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Abstract

We rigorously justify the bilayer shallow-water system as an approximation to the hydrostatic Euler equations
in situations where the flow is density-stratified with close-to-piecewise constant density profiles, and close-to-
columnar velocity profiles. Our theory accommodates with continuous stratification, so that admissible deviations
from bilayer profiles are not pointwise small. This leads us to define refined approximate solutions that are able to
describe at first order the flow in the pycnocline. Because the hydrostatic Euler equations are not known to enjoy
suitable stability estimates, we rely on thickness-diffusivity contributions proposed by Gent and McWilliams. Our
strategy also applies to one-layer and multilayer frameworks.

1 Introduction

Motivation The bilayer shallow water system is a standard model for the description of internal waves in density-
stratified flows in situations where the density distribution is such that the fluid can be approximately described as
two layers with almost-constant densities separated by a thin a pycnocline; see e.g. [27, Chap. 6]. In addition to
this sharp stratification assumption, the formal derivation of the bilayer shallow water system relies on two additional
ingredients. Firstly, the internal pressure is assumed to be hydrostatic, that is the pressure-gradient force balances the
external force due to gravity. Secondly, the flow velocity is assumed to be columnar, that is the horizontal velocity
of fluid particles is constant with respect to the vertical variable within each layer. Of course the validity of bilayer
shallow water system relies on the expectation that, if originally approximately satisfied, these three assumptions
remain accurate on a relevant timescale as the flow evolves.

The rigorous justification of the hydrostatic assumption in the shallow water regime —that is when the typical
horizontal wavelength of the flow is large with respect to the vertical depth of the layer— has been rigorously analyzed
either in situations of homogeneous density [5, 36, 23, 37], with smooth density distributions [42, 41], or in the
bilayer framework [11, 21, 20]. In the bilayer framework and assuming that the pressure is hydrostatic, the columnar
assumption is propagated exactly by the flow. By this we mean that the bilayer shallow water system produces exact
solutions to the hydrostatic (incompressible) Euler equations with a density and horizontal velocity distributions which
are piecewise constant with respect to the vertical variable. This statement is made explicit below.

In this work we investigate solutions to the hydrostatic Euler equations in the vicinity of such solutions, that
is relaxing the sharp stratification as well as columnar motion assumptions. We prove that for initial data suitably
close to the bilayer framework, the emerging solutions to the hydrostatic Euler equations remain close to the solution
predicted by the bilayer shallow water system on a relevant timescale.

This task is made difficult in part because we lack good stability estimates for the hydrostatic Euler equations in the
presence of density stratification. For that matter, as in our previous works [9, 1], we rely on the regularizing properties
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of thickness-diffusivity terms proposed by Gent and McWilliams [25] so as to model the effective contributions of
geostrophic eddy correlations in non-eddy-resolving systems.

Description of our results Specifically, the hydrostatic Euler equations we consider take the form

Bth ` Bxpp1 ` hqpu ` uqq “ κB2
xh,

Btu `

ˆ

u ` u ´ κ
Bxh

1 ` h

˙

Bxu `
1

ρ
BxΨ “ 0,

(1.1)

where the Montgomery potential Ψ is given by

Ψpt, x, rq “ ρprq

ż r

´1
hpt, x, r1q dr1 `

ż 0

r
ρpr1qhpt, x, r1qdr1. (1.2)

Here, the equations are formulated using isopycnal coordinates (in particular we assume that the fluid is stratified in
the sense that the two-dimensional fluid domain is foliated through lines of equal density, namely isopycnals). The
variable h represents the deviation of the infinitesimal depth of isopycnals from the reference value 1, and u is the
deviation of the horizontal velocity of the fluid particles from the reference value u, and ρ their density. The unknowns
h, u depend on the time t, the horizontal space x, and the variable r P p´1, 0q referring to the isopycnal line at stake,
while u and ρ are given and depend only on r. The derivation of these equations from the more standard formulation
in Eulerian coordinates is described for instance in [9].1 Finally κ ą 0 is the thickness diffusivity coefficient and
u‹ “ ´κ Bxh

1`h is often referred to as the “bolus velocity”.
The corresponding bilayer shallow water system reads
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BtHs ` Bx
`

pHs ` HsqpU s ` Usq
˘

“ κB2
xHs,

BtHb ` Bx
`

pHb ` HbqpU b ` Ubq
˘

“ κB2
xHs,

BtUs ` pU s ` Us ´ κ BxHs
Hs`Hs

qBxUs ` BxHs ` BxHb “ 0,

BtUb ` pU b ` Ub ´ κ BxHb
Hb`Hb

qBxUb `
ρs
ρb

BxHs ` BxHb “ 0.

(1.3)

Here, Hs (resp. Hb) represents the deviation of the depth of the upper (resp. lower) layer from the reference constant
value Hs (resp. Hb), and Us (resp. Ub) is the deviation of the horizontal velocity within the upper (resp. lower) layer
from the reference constant value U s (resp. U b). Notice Hs, Hb, Us, Ub depend only on the time and horizontal space
variables, bringing about a relative ease of use of the bilayer model. We denote ρs (resp. ρb) the constant density of
fluid particles in the upper (resp. lower) layers. Finally, κ ą 0 is again the thickness diffusivity coefficient.

As mentioned above, solutions to (1.3) provide exact solutions to (1.1). Specifically, if we denote

ρ
bl

prq “ ρs1p´Hs,0qprq ` ρb1p´1,´Hsqprq,

ublprq “ U s1p´Hs,0qprq ` U b1p´1,´Hsqprq,

ublp¨, rq “ Us1p´Hs,0qprq ` Ub1p´1,´Hsqprq,

hblp¨, rq “
Hs

Hs

1p´Hs,0qprq `
Hb

Hb

1p´1,Hsqprq,

(1.4)

where pρs, ρb, Hs, Hb, U s, U b, Hs, Hb, Us, Ubq is a solution to (1.3), then pρ
bl
, ubl, hbl, ublq is a solution to (1.1)-

(1.2). In this work we shall compare these solutions with the ones emerging from profiles satisfying (1.4) only
approximately. Specifically, our results are twofold.

1Let us point out that in [9] we choose to label isopycnal lines using the value of the density of fluid particles: ϱ “ ρprq. Here we use a
different convention, so as to set the reference infinitesimal depth of isopycnals at value hprq “ 1. Notice that the change of variable ϱ “ ρprq

is bijective in the stably stratified situation, i.e. when r ÞÑ ρprq is strictly decreasing, but that our choice in this work allows to consider
stratifications that are not strictly monotonic such as homogeneous and layered configurations. Incidentally, let us mention that in (1.1) we have
set the gravity acceleration to g “ 1 and the total depth of the fluid domain at rest to

ş0

´1
hprq dr “ 1 through suitable rescaling.
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i. We prove that strong solutions to the bilayer shallow water system (1.3) emerge from sufficiently regular initial
data satisfying some hyperbolicity conditions.

ii. We prove that strong solutions to the hydrostatic Euler equations (1.1) emerge from profiles close to the piecewise
constant profiles given by (1.4), and that these solutions remain close to the bilayer solutions.

Notice that to accommodate our aim of comparing solutions with a piecewise constant density distribution with
a solution with a continuous density distribution, we need to consider deviations that can be pointwise large in small
regions, that is the pycnocline. This demands to weaken the topology measuring the size of deviations in (ii). Yet
a control in the strong L8 topology associated with a Banach algebra turns out to be necessary to secure suitable
convergence estimates. Our strategy then relies on the construction of a refined approximate solution, which is proved
to be close to the corresponding solution to the hydrostatic Euler equation in a strong topology, and close to the bilayer
solution in a weaker topology. Hence this refined approximate solution improves the description of the exact solution
within the pycnocline.

A second important remark is that while the contribution of thickness diffusivity is essential to our stability es-
timates, we wish to control and compare solutions on a time interval which is uniform with respect to the thickness
diffusivity parameter, 0 ă κ ď 1. The dependency on the thickness parameter will appear only as a restriction
on the size of admissible deviations. Concerning (i) this is made possible by the well-known fact that the bilayer
shallow-water system is well-posed (under some hyperbolicity conditions) when κ “ 0 (see [40]). Yet obtaining the
corresponding result for κ ą 0 is not straightforward and demands to use finely the structure of the thickness diffu-
sivity parameters, following the “two-velocity” strategy developed in the context of the BD-entropy (see e.g. [16]).
Concerning (ii) we use the existence of the bilayer solution and consequently the existence of the refined approxi-
mate solution to bootstrap the control of sufficiently close solutions to the hydrostatic Euler equations on the relevant
timescale. For that purpose we strongly use the regularizing effect of thickness diffusivity contributions, but any
non-uniformity with respect to the diffusivity parameter, κ, can be balanced through the smallness of the deviations.

Let us point out that the result (ii) applies to any given (sufficiently regular with respect to the time and horizontal
space variables) solution to the hydrostatic Euler equations. Hence our work provides the same stability estimates
around other solutions, constructed for instance in the framework of multiple layers and/or simple waves.

Related literature Several existing works discuss the matter of modeling thin pycnoclines through the bilayer
framework. Let us first recall that in the bilayer framework, non-hydrostatic pressure contributions trigger strong
Kelvin–Helmholtz instabilities that in particular prevent the well-posedness of the initial-value problem in the absence
of any additional regularizing ingredients; see [32]. Such regularizing ingredients include interfacial tension as proved
in [34] but this is not expected to be te physically relevant mechanism. In [10], Bogucki and Garrett describe and
model a scenario of interface-thickening due to mixing triggered by shear instabilities, up to a situation where the
Richardson number in the interface becomes compatible with the celebrated Miles [39] and Howard [30] stability
ion. Recall however that the bilayer shallow water system does not suffer from shear-induced instabilities when shear
velocities are sufficiently small. Consistently, the authors in [19] discuss the simultaneous limits of sharp stratification
together with shallow water (which can be considered as a low-frequency or hydrostatic pressure limit). In our work
we impose the hydrostatic pressure assumption thus taming shear instabilities, although as pointed out previously
the stability of continuously stratified hydrostatic Euler equations is poorly understood in the presence of density
variations (see [43, 12, 28, 38] in the homogeneous framework). Notice also that shear-induced instabilities disappear
when restricting the framework to purely traveling waves. In this framework, James [31] (improving upon [44, 4])
was able to rigorously justify the sharp stratification limit: writing the bilayer and continuously stratified problems in
a unified formulation, James proved the existence of internal traveling waves associated with density stratifications in
a small neighborhood (according to the L2 topology) of the bilayer framework which converge towards the bilayer
solution in the limit of sharp stratification. Our results are in the same spirit: system (1.1) is our unified formulation,
and the topology controlling the limit of sharp stratification in our work is the L1

r topology. However, our results
admit non-trivial dynamics thanks to the hydrostatic assumption and the presence of thickness diffusivity.
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The propagation of internal waves with thin pycnoclines in relation with bilayer models was also investigated
through experiments. In particular Grue et al. [29] set up precise experiments generating large-amplitude solitary
waves and reported the dynamical development of rolls on the trailing side of the largest considered waves in accor-
dance with the mechanism promoted by Bogucki and Garrett, while bilayer models provide very accurate predictions
otherwise. Almgren, Camassa and Tiron [3] investigate thoroughly this matter through careful numerical simulations
and analytical results of asymptotic bilayer models, analyzing the triggering of shear-induced instabilities in the region
of maximal displacement as well as their advection into stable regions of the flow. White and Helfrich [46] consider
internal bores generated by a dam-break, and compare continuously stratified and bilayer models with numerical ex-
periments. From their findings they suggest an improvement on existing bilayer theories. In [18], Camassa and Tiron
optimize bilayer models (specifically calibrating the top and bottom densities and the position of the sharp interface)
and compare the analytical predictions of the optimized bilayer models with respect to the numerically computed con-
tinuously stratified solutions —considering infinitesimally small waves, internal bores and solitary waves— showing
excellent agreement even in situations of relatively thick pycnoclines. Furthermore they propose a new asymptotic
model taking into account thin pycnoclines in view of reconstructing analytically local properties of traveling waves
within the pycnocline, which is similar in spirit with the “refined approximate solution” that we introduce in this work.
Notice the authors consider that “fully time-dependent models governing the evolution of the pycnocline thickness
probably constitute one of the most relevant extensions of the model [they] have introduced”, and we believe that our
work provides a partial answer in that respect.

