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ASYMPTOTIC SHALLOW WATER MODELS FOR INTERNAL
WAVES IN A TWO-FLUID SYSTEM WITH A FREE SURFACE∗

VINCENT DUCHÊNE†

Abstract. In this paper, we derive asymptotic models for the propagation of two- and three-
dimensional gravity waves at the free surface and the interface between two layers of immiscible fluids
of different densities over an uneven bottom. We assume the thickness of the upper and lower fluids
to be of comparable size and small compared to the characteristic wavelength of the system (shallow
water regimes). Following a method introduced by Bona, Lannes, and Saut [J. Math. Pures Appl. (9),
89 (2008), pp. 538–566] based on the expansion of the involved Dirichlet-to-Neumann operators, we
are able to give a rigorous justification of classical models for weakly and strongly nonlinear waves,
as well as interesting new ones. In particular, we derive linearly well-posed systems in the so-called
Boussinesq/Boussinesq regime. Furthermore, we establish the consistency of the full Euler system
with these models and deduce the convergence of the solutions.
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1. Introduction.

1.1. General settings. This paper deals with weakly and strongly nonlinear in-
ternal waves in a two-fluid system. We consider the case of uneven bottom topography
and free surface, although the rigid-lid assumption is mentioned. The idealized system
studied here consists of two layers of immiscible, homogeneous, ideal, incompressible,
and irrotational fluids under only the influence of gravity.

The mathematical theory of internal waves, following the theory of free-surface
water waves, has attracted lots of interest over the past decades. We let the reader
refer to the survey article of Helfrich and Melville [16] for a good overview of the
ins and outs on this problem. The governing equations, which we call the full Euler
system, are fully nonlinear, and their direct study and computation remain a real
obstacle. In particular, the well-posedness of the equations in Sobolev space is chal-
lenging, as discussed in Remark 1.1. An alternative way is to look for approximations
through the use of asymptotic models. Such models can be derived from the full Euler
system by introducing natural dimensionless parameters of the system and by setting
some smallness hypotheses on these parameters (thus reducing the framework to more
specific physical regimes).

Many models for a two-fluid system have already been derived and studied. Sys-
tems under the rigid-lid assumption have first been investigated (see [27] or [23], for
example). Weakly nonlinear models in the free-surface case have been presented by
Choi and Camassa [10]. Nguyen and Dias [28] presented a great deal of numeric simula-
tions for such Boussinesq-type systems. Strongly nonlinear regimes have been derived
by Matsuno [24], Choi and Camassa [9], and Barros, Gavrilyuk, and Teshukov [3],

∗Receieved by the editors June 3, 2009; accepted for publication (in revised form) July 22, 2010;
published electronically September 14, 2010. This work was supported by the Agence Nationale de
la Recherche (project ANR-08-BLAN-0301-01).

http://www.siam.org/journals/sima/42-5/76110.html
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generalizing the classical Green–Naghdi model (see [14]). A different approach has
been carried out by Craig, Guyenne, and Kalisch [11], using the Hamiltonian formu-
lation of the Euler equations. Most of these works are formal and are restricted to
two-dimensional flows or to the flat-bottom case. Finally, we refer to the work of Bona,
Lannes, and Saut [7] who, following a strategy initiated in [4–6], rigorously derived a
large class of models in different regimes under the rigid-lid assumption. This paper
is concerned with the more complex case where the rigid-lid assumption is removed
and replaced by a free surface.

The strategy consists of rewriting the full system as a system of four evolution
equations located on the surface and the interface between the two fluids (as opposed
to two equations in the rigid-lid case). The reformulation introduces a Dirichlet-to-
Neumann operator G[ζ] and an interface operator H [ζ], defined precisely below. The
computation of asymptotic expansions of these operators leads to the models presented
here. We focus here on shallow water regimes, allowing strongly nonlinear waves.

Our analysis gives a rigorous derivation of most of the models existing in the
literature and also interesting new ones. In particular, we derive a set of models
in the Boussinesq/Boussinesq regime, with coefficients that can be chosen so that
the system is linearly well-posed. We prove that the full Euler system is consistent
with each of our models, which roughly means that any solution of the full system
solves the asymptotic systems up to a small error. Then in the case of the shallow
water/shallow water model, using energy methods together with consistency, we also
prove that the solutions of our models converge toward the solutions of the full Euler
system, assuming that such solutions exist.

The paper is organized as follows. Section 1 is devoted to the reformulation of
the full system, from the Euler equation to the “Zakharov formulation,” written in
dimensionless form. In section 1.6, we focus on the linearized system, and its dispersion
relations are derived. From the asymptotic expansion of the operators G[ζ] and H [ζ]
presented in section 2, the asymptotic models under different regimes are rigorously
obtained and are presented in section 2.3. The consistency of the full Euler system
with each of our models is proved. Then section 3 gives convergence results: we show
that the solutions of the full Euler system tend to associated solutions of one of our
models in the shallow water limit. Finally the links with different models already
existing in the literature are presented in section 4 for rigid-lid models [7] and layer-
mean equations [9, 10]. The proof of Proposition 2.5 is given in Appendix A.

1.2. Notation. We use the Cartesian coordinates (X, z), where z is the vertical
variable and X is the d-dimensional horizontal variable: X = x when d = 1 and
X = (x, y) when d = 2.

The symbols∇ and ∆ denote the gradient and Laplace operators in the horizontal
variables, respectively, whereas ∇X,z and ∆X,z are their (d+ 1)-variable version. For
µ > 0, we also define the scaled version of the gradient and Laplace operators, namely,
∇µ
X,z := (

√
µ∇T , ∂z)

T and ∆µ
X,z := µ∆+ ∂2z , respectively.

Given a surface Γ := {(X, z), z = ζ(X)}, we denote by ∂n the upward normal
derivative at Γ:

∂n := n · ∇X,z with n :=
1√

1 + |∇ζ|2
(−∇ζ, 1)T .

If we consider an elliptic operator P = ∇X,z · P∇X,z, then the conormal derivative
associated to P is

∂Pn := n · P∇X,z,
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which we simply denote ∂n when there is no risk of confusion.
For any tempered distribution u, we denote by û its Fourier transform. We use the

standard Fourier multiplier notation f(D)u, defined in terms of Fourier transforms
by

f̂(D)u := fû.

The operator Λ = (1 − ∆)1/2 is equivalently defined using the Fourier multiplier
notation to be Λ = (1 + |D|2)1/2.

We denote by Hs(Rd) (or simply Hs if the underlying domain is clear from the
context) the L2-based Sobolev spaces. Their norm is written

∣∣ ·
∣∣
Hs and simply

∣∣ ·
∣∣
2

for the L2 norm.
Then, for 0 < T ≤ ∞, q ∈ N, W q,∞([0, T ];Hs(Rd)) (or simply W q,∞Hs and

L∞Hs when q = 0) denotes the space of the functions f(t,X) defined on [0, T ]×Rd,
whose derivatives up to the order q in t are bounded in Hs(Rd) uniformly with respect
to t ∈ [0, T ). Their norm is written

∣∣ ·
∣∣
W q,∞Hs .

Since it often appears, it is convenient to introduce for s and T > 0 the space
Hs([0, T ]), made up of the quadruplets (ζ1, ζ2, u1, u2) such that their components sat-
isfy u1, u2 ∈W 1,∞([0, T ];Hs+7/2(Rd))d, ζ1 ∈ W 1,∞([0, T ];Hs+3/2(Rd)), and finally
ζ2 ∈W 1,∞([0, T ];Hs+5/2(Rd)). Their norm is written

∣∣ ·
∣∣
Hs .

Finally we denote by S+ the planar strip Rd × (0, 1) and by S− the planar strip
Rd × (−1, 0). We use the notation

∥∥ ·
∥∥
Hs for the usual norm of Hs(S±) and simply∥∥ ·

∥∥
2
for the L2(S±) norm. We also for s ∈ R and k ∈ N introduce the spaces

Hs,k(S±) = {f ∈ D′(S±) :
∥∥f
∥∥
Hs,k <∞},

where
∥∥f
∥∥
Hs,k =

∑k
j=0

∥∥Λs−j∂jzf
∥∥
2
.

1.3. The basic equations. We assume that each fluid is irrotational and in-
compressible so that we can introduce velocity potentials φi (i = 1, 2), respectively,
associated to the upper and lower fluid layers. The velocity potentials satisfy

(1) ∆X,zφi = 0 in Ωit,

where Ωit denotes the domain of the fluid i at time t (see Figure 1). Moreover, we
assume the fluids to satisfy the Euler equation and their respective density ρi is
constant so that the velocity potentials satisfy the Bernoulli equation

(2) ∂tφi +
1

2
|∇X,zφi|2 = −P

ρi
− gz in Ωit,

where g denotes the acceleration of gravity and P is the pressure inside the fluid. The
kinematic boundary condition at the known, constant with respect to time, bottom
topography Γb := {z = −h20 + b(X)} is given by

(3) ∂nφ2 = 0 on Γb.

It is presumed that the surface and the interface are given as the graph of functions
(respectively, ζ1(t,X) and ζ2(t,X)) which express the deviation from their rest po-
sition (respectively, (X,h10) and (X, 0)) at the spatial coordinate X and at time t.
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Fig. 1. Sketch of the domain.

The assumption that no fluid particle crosses the surface or the interface gives the
following kinematic boundary conditions:

(4)

∂tζ1 =
√
1 + |∇ζ1|2∂nφ1 on Γ1 := {z = h10 + ζ1(t,X)},

∂tζ2 =
√
1 + |∇ζ2|2∂nφ1 =

√
1 + |∇ζ2|2∂nφ2 on Γ2 := {z = ζ2(t,X)}.

Finally we close the set of equations by assuming that

(5) P is constant at the surface and continuous at the interface.

Remark 1.1. Unlike the water wave problem (air-water interface), the Cauchy
problem associated with waves at the interface of two fluids of positive different den-
sities is known to be ill-posed in Sobolev spaces in the absence of surface tension,
as Kelvin–Helmholtz instabilities appear. However, when adding a small amount of
surface tension, Lannes [22] proved that, thanks to a stability criterion, the problem
becomes well-posed with a time of existence that does not vanish as the surface ten-
sion goes to zero and thus is consistent with the observations. The Kelvin–Helmholtz
instabilities appear for high frequencies, where the regularization effect of the surface
tension is relevant, while the main profile of the wave that we want to capture is
located in lower frequencies and is unaffected by surface tension. Therefore, adding
a small amount of surface tension at the interface1 in the Euler system guarantees
the well-posedness of the system and does not change our asymptotic models. For
simplicity, we decide to omit this surface tension term.

1.4. Reduction of the equations. In [32], Zakharov remarked that the surface
wave system can be fully deduced from the knowledge of the surface elevation and
the trace of the velocity potential at the surface. We extend it here for two fluids in

1The study of Lannes focuses on the two-layer fluid system with a rigid lid. However, we believe
that the theory in the free-surface case does not differ much from the one in the rigid-lid configuration.
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the free-surface case. Indeed, if we introduce the traces

ψ1(t,X) := φ1(t,X, h10 + ζ1(t,X)) and ψ2(t,X) := φ2(t,X, ζ2(t,X)),

then φ2 is uniquely given as the solution of Laplace’s equation (1) in the lower fluid
domain, with the Neumann condition (3) on Γb and the Dirichlet condition φ2 = ψ2

on Γ2. Then φ1 is obtained as the solution of Laplace’s equation on the upper fluid
domain, with the Neumann condition given by (4) as ∂nφ2 = ∂nφ1 on Γ2 and the
Dirichlet condition as φ1 = ψ1 on Γ1.

