|Hs+3). The contribution
due to the expansion of Q[h1, h2]v̄ involves one time derivative, and is controlled
by µε2F (|∂tv±|Hs+2 + σ|∂tu

c
±|Hs+2). This yields the first line of (5.16).

Then, one can check that

f ε,µ
l (v+ + σuc

+, v− + σuc
−) − f ε,µ

l (v+, v−)

= ∂x(P (σuc
±, v±)) + µσν∂2

x∂tu
c
±

+µε∂x


 2∑

j=0

Q
(1)
j (σ∂j

xu
c
±, ∂

2−j
x v±) +Q

(1)
3 (σuc

±, ∂
2
xu

c
±) +Q

(1)
4 (σ∂xu

c
±, ∂xu

c
±)



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+µε∂t


 2∑

j=0

Q
(2)
j (σ∂j

xu
c
±, ∂

2−j
x v±) +Q

(2)
3 (σuc

±, ∂
2
xu

c
±)

+Q
(2)
4 (σ∂xu

c
±, ∂xu

c
±)


,

where P is a bivariate polynomial of degree 4, and whose leading order terms are

P (σuc
±, v±) = α1ε(σuc

±v±) + ε(σuc
±)2 + α2ε

2σuc
±v±

2 + · · · ,

and Q(i)
j are bilinear forms. Each of these terms are bounded as in (5.16).

Finally, Rθ and Rλ depend uniquely on decoupled terms v±, and one has simi-
larly

|Rθ|Hs + |Rλ|Hs ≤ C0 max(ε4, µε2, µ2)(|v±|Hs+5 + |∂tv±|Hs+4),

with C0 = C( 1
δmin

, δmax, εmax, µmax, |λ|, |θ|). The proposition follows.

Our aim now is to estimate each of the terms in (5.16).

Estimates of the decoupled approximation v±. The bound on v± is a direct conse-
quence of the assumptions of the proposition, using the identity

v±(σt, t, x) = ṽ±(σt, x∓ t) = v±(t, x∓ t),

where v±(t, x ∓ t) is defined through Definition 1.10, and therefore is uniformly
controlled as assumed in the proposition. It follows

‖ṽ±‖L∞([0,σT �)×[0,T �);Hs+6) + σ‖∂τ ṽ±‖L∞([0,σT �)×[0,T �);Hs+5) ≤M�
s+6. (5.17)

However, let us note that one can gain extra smallness on σ∂τ ṽ± (trading with
a loss of derivatives) from the fact that ṽ± satisfies (5.13). Indeed, one has for any
k ∈ N,

σ|∂τ ṽ±|Hs+k ≤ max(εα1, ε
2, µ)P (|ṽ±|Hs+k+3) + µνtσ|∂2

x∂τ ṽ±|Hs+k ,

where P (X) is a polynomial, so thath

σ‖∂τ ṽ±‖L∞([0,σT �)×[0,T �);Hs+3) ≤ max(εα1, ε
2, µ)C(M�

s+6). (5.18)

As for the case of localized initial data, the assumption of the proposition yields
6∑

k=0

‖(1 + x2)α∂k
xv±‖L∞([0,σT �)×[0,T �);Hs)

+
5∑

k=0

σ‖(1 + x2)α∂τv±‖L∞([0,σT �)×[0,T �);Hs) ≤M 	
s+6 (5.19)

hHere and in the following, we do not explicitly keep track of the dependence with respect to all
the parameters; as (ε, µ, δ, γ) = p ∈ P, as defined in (1.1), and parameters satisfy identities of
Definition 1.10, one should replace C(M�

s+6) by C(M�
s+6, 1

δmin
, δmax, εmax, µmax, |λ|, |θ|).
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and one deduces as above, for k = 0, 1, 2, 3

σ|(1 + x2)α∂k
x∂τ ṽ±|Hs ≤ max(εα1, ε

2, µ)P

(
3∑

i=0

|(1 + x2)α∂k+i
x ṽ±|Hs

)

+µσ|(1 + x2)α∂k+2
x ∂τ ṽ±|Hs

≤ max(εα1, ε
2, µ)C(M 	

s+6). (5.20)

Control of the secular growth of the coupling terms uc
±. Let us now study the term

U c ≡ (uc
+ + uc

−, (γ + δ)(uc
+ − uc

−)), which contains all the coupling effects between
the different components. Our aim is to control the secular growth of this term.
This will be achieved through the following two lemmas.