Outline This manuscript is structured as follows. In Section 2 we study the bilayer shallow water systems. We
first recall some known results without thickness diffusivity, and then consider the system with thickness diffusivity
contributions. The main result is Proposition 2.7 which provides for any sufficiently regular initial data satisfying some
hyperbolicity criterion the existence and control of strong solutions to the bilayer system on a time interval which is
uniform with respect to 0 ă κ ď 1, while Proposition 2.8 states the strong convergence as κ Œ 0. In Section 3
we study the hydrostatic Euler equations. We provide first some stability estimates with respect to perturbations of
the equations and of the data using suitable distances. As a second step we introduce refined approximate solutions
associated with some given reference exact solution and close-by profiles. Building upon these approximate solutions,
we prove Proposition 3.8 which controls the difference between the reference solution and exact solutions to the
hydrostatic Euler equations emerging from close-by profiles. Together, Proposition 2.7 and Proposition 3.8 provide the
announced result that for profiles suitably close to the bilayer framework and satisfying some hyperbolicity criterion
the emerging solutions to the hydrostatic Euler equations remain close to the solution predicted by the bilayer shallow
water system on a relevant timescale. The rigorous statement is displayed in Section 4, completed with a discussion
on analogous statements in the one-layer and multilayer frameworks.

Notations Let us introduce some notations for functional spaces used in this work.

• The spaces LppRq are the standard Lebesgue spaces endowed with the usual norms denoted } ¨ }Lp .

• The spaces W k,ppRq for k P N are the Lp-based Sobolev spaces endowed with the usual norms denoted }¨}Wk,p .

• The spaces HspRq for s P R are the L2-based Sobolev spaces endowed with the usual norms denoted } ¨ }Hs .

• Given I a real interval and X a Banach space, LppI;Xq (respectively CnpI;Xq) the space of p-integrable
(respectively n-continuously differentiable) X-valued functions, endowed with their usual norms.

• When useful, we provide insights on the variables at stake in aforementioned functional spaces by means of
subscripts. For instance for f : px, rq P R ˆ p´1, 0q ÞÑ fpx, rq P R we may denote

}f}L8
r Hs

x
“ ess sup

`␣

}fp¨, rq}Hs , r P p´1, 0quq.

• We sometimes also use subscripts to provide information on the interval at stake in functional spaces. For
instance for T ą 0 and f : pt, xq P r0, T s ˆ R ÞÑ fpt, xq P R we may denote

}f}L8
T Hs

x
“ ess sup

`␣

}fpt, ¨q}Hs , t P r0, T suq.
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2 The bilayer shallow water system

In this section we analyze the bilayer shallow water system (1.3). We first consider the case without diffusivity (κ “ 0)
and recall the hyperbolicity analysis due to Ovsjannikov [40]. We complete it by exhibiting explicit symmetrizers of
the system of conservation laws. The standard theory for quasilinear systems then provides the local well-posedness
of the initial-value problem, that we state in Proposition 2.4.

Extending such result for the system with diffusivity (κ ą 0) uniformly with respect to κ P p0, 1s is not as obvious
as one could naively think, because the aforementioned symmetrizer behaves poorly with respect to diffusivity contri-
butions. In order to deal with this issue, we exhibit regularization effects stemming from the diffusivity contributions
that apply to the total velocity (that is adding the bolus velocities to the velocity unknowns). This is in the spirit of
the BD entropy that arose in the context of the barotropic Euler equations with degenerate viscosities (see [16]). We
infer a stability result on the linearized system, Lemma 2.6, which eventually yields the “large-time” —that is uni-
form with respect to κ P p0, 1s— control of solutions stated in Proposition 2.7, and their strong convergence towards
corresponding solutions to the non-diffusive system as κ Œ 0 stated in Proposition 2.8.

2.1 The system without thickness diffusivity

We consider the system
$

’

’

’

’

&

’

’

’

’

%

BtHs ` BxppHs ` HsqpU s ` Usqq “ 0,

BtHb ` BxppHb ` HbqpU b ` Ubqq “ 0,

BtUs ` pU s ` UsqBxUs ` BxHs ` BxHb “ 0,

BtUb ` pU b ` UbqBxUb `
ρs
ρb

BxHs ` BxHb “ 0.

(2.1)

We shall also always assume ρs ě 0 and ρb ą 0. Through rescaling and Galilean invariance we can assume without
loss of generality that Hs ` Hb “ 1 and U s ` U b “ 0.

In compact form, the system reads
BtU ` ApU ` UqBxU “ 0

with U :“ pHs, Hb, Us, Ubq, U :“ pHs, Hb, U s, U bq and where we introduce the matrix-valued function

A : pHs, Hb, Us, Ubq P R4 ÞÑ

¨

˚

˚

˝

Us 0 Hs 0
0 Ub 0 Hb

1 1 Us 0
ρs
ρb

1 0 Ub

˛

‹

‹

‚

. (2.2)

The following Lemma concerning the hyperbolicity domain of the bilayer shallow water system is proved in [40,
7, 45].

Lemma 2.1. Let 0 ă ρs ă ρb and U :“ pHs, Hb, Us, Ubq P R4 be such that that Hs, Hb ą 0. There exist two values
0 ă Fr´ ă Fr` such that the following holds:

1. If |Ub ´ Us| ă
?
Hb Fr´, then there exist four distinct real eigenvalues of the matrix ApUq.

2. If
?
Hb Fr´ ă |Ub ´Us| ă

?
Hb Fr`, then there exist two distinct real eigenvalues of the matrix ApUq and two

distinct complex conjugate eigenvalues.

3. If |Ub ´ Us| ą
?
Hb Fr`, then there exist four distinct real eigenvalues of the matrix ApUq.

Moreover, Fr´ and Fr` depend only and smoothly on Hs{Hb P p0,`8q and ρs{ρb P p0, 1q.

Remark 2.2. Ovsjannikov [40] —revisited by Barros and Choi [7] and then by Virı́ssimo and Milewski [45]— pro-
vided a nice geometrical approach to the critical values Fr` and Fr´. The characteristic polynomial associated to
ApUq is

P pλq “
`

pUb ´ λq2 ´ Hb

˘`

pUs ´ λq2 ´ Hs

˘

´
ρs
ρb

HsHb.
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Notice that λ P R is a real root of P if and only if pps, pbq :“ pUs´λ?
Hs

, Ub´λ?
Hb

q satisfies the following identities:

`

p2s ´ 1
˘`

p2b ´ 1
˘

“
ρs
ρb

, ps
a

Hs ´ Us “ pb
a

Hb ´ Ub. (2.3)

The first equality describes a fourth-order curve parametrized by ρs{ρb having four axes of symmetry and consisting
of an inner closed curve and four hyperbolic branches and the second equality describes the straight line with slope
a

Hs{Hb and intercept pUb ´ Usq{
?
Hb. In this geometrical approach, Fr´ and Fr` (and their opposite) are the

intercepts of the tangents to the fourth-order curves with slope
a

Hs{Hb.
Figure 1 reproduces the aforementioned curves and straight lines for several parameter values.
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(c) ρs{ρb “ 0.9

Figure 1: Solutions to (2.3) with Hs “ 1{3, Hb “ 2{3, and differnet values for ρs{ρb. Solutions to the quartic equation
are in black (plain). Solutions to the linear equation with pUb´Usq{

?
Hb “ 1{2 (green, plain), pUb´Usq{

?
Hb “ 3{2

(red, dashed) and pUb ´ Usq{
?
Hb “ 5{2 (blue, dot-dashed).

In this work we restrict our analysis to the hyperbolic domain described by Lemma 2.1(1). While standard theory
for strictly hyperbolic systems guarantees the existence of a symmetrizer to (2.1) by using spectral projections [8], the
following Lemma provides an (almost) explicit expression for such a symmetrizer.

Lemma 2.3. Let 0 ă ρs ă ρb and U :“ pHs, Hb, Us, Ubq P R4 be such that that Hs, Hb ą 0 and

|Us ´ Ub| ă
a

Hb Fr´ (2.4)

where Fr´ “ Fr´pHs{Hb, ρs{ρbq ą 0 has been defined in Lemma 2.1.
There exists λ P rminptUs, Ubuq,maxptUs, Ubuqs such that, denoting Uλ

ℓ :“ Uℓ ´ λ P r´|Ub ´ Us|, |Ub ´ Us|s

for ℓ P ts, bu) the matrix

SλpUq :“

¨

˚

˚

˚

˝

ρs
ρb

ρs
ρb

ρs
ρb
Uλ
s 0

ρs
ρb

1 0 Uλ
b

ρs
ρb
Uλ
s 0 ρs

ρb
Hs 0

0 Uλ
b 0 Hb

˛

‹

‹

‹

‚

satisfies (i) SλA is symmetric; and (ii) Sλ is symmetric, definite positive.
Moreover, λ can be chosen so that λ´Uℓ?

Hℓ
(for ℓ P ts, bu) depends only and smoothly on Hs{Hb ą 0, ρs{ρb P p0, 1q,

and pUb ´ Usq{
?
Hb P p´Fr´,Fr´q.

Proof. It is straightforward to check that Sλ and SλA are symmetric (and real-valued) for any value of λ P R. In
order to prove that Sλ is definite positive for a suitable choice of λ, we rely on Sylvester’s criterion. We obtain the
requirements

Hb ą 0,
ρs
ρb

HsHb ą 0,
ρs
ρb

HsHb ´
ρs
ρb

HspUλ
b q2 ą 0

6



and
`ρs
ρb

˘2
´

`

pUλ
b q2 ´ Hb

˘`

pUλ
s q2 ´ Hs

˘

´
ρs
ρb

HsHb

¯

ą 0.

The last inequality is equivalent to P pλq ą 0 where P is the aforementioned characteristic polynomial. By Lemma 2.1,
under the condition (2.4) there are four distinct real roots to P , which we can denote λ1 ă λ2 ă λ3 ă λ4 and
P pλq ą 0 for any λ P pλ2, λ3q. Moreover for all λ P pλ2, λ3q, ppλs , p

λ
b q :“ pUs´λ?

Hs
, Ub´λ?

Hb
q belongs to the domain

delimited by the inner closed curve, and in particular we have ppλℓ q2 ă 1. Hence we find that for all λ P pλ2, λ3q all
principal minors are positive, and hence Sλ is definite positive.

By the standard perturbation theory [33], pλℓ for ℓ P ts, bu and λ P tλ2, λ3u depend smoothly on Hs{Hb ą 0,
ρs{ρb P p0, 1q and pUb ´ Usq{

?
Hb P p´Fr´,Fr´q. What is more, we can always choose (smoothly) λ P pλ2, λ3q

so that pλs ą 0 and pλb ă 0 when Ub ă Us, or pλs ă 0 and pλb ą 0 when Ub ą Us, which corresponds to enforcing
λ P rminptUs, Ubuq,maxptUs, Ubuqs. This concludes the proof.

The following proposition follows from the standard theory on strictly hyperbolic systems (see e.g. [8]). For
convenience, we define for ς P p0, 1q a compact subset of the domain of strict hyperbolicity as

pς :“
␣

pρs, ρb, Hs, Hb, Us, Ubq P R6 :

ς{2 ď ρs{ρb ď 1 ´ ς{2, ς ď Hs{Hb ď ς´1, Hs ` Hb ě ς, Fr´ ´
|Ub´Us|

?
Hb

ě ς
(

(2.5)

where Fr´ “ Fr´pρs{ρb, Hs{Hbq is defined in Lemma 2.1.

Proposition 2.4 (Well-posedness). Let s ě s0 ą 3{2, ς ą 0 and M0 ą 0. There exist C ą 0 and T ą 0 such that
the following holds.

For all pρs, ρb, Hs, Hb, U s, U bq P R6 such that Hs `Hb “ 1 and U s `U b “ 0 and pH0
s , H

0
b , U

0
s , U

0
b q P HspRq4

such that
@x P R, pρs, ρb, Hs ` H0

s pxq, Hb ` H0
b pxq, U s ` U0

s pxq, U b ` U0
b pxqq P pς

and
}pH0

s , H
0
b , U

0
s , U

0
b q}Hs0 ď M0

there exists a unique pHs, Hb, Us, Ubq P Cpr0, T ‹q;HspRq4q X C1pr0, T ‹q;Hs´1pRq4q maximal-in-time (classical)
solution to (2.1) emerging from the initial data pHs, Hb, Us, Ubq

ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q.