Following the formalism introduced by Craig, Sulem, and Sulem in [12], we first
define the Dirichlet–Neumann operators:

G1[ζ1, ζ2, b](ψ1, ψ2) :=
√
1 + |∇ζ1|2∂nφ1|z=h10+ζ1 ,

G2[ζ2, b]ψ2 :=
√
1 + |∇ζ2|2∂nφ2|z=ζ2 .

We also define the following operator:

H [ζ1, ζ2, b](ψ1, ψ2) := ∇φ1|z=ζ2 .

Using the chain rule and the last definitions in the relation (2) evaluated at the
surface, we obtain

(6) ∂tψ1 + g(h10 + ζ1) +
1

2
|∇ψ1|2 −

(G1[ζ1, ζ2, b](ψ1, ψ2) +∇ζ1 · ∇ψ1)
2

2(1 + |∇ζ1|2)
= −P1

ρ1
,

where P1 is the constant pressure at the surface. Using again the Bernoulli equation
for the upper and the lower fluids evaluated at the interface, we have

∂t(φ1|z=ζ2) + gζ2 +
1

2
|H [ζ1, ζ2, b](ψ1, ψ2)|2

− (G2[ζ2, b]ψ2 +∇ζ2 ·H [ζ1, ζ2, b](ψ1, ψ2))
2

2(1 + |∇ζ2|2)
= −P2

ρ1
,(7)

∂tψ2 + gζ2 +
1

2
|∇ψ2|2 −

(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)
2

2(1 + |∇ζ2|2)
= −P2

ρ2
,(8)

where P2 is the pressure at the interface, identical in (7) and (8), thanks to the
continuity assumption in (5).

Finally, using (4), the gradient of the equality (6), and a straightforward combi-
nation of (7) and (8), we obtain the system of equations

(9)





∂tζ1 −G1[ζ1, ζ2, b](ψ1, ψ2) = 0,
∂tζ2 −G2[ζ2, b]ψ2 = 0,
∂t∇ψ1 + g∇ζ1 + 1

2∇(|∇ψ1|2)−∇N1(ζ1, ζ2, b, ψ1, ψ2) = 0,
∂t(∇ψ2 − γH [ζ1, ζ2, b](ψ1, ψ2)) + g(1− γ)∇ζ2

+ 1
2∇(|∇ψ2|2 − γ|H [ζ1, ζ2, b](ψ1, ψ2)|2)−∇N2(ζ1, ζ2, b, ψ1, ψ2) = 0,

where γ = ρ1
ρ2

and

N1(ζ1, ζ2, b, ψ1, ψ2) = (G1[ζ1,ζ2,b](ψ1,ψ2)+∇ζ1·∇ψ1)
2

2(1+|∇ζ1|2) ,

N2(ζ1, ζ2, b, ψ1, ψ2) = (G2[ζ2,b]ψ2+∇ζ2·∇ψ2)
2−γ(G2[ζ2,b]ψ2+∇ζ2·H[ζ1,ζ2,b](ψ1,ψ2))

2

2(1+|∇ζ2|2) .

This is the system of equations that we use in order to derive asymptotic models.
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1.5. Nondimensionalization of the equations. In this subsection, we rewrite
the system (9) in dimensionless variables, introducing dimensionless parameters which
are crucial to study the asymptotic dynamics. We denote by a1 the typical amplitude
of the surface deformation and by a2 that of the interface. λ is a characteristic hori-
zontal length, say, the wavelength of the interface. Finally B is the order of bottom
topography variation.

We define the dimensionless variables

X̃ :=
X

λ
, z̃ :=

z

h10
, t̃ :=

t

λ/
√
gh10

, b̃(X̃) :=
b(X)

B

and the dimensionless unknowns

ζ̃i(X̃) :=
ζi(X)

ai
, ψ̃i(X̃) :=

ψi(X)

a2λ
√
g/h10

.

Five independent parameters of the system are thus added to γ = ρ1
ρ2
:

ǫ1 :=
a1
h10

, ǫ2 :=
a2
h10

, µ :=
h210
λ2

, δ :=
h10
h20

, β :=
B

h10
.

So, ǫ1 and ǫ2 are the nonlinearity parameters, and µ is the shallowness parameter.
We also define the convenient notation

α :=
a1
a2

=
ǫ1
ǫ2
.

Remark 1.2. The scaling for nondimensionalization has been chosen considering
the solutions of the linearized problem that can be computed with the physical vari-
ables using the method of section 1.6 (see [30], for example). Using such a scaling,
we implicitly assume that the two layers are of similar depth (i.e., δ ∼ 1). Therefore,
the choice of h10 (and not h20) as the reference vertical length and

√
gh10 as the

reference velocity are harmless. We refer, for example, to [18,19] for the investigation
of different situations such as the deep-water regime or the finite-depth regime.

In the same way, we decide to use the same scaling on ψ1 and ψ2 in order to
simplify Definitions 1.3 and 1.4 and especially to keep the relation ∂nφ1 = ∂nφ2 on
the interface. We choose a2 instead of a1 so that the expansions of section 2.2 hold
for α tending to zero. In that way, we are able to retrieve the shallow water/shallow
water with rigid-lid model in section 4.1.

Finally, as we choose a unique characteristic horizontal length, we focus on only
the case where the internal and surface waves have length scales of the same order
and hence do not consider phenomenons such as the resonant interaction between a
long internal wave and short surface waves, as studied, for example, in [13]. Moreover,
in the case of three-dimensional waves (d = 2), a unique characteristic horizontal
length means that there is no preferential horizontal direction so that we do not
study transverse waves.

We now rewrite the system in terms of dimensionless variables. First, we have to
define the dimensionless operators associated to the dimensionless fluid domains:

Ω1 := {(X, z) ∈ R
d+1, ǫ2ζ2(X) < z < 1 + ǫ1ζ1(X)},

Ω2 := {(X, z) ∈ R
d+1,−1

δ
+ βb(X) < z < ǫ2ζ2(X)}.
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In the following, we always assume that the domains remain strictly connected, so
there is a positive value h such that, for all X ∈ Rd,

(10) 1 + ǫ1ζ1(X)− ǫ2ζ2(X) ≥ h > 0 and
1

δ
+ ǫ2ζ2(X)− βb(X) ≥ h > 0.

Definition 1.3. Let ζ2 and b ∈ W 1,∞(Rd) such that Ω2 satisfies (10), and

suppose that ∇ψ2 ∈ H1/2(Rd). Then, with φ2 the unique solution in H2(Ω2) of the

boundary value problem

(11)





∆µ
X,zφ2 = 0 in Ω2,

φ2 = ψ2 on Γ2 := {z = ǫ2ζ2},
∂nφ2 = 0 on Γb := {z = − 1

δ + βb},

we define Gµ,δ2 [ǫ2ζ2, βb]ψ2 ∈ H1/2(Rd) by

Gµ,δ2 [ǫ2ζ2, βb]ψ2 := −µǫ2∇ζ2 · ∇φ2|z=ǫ2ζ2 + ∂zφ2|z=ǫ2ζ2 .

Definition 1.4. Let now ζ1, ζ2, and b ∈ W 1,∞(Rd) be such that Ω1 and Ω2

satisfy (10), and suppose ∇ψ1, ∇ψ2 ∈ H1/2(Rd). Let φ1 be the unique solution in

H2(Ω2) of the boundary value problem

(12)





∆µ
X,zφ1 = 0 in Ω1,

φ1 = ψ1 on Γ1 := {z = 1 + ǫ1ζ1},
∂nφ1 = 1√

1+µǫ22|∇ζ2|2
Gµ,δ2 [ǫ2ζ2, βb]ψ2 on Γ2.

Then we define Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) ∈ H1/2(Rd) by

Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) := −µǫ1∇ζ1 · ∇φ1|z=1+ǫ1ζ1 + ∂zφ1|z=1+ǫ1ζ1

and Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) ∈ H1/2(Rd) by

Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2) = (∇φ1)|z=ǫ2ζ2 .

In the following, when there is no possibility of mistake, we simply write

G2ψ2 := Gµ,δ2 [ǫ2ζ2, βb]ψ2,

G1(ψ1, ψ2) := Gµ,δ1 [ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2),

H(ψ1, ψ2) := Hµ,δ[ǫ1ζ1, ǫ2ζ2, βb](ψ1, ψ2).

Remark 1.5. The existence and uniqueness of such solutions φ2 and φ1 are given
by Proposition 2.1.

Using these last definitions, it is straightforward to check that the system (9)
becomes in dimensionless variables (where we omit the tildes for the sake of clarity)

(13)



α∂tζ1 − 1
µG1(ψ1, ψ2) = 0,

∂tζ2 − 1
µG2ψ2 = 0,

∂t∇ψ1 + α∇ζ1 + ǫ2
2 ∇(|∇ψ1|2) = µǫ2∇N1,

∂t(∇ψ2 − γH(ψ1, ψ2)) + (1− γ)∇ζ2 + ǫ2
2 ∇(|∇ψ2|2 − γ|H(ψ1, ψ2)|2) = µǫ2∇N2,



2236 VINCENT DUCHÊNE

where

N1 :=

(
1
µG1(ψ1, ψ2) + ǫ1∇ζ1 · ∇ψ1

)2

2(1 + µ|ǫ1∇ζ1|2)
,

N2 :=

(
1
µG2ψ2 + ǫ2∇ζ2 · ∇ψ2

)2
− γ

(
1
µG2ψ2 + ǫ2∇ζ2 ·H(ψ1, ψ2)

)2

2(1 + µ|ǫ2∇ζ2|2)
.

We derive the asymptotic models from this system of nondimensionalized equations,
corresponding to different sizes for the dimensionless parameters.

1.6. The linearized equation. Linearizing the system (13) around the rest
state, we obtain

(14)





α∂tζ1 − 1
µG

µ,δ
1 [0, 0, 0](ψ1, ψ2) = 0,

∂tζ2 − 1
µG

µ,δ
2 [0, 0]ψ2 = 0,

∂t∇ψ1 + α∇ζ1 = 0,
∂t(∇ψ2 − γHµ,δ[0, 0, 0](ψ1, ψ2)) + (1− γ)∇ζ2 = 0.

Now when the surface, the interface, and the bottom are flat, we have explicit expres-
sions for the operators G1, G2, and H . Indeed, taking the horizontal Fourier transform

of the Laplace equations in (11) and (12), we obtain that φ̂2 and φ̂1 are solutions of
the following ordinary differential equations:

−µ|D|2y + y′′ = 0.

Then, using the boundary conditions, we deduce

φ2(X, z) = cosh(
√
µ|D|z)ψ2(X) + tanh

(√
µ

δ
|D|
)
sinh(

√
µ|D|z)ψ2(X)

so that we have

Gµ,δ2 [0, 0]ψ2 =
√
µ|D| tanh

(√
µ

δ
|D|
)
ψ2.