Lemma 5.2. Let s ≥ 0, and f0 ∈ Hs+1(R). Then there exists a unique global
strong solution, u(t, x) ∈ C0(R;Hs+1) ∩ C1(R;Hs), of

{
(∂t + c1∂x)u = ∂xf

u|t=0 = 0
with

{
(∂t + c2∂x)f = 0

fi|t=0 = f0

where c1 �= c2.

Moreover, one has the following estimates for any t ∈ R:

|u(t, ·)|Hs+1(R) ≤
2

|c1 − c2|
|f0|Hs+1(R), |u(t, ·)|Hs(R) ≤ |t||f0|Hs+1(R).

Lemma 5.3. Let s ≥ s0 > 1/2 and v0
1 , v

0
2 ∈ Hs+1(R). Then there exists a unique

global strong solution, u ∈ C0(R;Hs+1) ∩ C1(R;Hs), of

{
(∂t + c∂x)u = g(v1, v2)

u|t=0 = 0
with ∀ i ∈ {1, 2},

{
(∂t + ci∂x)vi = 0

vi|t=0 = v0
i ,

where c1 �= c2, and g is a bilinear mapping defined on R
2 and with values in R.

Moreover, one has the following estimates :

(1)

‖u‖L∞([0,t);Hs) ≤ Cs|t|, ‖∂tu‖L∞([0,t);Hs) ≤ Cs+1|t|.

(2) Using c1 �= c2, one has the sublinear growth

|u(t, ·)|Hs(R) = Cs

√
t√

|c1 − c2|
, |∂tu(t, ·)|Hs = Cs+1

1 +
√
t√

|c1 − c2|
,

with Cs ≤ C|v0
1 |Hs(R)|v0

2 |Hs(R).
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(3) If moreover, there exists α > 1/2 such that v0
1(1 + x2)α, and v0

2(1 + x2)α ∈
Hs(R), then one has the (uniform in time) estimate

‖u‖L∞Hs(R) ≤ C|v0
1(1 + x2)α|Hs(R)|v0

2(1 + x2)α|Hs(R),

with C = C( 1
c1−c2

, 1
α−1/2 ).

Proof. Lemma 5.2 is straightforward, since one has an explicit expression for the
solution:

u(t, x) =
1

c2 − c1
(f(t, x+ (c2 − c1)t)− f(t, x)) =

1
c2 − c1

(f0(x− c1t)− f0(x− c2t)).

It follows |u|Hs+1 ≤ 2
|c2−c1| |f

0|Hs+1 . Using u = 1
c2−c1

∫ c1t

c2t ∂xf
0(x − y)dy yields

|u|Hs ≤ 1
|c2 − c1|

∫ c1t

c2t

|∂xf
0(x− y)|Hs

x
dy ≤ |t||∂xf

0|Hs .

As for Lemma 5.3, the well-posedness as well as estimate (1) are standard;
the remaining estimates, controlling the secular growth, are proved in Ref. 45,
Propositions 3.2 and 3.5.

One can now state our key result, controlling the secular growth of U c.

Lemma 5.4. Let v± be defined as in Lemma 5.1, for (τ, t, x) ∈ [0, σT �) × R
2,

and satisfy (5.17). Then there exists a unique U c(τ, t, x) ∈ L∞([0, T )×R;Hs) such
that U c ≡ (uc

+ + uc
−, (γ + δ)(uc

+ − uc
−)), with uc

± satisfying (5.14) and U c|t=0 ≡ 0.
Moreover, one has the estimate for and t ∈ [0, T �]

σ‖uc
±‖L∞([0,σT �]×[0,t];Hs) ≤ C(M�

s+3)max(εα1, ε
2, µ)min(t,

√
t), (5.21)

σ2‖∂τu
c
±‖L∞([0,T ]×[0,t];Hs) ≤ C(M�

s+6)max(εα1, ε
2, µ)2 min(t,

√
t). (5.22)

Additionally, if (5.19) holds for τ ∈ [0, σT 	), then one has the uniform estimate

σ‖uc
±‖L∞([0,σT �]×[0,T �];Hs) ≤ C(M 	

s+3)max(εα1, ε
2, µ)min(t, 1), (5.23)

σ2‖∂τu
c
±‖L∞([0,T ]×[0,T �];Hs) ≤ C(M 	

s+6)max(εα1, ε
2, µ)2 min(t, 1). (5.24)

Proof. The functions uc
± are defined as the solutions of a transport equation, with

a known and controlled forcing term, thus the existence and uniqueness of uc
± and

U c is straightforward. As for the estimates, we focus below on uc
+. Estimates for

uc
− follow in the same way.