Moreover, one has T ‹ ą T {M0 and for any t P r0, T {M0s one has

@x P R, pρs, ρb, Hs ` Hspt, xq, Hb ` Hbpt, xq, U s ` Uspt, xq, U b ` Ubpt, xqq P pς{2

and
}pHspt, ¨q, Hbpt, ¨q, Uspt, ¨q, Ubpt, ¨qq}Hs ď C}pH0

s , H
0
b , U

0
s , U

0
b q}Hs .

Moreover, the maximal existence time (resp. the emerging solution in Cpr0, T ‹q;HspRq4q) is a lower semi-
continuous (resp. continuous) function of the initial data in HspRq4 and if T ‹ ă 8 then

}pHspt, ¨q, Hbpt, ¨q, Uspt, ¨q, Ubpt, ¨qq}Hs0 Ñ 8 as t Ñ T ‹.

2.2 The system with diffusivity

We now consider the system
$

’

’

’

’

&

’

’

’

’

%

BtHs ` BxppHs ` HsqpU s ` Usqq “ κB2
xHs,

BtHb ` BxppHb ` HbqpU b ` Ubqq “ κB2
xHb,

BtUs ` pU s ` Us ´ κ BxHs
Hs`Hs

qBxUs ` BxHs ` BxHb “ 0,

BtUb ` pU b ` Ub ´ κ BxHb
Hb`Hb

qBxUb `
ρs
ρb

BxHs ` BxHb “ 0.

(2.6)
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Proposition 2.5 (Small time well-posedness). Let s ě s0 ą 3{2, ς P p0, 1q, M0 ą 0 and c ą 1. There exists T ą 0
such that the following holds.

For all κ ą 0, for all pρs, ρb, Hs, Hb, U s, U bq P R6 such that Hs ` Hb “ 1 and U s ` U b “ 0 and for all
pH0

s , H
0
b , U

0
s , U

0
b q P HspRq4 such that

0 ď ρs{ρb ď ς´1 and @x P R, Hs ` H0
s pxq ě ς, Hb ` H0

b pxq ě ς

and
}pH0

s , H
0
b , U

0
s , U

0
b q}Hs0 ď M0

there exists a unique pHs, Hb, Us, Ubq P Cpr0, T ‹q;HspRq4q maximal-in-time strong solution to (2.6) emerging from
the initial data pHs, Hb, Us, Ubq

ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q.

Moreover, T ‹ ą κT and for any t P r0, κT s one has

@x P R, Hs ` Hspt, xq ě ς{c, Hb ` Hbpt, xq ě ς{c

and
maxpt}pHs, Hb, Us, Ubq}L8p0,t;Hsq, κ

1{2}pBxHs, BxHbq}L2p0,t;Hsquq ď c}pH0
s , H

0
b , U

0
s , U

0
b q}Hs .

Moreover, the maximal existence time (resp. the emerging solution in Cpr0, T ‹q;HspRq4q) is a lower semi-
continuous (resp. continuous) function of the initial data in HspRq4 and if T ‹ ă 8 then

}pHspt, ¨q, Hbpt, ¨q, Uspt, ¨q, Ubpt, ¨qq}Hs0 Ñ 8 as t Ñ T ‹.

Proof. The proof has been given in [1], but we sketch it here for convenience. We view (2.6) as a system of two
transport-diffusion equations and two transport equations, coupled only through order-zero source terms:

$

’

’

’

’

&

’

’

’

’

%

BtHs ` pU s ` UsqBxHs ´ κB2
xHs “ ´pHs ` HsqBxUs,

BtHb ` pU b ` UbqBxHb ´ κB2
xHb “ ´pHb ` HbqBxUb,

BtUs ` pU s ` Us ´ κ BxHs
Hs`Hs

qBxUs “ ´BxHs ´ BxHb,

BtUb ` pU b ` Ub ´ κ BxHb
Hb`Hb

qBxUb “ ´
ρs
ρb

BxHs ´ BxHb.

The standard theory on transport and transport-diffusion equations (see [6]) allows to bootstrap the standard fixed-
point strategy through Picard iterates

$

’

’

’

’

&

’

’

’

’

%

BtH
n`1
s ` pU s ` Un

s qBxH
n`1
s ´ κB2

xH
n`1
s “ ´pHs ` Hn

s qBxU
n
s ,

BtH
n`1
b ` pU b ` Un

b qBxH
n`1
b ´ κB2

xH
n`1
b “ ´pHb ` Hn

b qBxU
n
b ,

BtU
n`1
s ` pU s ` Un

s ´ κ BxHn
s

Hs`Hn
s

qBxU
n`1
s “ ´BxH

n
s ´ BxH

n
b ,

BtU
n`1
b ` pU b ` Un

b ´ κ
BxHn

b
Hb`Hn

b
qBxU

n`1
b “ ´

ρs
ρb

BxH
n
s ´ BxH

n
b ,

which defines a sequence satisfying the following estimates (where c0 is a non-essential constant depending on s)

maxpt}pHn`1
s , Hn`1

b , Un`1
s , Un`1

b q}L8p0,t;Hsq, κ
1{2}pBxH

n`1
s , BxH

n`1
b q}L2p0,t;Hsquq

ď

´

}pH0
s , H

0
b q}Hs ` κ´1{2

`

pHs ` }Hn
s }L8p0,t;Hsqq}Un

s }L2p0,t;Hsq ` pHb ` }Hn
b }L8p0,t;Hsqq}Un

b }L2p0,t;Hsq

˘

` }pU0
s , U

0
b q}Hs ` p1 `

ρs
ρb

q}pBxH
n
s , BxH

n
b q}L1p0,t;Hsq

¯

ˆ exp
`

c0}pUn
s , U

n
b q}L1p0,t;Hsq ` c0κ}p

BxHn
s

Hs`Hn
s
,

BxHn
b

Hb`Hn
b

q}L1p0,t;Hsq

˘

and converging in Cp0, t;Hsq provided t P p0, κT s where T is chosen sufficiently small.
The proof of the continuity of the flow map can be obtained along the same lines, using the continuity with

respect to the initial data and Lipschitz-continuity with respect to source terms of the transport-diffusion and transport
equations.
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The terminology “Small time well-posedness” in Proposition 2.5 refers to the fact that the time of existence and
control of solutions of the above result is limited to T ‹ Á κ, and in particular may vanish as κ Œ 0. Notice that,
differently from the statement of Proposition 2.4, we do not assume that the flow is stably stratified, namely ρs ă ρb.
Assuming additionally that the flow is stably stratified, the first author improved this result in situations with small
shear velocities and small deviations from the shear equilibrium, and obtains in [1] the existence and uniform control
of solution up to times T ‹ Á

`

1 ` κ´1p|U b ´ U s|2 ` M2
0 q
˘´1.

In the following results, we complete the picture by showing that, in the situation where the shear velocity is
small enough to guarantee that the flow is in the hyperbolic domain of the non-diffusive equation, then the time of
existence is uniform with respect to κ P p0, 1s. In fact we shall prove the expected property that solutions to the
diffusive system (2.6) converge as κ Œ 0 towards corresponding solutions to the non-diffusive system (2.1) as long
as the non-diffusive solution is bounded.

In order to obtain stability estimates that are uniform with respect to κ P p0, 1s, we rely on two main ideas.
Firstly, we shall use energy estimates using the explicit symmetrizer adapted to the non-diffusive system introduced in
Lemma 2.3 (while the strategy in [1] used only its block-diagonal component). Because the non-diagonal components
of the symmetrizer behave poorly with respect to the diffusive contributions, we need another ingredient. Specifically,
we notice that the total velocities Vℓ :“ Uℓ ´ κ BxHℓ

Hℓ`Hℓ
(ℓ P ts, bu) associated to solutions to (2.6) satisfy the system

$

’

’

’

’

&

’

’

’

’

%

BtHs ` BxppHs ` HsqpU s ` Vsqq “ 0,

BtHb ` BxppHb ` HbqpU s ` Vbqq “ 0,

BtVs ` pU s ` Vs ´ κ BxHs
Hs`Hs

qBxVs ` BxHs ` BxHb “ κB2
xVs,

BtVb ` pU b ` Vb ´ κ BxHb
Hb`Hb

qBxVb `
ρs
ρb

BxHs ` BxHb “ κB2
xVb.

(2.7)

We observe that diffusive terms act as effective viscosity contributions on the total velocities. The last two equations
read equivalently

#

BtVs ` pU s ` VsqBxVs ` BxHs ` BxHb “ κ
Hs`Hs

BxppHs ` HsqBxVsq,

BtVb ` pU b ` VbqBxVb `
ρs
ρb

BxHs ` BxHb “ κ
Hb`Hb

BxppHb ` HbqBxVbq,

and we recognize the shallow-water equations with degenerate viscosity contributions which were advocated by Gent
in [24] and derived from the Navier–Stokes equations in [26, 17]. In their analysis of such systems (and generalizations
thereof), Bresch and Desjardins introduced the so-called BD entropy in [15, 13, 14] (see also [16] for a refined
analysis), which is based precisely in the reformulation of (2.7) as (2.6) (in dimension d “ 1).

In the same spirit, we combine the regularizing effects of the effective diffusivity and viscosity terms with afore-
mentioned energy estimates, which allows us to obtain suitable stability estimates presented in Lemma 2.6, below.

Applying Lemma 2.6 to (the derivatives of) solutions to (2.6)-(2.7), we find a time of existence which is uniform
with respect to κ. We state the result in forthcoming Proposition 2.7.

Applying Lemma 2.6 to (the derivatives of) the difference between solutions to (2.6)-(2.7) and corresponding
solutions to the non-diffusive system (2.1) (κ “ 0) yields the aforementioned convergence of the former towards the
latter as κ Œ 0, on a time interval defined by the solutions without diffusivity. We state the result in forthcoming
Proposition 2.8.

Lemma 2.6 (Stability). Let ς P p0, 1q and M ą 0. There exists c ą 0 depending only on ς and C ą 0 depending also
on M such that the following holds.

Let κ P p0, 1s, 0 ă ρs ă ρb and U :“ pHs, Hb, Us, Ubq, V :“ pHs, Hb, Vs, Vbq P Cpr0, T s;W 1,8pRq4q X

C1pr0, T s;L8pRq4q be such that for all t P r0, T s, the hyperbolicity condition holds:

@x P R, pρs, ρb, Hspt, xq, Hbpt, xq, Uspt, xq, Ubpt, xqq P pς ,

where pς is defined in (2.5), and

}Upt, ¨q}W 1,8 ` }V pt, ¨q}W 1,8 ` κ}pB2
xHspt, ¨q, B2

xHbpt, ¨qq}L8 ` κ´1}pU ´ V qpt, ¨q}L8 ` }BtUpt, ¨q}L8 ď M.
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Let 9U :“ p 9Hs, 9Hb, 9Us, 9Ubq and 9V :“ p 9Hs, 9Hb, 9Vs, 9Vbq be sufficiently regular solutions to the linearized equations
with remainders

Bt 9U ` AκpUqBx 9U “ κD1B2
x

9U ` RU ,

Bt 9V ` AκpV qBx 9V “ κD2B2
x

9V ` RV ,

where we denote

Aκ : pHs, Hb, Us, Ubq ÞÑ

¨

˚

˚

˝

Us 0 Hs 0
0 Ub 0 Hb

1 1 Us ´ κBxHs
Hs

0
ρs
ρb

1 0 Ub ´ κBxHb
Hb

˛

‹

‹

‚

,

and

D1 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

, D2 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

.

Moreover, denote R :“ pRs, Rbq such that

9Vs “ 9Us ´ κ
Bx 9Hs

Hs
` Rs, 9Vb “ 9Ub ´ κ

Bx 9Hb

Hb
` Rb. (2.8)

Then, for any t P r0, T s, one has the estimate

} 9Upt, ¨q}L2 ` } 9V pt, ¨q}L2 ` cκ1{2}Bx 9V pt, ¨q}L2p0,t;L2q ď c´1
`

} 9Upt “ 0, ¨q}L2 ` } 9V pt “ 0, ¨q}L2

˘

exppCM tq

` C

ż t

0

`

}RU pt1, ¨q}L2 ` }RV pt1, ¨q}L2 ` M}Rpt1, ¨q}H1

˘

exppCM pt ´ t1qqdt.