Then we obtain

φ1(X, z) =cosh(
√
µ|D|z)

(
1

cosh(
√
µ|D|)ψ1(X)− tanh

(√
µ

δ
|D|
)
tanh(

√
µ|D|)ψ2(X)

)

+tanh

(√
µ

δ
|D|
)
sinh(

√
µ|D|z)ψ2(X)

so that we have

Gµ,δ1 [0, 0, 0](ψ1, ψ2) =

√
µ|D|

cosh(
√
µ|D|)

(
sinh(

√
µ|D|)ψ1 + tanh

(√
µ

δ

)
ψ2

)

and finally

Hµ,δ[0, 0, 0](ψ1, ψ2) =
1

cosh(
√
µ|D|)∇ψ1(X)− tanh

(√
µ

δ
|D|
)
tanh(

√
µ|D|)∇ψ2(X).
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Using these expressions in the system (14), we can easily calculate the dispersion
relations. Indeed, the wave frequencies ω2

±(k), corresponding to plane-wave solutions
eik·X−iω±t, are the solutions of the quadratic equation
(15)

ω4− |k|√
µ

tanh(
√
µ|k|) + tanh

(√
µ

δ |k|
)

1 + γ tanh(
√
µ|k|) tanh

(√
µ

δ |k|
)ω2+

|k|2
µ

(1− γ) tanh(
√
µ|k|) tanh

(√
µ

δ |k|
)

1 + γ tanh(
√
µ|k|) tanh

(√
µ

δ |k|
) = 0.

This equation has two strictly positive solutions (and their opposite) if and only if
γ < 1, corresponding to the case wherein the lower fluid is heavier than the upper one.
This expression also appears in [11] and [29]. Figure 2 shows the evolution of the wave
frequencies ω±, −ω± as functions of the wave number k. We chose the parameters
µ = 0.1, δ = 1/3, γ = 2/3.
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Fig. 2. Full system dispersion.

Remark 1.6. We remark that setting γ = 0 and δ = 1, we recover the classical
dispersion relation for the one-fluid system

ω2 =
|k|√
µ
tanh(

√
µ|k|).

2. Asymptotic models. We derive asymptotic models for the system by ob-
taining explicit expansions of the operators. Following the method of [7], it is conve-
nient to first reduce the problems (11) and (12) to elliptic equations on a flat strip.

2.1. Flattening of the domain. We define the mappings

R1 :=
Ω1 → S+

(X, z) 7→ (X, r1(X, z))
with r1(X, z) :=

z − ǫ2ζ2(X)

1 + ǫ1ζ1(X)− ǫ2ζ2(X)
,

R2 :=
Ω2 → S−

(X, z) 7→ (X, r2(X, z))
with r2(X, z) :=

z − ǫ2ζ2(X)

1/δ − βb(X) + ǫ2ζ2(X)
,

and we denote their inverse

S1 :=
S+ → Ω1

(X, z) 7→ (X, s1(X, z))
and S2 :=

S− → Ω2

(X, z) 7→ (X, s2(X, z))
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with

s1(X, z) := (1 + ǫ1ζ1(X)− ǫ2ζ2(X))z + ǫ2ζ2(X),

s2(X, z) := (1/δ − βb(X) + ǫ2ζ2(X))z + ǫ2ζ2(X).

Introducing the (d+ 1)× (d+ 1) matrices

Pi :=
1

∂zsi

(
∂zsiId 0d,1

−∇Xsi
T 1

)(
µId 0d,1
01,d 1

)(
∂zsiId −∇Xsi
01,d 1

)

=

(
µ∂zsiId −µ∇Xsi

−µ∇Xsi
T 1+µ|∇Xsi|2

∂zsi

)
,(16)

where 0m,n is the m×n zero matrix and Id the d×d identity matrix, we can transform
the Laplace equations (11) and (12) into elliptic boundary value problems on flat
strips.

Proposition 2.1. Let ζ1, ζ2, and b ∈W 1,∞(Rd) such that Ω1 and Ω2 satisfy (10),
and suppose ∇ψ1, ∇ψ2 ∈ H1/2(Rd). Then there exists a unique solution φ1 ∈ H2(S+)
and φ2 ∈ H2(S−) to the boundary value problems

(17)





∇X,z · P2∇X,zφ2 = 0 in S−,
φ2 = ψ2 on {z = 0},
∂nφ2 = 0 on {z = −1}

and

(18)





∇X,z · P1∇X,zφ1 = 0 in S+,
φ1 = ψ1 on {z = 1},
∂nφ1 = ∂nφ2 on {z = 0},

where ∂nφ stands for the upward conormal derivative associated to the elliptic operator

involved:

∂nφ := ed+1 · P∇X,zφ.

Moreover, φ̃i := (X, z) 7→ φi(X, ri(X, z)) (i = 1, 2), respectively, solve the prob-

lems (12) and (11). Thus, the operators G1, G2, and H can equivalently be defined

with

G2ψ2 = ed+1 · P2∇X,zφ2|z=0,

G1(ψ1, ψ2) = ed+1 · P1∇X,zφ1|z=1,

H(ψ1, ψ2) = ∇φ1|z=0.

Proof. The reduction of the problems (12) and (11) on the flat strip can be found
on [20] (Proposition 2.7). The coercivity condition is satisfied thanks to (10) and the
assumptions on ζ1, ζ2 (see Proposition 2.3 of [1]):

(19) ∃k > 0 ∀Θ ∈ R
d+1,Θ · PiΘ ≥ 1

k

∣∣Θ
∣∣2.

Thus, we just prove here the existence and uniqueness of the H2-solutions φi
(i = 1, 2). Since, for all g ∈ H−1/2(Rd), h ∈ H1/2(Rd), we can easily construct a
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function w ∈ H1(S+) such that w|z=1 = h and ∂nw|z=0 = g, (18) and (17) clearly
reduce to the problem

(20)





∇X,z · P∇X,zφ1 = f in S+,
φ1 = 0 on Γ1 := Rd × {1},
∂nφ1 = 0 on Γ2 := Rd × {0},

where f ∈ H−1(S+) and P satisfies (19).
As a first step, we introduce the variational formulation of this problem. Let us

define the functional space

V := {v ∈ H1(S+), γ0(v) = 0 on R
d}

with γ0 : H1(S+) → H1/2(Rd) the trace operator on Γ1. Since γ0 is continuous, V ,
equipped with the scalar product of H1(S+) and the corresponding norm, is a closed
subspace of H1(S+) and hence a Hilbert space. A solution of the variational problem
related to (20) is then a function u ∈ V such that

(21) ∀v ∈ V,

∫

S+

P∇u · ∇v = −
∫

S+

fv.

Since V = {v ∈ D(S̄+), v = 0 on Γ1} is dense in V , a solution of the variational
problem (21) is a weak solution of the problem (20).

Now we can check that a(u, v) :=
∫
S+ P∇u ·∇v is a continuous bilinear form. The

coercivity of a is given by (19) and a generalized Poincaré inequality (see [2], Theorem
5.4.3). Finally, since b : v ∈ V 7→ −

∫
S+ fv is clearly continuous, the Lax–Milgram

theorem gives the existence and uniqueness of a solution u ∈ V of (21) and thus a
weak solution of (20). Moreover, we have

∥∥u
∥∥
H1 ≤ C

∥∥f
∥∥
H−1 .

The last step consists in proving that the solution u lives in H2(S+) if we assume
that f ∈ L2. We introduce for h > 0,

uh := (x, y, z) 7→ τhu(x, y, z)− u(x, y, z)

h
=
u(x+ h, y, z)− u(x, y, z)

h
.

Then uh is the solution (20) with fh = τhf−f
h and gh = τhg−g

h so that
∥∥uh

∥∥
H1 ≤ C

∥∥fh
∥∥
H−1 .

Then we remark that, for any v ∈ H1(S+), vh(x, y, z) =
1
h

∫ x+h
x

∂xv(t, y, z)dt so that

∥∥vh
∥∥
L2 ≤ 1

h

∫ h

0

∥∥∂xv
∥∥
L2dt ≤

∥∥v
∥∥
H1 .

Thus, we have, thanks to the duality between H1 and H1
0 ,

∥∥fh
∥∥
H−1 ≤ sup

v∈H1
0

|(fh, v)|∥∥v
∥∥
H1

≤ sup
v∈H1

0

∥∥f
∥∥
L2

∥∥vh
∥∥
L2∥∥v

∥∥
H1

≤
∥∥f
∥∥
L2 .

We finally have
∥∥uh

∥∥
H1 ≤ C

∥∥f
∥∥
L2 .
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Since V is a Hilbert space, we deduce that there exists w ∈ V and a subsequence (uhk
)

such that uhk
weakly converges toward w. Moreover, we know that uhk

converges
toward ∂xu in D′(S+), so we deduce ∂xu ∈ V ⊂ H1.

We prove in the same way that ∂yu ∈ H1 so that ∆Xu ∈ L2. Finally, thanks
to (19), we have

|∂2zu| ≤ |∆Xu|+ k|∇X,z · P∇X,zu| = |∆Xu|+ k|f |

so that u ∈ H2(S+), and the proposition is proved.

2.2. Asymptotic expansion of the operators. We are looking for shallow
water models (µ ≪ 1) and therefore need to obtain an expansion of the operators in
terms of µ. The method is the following. We first exhibit the expansion of the matrix
Pi in terms of µ. Then we look for approximate solutions φappi (i = 1, 2) under the
form

φappi = φ0i + µφ1i + µ2φ2i .

Plugging this ansatz into (17) and (18) and solving at each order of µ gives the φji ,
from which we can deduce the expansion of the operators by computing the normal
derivative of φappi .

Since (17) is exactly the same problem as involved (in the case of the water wave)
in [1], we can directly apply Proposition 3.8 to the lower fluid.

Proposition 2.2. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ2 ∈ Hs+11/2(R2),
ζ2 ∈ Hs+9/2(R2), and b ∈ Hs+11/2(R2) such that (10) is satisfied. Then we have

∣∣G2ψ2 + µ∇ · (h2∇ψ2)
∣∣
Hs ≤ µ2C0,(22)

∣∣G2ψ2 + µ∇ · (h2∇ψ2)− µ2∇ · T [h2, βb]∇ψ2

∣∣
Hs ≤ µ3C1,(23)

with Cj = C( 1h , β
∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j ,

∣∣∇ψ2

∣∣
Hs+7/2+2j ), and where we denote

by h2 := 1
δ − βb+ ǫ2ζ2 the thickness of the lower layer, and

T [h, b]V := −1

3
∇(h3∇ · V ) +

1

2

(
∇(h2∇b · V )− h2∇b∇ · V

)
+ h∇b∇b · V.

Remark 2.3. To obtain the estimate (22), we use the approximate solution

φapp,12 = ψ2 − µh2

(
h2

(
z2

2
+ z

)
∆ψ2 − zβ∇b · ∇ψ2

)
.

We need a higher order approximation to obtain (23), namely, φapp,22 = φapp,12 +
µ2φ22, where φ

2
2 can be obtained using the same method as in the following study.

Proposition 2.2 is then obtained following the path of Appendix A for the lower fluid
(see [8] for a rigorous proof).