By definition, uc
+ satisfies

σ(∂t + ∂x)uc
+ = f l(ṽ+, 0) − f l(ṽ+, ṽ−),
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and the right-hand side can be decomposed in the following way:

f l(v+, 0) − f l(v+, v−) =
3∑

j=1

ajε
j∂x(vj+1

− ) +
3∑

j=1

εj
j∑

i=1

ai,j∂x(vi
+v

j−i+1
− ) + µb∂3

xv−

+µε∂x(c1v−∂2
xv− + c2(∂xv−)2)+µε

3∑
k=0

dk(∂k
xv+)(∂3−k

x v−)

≡
3∑

j=1

εj∂xfj +
3∑

j=1

εj
j∑

i=1

gi,j + µ∂xf4 + µε∂xf5 + µε

3∑
k=0

gk,

where the parameters aj , ai,j , bj, cj and dk depend on γ, δ, λ, θ, and where we
used ∂tv− = ∂xv−. Note that the first order terms εa1 and εa1,1 are factored by
α1 = 3

2
δ2−γ
γ+δ .

The contribution from fj, j = 1, . . . , 5 are estimated, thanks to Lemma 5.2,
whereas we use Lemma 5.3 for the contribution of gi,j and gk.

For all 1 ≤ j ≤ 5, one has ∂tfj − ∂xfj = 0, and

• |fj |Hs+1 ≤ C|v−|L∞ |v−|Hs+1 ≤ C(|ṽ−(τ, ·)|Hs+1 ), for j = 1, 2, 3;
• |f4|Hs+1 ≤ C|∂2

xv−|Hs+1 ≤ C(|ṽ−(τ, ·)|Hs+3);
• |f5|Hs+1 ≤ C|v−|L∞ |∂2

xv−|Hs+1 + |(∂xv−)2|Hs+1 ≤ C(|ṽ−(τ, ·)|Hs+3 ).

It is then straightforward to check that gij and gk are the sum of bilinear
mappings, applied to functions v±, satisfying ∂tv± ± ∂xv± = 0, with v± bounded
as below:

• |vi±|Hs ≤ C(|v±|Hs) ≤ C(|ṽ±(τ, ·)|Hs ), for i = 1, 2, 3.
• |∂xv

j
±|Hs ≤ C(|v±|Hs+1) ≤ C(|ṽ±(τ, ·)|Hs+1), for j = 1, 2, 3.

• |∂k
xv±|Hs ≤ µC(|v±|Hs+k) ≤ C(|ṽ±(τ, ·)|Hs+3 ), for k = 0, 1, 2, 3.

It follows from Lemmas 5.2 and 5.3 that uc
+ satisfies

σ|uc
+(τ, t, ·)|Hs ≤ min(t,

√
t)max(α1ε, ε

2, µ, µε)C(|ṽ±(τ, ·)|Hs+3 ),

and the last term is uniformly estimated through (5.17), so that (5.21) follows.
As for the case of localized initial data, we make use of the fact that for

k = 0, 1, 2, 3, one has

|(1 + x2)α∂k
x ṽ±(τ, t, ·)|Hs = |(1 + x2)α∂k

xv
λ
±(τ/σ, ·)|Hs ≤M 	

s+3,

so that (5.23) follows in the same way for τ ≤ σT 	.
The estimates on ∂τv±(τ, x) are obtained similarly, as

(∂t + ∂x)∂τu
c
+ ≡

3∑
j=1

εj∂x∂τfj +
3∑

j=1

εj
j∑

i=1

∂τgi,j + µ∂x∂τf4

+ µε∂x∂τf5 + µε

3∑
k=0

∂τgk.
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One can check that each term of the right-hand side satisfies the hypotheses of
Lemma 5.2 or 5.3, and estimate (5.18) allows to obtain (5.22).

The case of weighted Sobolev spaces (5.24) follows as above, using esti-
mate (5.20). The lemma is proved.

Completion of the proof . The consistency result stated in Proposition 5.3 is now a
straightforward consequence of Lemma 5.1, together with estimates (5.17)–(5.19),
and Lemma 5.4. One can check that the remainder in Lemma 5.1 can be estimated as

|R|Hs ≤ C(M�
s+6)(max(α2

1ε
2, ε4, µ2)min(t,

√
t) + max(ε4, µ2)).