Proof. Denote

Sλ : pHs, Hb, Us, Ubq ÞÑ

¨

˚

˚

˚

˝

ρs
ρb

ρs
ρb

ρs
ρb
Uλ
s 0

ρs
ρb

1 0 Uλ
b

ρs
ρb
Uλ
s 0 ρs

ρb
Hs 0

0 Uλ
b 0 Hb

˛

‹

‹

‹

‚

where Uλ
ℓ :“ Uℓ ´ λ (for ℓ P ts, bu) with λ provided in Lemma 2.3. Using that Sλp¨q and Sλp¨qA0p¨q are symmetric,

and integration by parts, we have the energy identities

1

2

d

dt

´

`

SλpUq 9U , 9U
˘

L2 `
`

SλpUq 9V , 9V
˘

L2

¯

“
`

SλpUqBt 9U , 9U
˘

L2 `
`

SλpUqBt 9V , 9V
˘

L2 `
1

2

`

rBt,S
λpUqs 9U , 9U

˘

L2 `
1

2

`

rBt,S
λpV qs 9V , 9V

˘

L2

“ ´
`

SλpUqAκpUqBx 9U , 9U
˘

L2 ´
`

SλpUqAκpV qBx 9V , 9V
˘

L2 ` κ
`

SλpUqD1B2
x

9U , 9U
˘

L2 ` κ
`

SλpUqD2B2
x

9V , 9V
˘

L2

`
`

SλpUqRU , 9U
˘

L2 `
`

SλpUqRV , 9V
˘

L2 `
1

2

`

rBt,S
λpUqs 9U , 9U

˘

L2 `
1

2

`

rBt,S
λpUqs 9V , 9V

˘

L2

“
1

2

`

rBx, S
λpUqA0pUqs 9U , 9U

˘

L2 `
1

2

`

rBx, S
λpV qA0pV qs 9V , 9V

˘

L2

´
`

SλpUqpAκpUq ´ A0pUqqBx 9U , 9U
˘

L2 ´
`

SλpV qpAκpV q ´ A0pV qqBx 9V , 9V
˘

L2

´
`

pSλpUq ´ SλpV qqAκpV qBx 9V , 9V
˘

L2 `
1

2

`

rBt,S
λpUqs 9U , 9U

˘

L2 `
1

2

`

rBt,S
λpUqs 9V , 9V

˘

L2

`
`

SλpUqRU , 9U
˘

L2 `
`

SλpUqRV , 9V
˘

L2 ` κ
`

SλpUqD1B2
x

9U , 9U
˘

L2 ` κ
`

SλpUqD2B2
x

9V , 9V
˘

L2

“: A ´
`

SλpUqpAκpUq ´ A0pUqqBx 9U , 9U
˘

L2 ` κ
`

SλpUqD1B2
x

9U , 9U
˘

L2 ` κ
`

SλpUqD2B2
x

9V , 9V
˘

L2 .
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By means of Cauchy–Schwarz inequality we find that

|A| ď C
`

} 9U}L2 ` } 9V }L2

˘

ˆ
`

M} 9U}L2 ` M} 9V }L2 ` κM}Bx 9V }L2 ` }RU }L2 ` }RV }L2

˘

,

where C denotes a multiplicative constant depending only on ς and M , and which may change from line to line.
We now focus on the remaining terms. We first notice that defects of symmetry in SλpUqpAκpUq ´ A0pUqq arise
only in the first two rows, and that the first two components of 9U equal the first two components of 9V . Hence using
integration by parts and Cauchy–Schwarz inequality we infer

|
`

SλpUqpAκpUq ´ A0pUqqBx 9U , 9U
˘

L2 | ď κCM } 9U}L2 ˆ
`

} 9U}L2 ` }Bx 9V }L2

˘

.

Then, again making use of the identity D1B2
x

9U “ pB2
x

9H1, B2
x

9H2, 0, 0q “ D1B2
x

9V we infer that

κ
`

SλpUqD1B2
x

9U , 9U
˘

L2 `κ
`

SλpUqD2B2
x

9V , 9V
˘

L2 “ κ
`

SλpUqpD1`D2qB2
x

9V , 9V
˘

L2 `κ
`

SλpUqD1B2
x

9V , 9U ´ 9V
˘

L2 .

After integration by parts, and since D1 ` D2 “ Id, we find that

κ
`

SλpUqpD1 ` D2qB2
x

9V , 9V
˘

L2 ď ´κ
`

SλpUqBx 9V , Bx 9V
˘

L2 ` κCM }Bx 9V }L2} 9V }L2 .

Then, using from (2.8) that κBx 9Hℓ “ Hℓpp 9Uℓ ´ 9Vℓq ` Rℓq (where ℓ P ts, bu), we obtain the identities

κ
`

SλpUqD1B2
x

9V , 9U ´ 9V
˘

L2 “ κ
ÿ

ℓPts,bu

`

ρℓU
λ
ℓ B2

x
9Hℓ, 9Uℓ ´ 9Vℓ

˘

L2

“
ÿ

ℓPts,bu

`

ρℓU
λ
ℓ BxpHℓp 9Uℓ ´ 9Vℓ ` Rℓqq, 9Uℓ ´ 9Vℓ

˘

L2

“
ÿ

ℓPts,bu

ρℓ
2

`

pUλ
ℓ BxHℓ ´ HℓBxU

λ
ℓ qp 9Uℓ ´ 9Vℓq, 9Uℓ ´ 9Vℓ

˘

L2

` κ
ÿ

ℓPts,bu

ρℓ
`

Uλ
ℓ BxpHℓRℓq, 9Uℓ ´ 9Vℓ

˘

L2 ,

where we used integration by parts in the last line. We infer

κ
`

SλpUqD1B2
x

9V , 9U ´ 9V
˘

L2 ď CM
`

} 9U}L2 ` } 9V }L2

˘2
` CM

`

} 9U}L2 ` } 9V }L2

˘

}R}H1 .

Combining all these estimate and denoting

E :“
`

SλpUq 9U , 9U
˘

L2 `
`

SλpUq 9V , 9V
˘

L2 ,

one has

1

2

d

dt
E ` κ

`

SλpUqBx 9V , Bx 9V
˘

L2 ď CM
`

} 9U}L2 ` } 9V }L2 ` κ}Bx 9V }L2

˘`

} 9U}L2 ` } 9V }L2

˘

` C
`

}RU }L2 ` }RV }L2 ` M}R}H1

˘`

} 9U}L2 ` } 9V }L2

˘

. (2.9)

By using that SλpUq is definite positive, we find that there exists c ą 0 depending only on ς such that

E ě c2} 9U}2L2 ` c2} 9V }2L2 ,
`

SλpUqBx 9V , Bx 9V
˘

L2 ě c2}Bx 9V }2L2 .

Hence we find (using the Peter Paul inequality and augmenting C) that

1

2

d

dt
E ` 1

2c
2κ}Bx 9V }2L2 ď CM E ` C

`

}RU }L2 ` }RV }L2 ` M}R}H1

˘

E1{2,

and the result follows by Gronwall’s Lemma.
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Proposition 2.7 (Large-time well-posedness). Let s ě s0 ą 3{2, ς P p0, 1q and M0 ą 0. There exists C ą 0 and
T ą 0 such that the following holds.

Let κ P p0, 1s, pρs, ρb, Hs, Hb, U s, U bq P R6 such that Hs`Hb “ 1 and U s`U b “ 0, and let pH0
s , H

0
b , U

0
s , U

0
b q P

Hs`1pRq2 ˆ HspRq2 such that the hyperbolicity condition holds:

@x P R, pρs, ρb, Hs ` H0
s pxq, Hb ` H0

b pxq, U s ` U0
s pxq, U b ` U0

b pxqq P pς ,

where pς is defined in (2.5), and

}pH0
s , H

0
b , U

0
s , U

0
b , κBxH

0
s , κBxH

0
b q}Hs0 ď M0.

Denote pHs, Hb, Us, Ubq P Cpr0, T ‹q;HspRq4q the maximal-in-time solution to (2.6) emerging from the initial data
pHs, Hb, Us, Ubq

ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q as defined in Proposition 2.5.

One has T ‹ ą T {M0 and for any t P r0, T {M0s,

@x P R, pρs, ρb, Hs ` Hspt, xq, Hb ` Hbpt, xq, U s ` Uspt, xq, U b ` Ubpt, xqq P pς{2,

and

}pHs, Hb, Us, Ub, κBxHs, κBxHbqpt, ¨q}Hs ` }pBtHs, BtHb, BtUs, BtUbqpt, ¨q}Hs´1

ď C}pH0
s , H

0
b , U

0
s , U

0
b , κBxH

0
s , κBxH

0
b q}Hs .

Proof. We assume that the initial data is smooth, so that pHs, Hb, Us, Ub, Vs, Vbq are smooth on their domain of
existence. The general case is obtained by regularizing the initial data and passing to the limit, thanks to the persistence
of regularity and continuity of the flow map stated in Proposition 2.5.

Denote Vℓ :“ Uℓ ´ κ BxHℓ
Hℓ`Hℓ

(ℓ P ts, bu), Λs :“ pId´B2
xqs{2 and

p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vbq :“ pΛsHs,Λ
sHb,Λ

sUs,Λ
sUb,Λ

sVs,Λ
sVbq.

Applying the operator Λs to (2.6) and (2.7), we obtain
$

’

’

’

’

&

’

’

’

’

%

Bt 9Hs ` pHs ` HsqBx 9Us ` pU s ` UsqBx 9Hs “ κB2
x

9Hs ` RHpHs, Usq,

Bt 9Hb ` pHb ` HbqBx 9Ub ` pU b ` UbqBx 9Hb “ κB2
x

9Hb ` RHpHb, Ubq,

Bt 9Us ` pU s ` Us ´ κ BxHs
Hs`Hs

qBx 9Us ` Bx 9Hs ` Bx 9Hb “ RU pHs, Usq,

Bt 9Ub ` pU b ` Ub ´ κ BxHb
Hb`Hb

qBx 9Ub `
ρs
ρb

Bx 9Hs ` Bx 9Hb “ RU pHb, Ubq,

and
$

’

’

’

’

&

’

’

’

’

%

Bt 9Hs ` pHs ` HsqBx 9Vs ` pU s ` VsqBx 9Hs “ RHpHs, Vsq,

Bt 9Hb ` pHb ` HbqBx 9Vb ` pU b ` VbqBx 9Hb “ RHpHb, Vbq,

Bt 9Vs ` pU s ` Vs ´ κ BxHs
Hs`Hs

qBx 9Vs ` Bx 9Hs ` Bx 9Hb “ κB2
x

9Vs ` RU pHs, Vsq,

Bt 9Vb ` pU b ` Vb ´ κ BxHb
Hb`Hb

qBx 9Vb `
ρs
ρb

Bx 9Hs ` Bx 9Hb “ κB2
x

9Vs ` RU pHb, Vbq,

with remainders RH and RV defined as

RHpH,V q :“ ´rΛs, HsBxV ´ rΛs, V sBxH and RU pH,V q :“ ´rΛs, V ´ κ BxH
H`H sBxV.

Moreover, applying the operator Λs to the identity Vℓ “ Uℓ ´ κ BxHℓ
Hℓ`Hℓ

(ℓ P ts, bu) yields

9Vℓ “ 9Uℓ ´ κ
Bx 9Hℓ

Hℓ ` Hℓ
` RpHℓq,

12



with
RpHq “ ´κrΛs, 1

H`H sBxH.