The study of the upper fluid is different from the one of the lower fluid since we
have now a nonhomogeneous Neumann condition on the interface. In order to manage
this, we first decompose φ1 := φ̌1 + φ̄1, where φ̌1 is the unique solution of

(24)





∇X,z · P1∇X,zφ̌1 = 0 in S+,

φ̌1 = ψ1 on {z = 1},
∂nφ̌1 = 0 on {z = 0}
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and φ̄1 is the unique solution of

(25)





∇X,z · P1∇X,zφ̄1 = 0 in S+,
φ̄1 = 0 on {z = 1},
∂nφ̄1 = G2ψ2 on {z = 0}.

Again the system satisfied by φ̌1 reduces to the water-wave problem (where the to-
pography of the bottom would be given by ǫ2ζ2), so we introduce as in Remark 2.3
the approximate solutions

φ̌app,11 := ψ1 − µh1

(
h1

(
(z − 1)2

2
+ (z − 1)

)
∆ψ1 − (z − 1)ǫ2∇ζ2 · ∇ψ1

)
,

φ̌app,21 := φ̌app,11 + µ2φ̌21.

It follows that Ǧ1ψ1 the contribution on the Dirichlet–Neumann operator from φ̌1
can be expanded as in the following proposition.

Proposition 2.4. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ζ2 ∈ Hs+11/2(R2),
ζ1 ∈ Hs+9/2(R2) such that (10) is satisfied. Then we have

∣∣Ǧ1ψ1 + µ∇ · (h1∇ψ1)
∣∣
Hs ≤ µ2C0,(26)

∣∣Ǧ1ψ1 + µ∇ · (h1∇ψ1)− µ2∇ · T [h1, ǫ2ζ2]∇ψ1

∣∣
Hs ≤ µ3C1(27)

with Cj = C( 1h , ǫ2
∣∣ζ2
∣∣
Hs+7/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+5/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ), and where we denote

by h1 := 1+ ǫ1ζ1 − ǫ2ζ2 the thickness of the upper layer, and T [h, b]V is defined as in

Proposition 2.2.
The last step consists in computing the contribution on the Dirichlet–Neumann

operator from φ̄1. We first define φ̄app1 = φ0 + µφ1 + µ2φ2. It is straightforward that

P1 = P 0 + µP 1 with P 0 :=

(
0d,d 0d,1
01,d

1
h1

)
and P 1 :=

(
h1Id −∇Xs1

−∇Xs1
T |∇Xs1|2

h1

)
,

where we have used the notations 0m,n for the m × n zero matrix and Id for the
d× d identity matrix. Plugging these expansions into (25), using Proposition 2.2, and
solving at each order, we get the following:

At order O(1) :





1
h1
∂2zφ

0 = 0 in S+,

φ0 = 0 on {z = 1},
1
h1
∂zφ

0 = 0 on {z = 0}

so that we have

(28) φ0 = 0.

At order O(µ) :





1
h1
∂2zφ

1 = −∇X,z · P 1∇X,zφ
0 = 0 in S+,

φ1 = 0 on {z = 1},
1
h1
∂zφ

1 = −ed+1 · P 1∇X,zφ
0 −∇ · (h2∇ψ2) on {z = 0},
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which gives immediately

(29) φ1 = −h1∇ · (h2∇ψ2)(z − 1).

At order O(µ2) :




1
h1
∂2zφ

2 = h1
(
(z − 1)h1∇ · ∇A2 − 2ǫ1∇ζ1 · ∇A2 − ǫ1∆ζ1A2

)
in S+,

φ2 = 0 on {z = 1},
1
h1
∂zφ

2 = ∇ · T [h2, βb]∇ψ2 + ǫ2∇ζ2 · (h1∇A2 + ǫ1∇ζ1A2) on {z = 0}

with the notation A2 := ∇ · (h2∇ψ2). This leads to the solution

φ2 =h1

(
(h21∇ · ∇A2)

(
z3

6
− z2

2
+

1

3

)
− h1(2ǫ1∇ζ1 · ∇A2 + ǫ1∆ζ1A2)

(
z2

2
− 1

2

)

+(∇ · T [h2, βb]∇ψ2 + ǫ2∇ζ2 · (h1∇A2 + ǫ1∇ζ1A2))(z − 1)

)
.(30)

This formal derivation of φ̄app1 allows us to obtain the expansion of Ḡ1ψ2, the
contribution on the Dirichlet–Neumann operator from φ̄1. Formally we have

(31) Ḡ1ψ2 ≈ −µA2 + µ2
(
∇ · T [h2, βb]∇ψ2 −

1

2
∇ · (h21∇A2)−∇ · (h1ǫ1∇ζ1A2)

)
.

Summing this expansion with the one of Proposition 2.4 gives immediately the
expansion of the full operator G1(ψ1, ψ2). The following proposition gives a rigorous
statement of this fact; its proof is postponed to Appendix A.

Proposition 2.5. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2),
ζ1 ∈ Hs+7/2(R2), ζ2 ∈ Hs+9/2(R2), and b ∈ Hs+11/2(R2) such that (10) is satisfied.

Then we have

∣∣G1(ψ1, ψ2) + µ(A1 +A2)
∣∣
Hs ≤ µ2C0,(32)

∣∣G1(ψ1, ψ2) + µ(A1 +A2)− µ2
(
∇ · T1 +∇ · T2 −

1

2
∇ · (h21∇A2)

−∇ · (h1ǫ1∇ζ1A2)
)∣∣
Hs ≤ µ3C1(33)

with the constants

C0 = C
(
1
h , β

∣∣b
∣∣
Hs+7/2 , ǫ2

∣∣ζ2
∣∣
Hs+5/2 , ǫ1

∣∣ζ1
∣∣
Hs+3/2 ,

∣∣∇ψ1

∣∣
Hs+7/2 ,

∣∣∇ψ2

∣∣
Hs+7/2

)
,

C1 = C
(
1
h , β

∣∣b
∣∣
Hs+11/2 , ǫ2

∣∣ζ2
∣∣
Hs+9/2 , ǫ1

∣∣ζ1
∣∣
Hs+7/2 ,

∣∣∇ψ1

∣∣
Hs+11/2 ,

∣∣∇ψ2

∣∣
Hs+11/2

)
,

and the notations

A1 := ∇ · (h1∇ψ1), A2 := ∇ · (h2∇ψ2),
T1 := T [h1, ǫ2ζ2]∇ψ1, T2 := T [h2, βb]∇ψ2.

Remark 2.6. As in Remark 2.3, the proof of the estimate (32) requires the ap-
proximate solution φapp,11 with

φapp,11 := φ̌app,11 + φ0 + µφ1,

and the second estimate (33) uses

φapp,21 := φ̌app,21 + φ0 + µφ1 + µ2φ2.
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In Appendix A (Steps 4 and 5), we give estimates on φ1 − φapp1 , obtained thanks to
the trace theorem and an elliptic estimate on the boundary value problem solved by
φ1 − φapp1 . This leads to the desired inequalities since

G1(ψ1, ψ2)− ∂nφ
app
1 |z=1 = ∂n(φ1 − φapp1 )|z=1.

The last expansion to obtain is the one of H(ψ1, ψ2), which is given by the following.
Proposition 2.7. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2),

ζ1 ∈ Hs+7/2(R2), ζ2 ∈ Hs+9/2(R2), and b ∈ Hs+11/2(R2) such that (10) is satisfied.

Then we have

∣∣H(ψ1, ψ2)−∇ψ1

∣∣
Hs ≤ µC0,(34)

∣∣H(ψ1, ψ2)−∇ψ1 − µ∇
(
h1(A1 +A2)−

1

2
h21∆ψ1

−h1ǫ1∇ζ1 · ∇ψ1

)∣∣
Hs ≤ µ2C1(35)

with

C0 = C
(
1
h , β

∣∣b
∣∣
Hs+7/2 , ǫ2

∣∣ζ2
∣∣
Hs+5/2 , ǫ1

∣∣ζ1
∣∣
Hs+3/2 ,

∣∣∇ψ1

∣∣
Hs+7/2 ,

∣∣∇ψ2

∣∣
Hs+7/2

)
,

C1 = C
(
1
h , β

∣∣b
∣∣
Hs+11/2 , ǫ2

∣∣ζ2
∣∣
Hs+9/2 , ǫ1

∣∣ζ1
∣∣
Hs+7/2 ,

∣∣∇ψ1

∣∣
Hs+11/2 ,

∣∣∇ψ2

∣∣
Hs+11/2

)
,

and using the notations of Proposition 2.5.
Proof. The proof uses the estimates (67) and (69) on u := φ1 − φapp,11 . Indeed,

we have to give an estimate for
∣∣∇u|z=0

∣∣
Hs , and a trace theorem (see Métivier [25]

pp. 23–27) gives, for all s ≥ 0,

∣∣∇u|z=0

∣∣
Hs ≤ Cst(

∥∥Λs+1/2∇u
∥∥
L2 +

∥∥Λs−1/2∂z∇u
∥∥)L2 ≤ Cst√

µ

∥∥Λs+1/2∇µ
X,zu

∥∥
L2 .

Then the estimate (67) allows us to conclude:

∣∣∇u|z=0

∣∣
Hs ≤ Cs,t0√

µ

(
1
h , ǫ1

∣∣ζ1
∣∣
Hmax{t0+2,s+3/2} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+3/2}))(µ

2
∥∥h
∥∥
Hs+1/2

+
1+

√
µ√
µ

∣∣V
∣∣
Hs+1

)
.

The first estimate (34) follows from this relation, together with the estimates (62)
and (64).

As for the Proposition 2.5, the second estimate (35) requires the use of the higher
order approximate solution ũ := φ1 − φapp,21 , and the result is obtained in the same
way.

Remark 2.8. Using the same approximate solution as for the expansion of
G1(ψ1, ψ2), we obtain an estimate one order less precise in µ than in (32) and (33).
This loss of precision is not seen at the formal level and comes from the 1√

µ term

due to the horizontal scaling, which is necessary in order to have a uniformly elliptic
operator.

2.3. Asymptotic models. The expansions of the operators we obtained allow
us to derive asymptotic models from (13). The frame of this study is limited to shallow
water/shallow water regimes, that is to say, long waves and layers of similar depth
(µ≪ 1, and δ ∼ 1). However, the method could be extended to many different regimes,
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as it has been done in [7] with the rigid-lid assumption. As we see in section 4, we
recover most of the models which have been introduced in the literature, as well as
interesting new ones (the Boussinesq/Boussinesq model with coefficients (42) and the
higher order system (44)). Furthermore, we show rigorously that (13) is consistent
with all of these models in the following sense (see [6]).

Definition 2.9. The internal-wave system (13) is consistent with a system S of

2d+2 equations, if any sufficiently smooth solution of (13) such that (10) is satisfied
solves S up to a small residual called the precision of the asymptotic model. Throughout

this paper, the precision is given in the sense of L∞Hs norms, which means that the

Hs norm of the residual is uniformly bounded with respect to t where the solution is

defined.

Remark 2.10. The consistency does not require the well-posedness of (13) and
concerns only the properties of smooth solutions of the system. However, if we assume
the existence of such functions, we can prove that they are approximated by the
solutions of consistent systems, as we see in section 3.

2.3.1. The shallow water/shallow water regime: µ ≪ 1. We assume here
that both layers are in the shallow water regime (µ≪ 1), whereas strong nonlinearity
is allowed (ǫ1, ǫ2 = O(1)). We use the first order expansions (22), (32), and (34), and
we plug them into (13). We obtain, discarding the O(µ) terms, the following system:

(36)





α∂tζ1 +∇ · (h1∇ψ1) +∇ · (h2∇ψ2) = 0,
∂tζ2 +∇ · (h2∇ψ2) = 0,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1− γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= 0,

where h1 = 1 + ǫ1ζ1 − ǫ2ζ2 and h2 = 1
δ − βb+ ǫ2ζ2.