Note that we use

∂t(v±(σt, t, x)) = σ∂τ ṽ± + ∂tv±, and σ|∂τ ṽ±|Hs ≤ max(εα1, ε
2, µε)|v±|Hs+2 ,

as above, as well as a uniform estimate

σ‖uc
±‖L∞([0,T �;Hs+1) ≤M.

The latter estimate can be enforced using Lemma 5.4, by restricting the time inter-
val with

(T �)1/2 ≤ M

max(εα1, ε2, µ)
,

although such condition is not necessary, as Proposition 5.3 is empty for t ≥
M(max(εα1, ε

2, µ))−2, the accuracy of the decoupled solutions being of order O(1).
More precisely, we proved the following lemma.

Lemma 5.5. For ζ0, v0 ∈ Hs+6, with s ≥ s0 > 3/2, and (ε, µ, δ, γ) = p ∈ A, as
defined in Definition 1.1, let Uapp be defined as in Lemma 5.1. Then Uapp(σt, t, x)
satisfies the coupled equations (1.3), up to a remainder, R, estimated for t ∈ [0, T �)
by

‖R‖L∞([0,t);Hs) ≤ C(M�
s+6)(max(α2

1ε
2, ε4, µ2)min(t,

√
t) + max(ε4, µ2)),

and on [0, T 	) by

‖R‖L∞([0,t);Hs) ≤ C(M 	
s+6)(max(α2

1ε
2, ε4, µ2)min(t, 1) + max(ε4, µ2)).

Proposition 5.3 is a consequence of the above lemma, together with the estimates
of Lemma 5.4 (see also Remark 5.6).

5.3. Discussion

Our result reveals its full meaning in the light of a conjectured stability result on
Green–Naghdi equations (1.3), or any consistent model, as described in Hypothe-
sis 1.3. If such a result holds, then one can deduce from the consistency result of
Proposition 1.12 that the difference between the solution of the Green–Naghdi sys-
tem (1.3) (and in the same way, the solution of the full Euler system if it exists) and
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the weakly coupled approximate solution U ≡ UCL + U c is small. The estimates
concerning the difference between the solution of (1.3) and the fully decoupled
solution UCL simply follows from the estimates on U c, in Proposition 1.12. This
strategy has been used in the water-wave case in Ref. 8, and in the case of internal
waves (when restricting to the long wave regime) in Ref. 25.

Throughout this section, we assume that Hypothesis 1.3 holds, and study the
convergence results between solutions of the Green–Naghdi model and the different
approximate solutions which proceeds.

Let us first state the convergence results concerning the weakly coupled model,
defined in Proposition 1.12.

Corollary 5.7. (Convergence of weakly coupled model) For (ε, µ, δ, γ) = p ∈ P ,
as defined in (1.1), let Up

GN be a solution of Green–Naghdi equations (1.3) such
that the family (Up

GN ) is uniformly bounded on Hs, s sufficiently large, over time
interval [0, TGN ]. Assume that hypotheses of Proposition 1.12 hold, and denote Up ≡
Up

CL + U c[Up
CL] the approximate solution, satisfying UGN

p|t=0 = Up|t=0. Then if
Hypothesis 1.3 is valid, for any t ≤ min(TGN , T

�
s+6), one has

‖Up − Up
GN‖L∞([0,t];Hs) ≤ Cmax(ε2(δ2 − γ)2, ε4, µ2)t(1 +

√
t),

with C = C(‖Up
GN ‖L∞([0,TGN ];Hs),M

�
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|).
If moreover, the initial data is sufficiently localized in space, then one has for

t ≤ min(TGN , T
	
s+6),

‖Up − Up
GN ‖L∞([0,t];Hs) ≤ Cmax(ε2(δ2 − γ)2, ε4, µ2)t,

with C = C(‖Up
GN ‖L∞([0,T ];Hs),M

	
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|).

We therefore see that the weakly coupled model achieves the same accuracy as
the fully coupled Green–Naghdi model, in the Camassa–Holm regime (1.2), if one
restricts to critical case δ2−γ = O(µ), and if the initial data is sufficiently localized
in space.