Standard commutator estimates and composition estimates in Sobolev spaces; see e.g. [35, Appendix B] yield

}RHpH,V q}L2 ď C
`

}H}Hs0 ` }V }Hs0

˘`

}H}Hs ` }V }Hs

˘

,

}RU pH,V q}L2 ď C
`

κ}BxH}Hs0 ` }V }Hs0

˘`

κ}BxH}Hs ` }V }Hs

˘

,

}RpHq}H1 ď C
`

}H}Hs0 ` κ}BxH}Hs0

˘`

}H}Hs ` κ}BxH}Hs

˘

,

where C is a positive constant depending only on s, s0, }H}Hs0 and infRpH ` Hq ą 0.
Moreover, notice that by using the equations (2.6), (2.7) and the identity κBxHℓ “ pHℓ ` HℓqpUℓ ´ Vℓq for

ℓ P ts, bu, we have

}pBtHs, BtHb, BtUs, BtUbq}Hs´1 ` κ}pBxHs, BxHbq}Hs ` κ´1}pUs ´ Vs, Ub ´ Vbq}Hs´1

ď C }pHs, Hb, Us, Ub, Vs, Vbq}Hs ,

where the multiplicative constant C depends on }pHs, Hb, Us, Ub, Vs, Vbq}Hs0 and infRpHℓ`Hℓq ą 0 (for ℓ P ts, bu).
We may thus apply Lemma 2.6, and infer that we can set C depending on s0,M0, ς , and c depending only on ς ,

so that as long as

@x P R, pρs, ρb, Hs ` Hspt, xq, Hb ` Hbpt, xq, U s ` Uspt, xq, U b ` Ubpt, xqq P pς{2, (2.10)

and
}pHs, Hb, Us, Ub, Vs, Vbqpt, ¨q}Hs0 ď 2cM0 (2.11)

one has (using the standard Hs0 Ă W 1,8 continuous embedding and the fact that 0 ď Hs, Hb ď 1 and U s `U b “ 0)

}pHs, Hb, Us, Ub, Vs, Vbqpt, ¨q}Hs0 ď cM0 exppCM0 tq

` CM0

ż t

0
}pHs, Hb, Us, Ub, Vs, Vbqpt1, ¨q}Hs0 exppCM0 pt ´ t1qqdt.

Applying Gronwall’s Lemma, we find that if CM0t is smaller than a universal constant, then

}pHs, Hb, Us, Ub, Vs, Vbqpt, ¨q}Hs ď
3c

2
M0.

What is more we have (augmenting C if necessary)

|pHspt, ¨q ´ H0
s , Hbpt, ¨q ´ H0

b , Uspt, ¨q ´ U0
s , Ubpt, ¨q ´ U0

b q| ď

ż t

0
}pBtHs, BtHb, BtUs, BtUbq}L8 ď CM0t.

Hence lowering further CM0t, we infer that pρs, ρb, Hspt, xq, Hbpt, xq, Uspt, xq, Ubpt, xqq P pς{4 for all x P R. By the
usual continuity argument we infer that the assumptions (2.10) and (2.11) do hold for t P r0, T {M0s with T depending
on s, s0,M0, ς . This yields the lower bound on the maximal time of existence and the claimed upper bound on the
solution follows from the above estimates replacing s0 with s.

Combined together, Proposition 2.5 and Proposition 2.7 yield a time of existence for solutions to (2.6) emerging
from sufficiently regular initial data which is independent of κ P p0, 1s. The following result describes the behavior
of these solutions as κ Œ 0.

Proposition 2.8 (Convergence). Let s ě s0 ą 3{2, ς P p0, 1q and M0 ą 0.
Let κ P p0, 1s, pρs, ρb, Hs, Hb, U s, U bq P R6 such that Hs ` Hb “ 1 and U s ` U b “ 0, and pH0

s , H
0
b , U

0
s , U

0
b q P

Hs`2pRq4 be such that the hyperbolicity condition holds

@x P R, pρs, ρb, Hs ` H0
s pxq, Hb ` H0

b pxq, U s ` U0
s pxq, U b ` U0

b pxqq P pς ,
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where pς is defined in (2.5), and

}pH0
s , H

0
b , U

0
s , U

0
b , κBxH

0
s , κBxH

0
b q}Hs0 ď M0.

Denote

• pHs, Hb, Us, Ubq the maximal solution to the non-diffusive system (2.1) emerging from the initial data

pHs, Hb, Us, Ubq
ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q

as defined in Proposition 2.4;

• for all κ ą 0, pHκ
s , H

κ
b , U

κ
s , U

κ
b q the maximal solution to system (2.6) emerging from the initial data

pHκ
s , H

κ
b , U

κ
s , U

κ
b q
ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q

as defined in Proposition 2.5;

• T0 ą 0 and c0 ą 1 such that for all t P r0, T0s,

@x P R, pρs, ρb, Hs ` Hspt, xq, Hb ` Hbpt, xq, U s ` Uspt, xq, U b ` Ubpt, xqq P pς{c0

and
}pHs, Hb, Us, Ubqpt, ¨q}Hs`2 ď c0M0.

Then there exists κ0 ą 0 and C ą 0, both depending only on s, s0, ς,M0, T0, c0, such that for all κ P p0, κ0s,
pHκ

s , H
κ
b , U

κ
s , U

κ
b qpt, ¨q is well-defined for all t P r0, T0s and satisfies the hyperbolicity condition

@x P R, pρs, ρb, Hs ` Hκ
s pt, xq, Hb ` Hκ

b pt, xq, U s ` Uκ
s pt, xq, U b ` Uκ

b pt, xqq P pς{p2c0q

and the upper bound
}pHκ

s , H
κ
b , U

κ
s , U

κ
b qpt, ¨q}Hs ď 2c0M0.

Moreover, one has for all t P r0, T0s

}pHκ
s ´ Hs, H

κ
b ´ Hb, U

κ
s ´ Us, U

κ
b ´ Ubqpt, ¨q}Hs ď κCM0.

Proof. Denote Vℓ :“ Uℓ and V κ
ℓ :“ Uκ

ℓ ´ κ
BxHκ

ℓ
Hℓ`Hκ

ℓ
(ℓ P ts, bu), Λs :“ pId´B2

xqs{2, and

p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vbq :“ pΛspHκ
s ´Hsq,ΛspHκ

b ´Hbq,Λ
spUκ

s ´Usq,ΛspUκ
b ´Ubq,Λ

spV κ
s ´Vsq,ΛspV κ

b ´Vbqq.

Substracting (2.6), (2.7) and (2.1) we obtain
$

’

’

’

’

&

’

’

’

’

%

Bt 9Hs ` pHs ` Hκ
s qBx 9Us ` pU s ` Uκ

s qBx 9Hs “ κB2
x

9Hs ` κΛsB2
xHs ` RHpHκ

s , U
κ
s , Hs, Usq,

Bt 9Hb ` pHb ` Hκ
b qBx 9Ub ` pU b ` Uκ

b qBx 9Hb “ κB2
x

9Hb ` κΛsB2
xHb ` RHpHκ

b , U
κ
b , Hb, Ubq,

Bt 9Us ` pU s ` Uκ
s ´ κ BxHκ

s
Hs`Hκ

s
qBx 9Us ` Bx 9Hs ` Bx 9Hb “ κΛs

`

BxHκ
s

Hs`Hκ
s

BxUs

˘

` RU pHκ
s , U

κ
s , Hs, Usq,

Bt 9Ub ` pU b ` Uκ
b ´ κ

BxHκ
b

Hb`Hκ
b

qBx 9Ub `
ρs
ρb

Bx 9Hs ` Bx 9Hb “ κΛs
` BxHκ

b
Hb`Hκ

b
BxUb

˘

` RU pHκ
b , U

κ
b , Hb, Ubq,

and
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bt 9Hs ` pHs ` Hκ
s qHκ

s Bx 9Vs ` pU s ` V κ
s qBx 9Hs “ RHpHκ

s , V
κ
s , Hs, Vsq,

Bt 9Hb ` pHb ` Hκ
b qHκ

b Bx 9Vb ` pU b ` V κ
b qBx 9Hb “ RHpHκ

b , V
κ
b , Hb, Vbq,

Bt 9Vs ` pU s ` V κ
s ´ κ BxHκ

s
Hs`Hκ

s
qBx 9Vs ` Bx 9Hs ` Bx 9Hb

“ κB2
x

9Vs ` κΛsB2
xVs ` κΛs

`

BxHκ
s

Hs`Hκ
s

BxVs

˘

` RU pHκ
s , V

κ
s , Hs, Vsq,

Bt 9Vb ` pU b ` V κ
b ´ κ

BxHκ
b

Hb`Hκ
b

qBx 9Vb `
ρs
ρb

Bx 9Hs ` Bx 9Hb

“ κB2
x

9Vb ` κΛsB2
xVb ` κΛs

` BxHκ
b

Hb`Hκ
b

BxVb

˘

` RU pHκ
b , V

κ
b , Hb, Vbq,
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where, for any ℓ P ts, bu, we denote

RHpHκ
ℓ , U

κ
ℓ , Hℓ, Uℓq “ ´Λs

`

pHκ
ℓ ´ HℓqBxUℓ ` pUκ

ℓ ´ UℓqBxHℓ

˘

´ rΛs, Hκ
ℓ spBxU

κ
ℓ ´ BxUℓq ´ rΛs, Uκ

ℓ spBxH
κ
ℓ ´ BxHℓq,

RU pHκ
ℓ , U

κ
ℓ , Hℓ, Uℓq “ ´Λs

`

pUκ
ℓ ´ UℓqBxUℓ

˘

´ rΛs, Uκ
ℓ ´ κ

BxHκ
ℓ

Hℓ`Hκ
ℓ

spBxU
κ
ℓ ´ BxUℓq.

Moreover, one has by definition

9Vℓ “ 9Uℓ ´ κ
Bx 9Hℓ

Hℓ ` Hκ
ℓ

` RpHκ
ℓ , Hℓq

where
RpHκ

ℓ , Hℓq “ ´κrΛs, 1
Hℓ`Hκ

ℓ
sBxH

κ
ℓ ´ κ

BxΛ
sHℓ

Hℓ ` Hκ
ℓ

.

Standard commutator estimates and composition estimates in Sobolev spaces; see e.g. [35, Appendix B] yield

}RHpHκ
ℓ , V

κ
ℓ , Hℓ, Vℓq}L2 ď C

`

}BxHℓ}Hs ` }BxVℓ}Hs ` }BxH
κ
ℓ }Hs´1 ` }BxV

κ
ℓ }Hs´1

˘`

} 9Hℓ}L2 ` } 9Vℓ}L2

˘

,

}RU pHκ
ℓ , V

κ
ℓ , Hℓ, Vℓq}L2 ď C

`

}BxVℓ}Hs ` κ}BxH
κ
ℓ }Hs ` }BxV

κ
ℓ }Hs´1

˘

} 9Vℓ}L2 ,

}RpHκ
ℓ , Hℓq}H1 ď Cκ

`

}BxH
κ
ℓ }Hs ` }BxHℓ}Hs`1

˘

,

where C is a positive constant depending only on s, s0, }Hκ
ℓ }Hs0 and infRHℓ ` Hκ

ℓ ą 0 for any ℓ P ts, bu.
Moreover notice that by the equations (2.6) and (2.7) and using the identity κBxH

κ
ℓ “ pHℓ ` Hκ

ℓ qpUκ
ℓ ´ V κ

ℓ q we
have

}pBtH
κ
s , BtH

κ
b , BtU

κ
s , BtU

κ
b q}Hs´1 ` κ}pBxH

κ
s , BxH

κ
b q}Hs ` κ´1}pUκ

s ´ V κ
s , U

κ
b ´ V κ

b q}Hs´1

ď C}pHκ
s , H

κ
b , U

κ
s , U

κ
b , V

κ
s , V

κ
b q}Hs ,

where the multiplicative constant C depends on }pHκ
s , H

κ
b , U

κ
s , U

κ
b , V

κ
s , V

κ
b q}Hs0 and infRHℓ`Hκ

ℓ ą 0 for ℓ P ts, bu.
We may thus apply Lemma 2.6, and infer that we can set C depending on s, s0,M0, ς , and c depending only on ς ,

so that as long as

@x P R, pρs, ρb, Hs ` Hκ
s pt, xq, Hb ` Hκ

b pt, xq, U s ` Uκ
s pt, xq, U b ` Uκ

b pt, xqq P pς{p2c0q, (2.12)

and
}pHκ

s , H
κ
b , U

κ
s , U

κ
b , V

κ
s , V

κ
b qpt, ¨q}Hs ď 2c0M0 (2.13)

one has, using that p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vbq|t“0 “ p0, 0, 0, 0,´κΛsp
BxHκ

s
Hs`Hκ

s
q|t“0,´κΛsp

BxHκ
b

Hb`Hκ
b

q|t“0q,

}p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vbqpt, ¨q}L2 ` cκ1{2}pBx 9Hs, Bx 9Hb, Bx 9Vs, Bx 9Vbq}L2p0,t;L2q ď κCM0 exppCc0M0tq

` C

ż t

0

´

c0M0}p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vb, κBx 9Hs, κBx 9Hbqpt1, ¨q}L2

` κ}pBxH
κ
s , BxH

κ
b , B2

xHs, B2
xHb, B2

xVs, B2
xVb, BxUs, BxUb, BxVs, BxVbqpt1, ¨q}Hs

¯

exppC c0M0 pt ´ t1qqdt.