Remark 2.11. This system has already been introduced in the flat bottom case
in [11] and equivalently, although under a different form, in [10]. We say more about
this in section 4.2.

Proposition 2.12. The full system (13) is consistent with (36), at the precision

µC0, with

C0 = C

(
1
h , β

∣∣b
∣∣
W 1,∞Hs+7/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+5/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+3/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+7/2

)
.

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution
of (13) such that (10) is satisfied and U ∈ Hs. It is straightforward to check that we
have

(37)



α∂tζ1 +∇ · (h1∇ψ1) +∇ · (h2∇ψ2) = ∇ · (h1∇ψ1) +∇ · (h2∇ψ2) +
1
µG1(ψ1, ψ2),

∂tζ2 +∇ · (h2∇ψ2) = ∇ · (h2∇ψ2) +
1
µG2ψ2,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= µǫ2∇N1,

∂t∇ψ2 + (1− γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= γ∂t(H(ψ1, ψ2)−∇ψ1)

+ ǫ2
2 γ∇(|H(ψ1, ψ2)|2 − |∇ψ1|2) + µǫ2∇N2 + µγǫ2∇N1.
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Except for ∂t(H(ψ1, ψ2)−∇ψ1), the right-hand side is immediately bounded by µC0,
thanks to the estimates (22), (32), and (34). The estimate on the derivative is obtained
as in the following.

We use the study of Appendix A; we derive (61) with respect to t on both sides
and get

(38)





∇µ
X,z · Pµ∇

µ
X,z(∂tu) = µ2 ∇µ

X,z · ∂th−∇µ
X,z · ∂t(Pµ)∇

µ
X,zu in S+,

∂tu = 0 on {z = 1},
∂n(∂tu) = ∇ · ∂tV + µ2ed+1 · ∂th− ed+1 · ∂t(Pµ)∇µ

X,zu on {z = 0}.
We now need estimates on the right-hand side of the system. Directly from the defi-
nition of h, we have

(39)
∥∥∂th

∥∥
Hs+3/2,1 ≤ C0.

Thanks to Step 4 of section A.2, we have
∥∥∂t(Pµ)∇µ

X,zu
∥∥
Hs+3/2,1 ≤ C0.

Finally we can obtain the estimate on ∂tV , using the same method as here on the
lower layer:

∣∣∂tV
∣∣
Hs ≤ µ2C

(
1

h
, β
∣∣b
∣∣
W 1,∞Hs+5/2 ,

∣∣(ǫ1ζ1, ǫ2ζ2,∇ψ1,∇ψ2)
∣∣
Hs−1

)
.

Then we use the study of Appendix A and obtain the estimates of Steps 4 and 5 for
∂tu, and we use them as in Proposition 2.7 in order to obtain the desired inequality:

∣∣∂t(H(ψ1, ψ2)−∇ψ1)
∣∣
Hs =

∣∣∇∂tu
∣∣
Hs ≤ µC0.

Conservation laws. The first two equations of (36) reveal the conservation of mass
since a straightforward linear combination gives

(40)

{
∂th1 + ǫ2∇ · (h1∇ψ1) = 0,
∂th2 + ǫ2∇ · (h2∇ψ2) = 0.

We can play with the system to obtain other conservation laws. The conservations of
total momentum and energy are given by

∂t(γh1u1 + h2u2) +∇p+ (γh1 + h2)β∇b+∇ · (γh1u1 ⊗ u1 + h2u2 ⊗ u2) = 0,

∂t

(1
2

(
γh1|u1|2 + h2|u2|2

)
+ p
)
+

1

2
∇ · (γh1|u1|2u1 + h2|u2|2u2)

+∇ · (γh21u1 + h22u2 + γh1h2(u1 + u2)) + (γh1u1 + h2u2)β∇b = 0,

with the notations h1 = 1 + ǫ1ζ1 − ǫ2ζ2, h2 = 1
δ − βb + ǫ2ζ2, ui = ǫ2∇ψi (i = 1, 2),

and the “pressure” p := 1
2γh

2
1 +

1
2h

2
2 + γh1h2.

Dispersion relations. When we calculate the linearized dispersion relations as in
section 1.6, we obtain that ω2

±(k) satisfy

ω2
±(k) =

1 + δ ±
√
(1− δ)2 + 4γδ

2δ
|k|2.

This dispersion relation is not the same as the one of the full system (it corresponds
to the first order of the expansion in µ of the solutions of (15)), but we still have
the condition γ < 1 for the system to be linearly well-posed. Figure 3 presents shal-
low water/shallow water model dispersion, compared with the dispersion of the full
system, with the parameters µ = 0.1, δ = 1/3, γ = 2/3.
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Fig. 3. The shallow water/shallow water model dispersion.

2.3.2. The Boussinesq/Boussinesq regime: µ ∼ ǫ2 ∼ ǫ1 ≪ 1. In this
regime, the shallowness and the nonlinearity are supposed to be small and of the
same size. This time, we use the second order of the expansions and obtain

(41)



α∂tζ1 +∇ · (h1∇ψ1) +∇ · (h2∇ψ2) = µ
(−1

3 ∆∇ · ∇ψ1 +∇ · T [h2, βb]∇ψ2

− 1
2δ∆∇ · ∇ψ2

)
,

∂tζ2 +∇ · (h2∇ψ2) = µ (∇ · T [h2, βb]∇ψ2) ,

∂t∇ψ1 + α∇ζ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1− γ)∇ζ2 + αγ∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= µγ∂t

(
1
δ∇∆ψ2 +

1
2∇∆ψ1

)

with T [h, b]V defined as in Proposition 2.2.
Remark 2.13. If the bottom is flat, then T [h2, βb]∇ψ2 is simply −1

3δ3∇∆ψ2.
Model with improved frequency dispersion. This model is linearly ill-posed. For-

tunately, following [4, 6], we can easily derive asymptotically equivalent models with
coefficients which can be chosen so that the system is well-posed. For simplicity, we
assume now to be in the case of a flat bottom (see [8] for the varying bottom case).

We rewrite the system (41) with new variables: ui := ∇φi(zi) (i = 1, 2). From the
calculations of section 2.2, we obtain

φapp,11 (z) = ψ1 − µ

(
(z − 1)2

2
+ (z − 1)

)
∆ψ1 − µ

1

δ
(z − 1)∆ψ2,

φapp,12 (z) = ψ2 − µ
1

δ2

(
z2

2
+ z

)
∆ψ2.

We then define u1 and u2 as in the following:

u1 := ∇φapp,11 (z1) = ∇ψ1 − µb1∆∇ψ1 − µ
1

δ
a1∆∇ψ2,

u2 := ∇φapp,12 (z2) = ∇ψ2 − µ
1

δ2
a2∆∇ψ2,
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with z1 ∈ (0, 1) for the upper fluid, z2 ∈ (−1, 0) for the lower fluid, and the coefficients

a1 := z1 − 1 ∈ [−1, 0], a2 :=
z22
2

+ z2 ∈ [−1/2, 0], b1 :=
a21
2

+ a1 ∈ [−1/2, 0].

We plug this into (41) and obtain

(42)





α∂tζ1 +∇ · (h1u1) +∇ · (h2u2) + µ
(
1+3b1

3 ∇ ·∆u1
+
(
1+2a1

2δ + 1+3a2
3δ3

)
∇ ·∆u2

)
= 0,

∂tζ2 +∇ · (h2u2) + µ 1+3a2
3δ3 ∇ ·∆u2 = 0,

(1 + µb1∆)∂tu1 + µa1δ ∆∂tu2 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= 0,

(1 + µ(a2δ2 − γ
δ )∆)∂tu2 − µγ2∆∂tu1 + (1− γ)∇ζ2 + αγ∇ζ1

+
ǫ2
2
∇
(
|u2|2

)
= 0.

Remark 2.14. If we choose a1 = − 1
2 , a2 = − 1

3 , and b1 = − 1
3 , we obtain the

classical “layer-mean” model (59), introduced by Choi and Camassa in [10]. As we see
below, this system is linearly ill-posed. One of the interests of (42) is to offer a large
class of equivalent models with parameters which can be chosen so that the system is
linearly well-posed.

Proposition 2.15. The full system (13) is consistent with (42), at the precision

µ2C1, with

C1 = C

(
1
h , β

∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,

∣∣∇ψ2

∣∣
W 1,∞Hs+11/2

)
.

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution
of (13) such that (10) is satisfied and U ∈ Hs+2.

We first give the proof for a1 = b1 = a2 = 0 corresponding to the original
system (41). We just have to plug U in (41), as in the proof of Proposition 2.12. Since
ǫ2 ∼ µ, we have

∣∣µǫ2∇N1

∣∣
Hs +

∣∣µǫ2∇N2

∣∣
Hs ≤ µ2C1. The other residuals are bounded

by µ2C1, thanks to the estimates (23), (33), and (35) with ǫ2 ≪ 1 and the equivalent
estimates on the derivatives which are obtained as in the proof of Proposition 2.12.

The general case is obtained when we substitute ∇ψ1 − µb1∆∇ψ1 − µ 1
δa1∆∇ψ2

for u1 and ∇ψ2 − µ 1
δ2 a2∆∇ψ2 for u2 in (42). We obtain (41) up to additional terms

that are clearly bounded by µ2C1.
Dispersion relations. As we have said previously, the coefficients can be chosen so

that the system (42) is linearly well-posed. Indeed, it is straightforward to check from
the linearized system that ω2

±(k), corresponding to plane-wave solutions eik·X−iω±t,
must be the solutions of the equation

(43) ω4 −A(µ|k|2)|k|2ω2 +B(µ|k|2)|k|4 = 0

with

A(Y ) :=
(1−β1Y )

(

1+
γδ(a1+1)−a2

δ2
Y
)

+γ( 1
δ−(α1+α2)Y )(1−(b1+ 1

2 )Y )+(1−γ)( 1
δ−α2Y )(1−b1Y )

(1−b1Y )(1−a2−γδ

δ2
Y )+ γ

2δ a1Y
2

,

B(Y ) := (1 − γ)
( 1

δ−α2Y )(1−β1Y )

(1−b1Y )(1− a2−γδ

δ2
Y )+ γ

2δ a1Y
2
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and the notations

α1 :=
1 + 2a1

2δ
, α2 :=

1 + 3a2
3δ3

, β1 :=
1 + 3b1

3
.

In order to have two positive solutions of (43), the coefficients have to satisfy
a2 ≤ −1/3 and b1 ≤ −1/2. We see that the original system (41) and the classical
layer-mean model (59) are ill-posed. However, there exist sets of parameters a1, a2, b1
such that the generalized system is well-posed. Moreover, we can choose the coefficients
such that the dispersions meet with the ones of the full system at the order 3 in µ|k|2.
We present in Figure 4 the difference between the dispersion of the full system and
the one of the Boussinesq/Boussinesq model for three sets of parameters: a1 = b1 =
a2 = 0 corresponding to the original system (41); a1 = − 1

2 , a2 = − 1
3 , and b1 = − 1

3
corresponding to the layer-mean system (59); and finally a1 ≈ 0.4714, a2 ≈ −0.3942,
and b1 = −1 corresponding to optimized parameters in (42). Moreover, we chose
µ = 0.1, δ = 1/3, and γ = 2/3. Note that except for the last set of parameters, the
system is linearly ill-posed so that the computation breaks for high wave numbers.
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Fig. 4. The Boussinesq/Boussinesq models dispersion error.