Let us now turn to the fully decoupled models. The following result is a straight-
forward application of the above corollary, together with the estimate of Proposi-
tion 1.12. Estimates concerning lower order decoupled models are obtained in the
same way, using Proposition 1.13.

Corollary 5.8. (Convergence of decoupled models) For (ε, µ, δ, γ) = p ∈ P , as
defined in (1.1), let Up

GN be a solution of Green–Naghdi equations (1.3) such that
the family (Up

GN ) is uniformly bounded on Hs, s sufficiently large, over time interval
[0, TGN ]. Denote respectively Up

CL, U
p
eKdV , U

p
KdV , U

p
iB the decoupled approximations

defined in Definitions 1.10 and 1.11. Assume that the hypotheses of Proposition 1.12
hold, and Hypothesis 1.3 is valid. Define ε0 = max(ε(δ2 − γ), ε2, µ). Then for any
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t ≤ min(TGN , T
�
s+6), one has

‖Up
CL − UGN

p‖L∞([0,t];Hs) ≤ Cε0 min(t, t1/2)(1 + ε0t),

‖Up
eKdV − UGN

p‖L∞([0,t];Hs) ≤ Cε0 min(t, t1/2)(1 + ε0t) + Cmax(ε3, µε)t,

‖Up
KdV − UGN

p‖L∞([0,t];Hs) ≤ Cε0 min(t, t1/2)(1 + ε0t) + Cε2t,

‖Up
iB − UGN

p‖L∞([0,t];Hs) ≤ Cε0 min(t, t1/2)(1 + ε0t) + Cmax(ε2, µ)t,

with C = C(‖Up
GN ‖L∞([0,TGN ];Hs),M

�
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|).
If the initial data is sufficiently localized in space, then one has for t ≤

min(T, T 	),

‖UCL − US‖L∞([0,t];Hs) ≤ Cε0 min(t, 1)(1 + ε0t),

‖UeKdV − US‖L∞([0,t];Hs) ≤ Cε0 min(t, 1)(1 + ε0t) + Cmax(ε3, µε)t,

‖UKdV − US‖L∞([0,t];Hs) ≤ Cε0 min(t, 1)(1 + ε0t) + Cε2t,

‖UiB − US‖L∞([0,t];Hs) ≤ Cε0 min(t, 1)(1 + ε0t) + Cmax(ε2, µ)t,

with C = C(‖Up
GN ‖L∞([0,TGN ];Hs),M

	
s+6,

1
δmin

, δmax, εmax, µmax, |λ|, |θ|).

Corollary 5.8 exhibits different sources of error with different time scales.

• The first (and often main) source of error comes from the coupling between the
two counterpropagating waves which are neglected by our decoupled models, but
recovered at first order by the weakly coupled model (see Corollary 5.7). Following
Ref. 65, we name the contribution of this term the counterpropagation error.

— This error grows linearly in time, for times of order O(1), as the two waves
are located at the same position; and coupling effects are strong.

— However, one is able to control sublinearly in time the secular growth of such
coupling terms, which is the key ingredient of our result, and yields a con-
tribution of size O(ε0

√
t) in general, O(ε0) if the initial data is sufficiently

localized.

• After very long time, one sees the effect of the precision of the consistency result,
through the stability hypothesis. Such a contribution is unavoidable, as it appears
after many manipulations of the equations, such as the use of BBM trick, or near-
identity change of variables. We call these contributions residual errors. The error
generated in that way affects both the solution of the scalar evolution equation
and the coupling term, thus there are two contributions.

— The so-called unidirectional error is linear in time as long as the solution of
the decoupled model is uniformly bounded, and varies greatly with the choice
of the model.

— The residual error coming from the coupling term may be superlinear (if the
initial data is not localized in space), as the coupling term grows in time.
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(a) Non-localized initial data. (b) Localized initial data.

Fig. 5. Sketch of the error.

All of these contributions are summarized in Fig. 5. The total error of a decou-
pled model is the sum of the green and red curves. The green curve represents
the error generated by neglecting the coupling between two waves, and therefore is
affected by three of the contributions listed above, at different time scales. The red
curve is the unidirectional contribution, and varies with the choice of the model.

However, let us precise that the full pattern is not always visible, as in many
cases, one source of error will be negligible in front of the others. In particular,
keep in mind that we obtained existence and uniform control in weighted Sobolev
spaces of the solutions of decoupled models only over times of order O(1/max(ε, µ))
(Proposition 3.1). Consequently, the time domain for which residual contributions
appear is out of the scope of our rigorous results.