Now, we use in the integrand the triangle inequality

}pBxH
κ
s , BxH

κ
b qpt1, ¨q}Hs ď }pBx 9Hs, Bx 9Hbqpt1, ¨q}L2 ` }pBxHs, BxHbqpt1, ¨q}Hs .

The first contribution may be absorbed by the left-hand side if κ is sufficiently small (depending on c, C, c0M0, T0),
and the second contribution is estimated, as other terms, using the assumption

sup
`␣

}pHs, Hb, Us, Ubqpt, ¨q}Hs`2 : t P r0, T0s
(˘

ď c0M0.
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Applying then Gronwall’s Lemma, we find that

}p 9Hs, 9Hb, 9Us, 9Ub, 9Vs, 9Vbqpt, ¨q}L2 ď κCc0M0K (2.14)

where K depends only on Cc0M0T0.
By using again the triangle inequality, we can lower further κ (depending on c0) so that (2.14) implies

@x P R, pρs, ρb, H
κ
s pt, xq, Hκ

b pt, xq, Uκ
s pt, xq, Uκ

b pt, xqq P p2ς{p3c0q

and
}pHκ

s , H
κ
b , U

κ
s , U

κ
b , V

κ
s , V

κ
b qpt, ¨q}Hs ď

3

2
c0M0.

Hence by the usual continuity argument we infer that pHκ
s , H

κ
b , U

κ
s , U

κ
b qpt, ¨q is well-defined for all t P r0, T0s,

and (2.12)-(2.13)-(2.14) hold. This concludes the proof.

3 The hydrostatic Euler equations

In this section we study the stability of the hydrostatic Euler equations for stratified flows:

Bth ` Bxpp1 ` hqpu ` uqq “ κB2
xh,

Btu `

ˆ

u ` u ´ κ
Bxh

1 ` h

˙

Bxu `
1

ρ
BxΨ “ 0,

(3.1)

where the Montgomery potential Ψ is given by

Ψp¨, rq “ ρprq

ż r

´1
hp¨, r1qdr1 `

ż 0

r
ρpr1qhp¨, r1q dr1 “: pMrρshqprq. (3.2)

We recall that our stability results must accommodate with solutions generated by the bilayer system that are
piecewise constant and allow the comparison with continuously stratified flows. Hence we must allow for deviations
that can be large pointwise, while smallness stems from integration (with respect to the r-variable). In practice we
shall manipulate simultaneously the pointwise as well as the L1

r topologies depending on the need. This is the case
for instance in the following Lemma, measuring the Lipschitz continuity with respect to the density variable of the
Montgomery operator Mrρs defined (3.2).

Lemma 3.1. Let M ą 0. There exists C ą 0 such that for any ρ
ℓ

(ℓ P t1, 2u) such that

}pρ
ℓ
, 1
ρ
ℓ

q}L1
rˆL8

r
ď M,

and for any h P L8
r , one has for almost any r P p´1, 0q,

ˇ

ˇ

ˇ

´ 1

ρ
1

Mrρ
1
sh ´

1

ρ
2

Mrρ
2
sh
¯

prq

ˇ

ˇ

ˇ
ď

´

M3|ρ
1

´ ρ
2
|prq ` M}ρ

1
´ ρ

2
}L1

r

¯

}h}L8
r

Proof.

´ 1

ρ
1

Mrρ
1
sh ´

1

ρ
2

Mrρ
2
sh
¯

prq “
` 1

ρ
1
prq

´
1

ρ
2
prq

˘

ż 0

r
ρ
1
pr1qhpr1q dr1 `

1

ρ
2
prq

ż 0

r
pρ

1
pr1q ´ ρ

2
pr1qqhpr1q dr1.
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Note also that we are seeking stability estimates for the system (3.1)-(3.2) with respect to perturbations of the
equations —in particular through ρ « ρ

bl
and u « ubl— and with respect to perturbations of the initial data.

In Section 3.1, we first state a local well-posedness result associated with the initial-value problem for the sys-
tem (3.1)-(3.2), and then provide some stability estimates. These two results by themselves are not sufficient to
bootstrap in a standard manner the strong convergence of solutions as the size of deviations shrink, because the topol-
ogy involved in the first result, namely L8

r , is stronger than the topology used in the second result, which is roughly
speaking L1

r . For that matter we introduce and study in Section 3.2 a refined approximate solution which, compared
with the original reference solution, improves the description of solutions associated with nearby profiles. Specifically,
the refined approximate solution satisfies the following three properties:

i. it is well-defined and controlled on a time interval which is uniform with respect to κ P p0, 1s;

ii. the difference with respect to the nearby solution is controlled for the strong norm associated with L8
r ;

iii. the difference with respect to the reference solution is controlled for the weak norm associated with L1
r .

The resulting convergence result, Proposition 3.8, is stated and proved in Section 3.3.

3.1 Stability estimates

Proposition 3.2 (Well-posedness). Let s ě s0 ą 3{2, ς P p0, 1q, M,M0 ą 0 and c ą 1. There exists T ą 0 such
that the following holds.

For all κ P p0, 1s, all pρ, uq P L8pp´1, 0qq such that

}pu, ρ, 1ρq}L8
r

ď M,

and all ph0, u0q P L8pp´1, 0q;HspRq2q such that for almost all r P p´1, 0q,

@x P R, 1 ` h0 ě ς,

and
}ph0, u0q}L8

r H
s0
x

ď M0

there exists a unique ph, uq P Cpr0, T ‹q;L8pp´1, 0q;HspRq2q maximal-in-time strong solution to (3.1)–(3.2) emerg-
ing from the initial data ph, uq

ˇ

ˇ

t“0
“ ph0, u0q.

Moreover, T ‹ ą κT and for any t P r0, κT s and almost all r P p´1, 0q one has

@x P R, 1 ` hpt, x, rq ě ς{c

and
maxpt}ph, uq}L8p0,t;L8

r Hs
xq, κ

1{2}Bxh}L2p0,t;L8
r Hs

xquq ď c}ph0, u0q}L8
r Hs

x
.

Moreover, the maximal existence time (resp. the emerging solution in Cpr0, T ‹q;L8pp´1, 0q;HspRq2q) is a lower
semi-continuous (resp. continuous) function of the initial data in L8pp´1, 0q;HspRq2 and if T ‹ ă 8 then

}phpt, ¨q, upt, ¨qq}L8
r H

s0
x

Ñ 8 as t Ñ T ‹.

Proof. The proof is very similar to the proof of Proposition 2.5, using estimates for transport and transport-diffusion
equations pointwisely with respect to the variable r P p´1, 0q. The essential arguments are that L8pp´1, 0qq is
a Banach algebra and that differentiation with respect to the space variable Bx as well as the Fourier multiplier
Λs “ pId´B2

xqs{2 commute with the operator 1
ρMrρs, and that the linear operator 1

ρMrρs : L8
r L2

x Ñ L8
r L2

x is bounded
for any ρ P L8pp´1, 0qq.
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Proposition 3.3 (Stability). Let s ą 3{2, ς P p0, 1q and M,M1,M2 ą 0. There exists C ą 0 such that the following
holds.

Let κ P p0, 1s and T ą 0 be such that
CT ď κ.

Let ρ
ℓ
, uℓ (for ℓ P t1, 2u) be such that

}pρ
ℓ
, 1
ρ
ℓ

q}L8
r

ď M.

Let phℓ, uℓq be solutions to (3.1)-(3.2) (with ρ “ ρ
ℓ

and u “ uℓ) defined on the interval r0, T s and satisfying

}pBxh1, Bxu1q}L8
T L8

r Hs
x

ď M1, }ph2, u2q}L8
T L8

r Hs
x

` κ1{2 }Bxh2}L8
r L2

THs
x

ď M2,

and
ess inf

pt,x,rqPr0,T sˆRˆp´1,0q
1 ` h1pt, x, rq ě ς, ess inf

pt,x,rqPr0,T sˆRˆp´1,0q
1 ` h2pt, x, rq ě ς.

Then one has

maxpt}ph1 ´ h2, u1 ´ u2q}L8
T L1

rH
s
x
, κ1{2}Bxph1 ´ h2q}L2

TL1
rH

s
x
uq

ď 2}ph01 ´ h02, u
0
1 ´ u02q}L1

rH
s
x

` CT }pρ
1

´ ρ
2
, u1 ´ u2q}L1

r
(3.3)

and for almost any r P p´1, 0q,

maxpt}ph1 ´ h2, u1 ´ u2qp¨, rq}L8
T Hs

x
, κ1{2}Bxph1 ´ h2qp¨, rq}L2

THs
x
uq

ď 2
`

}ph01 ´ h02, u
0
1 ´ u02qprq}Hs

x
` }ph01 ´ h02, u

0
1 ´ u02q}L1

rH
s
x

˘

` CT
`

|pρ
1

´ ρ
2
, u1 ´ u2qprq| ` }pρ

1
´ ρ

2
, u1 ´ u2q}L1

r

˘

. (3.4)

Proof. Let us denote 9h :“ h1 ´ h2, 9u :“ u1 ´ u2, 9u :“ u1 ´ u2 and 9ρ “ ρ
1

´ ρ
2
. We have on the time interval

I :“ r0, T s
#

Bt 9h ` pu2 ` u2qBx 9h ´ κB2
x

9h “ r1 ` r2,

Bt 9u ` pu2 ` u2 ` u‹
2q Bx 9u “ r3,

where we denote u‹
2 :“ ´κ Bxh2

1`h2
,

r1 :“ ´p 9u ` 9uqBxh1 ´ 9hBxu1, r2 :“ ´p1 ` h2qBx 9u

and
r3 :“ ´

´

9u ` 9u ´ κ Bx 9h
1`h2

` κ 9h Bxh1
p1`h1qp1`h2q

¯

Bxu1 ´

´

1
ρ
1

Mrρ
1
s ´ 1

ρ
2

Mrρ
2
s

¯

Bxh1 ´ 1
ρ
2

Mrρ
2
sBx 9h.

We can now use standard estimates and transport-diffusion and transport equations ([6]) to infer that there exists c0
depending only on s such that for almost any r P p´1, 0q, one has

maxpt} 9hp¨, rq}L8
T Hs

x
, κ1{2}Bx 9hp¨, rq}L2

THs
x
uq ď

´

} 9hpt “ 0, ¨, rq}Hs
x

` }r1p¨, rq}L1
THs

x
` κ´1{2}r2p¨, rq}L2

THs´1
x

¯

ˆ exppc0}Bxu2p¨, rq}L1
THs´1q

and

} 9up¨, rq}L8
T Hs

x
ď

´

} 9upt “ 0, ¨, rq}Hs
x

` }r3p¨, rq}L1
THs

x

¯

ˆ exppc0}Bxu2p¨, rq ` Bxu
‹
2p¨, rq}L1

THs´1
x

q.

Using that Hs1

pRq is a Banach algebra for all s1 ą 1{2, we find that for any t P r0, T s

}r1pt, ¨, rq}Hs
x

À M1 ˆ
`

| 9uprq| ` } 9upt, ¨, rq}Hs
x

` } 9hpt, ¨, rq}Hs
x

˘

, }r2pt, ¨, rq}Hs´1
x

À p1 ` M2q} 9upt, ¨, rq}Hs
x
,
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and, making additionally use of standard composition estimates in Sobolev spaces ([35, Appendix B]) and Lemma 3.1,

}r3pt, ¨, rq}Hs
x

ď Cps,M,M1,M2, ςq

´

| 9uprq| ` } 9upt, ¨, rq}Hs
x

` κ} 9hpt, ¨, rq}Hs`1
x

` | 9ρprq| ` } 9ρ}L1
r

¯

M1

` M2}Bx 9hpt, ¨q}L1
rH

s
x
.