2.3.3. The higher order system. We are now back in the strong linearity
regime allowing large amplitude (ǫ1, ǫ2 = O(1)). But now we use the higher order
expansions (23), (33), and (35) and thus obtain the strongly nonlinear model
(44)



α∂tζ1 +A1 +A2 = µ
(
∇ · T1 +∇ · T2 − 1

2∇ · (h21∇A2)−∇ ·
(
h1ǫ1∇ζ1A2)

)
,

∂tζ2 +A2 = µ∇ · T2,
∂t∇ψ1 + α∇ζ1 +

ǫ2
2
∇
(
|∇ψ1|2

)
= µǫ2∇N1,

∂t∇ψ2 + (1− γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|∇ψ2|2

)
= µ

(
γ∂t∇H+ γǫ2∇(∇ψ1 · ∇H)

+ǫ2∇N2 + γǫ2∇N1

)
,

where we have used the following notations:

A1 := ∇ · (h1∇ψ1), A2 := ∇ · (h2∇ψ2),
T1 := T [h1, ǫ2ζ2]∇ψ1, T2 := T [h2, βb]∇ψ2,
H := h1(∇ · (h1∇ψ1) +∇ · (h2∇ψ2)− 1

2h1∆ψ1 − ǫ1∇ζ1 · ∇ψ1),

N1 := (ǫ1∇ζ1·∇ψ1−∇·(h1∇ψ1)−∇·(h2∇ψ2))
2

2 ,

N2 := (ǫ2∇ζ2·∇ψ2−∇·(h2∇ψ2))
2−γ(ǫ2∇ζ2·∇ψ1−∇·(h2∇ψ2))

2

2 .
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Proposition 2.16. The full system (13) is consistent with (44), at the precision

µ2C1, with

C1 = C
(
1
h , β

∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,∣∣∇ψ2

∣∣
W 1,∞Hs+11/2

)
.

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let U := (ζ1, ζ2,∇ψ1,∇ψ2) be a solution
of (13) such that (10) is satisfied and U ∈ Hs+2. We plug U into (44), and, thanks to
the estimates (23), (33), and (35) and that the equivalent estimates on the derivatives
are obtained as in the proof of Proposition 2.12, we can check that the residuals are
bounded by µ2C1.

Dispersion relations. The linearized system is the same as the one of (41). So the
system is linearly ill-posed, and we should derive models with parameters to obtain
well-posed systems.

3. Convergence results. We show here how to use the consistency results ob-
tained in section 2.3 to prove convergence results, stating that solutions of (13), if they
exist, remain close to the solutions of the asymptotic models that are symmetrizable
hyperbolic systems.

Remark 3.1. It is not clear that each of our models can be written as a symmetriz-
able hyperbolic system. That is why we focus here on the shallow water/shallow water
model (36) in the flat-bottom case (β = 0). We set d = 2, and the case d = 1 follows
immediately. The case of the Boussinesq/Boussinesq models will be discussed in a
later work.

The analysis is based on classical results for quasilinear systems, which can be
found, for example, in [26] and [17] and that we recall here.

Lemma 3.2. Let s > d
2 + 1 and T > 0. We assume that Aj are smooth functions

of u ∈ Rn such that the system

(45) ∂tU +

d∑

j=1

Aj(U)∂xU = F (t, x, U)

is Friedrichs-symmetrizable. Moreover, we assume that u 7→ F (t, x, u) is a smooth

function of u ∈ Rn and that F (t, x, u) is bounded in Hs uniformly with respect to

t ∈ [0, T ]. Then, for g ∈ Hs(Rd), taking values in Rn, there exist 0 < T ′ ≤ T and

a unique U ∈ C0([0, T ′);Hs(Rd))n such that U satisfies (45) and U(t = 0) = g.
Moreover, U belongs to U ∈ C0([0, T ′);Hs)n ∩ C1([0, T ′);Hs−1)n, and if U satisfies

∣∣U
∣∣
W 1,∞([0,T ]×Rd)

≤M,

for M > 0, then there are constants C(M) and K(M) such that

∣∣U(t)
∣∣
Hs ≤ CeKt

∣∣g
∣∣
Hs + C

∫ t

0

eK(t−s)∣∣f(s)
∣∣
Hsds

with f(t, x) = F (t, x, g).



2250 VINCENT DUCHÊNE

First we remark that the shallow water/shallow water model (36) in the flat-
bottom case (β = 0) can be written as a quasilinear system

(46) ∂tU +A1(U)∂xU +A2(U)∂yU = 0

with the notation

U := (h1, h2, u1x, u1y, u2x, u2y)

= (1 + ǫ1ζ1 − ǫ2ζ2,
1

δ
+ ǫ2ζ2, ǫ2∂xψ1, ǫ2∂yψ1, ǫ2∂xψ2, ǫ2∂yψ2)

and the matrices

A1(U) :=




u1x 0 h1 0 0 0
0 u2x 0 0 h2 0
1 1 u1x u1y 0 0
0 0 0 0 0 0
γ 1 0 0 u2x u2y
0 0 0 0 0 0



,

A2(U) :=




u1y 0 0 h1 0 0
0 u2y 0 0 0 h2
0 0 0 0 0 0
1 1 u1x u1y 0 0
0 0 0 0 0 0
γ 1 0 0 u2x u2y



.

We prove now that the Cauchy problem associated with (46) is well-posed un-
der some assumptions on the initial data since the quasilinear system is Friedrichs-
symmetrizable.

Proposition 3.3. Let s > d
2 + 1. Let U0 ∈ Hs(Rd)6 such that there exists h > 0

such that for all X in Rd, U0(X) satisfies the assumptions

(47)
h1, h2 > h, |u21x+u21y|, |u22x+u22y| < h, and (h1−u21x−u21y)(h2−u22x−u22y) > γh1h2.

Then there exists T ′ > 0 and a unique U ∈ C0([0, T ′);Hs(Rd))6 such that U satis-

fies (46) and U(t = 0) = U0.

Proof. We introduce the following matrix S, namely,

S(U) :=




γ γ γu1x γu1y 0 0
γ 1 0 0 u2x u2y

γu1x 0 γh1 0 0 0
γu1y 0 0 γh1 0 0
0 u2x 0 0 h2 0
0 u2y 0 0 0 h2



.

It is straightforward to check that S(U) and S(U)A(U, ξ) are self-adjoint with
A(U, ξ) := ξ1A1(U) + ξ2A2(U). Then, using the Gauss reduction algorithm, we can
check that S(U) is definite positive if U satisfies (47). These requirements are satisfied
at time t = 0 by U0, and we define T as the maximum time such that they remain
satisfied for all t < T . We know that T > 0, thanks to a continuity argument. Then
since we have proved that S is a symmetrizer of (46), Lemma 3.2 gives 0 < T ′ ≤ T
such that U is uniquely defined on [0, T ′).
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The last step consists of proving that the solutions of (46) approximate the solu-
tions of the full system (13), assuming that the latter exist. This is obtained thanks
to the energy estimate of Lemma 3.2.

Proposition 3.4. We fix γ ∈ (0, 1) and δ ∈ (0,+∞). For t0 > d/2 and s ≥
t0+1/2, let U ∈ C1([0;T ];Hs)6∩C0([0;T ];Hs+1)6 be a solution of (13) such that (10)
is satisfied and U is bounded in Hs([0, T ]), uniformly with respect to ǫ1, ǫ2 ∈ [0, 1),
and µ ∈ (0, µmax]. We denote by Ũ := (ζ̃1, ζ̃2, ũ1, ũ2) the solution of (36) with the

same initial values that we assume to satisfy (47). Then we have

∣∣U − Ũ
∣∣
Hs ≤ µC0

with C0 = C( 1h , γ, δ, µ
max,

∣∣U
∣∣
Hs , T ).

Proof. Thanks to the consistency result (Proposition 2.12), we know that U sat-
isfies (45) with F (t, x, U) = f(t, x) and

∣∣f
∣∣
Hs ≤ µC0

with C0 = C( 1h ,
∣∣U
∣∣
Hs). Then the difference between the two solutions Rµ := U − Ũ

satisfies (45) with the same f and

F (t, x, Rµ) := f(t, x)−A1(R
µ)∂xŨ −A2(R

µ)∂yŨ .

Taking a smaller T if necessary, we have

∣∣U
∣∣
(W 1,∞([0,T ]×Rd))6

+
∣∣Ũ
∣∣
(W 1,∞([0,T ]×Rd))6

≤M,

where M is independent of ǫ1, ǫ2 and µ. Thus we can apply Lemma 3.2, and we have

∣∣Rµ(t)
∣∣
Hs ≤ C

∫ t

0

eK(t−s)∣∣f
∣∣
Hsds ≤ µC

(
1

h
, γ, δ, µmax,

∣∣U
∣∣
Hs , T

)
.

4. Links to other models.

4.1. Rigid lid in the shallow water/shallow water case. In [7], Bona,
Lannes, and Saut presented a model for internal waves in the shallow water regime
with the rigid-lid assumption. They showed that a nonlocal operator has to appear
for d = 2 (see observations in [15]). This operator cannot be seen in our model (36) so
that it is a purely two-dimensional, rigid-lid effect. However, we show in the following
how to make it appear from (36).

Indeed, the rigid-lid assumption means that ǫ1 = 0 when ǫ2 remains > 0 so that
α = 0. The system (36) becomes

(48)





∇ · (h1∇ψ1) +∇ · (h2∇ψ2) = 0,
∂tζ2 +∇ · (h2∇ψ2) = 0,

∂t∇ψ1 +
ǫ2
2
∇
(
|∇ψ1|2

)
= 0,

∂t∇ψ2 + (1− γ)∇ζ2 +
ǫ2
2
∇
(
|∇ψ2|2

)
= 0,

where h1 = 1− ǫ2ζ2 and h2 = 1
δ − βb+ ǫ2ζ2.

For simplicity, we restrict ourself to the case of a flat bottom (β = 0), but we
could do the same calculations with β > 0. We first define the shear velocity

v := ∇ψ2 − γ∇ψ1.
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From the first line, we deduce

∇ · (h2v) = −∇ · ((h1 + γh2)∇ψ1) = −γ + δ

δ
∇ ·
((

1 +
γ − 1

γ + δ
δǫ2ζ2

)
∇ψ1

)
.

Then we define the nonlocal operator Q as follows.
Definition 4.1. Assuming that ζ ∈ L∞(Rd), we define the mapping

Q[ζ] :=
L2(Rd)d → L2(Rd)d,
W 7→ V,

where V is the unique gradient vector in L2(Rd)d, solution of

∇ · ((1 + ζ)V ) = ∇ ·W.
So from the definition, we have

∇ψ1 = Q[
γ − 1

γ + δ
δǫ2ζ2]

(
− δ

γ + δ
h2v

)
.