In order to understand the relevance of a specific evolution equation, one has to
look whether the unidirectional contribution, which depends on the evolution equa-
tion itself, is smaller or greater than the different sources of error due to coupling.
For example, unidirectional error is always negligible in front of coupling terms in
the Constantin–Lannes model, whereas it is expected to be dominant in the inviscid
Burgers’ model.

Let us look precisely at several interesting scenarios, in the following subsections.
Our discussion is supported by numerical simulations. Each time, we compute the
coupled Green–Naghdi model and various decoupled approximations, for different
values of ε and corresponding µ (depending on the situation, µ = ε or µ =

√
ε), and

over times O(ε−3/2). As pointed out above, such time scale is out of the scope of
our rigorous result. However, interesting behavior appears after times O(1/ε), as we
shall see. Each of the figures below contains three panels. On the left-hand side, we
represent the difference between the Green–Naghdi model and decoupled models,
with respect to time and for ε = 0.1, 0.05, 0.035. Values at times 1/ε and ε−3/2 are
marked. In the two right-hand side panels, we plot the difference in a log–log scale
for several values of ε (the markers reveal the positions which have been computed),
at aforementioned times. The pink triangles express the convergence rate.

The initial data is fixed such that the left-going wave is initially two-third the
right going wave, in order to avoid symmetry cancellations: v−|t=0 = 2/3v+|t=0.
For localized initial data, we choose initial data v+|t=0 = exp(−(x/2)2) and for
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non-localized initial data, we choose v+|t=0 = (1+10x2)−1/3. We set δ2 = γ = 0.64
in the critical ratio setting, and δ = 0.5, γ = 0.9 in the non-critical ratio setting.
Finally, we set θ = 1/2 and λ = 0. The numerical scheme we use has been briefly
described at the end of Sec. 4.

5.3.1. The long wave regime

Let us assume that we are in the long wave regime: ε = O(µ), and therefore ε0 ≈ µ

in Corollary 5.8. It follows that the decoupled KdV approximation has the same order
of accuracy as any higher order model, whatever the initial data or critical ratio is.
Indeed, one has the same estimates for the decoupled approximations U = UKdV

or U = UeKdV or U = UCL:

‖UKdV − UGN‖L∞([0,t];Hs) ≈ ‖UCL − UGN ‖L∞([0,t];Hs)

≤ C0µmin(t, t1/2)(1 + µt),

for any t ∈ [0, T �
s+6), and if the initial data is localized,

‖UKdV − UGN‖L∞([0,t];Hs) ≈ ‖UCL − UGN‖L∞([0,t];Hs) ≤ C0µmin(t, 1)(1 + µt),

for any t ∈ [0, T 	
s+6). Let us note that one recovers the results of Ref. 25, for the

KdV approximation.
More precisely, a unidirectional error of size O(µ2t) is not detectable, as it is

smaller than the coupling terms, presented above, so that the additional error pro-
duced by neglecting higher order terms in the Constantin–Lannes approximation,
and considering only the KdV equation, does not change the accuracy of the model.
However, let us note that for localized initial data, unidirectional error of size O(µ2t)
is the limiting case. This is why one sees in Fig. 6(a) a noticeable difference between
the KdV approximation and higher order approximations (eKdV, CL). The rate of
convergence in Fig. 6(b), however, is identical: the error is of size O(µ) at time
T = O(1/µ) and O(µ1/2) at time T = O(1/µ3/2). We remark that the last panel

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

Fig. 6. Long wave regime, critical ratio, localized initial data.
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of Fig. 6 shows a slight discrepancy with respect to the predicted convergence rate
in O(µ1/2). This may be due to the fact that higher order sources of error (typi-
cally of size O(µ3t)) are detectable for larger values of µ (µ = 0.1), and eventually
becomes negligible for smaller values (µ = 0.035), therefore artificially improving
the convergence rate. Let us note also that the criticality of the depth ratio do not
play a role in this analysis, and that simulations in the case of non-critical ratio
exhibits similar outcome.