Finally, using product and composition estimates on u‹
2 “ ´κBxh2 ` κ h2

1`h2
Bxh2, we have

}Bxu
‹
2pt, ¨, rq}Hs´1

x
ď CpM2, ς

´1qκ }Bxh2pt, ¨, rq}Hs
x
.

Collecting these estimates we infer that there exists C ą 0 depending only on s,M,M1,M2, ς such that

maxpt} 9hp¨, rq, 9up¨, rq}L8
T Hs

x
, κ1{2}Bx 9hp¨, rq}L2

THs
x
uq ď exppCM2pT ` κ1{2T 1{2qq

ˆ

´

}p 9hpt “ 0, ¨, rq, 9upt “ 0, ¨, rqq}Hs
x

` Cκ´1{2T 1{2
`

} 9up¨, rq}L8
T Hs

x
` κ1{2}Bx 9h}L2

TL1
rH

s
x

˘

` CM1T ˆ
`

| 9uprq| ` | 9ρprq| ` } 9ρ}L1
r

` } 9hp¨, rq}L8
T Hs

x
` } 9up¨, rq}L8

T Hs
x

` κT´1{2}Bx 9hp¨, rq}L2
THs

x

˘

¯

.

Hence there exists C ą 0, depending only on s,M,M1,M2, ς such that for any T sufficiently small so that one has
M1T ď p36Cq´1, pκ´1{2 ` κ1{2M1qT 1{2 ď p18Cq´1 and M2T ` M2κ

1{2T 1{2 ď C´1 lnp3{2q one has

5

6
maxpt}p 9hp¨, rq, 9up¨, rqq}L8

T Hs
x
, κ1{2}Bx 9hp¨, rq}L2

THs
x
uq

ď
3

2

´

}p 9hpt “ 0, ¨, rq, 9upt “ 0, ¨, rqq}Hs
x

` 1
18κ

1{2}Bx 9h}L2
TL1

rH
s
x

˘

` CM1T
`

| 9uprq| ` | 9ρprq| ` } 9ρ}L1
r

˘

¯

. (3.5)

Integrating this inequality with respect to the variable r and using Minkowski’s inequality, we infer the first stability
estimate, (3.3). Plugging (3.3) in the right-hand side of (3.5), the second stability estimate, (3.4), follows immediately.

Remark 3.4. The restriction T À κ in Propositions 3.2 and 3.3 is quite stringent. In [9], some improved stability
estimates concerning the system (3.1)-(3.2) were derived by the authors. The latter estimates exploit a partial sym-
metric structure of the equations, and demand some extra regularity with respect to the variable r. Because we cannot
afford such regularity since our stability estimates will be used with piecewise constant functions, we use in the proof
of Proposition 3.3 in a stronger way the parabolic regularization of thickness diffusivity.

In order to obtain a final result on a timescale which is independent of the parameter κ P p0, 1s we shall ex-
ploit some a priori control on a reference solution and restrict to initial data as well as shear velocity and density
distributions that are close to the reference data.

3.2 Refined approximation

In this section we consider a given reference solution to the hydrostatic Euler equation (3.1)-(3.2) and build from it a
refined approximate solution associated with nearby profiles. Specifically, let ρ

ref
, uref , href , uref be a solution to

Bthref ` Bxpp1 ` hrefqpuref ` urefqq “ κB2
xhref ,

Bturef `

ˆ

uref ` uref ´ κ
Bxhref
1 ` href

˙

Bxuref `
1

ρ
ref

Mrρ
ref

sBxhref “ 0,
(3.6)

where we recall that the operator M is defined in (3.2). Considering profiles pρ, uq which are in some sense close to
pρ

ref
, urefq we construct approximate solutions phapp, uappq as the solutions to

Bthapp ` Bxpp1 ` happqpu ` uappqq “ κB2
xhapp,

Btuapp `

ˆ

u ` uapp ´ κ
Bxhapp
1 ` happ

˙

Bxuapp “ ´
1

ρ
MrρsBxhref .

(3.7)

Notice first that phapp, uappq satisfies approximately the hydrostatic Euler equations associated with profiles pρ, uq.
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Proposition 3.5. For any s ě 0 the refined approximate solution phapp, uappq satisfies

Bthapp ` Bxpp1 ` happqpu ` uappqq “ κB2
xhapp,

Btuapp `

ˆ

u ` uapp ´ κ
Bxhapp
1 ` happ

˙

Bxuapp `
1

ρ
MrρsBxhapp “ rrem

(3.8)

with
}rrempt, ¨q}L8

r Hs
x

ď }ρ}L8
r

}1
ρ}L8

r
}phref ´ happqpt, ¨q}L1

rH
s`1
x

Proof. We have

rremp¨, rq “

´1

ρ
MrρspBxhapp ´ Bxhrefq

¯

p¨, rq

“

ż r

´1
pBxhapp ´ Bxhrefqp¨, r1q dr1 `

1

ρprq

ż 0

r
ρpr1qpBxhapp ´ Bxhrefqp¨, r1qdr1,

and the result follows since 1 ď supptρpr1q{ρprq : pr, r1q P p´1, 0q2uq ď }ρ}L8
r

}1
ρ}L8

r
.

That the above remainder term rapp is small is a consequence of the subsequent Proposition 3.7. We first prove
that for any initial data phapp, uappq|t“0 “ ph0, u0q, the emerging solution phapp, uappq is well-defined and controlled
on a time interval uniform with respect to κ P p0, 1s.

Proposition 3.6. Let s ą 3{2, ς P p0, 1q, M,M0,Mref ą 0 and c ą 1. There exists C ą 0 and T ą 0 such that the
following holds.

Let href P Cpr0, Trefq;L
1pp0, 1q;Hs`1

x pRqqq be such that

}Bxhref}L1
Tref

L1
rH

s
x

ď Mref .

For all κ P p0, 1s, all pρ, uq P L8pp´1, 0qq such that

}pρ, 1ρq}L8
r

ď M,

and all ph0, u0q P L8pp0, 1q;HspRq2q such that for almost all r P p´1, 0q

@x P R, 1 ` h0 ě ς

and
maxpt}h0}L8

r Hs´1
x

, κ1{2}h0}L8
r Hs

x
, }u0}L8

r Hs
x
uq ď M0,

there exists a unique phapp, uappq P Cpr0, T ‹q;L8pp0, 1q;Hs
xpRq2qq maximal solution to (3.7) emerging from the

initial data phapp, uappq|t“0 “ ph0, u0q. Moreover one has T ‹ ě Tapp :“ minptTref , T uq and for any t P r0, Tapps

and almost any r P p´1, 0q one has the upper bound

maxpt}happp¨, rq}L8
Tapp

Hs´1
x

, κ1{2}happp¨, rq}L8
Tapp

Hs
x
, κ}Bxhappp¨, rq}L2

Tapp
Hs

x
uq ` }uappp¨, rq}L8

Tapp
Hs

x

ď cmaxpt}h0p¨, rq}Hs´1
x

, κ1{2}h0pt “ 0, ¨, rq}Hs
x
, }u0p¨, rq}Hs

x
uq ` CMref .

Proof. The existence and uniqueness of phapp, uappq P Cpr0, T ‹q;L8pp0, 1q;Hs
xpRq2qq maximal solution to (3.7)

is obtained as in Proposition 3.2. We set T P r0, T ‹q. By standard estimates on transport and transport-diffusion
equations ([6]) applied to (3.7) we have

maxpt}happp¨, rq}L8
T Hs´1

x
, κ1{2}Bxhappp¨, rq}L2

THs´1
x

uq ď

´

}h0p¨, rq}Hs´1
x

` }rappp¨, rq}L1
THs´1

x

¯

ˆ exppc0}Bxuappp¨, rq}L1
THs´1qq,
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maxpt}happp¨, rq}L8
T Hs

x
, κ1{2}Bxhappp¨, rq}L2

THs
x
uq ď

´

}h0p¨, rq}Hs
x

` κ´1{2}rappp¨, rq}L2
THs´1

x

¯

ˆ exppc0}Bxuappp¨, rq}L1
THs´1qq,

and

}uappp¨, rq}L8
T Hs

x
ď

´

}u0p¨, rq}Hs
x

` }rrefp¨, rq}L1
THs

x

¯

ˆ exppc0}Bxuappp¨, rq ` Bxu
‹
appp¨, rq}L1

THs´1
x

q,

where we denote u‹
app :“ ´κ

Bxhapp

1`happ
, rapp :“ ´p1`happqBxuapp, rref “ ´1

ρMrρsBxhref , and the constant c0 depends
only on s.

Now we notice that for almost any r P p´1, 0q,

}Bxu
‹
apppt, ¨, rq}Hs´1

x
ď Cp}happpt, ¨, rq}Hs´1

x
, ς´1qκ }Bxhapppt, ¨, rq}Hs

x
,

}rapppt, ¨, rq}Hs´1
x

ď Cp}happpt, ¨, rq}Hs´1
x

q}uapppt, ¨, rq}Hs
x
,

}rrefpt, ¨, rq}Hs
x

ď Cp}ρ}L8
r

}1
ρ}L8

r
q}Bxhrefpt, ¨q}L1

rH
s
x
.

From this we infer that there exists C, depending only on s, }happp¨, rq}L8
T Hs´1

x
, ς´1, }ρ}L8

r
}1
ρ}L8

r
such that

maxpt}happp¨, rq}L8
T Hs´1

x
, κ1{2}happp¨, rq}L8

T Hs
x
, κ}Bxhappp¨, rq}L2

THs
x
, }uappp¨, rq}L8

T Hs
x
uq

ď

´

maxpt}h0p¨, rq}Hs´1
x

, κ1{2}h0pt “ 0, ¨, rq}Hs
x
, }u0p¨, rq}Hs

x
uq

` CpT ` T 1{2q}uappp¨, rq}L8
T Hs

x
` C}Bxhref}L1

TL1
rH

s
x

¯

ˆ exppCT }uappp¨, rq}L8
T Hs

x
` CT 1{2κ}Bxhappp¨, rq}L2

THs
x
q.

By the standard continuity argument, we find that

maxpt}happp¨, rq}L8
Tapp

Hs´1
x

, κ1{2}happp¨, rq}L8
Tapp

Hs
x
, κ}Bxhappp¨, rq}L2

Tapp
Hs

x
, }uappp¨, rq}L8

Tapp
Hs

x
uq

ď c maxpt}h0p¨, rq}Hs´1
x

, κ1{2}h0pt “ 0, ¨, rq}Hs
x
, }u0p¨, rq}Hs

x
uq ` CMref

for almost all r P p0, 1q and for all Tapp P r0, T s such that

pTapp ` T 1{2
appqM0 ď C´1

where C depends only on s, ς,M, cM0. This concludes the proof.

We conclude this section by investigating the difference between the reference solution and the refined approxi-
mate solution.

Proposition 3.7. Let s ą 3{2, ς P p0, 1q and M,Mref ,Mapp ą 0. There exists C ą 0 such that the following holds.
Let κ P p0, 1s, T ą 0 and let ρ

ref
, uref , ρ, u P L8

r be such that

}pρ
ref
, 1
ρ
ref

, ρ, 1ρq}L8
r

ď M.

Let phref , urefq P Cpr0, T s;L8pp´1, 0q;Hs`1pRq2q be a solution to (3.6) (that is (3.1)-(3.2) with pρ, uq “ pρ
ref
, urefq)

defined on the time interval r0, T s and satisfying

}phref , urefq}L8
T L8

r Hs`1
x

ď Mref .

Let phapp, uappq P Cpr0, T s;L8pp´1, 0q;Hs`1pRq2q be solution to (3.7) defined on the time interval r0, T s and
satisfying

}phapp, uappq}L8
T L8

r Hs
x

` κ1{2 }Bxhapp}L8
r L2

THs
x

ď Mapp,
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and such that for all t P r0, T s and almost all r P p´1, 0q

inf
xPR

1 ` hrefpt, x, rq ě ς, inf
xPR

1 ` happpt, x, rq ě ς.