We plug this expression into (48) and obtain immediately

(49)





∂tζ2 +
δ

γ+δ∇ ·
(
h1Q[γ−1

γ+δ δǫ2ζ2](h2v)
)
= 0,

∂tv + (1 − γ)∇ζ2 +
ǫ2
2
∇
(
|v − γδ

γ+δQ[γ−1
γ+δ δǫ2ζ2](h2v)|2

− γδ2

(γ+δ)2 |Q[γ−1
γ+δ δǫ2ζ2](h2v)|2

)
= 0,

where h1 = 1− ǫ2ζ2 and h2 = 1
δ + ǫ2ζ2. This is exactly the system derived in [7].

Using the same method, we could derive rigid-lid models from (42) and (44). The
rigid-lid model in the Boussinesq regime has already been exhibited in [7], and a fully
nonlinear model is presented in [9].

4.2. The layer-mean equations. In the literature, the water-wave system is
often given by layer-mean equations (see, for example, [31]), using as unknowns the
depth-mean velocity across the layers:

u1(X) :=
1

h1

∫ 1+ǫ1ζ1

ǫ2ζ2

∇φ1(X, r1(X, z))dz with h1 := 1 + ǫ1ζ1 − ǫ2ζ2,

u2(X) :=
1

h2

∫ ǫ2ζ2

−1/δ+βb

∇φ2(X, r2(X, z))dz with h2 :=
1

δ
− βb+ ǫ2ζ2.

The systems under this form (obtained, for example, in [10] and [3]) are equivalent
to the system we derived since we can approximate u1 and u2 thanks to our previous
unknowns ψ1 and ψ2 (as we see in the following proposition) and conversely. Thus, our
study gives a rigorous justification of these models, and we are able to offer consistency
results.

Proposition 4.2. Let t0 > d/2 and s ≥ t0 + 1/2, ∇ψ1, ∇ψ2 ∈ Hs+11/2(R2),
ζ1 ∈ Hs+7/2(R2), ζ2 ∈ Hs+9/2(R2), and b ∈ Hs+11/2(R2) such that (10) is satisfied.

Then we have
∣∣u1 −∇ψ1

∣∣
Hs+1 ≤ µC0,(50)

∣∣u2 −∇ψ2

∣∣
Hs+1 ≤ µC0,(51)

∣∣u1 −∇ψ1 − µD1(∇ψ1,∇ψ2)
∣∣
Hs+1 ≤ µ2C1,(52)

∣∣u2 −∇ψ2 − µD2∇ψ2

∣∣
Hs+1 ≤ µ2C1,(53)
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with

Cj = C
(
1
h , β

∣∣b
∣∣
Hs+7/2+2j , ǫ2

∣∣ζ2
∣∣
Hs+5/2+2j , ǫ1

∣∣ζ1
∣∣
Hs+3/2+2j ,

∣∣∇ψ1

∣∣
Hs+7/2+2j ,∣∣∇ψ2

∣∣
Hs+7/2+2j

)

and where D1 and D2 are defined by

D1(∇ψ1,∇ψ2) = − 1
h1

(
T1 − 1

2 (h
2
1∇A2)− (h1ǫ1∇ζ1A2)

)
,

D2∇ψ2 = − 1
h2
T2

with the notations of Proposition 2.5.
Proof. Using the Green formula with φ1 the solution of (12) and a test function

ϕ̃ := (X, z) 7→ ϕ(X), we have
∫

Ω1

ϕ̃∆µ
X,zφ1dXdz = −

∫

Ω1

∇µ
X,zφ1 · ∇µ

X,zϕ̃dXdz +

∫

Γ1

ϕ∂n1φ1dn1 +

∫

Γ2

ϕ∂n2φ1dn2

= −µ
∫

Rd

∇ϕ
∫ 1+ǫ1ζ1

ǫ2ζ2

∇φ1dzdX +

∫

Rd

ϕ (G1(ψ1, ψ2)−G2ψ2) dX.

Thus we deduce

(54) ∇ · (h1u1) =
−1

µ
(G1(ψ1, ψ2)−G2ψ2).

Identically we have

(55) ∇ · (h2u2) =
−1

µ
G2ψ2.

We now prove the estimate (50), and the others are obtained in the same way.
Using Propositions 2.2 and 2.5 together with (54), and since (10) is satisfied, we

have immediately
∣∣∇ · (u1 −∇ψ1)

∣∣
Hs ≤ µC0

so that we have only to obtain an L2-estimate on u1 − ∇ψ1. Using the definition of
u1 and the mappings defined on section 2, we obtain

u1 −∇ψ1 =

∫ 1

0

∇(φ̃1 − ψ1) +∇s1∂z̃φ̃1dz̃

with φ1 : (X, z̃) ∈ S+ 7→ φ̃1(X, s1(X, z̃)). We deduce
∣∣u1 −∇ψ1

∣∣
2
≤ C(ǫ1

∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞)

∥∥∇X,z̃(φ̃1 − ψ1)
∥∥
2
.

The estimate follows now from Step 3 of section A.2, together with the estimates (62)
and (64).

4.2.1. The shallow water/shallow water regime: µ ≪ 1, ǫ = O(1). We
use (50) and (51) in the system (36), and with a straightforward linear combination,
we obtain

(56)





∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 +∇h2 + β∇b+∇h1 +
ǫ2
2
∇
(
|u1|2

)
= 0,

∂tu2 +∇h2 + β∇b+ γ∇h1 +
ǫ2
2
∇
(
|u2|2

)
= 0.
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Proposition 4.3. The full system (13) is consistent with (56), at the precision

µC0, with

C0 = C
(
1
h , β

∣∣b
∣∣
W 1,∞Hs+7/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+5/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+3/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+7/2 ,∣∣∇ψ2

∣∣
W 1,∞Hs+7/2

)
.

Proof. We know from Proposition 2.12 that (13) is consistent with (36), at the
precision µC0. From (50) and (51), we deduce that (ζ1, ζ2, u1, u2) satisfies (56) up to
a residual of the same order.

Remark 4.4. Note that the first two equations of (56) are equalities (where the
last two equations are first order approximations in µ), as we can see from (13), (54),
and (55). They reveal the conservation of mass. Conservation of momentum and en-
ergy are the one obtained in section 2.3.1 when we substitute ui for ∇ψi (i = 1, 2).
These conservation laws and the one of higher order systems have already been intro-
duced in the flat-bottom case in [3].

4.2.2. The Boussinesq/Boussinesq regime: µ ∼ ǫ2 ∼ ǫ1 ≪ 1. We now re-
strict ourself to the flat-bottom case since it considerably simplifies the notations, but
the following could be derived with β 6= 0 without any difficulty. The estimates (52)
and (53) with ǫ2 ∼ µ and β = 0 give the following formal relations:

u1 ≈ ∇ψ1 + µ

(
1

3
∇∆ψ1 +

1

2δ
∇∆ψ2

)
,(57)

u2 ≈ ∇ψ2 + µ
1

3δ2
∇∆ψ2.(58)

Plugging this into (41), we obtain the system
(59)



∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= µ∂t

(
1
3∆u1 +

1
2δ∆u2

)
,

∂tu2 + (1− γ)∇ζ2 + αγ∇ζ1 +
ǫ2
2
∇
(
|u2|2

)
= µ∂t

((
1

3δ2 + γ
δ

)
∆u2 +

γ
2∆u1

)
.

Remark 4.5. This set of equations had been revealed in [10]. It corresponds to (42)
with the choice of parameters: a1 = − 1

2 , a2 = − 1
3 , b1 = − 1

3 . This particular choice of
parameters leads to a linearly ill-posed system. That is why it is interesting to obtain,
as in section 2.3.2, a larger class of models allowing linearly well-posed systems.

Since this system is a particular case of the Boussinesq/Boussinesq model (42),
we can apply Proposition 2.15.

Proposition 4.6. The full system (13) is consistent with (59), at the precision

µ2C1, with

C1 = C
(
1
h , β

∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,∣∣∇ψ2

∣∣
W 1,∞Hs+11/2

)
.
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4.2.3. The higher order system. We now do the same study without assum-
ing any smallness on ǫ1, ǫ2. We plug (52) and (53) into (44), and we obtain

(60)



∂th1 + ǫ2∇ · (h1u1) = 0,
∂th2 + ǫ2∇ · (h2u2) = 0,

∂tu1 + α∇ζ1 +
ǫ2
2
∇
(
|u1|2

)
= µǫ2∇N1 + µǫ2∇(u1 · D1) + µ∂tD1,

∂tu2 + (1 − γ)∇ζ2 + γα∇ζ1 +
ǫ2
2
∇
(
|u2|2

)
= µ

(
∂t(γ∇H+D2) + ǫ2∇(γu1 · ∇H

+u2 · D2 +N2 + γN1)
)

with the notations of Proposition 4.2 and (44) and when we substitute ui for ∇ψi
(i = 1, 2).

Proposition 4.7. The full system (13) is consistent with (60), at the precision

µ2C1, with

C1 = C
(
1
h , β

∣∣b
∣∣
W 1,∞Hs+11/2 , ǫ2

∣∣ζ2
∣∣
W 1,∞Hs+9/2 , ǫ1

∣∣ζ1
∣∣
W 1,∞Hs+7/2 ,

∣∣∇ψ1

∣∣
W 1,∞Hs+11/2 ,∣∣∇ψ2

∣∣
W 1,∞Hs+11/2

)
.

Proof. Let t0 > d/2 and s ≥ t0 + 1/2. Let (ζ1, ζ2,∇ψ1,∇ψ2) be a sufficiently
smooth solution of (13) such that (10) is satisfied. We know from Proposition 2.16
that (ζ1, ζ2,∇ψ1,∇ψ2) satisfies (44) up to a residual bounded by µ2C1. Then the
estimates (52) and (53) give that (ζ1, ζ2, u1, u2) satisfies (60) up to a residual of the
same order.

Appendix A. Proof of Proposition 2.5.
Our proof contains three parts. First we introduce u, the correction to the expan-

sion of φ1 formally obtained in section 2.2, and we present the system solved by u.
Then we use the elliptic form of the operator to obtain Hs estimates on u. Finally we
use these estimates to prove the desired inequalities.

A.1. System solved by u. We first define the second order correction to the
formal expansion

u := φ1 − ψ1 + µh1(z − 1)
(
h1
(z + 1

2

)
∆ψ1 − ǫ2∇ζ2 · ∇ψ1 +∇ · (h2∇ψ2)

)

︸ ︷︷ ︸
:=φ1

.

From the computation carried out in section 2.2, we know that u satisfies the following
equalities:

∇X,z · P1∇X,zu = µ2∇ · P 1∇φ1 in S+,

u = 0 on {z = 1},
∂nu = G2ψ2 + µ∇ · (h2∇ψ2) + µ2(∂P

1

n φ1) on {z = 0}.

Moreover, we notice that (55) gives G2ψ2 + µ∇ · (h2∇ψ2) = ∇ · V with

V = µh2(∇ψ2 − u2).

Thus, using the definition of P1 in (16), we finally have the system

(61)





∇µ
X,z · Pµ∇µ

X,zu = µ2 ∇µ
X,z · h in S+,

u = 0 on {z = 1},
∂nu = ∇ · V + µ2ed+1 · h on {z = 0},
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where we have introduced the notation ∇µ
X,z := (

√
µ∇T , ∂z)

T , h := Pµ∇µ
X,zφ

1, and

Pµ :=

(
h1Id −√

µ∇s1
−√

µ∇s1T 1+µ|∇s1|2
h1

)
.