5.3.2. The Camassa–Holm regime, with non-critical ratio

We are now in the case where |δ2 − γ| ≥ α0 > 0, and ε ≈ √
µ, thus ε0 ≈ ε ≈ √

µ in
Corollary 5.8. In that case, the contribution of the coupling error are always greater
than the one of the unidirectional error, and one has the same estimates as for the
decoupled approximations U = UiB , U = UKdV , U = UeKdV or U = UCL:

‖UiB − UGN ‖L∞([0,t];Hs) ≈ ‖UCL − UGN‖L∞([0,t];Hs)

≤ C0
√
µmin(t, t1/2)(1 +

√
µt),

for any t ∈ [0, T �
s+6), and if the initial data is localized,

‖UiB − UGN‖L∞([0,t];Hs) ≈ ‖UCL − UGN ‖L∞([0,t];Hs)

≤ C0
√
µmin(t, 1)(1 +

√
µt),

for any t ∈ [0, T 	
s+6). As a consequence, the inviscid Burgers ’ approximation is as

precise as any higher order decoupled model.
Here, the unidirectional error of the inviscid Burgers’ approximation is of the

same order of magnitude as the residual coupling error, if the initial data is suf-
ficiently localized. Therefore, in Fig. 7, one can observe a noticeable difference
between the iB approximation and higher order models for long times, although
the convergence rate is similar at time T = 1/ε = 1/

√
µ. For longer times, the

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

Fig. 7. Camassa–Holm regime, non-critical ratio, localized initial data.
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decoupled approximate solutions do not seem to converge, which may indicate that
the exact solution UGN cannot be controlled over times O(ε−3/2), in our setting.

5.3.3. The Camassa–Holm regime, critical case

Now let us assume that δ2−γ = O(
√
µ), and ε ≈ √

µ, so that ε0 ≈ µ in Corollary 5.8.
We recall that T � and T 	 are known to exist and to be of size T = O(1/max(ε, µ)) =
O(µ−1/2), as a result of Proposition 3.1. Over such time, the unidirectional error in
the eKdV model is smaller than the coupling errors: one has for both U = UeKdV

and U = UCL,

‖UeKdV − UGN‖L∞([0,t];Hs) ≈ ‖UCL − UGN‖L∞([0,t];Hs) ≤ C0µmin(t, t1/2),

for any t ∈ [0, T �
s+6) if T � = O(µ−1/2). If moreover, the initial data is localized,

then

‖UeKdV − UGN ‖L∞([0,t];Hs) ≈ ‖UCL − UGN ‖L∞([0,t];Hs) ≤ C0µmin(t, 1),

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

Fig. 8. Camassa–Holm regime, critical ratio, localized initial data.

(a) Error with respect to time. (b) Error with respect to ε =
√

µ.

Fig. 9. Camassa–Holm regime, critical ratio, non-localized initial data.
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for any t ∈ [0, T 	
s+6) if T 	 = O(µ−1/2). The accuracy of both eKdV and CL approx-

imations are of size O(µ3/4) at time T = O(µ−1/2) = O(ε−1), or improved to size
O(µ) if the initial data is sufficiently localized. The accuracy of the KdV and iB
approximation is of size O(µ1/2) at the latter time.

However, if one looks at longer times, then the picture is different. In our sim-
ulations, we looked at times up to T = O(ε−3/2) = O(µ−3/4). At that time, the
localization in space of the initial data plays an important role. If the initial data
is non-localized in space, then contribution of the coupling terms are predicted
to be greater than the unidirectional error of the eKdV approximation: the sec-
ular coupling error is dominant up to T = O(µ−1) (µ

√
t ≥ µ3/2t), after which

time the residual coupling term is dominant (µ2t3/2 ≥ µ3/2t for t ≥ µ−1). Thus
the eKdV approximation is predicted to be as precise as the CL approximation in the
Camassa–Holm regime and if the initial data is non-localized in space, even if the
depth ratio is critical.

On the contrary, if the initial data is localized, then the unidirectional error is
dominant: µ3/2t ≥ µ(1 + µt) for any t ≥ µ−1/2. This leads, at time T = O(µ−3/4),
to an error of size O(µ) for the CL approximation, and of size O(µ3/4) for the
eKdV approximation. If the initial data is localized, then the CL approximation is
substantially more accurate than the eKdV approximation after very long time, in
the Camassa–Holm regime with critical depth ratio.

The difference between localized and non-localized initial data can be clearly
seen when comparing Figs. 8 and 9. The fact the convergence rate of our numer-
ical simulations fit the predictions of Corollary 3.1, even for times which are out
of the scope of our rigorous results, gives hope to extend the validity of the CL
approximation to such times, where it becomes more precise than lower order
approximations.
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