Then one has

}phref ´ happ, uref ´ uappqp¨, rq}L8
T Hs

x
ď

´

}phref ´ happ, uref ´ uappqpt “ 0, ¨, rq}Hs
x

` Cκ
`

|pρ
ref

´ ρ, uref ´ uqprq| ` }pρ
ref

´ ρq}L1
r

˘

¯

exppCT {κq. (3.9)

Proof. Let us denote 9h :“ href ´ happ, 9u :“ uref ´ uapp, 9u :“ uref ´ u and 9ρ “ ρ
ref

´ ρ. We have on the time
interval I :“ r0, T s for which both function are well-defined

#

Bt 9h ` pu ` uappqBx 9h ´ κB2
x

9h “ r1 ` r2,

Bt 9u `
`

u ` uapp ` u‹
app

˘

Bx 9u “ r3,

where u‹
app :“ ´κ

Bxhapp

1`happ
,

r1 :“ ´p 9u ` 9uqBxhref ´ 9hBxuref , r2 :“ ´p1 ` happqBx 9u

and
r3 :“ ´

´

9u ` 9u ´ κ Bx 9h
1`happ

` κ 9h Bxhref
p1`hrefqp1`happq

¯

Bxuref ´

´

1
ρ
ref

Mrρ
ref

s ´ 1
ρMrρs

¯

Bxhref .

We can proceed as in the proof of Proposition 3.3 with some straightforward adjustments as for the contributions of
r3 since the contribution ´1

ρMrρsBx 9h is nonexistent.
We infer that there exists C depending only on s, ς,M,Mapp,Mref such that for all κ P p0, 1s and T0 P p0, T s

such that CT0 ď κ, one has for almost any r P p´1, 0q,

maxpt}p 9h, 9uqp¨, rq}L8
T0

Hs
x
, κ1{2}Bx 9hp¨, rq}L2

T0
Hs

x
uq ď 2}p 9h, 9uqpt “ 0, ¨, rq}Hs

x
` C2T0

`

| 9ρprq| ` | 9uprq| ` } 9ρ}L1
r

˘

.

Iterating this control on Tn :“ minptnκ{C, T uq, we find that

}p 9h, 9uqp¨, rq}L8
Tn

Hs
x

ď 2n`1}p 9h, 9uqpt “ 0, ¨, rq}Hs
x

` C2nκ
`

| 9ρprq| ` | 9uprq| ` } 9ρ}L1
r

˘

,

which yields the claimed estimate.

3.3 Convergence

We now conclude our analysis with the following stability result for solutions to the hydrostatic Euler equations.

Proposition 3.8 (Convergence). Let s ą 3{2, M,Mref ,M0 ą 0, and κ P p0, 1s. Then there exists C, T independent
of κ and δ0 ą 0 (depending on κ) such that the following holds.

Let pρ
ref
, urefq P L8pp´1, 0qq2 and phref , urefq P Cpr0, T s;L8pp´1, 0q;Hs`2pRq2q be a solution to (3.6) (that

is (3.1)-(3.2) with pρ, uq “ pρ
ref
, urefq) defined on the time interval r0, T s such that

}pρ
ref
, 1
ρ
ref

q}L8
r

ď M, }phref , urefq}L8
T L8

r Hs`2
x

` }Bxhref}L1
TL1

rH
s`2
x

ď Mref .

Let pρ, uq P L8pp´1, 0qq2 and ph0, u0q P L8pp´1, 0q;Hs`2pRq2q be such that

}pρ, 1ρq}L8
r

ď M, }ph0, κ1{2Bxh
0q}L8

r Hs`1
x

` }u0}L8
r Hs`2

x
ď M0

and
}pρ

ref
´ ρ, uref ´ uq}L1

r
` }phref |t“0 ´ h0, uref |t“0 ´ u0q}L1

rH
s`1 ď δ0.
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Then ph, uq P Cpr0, T ‹q;L8pp´1, 0q;Hs`2pRq2q the maximal-in-time solution to (3.1)-(3.2) emerging from
initial data ph, uq|t“0 “ ph0, u0q is defined on the time interval r0, T s and we have for almost all r P p´1, 0q,

}phref ´ h, uref ´ uqp¨, rq}L8
T Hs

x
ď

´

}phref ´ h,uref ´ uqpt “ 0, ¨, rq}Hs
x

` }phref ´ h, uref ´ uqpt “ 0, ¨q}L1
rH

s`1
x

` |pρ
ref

´ ρ, uref ´ uqprq| ` }pρ
ref

´ ρ, uref ´ uq}L1
r

¯

ˆ C exppCT {κq. (3.10)

Proof. We first recall that Proposition 3.7 provides an estimate on the difference between the reference solution
phref , urefq P Cpr0, T s;L8pp´1, 0q;Hs`2pRq2q and the corresponding approximate solution defined as the solution
to the system (3.7) with initial data phapp, uappq|t“0 “ ph0, u0q, phapp, uappq P Cpr0, T s;L8pp´1, 0q;Hs`2

x pRq2qq,
whose existence and control on the time interval r0, T s (lessening T if necessary) is provided by Proposition 3.6.
Specifically we have for almost any r P p´1, 0q

}phref ´ happ, uref ´ uappqp¨, rq}L8
T Hs`1

x
ď

´

}phref ´ happ, uref ´ uappqpt “ 0, ¨, rq}Hs`1
x

` Cκ
`

|pρ
ref

´ ρ, uref ´ uqprq| ` }pρ
ref

´ ρq}L1
r

˘

¯

exppCT {κq,

where C depends only on s, ς,M,Mref and M0.
We then consider the difference between the exact solution ph, uq P Cpr0, T ‹q;L8pp´1, 0q;Hs`2

x pRq2qq —
whose existence is provided by Proposition 3.2— and the approximate solution. By means of the consistency result,
Proposition 3.5, we can adapt the proof of Proposition 3.3 and we find that under the assumptions that

}ph, uq}L8
T L8

r Hs
x

` κ1{2 }Bxh}L8
r L2

THs
x

ď M and ess inf
pt,x,rqPr0,T sˆRˆp´1,0q

1 ` hpt, x, rq ě ς (3.11)

there exists C ą 0 depending only on s, ς,M,Mref ,M such that for all κ P p0, 1s and t P p0,minptT, T ‹uqq such
that Ct ď κ and for almost any r P p´1, 0q one has

maxpt}ph ´ happ, u ´ uappqp¨, rq}L8
t Hs

x
, κ1{2}Bxph ´ happqp¨, rq}L2

tH
s
x
uq

ď 2}ph ´ happ, u ´ uappqpt “ 0, ¨, rq}L8
r Hs

x
` Ct }phref ´ happqpt, ¨q}L1

rH
s`1
x

.

Iterating the stability estimate on Tn :“ minptnT0, T uq we deduce that (augmenting C if necessary)

maxpt}ph ´ happ, u ´ uappq}L8
t L8

r Hs
x
, κ1{2}Bxph ´ happq}L8

r L2
tH

s
x
uq

ď exppCT {κq}ph ´ happ, u ´ uappqpt “ 0, ¨q}L8
r Hs

x
` Cκ exppCT {κq }href ´ happ}L8

T L1
rH

s`1
x

.

Since by construction phapp, uappq|t“0 “ ph, uq|t“0 and using the above control on href ´happ we infer (augmenting
C if necessary)

maxpt}ph ´ happ, u ´ uappq}L8
t L8

r Hs
x
, κ1{2}Bxph ´ happq}L8

r L2
tH

s
x
uq

ď Cκ exppCT {κq }phref ´ h, uref ´ uqpt “ 0, ¨q}L1
rH

s`1
x

` C
`

κ exppCT {κq
˘2

}pρ
ref

´ ρ, uref ´ uq}L1
r
.

Notice that this estimate implies by triangle inequality an upper bound on }ph, uq}L8
t L8

r Hs
x

`κ1{2 }Bxh}L8
r L2

THs
x

which
(choosing M sufficiently large and δ0 sufficiently small) enforces strictly the condition (3.11), so that by the standard
continuity argument the above holds without restriction on t P p0,minptT, T ‹uqq. By the persistence of regularity
stated in Proposition 3.2 we infer that T ‹ ą T and the above holds for any t P p0, T s. The estimate (3.10) then
immediately follows from the triangle inequality.
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4 Conclusion

Thanks to Proposition 2.7 (concerning the well-posedness and control of solutions to the bilayer system) on one hand
and Proposition 3.8 (concerning the control of the deviations of nearby solutions to some given reference solutions) on
the other hand, one infers immediately the announced rigorous justification of the propagation in time of the columnar
motion and sharp stratification assumptions in near-bilayer situations (within the hydrostatic framework). Specifically,
we have the following result.

Theorem 4.1. Let s ě s0 ą 3{2, M ą 0 ,M0 ą 0, ς P p0, 1q, and κ P p0, 1s. Then there exist C ą 0, T ą 0
independent of κ and δ0 ą 0 (depending on κ) such that the following holds.

Let pρ, uq P L8pp´1, 0qq2 and ph0, u0q P L8pp´1, 0q;Hs`2pRq2q be such that

}pρ, 1ρq}L8
r

ď M, }ph0, κ1{2Bxh
0q}L8

r Hs`1
x

` }u0}L8
r Hs`2

x
ď M0

and there exists pρs, ρb, Hs, Hb, U s, U bq P R6 such that Hs`Hb “ 1 and U s`U b “ 0 as well as pH0
s , H

0
b , U

0
s , U

0
b q P

Hs`4pRq2 ˆ Hs`3pRq2 such that the hyperbolicity condition holds:

@x P R, pρs, ρb, Hs ` H0
s pxq, Hb ` H0

b pxq, U s ` U0
s pxq, U b ` U0

b pxqq P pς ,

where pς is defined in (2.5), and

}pH0
s , H

0
b , U

0
s , U

0
b , κBxH

0
s , κBxH

0
b q}Hs`3 ď M0

and such that denoting pρ0
bl
, u0bl, h

0
bl, u

0
blq through (1.4) we have

}ph0bl ´ h0, u0bl ´ u0q}L1
rH

s`1
x

` }pρ
bl

´ ρ, ubl ´ uq}L1
r

ď δ0,

then

1. there exists pHs, Hb, Us, Ubq P Cpr0, T s;Hs`3pRq4q solution to (1.3) emerging from the initial data

pHs, Hb, Us, Ubq
ˇ

ˇ

t“0
“ pH0

s , H
0
b , U

0
s , U

0
b q;

2. there exists ph, uq P Cpr0, T s;L8pp´1, 0q;Hs`2pRq2q solution to (1.1) emerging from initial data

ph, uq|t“0 “ ph0, u0q;

3. denoting pρ
bl
, ubl, hbl, ublq through (1.4) we have for almost all r P p´1, 0q,

}phbl ´ h, ubl ´ uqp¨, rq}L8
T Hs

x
ď

´

}ph0bl ´ h0, u0bl ´ u0qp¨, rq}Hs
x

` }ph0bl ´ h0, u0bl ´ u0q}L1
rH

s`1
x

` |pρ
bl

´ ρ, ubl ´ uqprq| ` }pρ
bl

´ ρ, ubl ´ uq}L1
r

¯

ˆ C exppCt{κq.

Remark 4.2. Proposition 3.8 is not limited to the bilayer framework and applies to any suitably regular reference
solution. Hence it can be combined with results analogous to Proposition 2.7 to provide results analogous to Theo-
rem 4.1 in the one-layer and multilayer frameworks.

The result analogous to Proposition 2.7 in the one-layer framework (that is associated with the standard shallow
water equation with thickness diffusivity that was discussed for instance in [24]) is stated and proved in [2, Sect. 2.2].
Notice it requires neither the discussion on the hyperbolicity domain of the non-diffusive equations (since the standard
non-cavitation assumption guarantees hyperbolicity) nor the discussion on the parabolic regularization of the total
velocity (since the natural symmetrizer behaves well with diffusivity contributions).

A result analogous to Proposition 2.7 in the multilayer framework follows from combining the result of [22] with
the analysis of Section 2.2. In the former, it is proved that assuming sufficiently small shear velocities is a sufficient
condition for the (strict) hyperbolicity of the multilayer system in the stably stratified situation. Notice however that
this smallness condition is implicit, and not uniform with respect to the number of layers.
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[21] V. Duchêne. Asymptotic shallow water models for internal waves in a two-fluid system with a free surface.
SIAM J. Math. Anal., 42(5):2229–2260, 2010.
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