We now give the useful estimates of the right-hand side of the system. It is straight-
forward to check that

(62)
∥∥h
∥∥
Hs+1/2,1 ≤ C

(
1

h
, ǫ1
∣∣ζ1
∣∣
Hs+3/2 , ǫ2

∣∣ζ2
∣∣
Hs+5/2 , β

∣∣b
∣∣
Hs+5/2 ,

∣∣∇ψ1

∣∣
Hs+7/2 ,

∣∣∇ψ2

∣∣
Hs+7/2

)
.

Then, since we have G2ψ2+µ∇· (h2∇ψ2) = ∇·V , Proposition 2.2 immediately gives

(63)
∣∣∇ · V

∣∣
Hs ≤ µ2C

(
1

h
, β
∣∣b
∣∣
Hs+7/2 , ǫ2

∣∣ζ2
∣∣
Hs+5/2 ,

∣∣∇ψ2

∣∣
Hs+7/2

)
.

We now seek a L2-estimate of V = µh2(∇ψ2 − u2). Using the definition of u2 and the
mappings defined on section 2, we obtain easily that

u2 −∇ψ2 =

∫ 0

−1

∇(φ̃2 − ψ2) +∇s2∂z̃φ̃2dz̃

with φ2 : (X, z̃) ∈ S− 7→ φ̃2(X, s2(X, z̃)). Then the method of our proof adapted for
the lower fluid (this is done, for example, in [8]) leads at Step 3 to a L2-estimate
on ∇µ

X,z(φ̃2 − ψ2). We then plug this estimate into the previous equality, deduce the

desired estimate on
∣∣V
∣∣
L2 , and finally get with (63)

(64)
∣∣V
∣∣
Hs ≤ µ2C

(
1

h
, β
∣∣b
∣∣
Hs+5/2 , ǫ2

∣∣ζ2
∣∣
Hs+3/2 ,

∣∣∇ψ2

∣∣
Hs+5/2

)
.

A.2. Hs,1-estimate (s ≥ 0) on u. We follow the sketch of the proof of Propo-
sition 3 in [7], which contains five steps.

Step 1. Coercivity of the operator. Since ζ1, ζ2 ∈ W 1,∞ and satisfy (10), we can
check (see Proposition 2.3 of [1]) that, for any Θ ∈ Rd+1,

Θ · PµΘ ≥ 1

k

∣∣Θ
∣∣2

with k =
∥∥h1
∥∥
∞ + 1

h (1 + µ
∥∥∇s1

∥∥2
∞). The operator is uniformly coercive in µ.

Step 2. Existence and uniqueness of the solution. The result is given by the coer-
civity of the operator. From the assumptions on ζ1, ζ2, b, ψ1, and ψ2, we know that
h ∈ Hs+1/2,1(S+)d+1 and V ∈ Hs+1(Rd). For s ≥ 1/2, the proof of Proposition 2.1
works for the system (61) so that we know that there exists a unique solution in
H2(S+). We now prove by induction that, for k ∈ N,

(65) h ∈ Hk+1 and V ∈ Hk =⇒ u ∈ Hk+2.

We assume that h ∈ Hk+2 and V ∈ Hk+1. We thus know that u ∈ Hk+2 so that
v := Λu ∈ Hk+1 ⊂ H1. Hence, v is the classical solution of

(66)





∇µ
X,z · Pµ∇µ

X,zv = µ2 ∇µ
X,z · h̃ in S+,

v = 0 on {z = 1},
∂nv = ∇ · ΛV + µ2ed+1 · ∂xh̃ on {z = 0}
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with µ2h̃ = µ2Λh+ [Λ, Pµ]∇µ
X,zu. Thanks to Theorem 6 of [21], for t0 >

d
2 , we have

∥∥[Λ, Pµ]∇µ
X,zu

∥∥
2
≤ Ct0

∥∥∇Pµ
∥∥
Ht0

∥∥∇µ
X,zu

∥∥
2

so that h̃ ∈ Hk+1 and ΛV ∈ Hk. The inductive hypotheses are satisfied so that we
know that v ∈ Hk+2. Finally we use the coercivity of the operator (Step 1) with the
nth derivative of (61) and obtain

∥∥∂2z∂nu
∥∥
2
≤ k

∥∥∇µ
X,z · Pµ∇µ

X,z∂
nu
∥∥
2
+
∥∥∆X∂

nu
∥∥
2
.

It follows that u ∈ Hk+3, and (65) is proved. The interpolation theory leads to the
final result: for s ≥ 1/2, there exists a unique solution u ∈ Hs+3/2 of (61).

Step 3. L2-estimate on ∇µ
X,zu. We multiply (61) by u, integrate by parts on both

sides, and use the boundary conditions to finally obtain

∫

S
∇µ
X,zu · Pµ∇µ

X,zu = µ2

∫

S
∇µ
X,zu · h+

∫

{z=0}
∇u · V.

From the coercivity and the Cauchy–Schwarz inequality, we deduce

∥∥∇µ
X,zu

∥∥2
2
≤ k(µ2

∥∥h
∥∥
2

∥∥∇µ
X,zu

∥∥
2
+
∣∣V
∣∣
H1/2

∣∣∇u|z=0

∣∣
H−1/2).

Then a trace theorem (see Métivier [25], pp. 23–27) gives

∣∣∇u|z=0

∣∣
H−1/2 ≤ Cst(

∥∥∇u
∥∥
2
+
∥∥Λ−1∂z∇u

∥∥
2
)

≤ Cst(
1√
µ
+ 1)

∥∥∇µ
X,zu

∥∥
2
.

This finally gives the estimate

(67)
∥∥∇µ

X,zu
∥∥
2
≤ C

(
1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞

)(
µ2
∥∥h
∥∥
2
+

1 +
√
µ

√
µ

∣∣V
∣∣
H1/2

)
.

Step 4. L2-estimate on Λs∇µ
X,zu (s ≥ 0). We define v = Λsu. Multiplying (61)

by Λs on both sides, we obtain

(68)





∇µ
X,z · Pµ∇µ

X,zv = µ2 ∇µ
X,z · h̃ in Rd × (0, 1),

v = 0 on {z = 1},
∂nv = ∇ · ΛsV + µ2ed+1 · h̃ on {z = 0}

with µ2h̃ = µ2Λsh− [Λs, Pµ]∇µ
X,zu. We can use Step 3 with v and obtain

∥∥∇µ
X,zv

∥∥
2
≤ C

(
1
h , ǫ1

∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞

) (
µ2
∥∥Λsh

∥∥
2
+
∥∥[Λs, Pµ]∇µ

X,zu
∥∥
2

+
1+

√
µ√
µ

∣∣V
∣∣
Hs+1/2

)
.

We obtain the commutator estimate thanks to Theorem 6 of [21]: for s > − d
2 and

t0 >
d
2 , we have

∥∥[Λs, f ]g
∥∥
2
≤ Cs,t0

∥∥∇f
∥∥
Hmax{t0,s−1}

∥∥g
∥∥
Hs−1 .
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In our case, it gives

∥∥[Λs, Pµ]∇µ
X,zu

∥∥
2
≤ Cs,t0

(
1

h
, ǫ1
∣∣ζ1
∣∣
Hmax{t0+2,s+1} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+1}

)∥∥Λs−1∇µ
X,zu

∥∥
2
.

We finally get an estimate on
∥∥Λs∇µ

X,zu
∥∥
2
in terms of

∥∥Λs−1∇µ
X,zu

∥∥
2
. Step 3 is the

case when s = 0. By induction and by interpolation when s ∈ (0, 1), we obtain the
following relation for all s ≥ 0:

(69)

∥∥Λs∇µ
X,zu

∥∥
2
≤ Cs,t0

(
1
h , ǫ1

∣∣ζ1
∣∣
Hmax{t0+2,s+1} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+1}

) (
µ2
∥∥Λsh

∥∥
2

+
1+

√
µ√
µ

∣∣V
∣∣
Hs+1/2

)
.

Step 5. L2-estimate (s ≥ 0) on Λs∂z∇µ
X,zu. (61) gives the formula

1+µ
∣∣∇s1

∣∣2
h1

∂2zu = µ2∇µ
X,z · h− µ∇ · (h1∇u−∇s1∂zu) + µ∂z(∇s1 · ∇u)

−∂z
(

1+µ
∣∣∇s1

∣∣2
h1

)
∂zu,

from which we deduce

∥∥Λs∂2zu
∥∥
2
≤ C

(
1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞

)(
µ2
∥∥Λs∇µ

X,z · h
∥∥
2
+
√
µ
∥∥Λs+1∇µ

X,zu
∥∥
2

)
.

Thus, we have the estimate

∥

∥Λ
s
∂z∇µ

X,zu
∥

∥

2
≤ C

(

1

h
, ǫ1

∣

∣ζ1
∣

∣

W1,∞ , ǫ2
∣

∣ζ2
∣

∣

W1,∞

)

(

µ
2
∥

∥Λ
s∇µ

X,z · h
∥

∥

2
+

√
µ
∥

∥Λ
s+1∇µ

X,zu
∥

∥

2

)

,

and Step 4 allows us to conclude

∥∥Λs∂z∇µ
X,zu

∥∥
2
≤ Cs,t0

(
1
h , ǫ1

∣∣ζ1
∣∣
Hmax{t0+2,s+2} , ǫ2

∣∣ζ2
∣∣
Hmax{t0+2,s+2}

) (
µ2
∥∥h
∥∥
Hs+1,1

+
∣∣V
∣∣
Hs+3/2

)
.

A.3. Proof of the inequalities. To obtain the first estimate, we remark that

G1(ψ1, ψ2) + µ(A1 +A2) = ∂nu|z=1 − µ2u0

with u0 := |ǫ1∇ζ1|2(h1∆ψ1 − ǫ2ζ2 · ∇ψ1 +∇ · (h2∇ψ2)). It is straightforward to check
that

∣∣u0
∣∣
Hs ≤ C

(
1

h
, β
∣∣b
∣∣
Hs+1 , ǫ2

∣∣ζ2
∣∣
Hs+1 , ǫ1

∣∣ζ1
∣∣
Hs+1 ,

∣∣∇ψ1

∣∣
Hs+2 ,

∣∣∇ψ2

∣∣
Hs+2

)

so that we just have to bound
∣∣∂nu|z=1

∣∣
Hs . We now use the trace theorem to get

∣∣∂nu|z=1

∣∣
Hs ≤ C

(
1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞

)(
µ
∣∣∇u|z=1

∣∣
Hs +

∣∣∂zu|z=1

∣∣
Hs

)

≤ C

(
1

h
, ǫ1
∣∣ζ1
∣∣
W 1,∞ , ǫ2

∣∣ζ2
∣∣
W 1,∞

)(√
µ
∥∥∇µ

X,zu
∥∥
Hs+1/2,0

+
∥∥∂z∇µ

X,zu
∥∥
Hs−1/2,0

)
.(70)
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The estimates obtained in Steps 4 and 5, together with (62) and (64), give immediately
the desired result.

To obtain the second estimate, we have to carry on the proof with the higher
order approximate solution obtained in section 2.2,

ũ := φ1 − φapp,21 ,

and we would obtain the estimates exactly as above. We omit this technical step.
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