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Caveat lector This document is a slightly improved version of my “Habilitation à Diriger des
Recherches” memoir, which is meant as a prerequisite before the supervision of Ph.D. students.
As such the presentation of the results is very strongly biased towards my own production. That
being written, I tried to offer a general picture, and hopefully the content of this memoir can be
valuable for others. I plan to update this memoir from time to time when novel material fitting in
the picture will arise. Please do not hesitate to contact me when you notice typos or mistakes,1 or
if you have any question, comment or query, using the email address provided on the front page.

In this document we will derive, discuss, and justify as much as possible a large class of models
describing in an approximate manner the propagation of waves at the surface of water, at the
interface between two homogeneous fluids, or in the bulk of a continuously density-stratified fluid.
In our idealized frameworks, these waves propagate from an initial perturbation of the rest state
under the influence of gravity forces. Let us unveil a little bit of the following material in order to
warn the potentially disappointed reader.

• Our motivation is theoretical, in the sense that practical direct use of the results is not the
main objective. The problem of the propagation of water waves is one example of partial
differential equations which may be written under a compact formulation but forecasts a
fascinating variety of phenomena, while enjoying a rich mathematical structure. It is hence a
formidable toy on which one can apply advanced tools of modelization. Yet it is impossible
not to have in mind that practical applications are just a few steps away, and many choices
in the modelization procedure are grounded on applicative views, for instance robustness of
the models or easy implementation.

• The “master” equations, that is the system of equations from which all subsequent simplified
models are derived, already incorporates many idealizations. To name a few, we will neglect
earth curvature, the Coriolis force, wind forcing, any dissipative effect and—most of the time—
surface tension. In the “water waves” case we will consider homogeneous fluids and potential
flows. We will also restrict our analysis to laminar (i.e. regular) rather than turbulent flows.

• While the equations at stake are of dispersive nature, we will use little or none of the advanced
tools on dispersive equations, nor will we report the latest mathematical developments involv-
ing paradifferential calculus, normal forms, KAM theory, etc. Our mathematical tools are old
but robust: on one hand the elliptic theory to derive models from approximate solutions to a
Laplace problem; and on the other hand the energy method to justify rigorously the resulting
evolution equations (being of quasilinear hyperbolic nature). The heart of the matter consists
in using these tools in a refined manner so as to offer error estimates uniform with respect to
the important parameters at stake.

• Given their number and diversity, it is impossible to present all relevant models based on
the water waves system, even restricting to a specific asymptotic regime (the shallow water
regime in our case). This document focuses on models which preserve as much as possible
the structure (and in particular the Hamiltonian formulation) of the master equations, as
well as mathematical properties (typically the well-posedness of the initial-value problem).
That such models are often historical and among the most studied is not, to my opinion, a
coincidence. Hence most of this work is dedicated to fairly standard models in oceanography.
The aim of this document is to present such models together with more recent ones in a unified
framework, and to address the state of their rigorous justification.

1This document was written over a several-years period of time, affected by sleep deprivation, and I am often
negligent anyhow. I spot inconsistencies, typos or clumsiness each time I proofread some portion of this manuscript.
I advise against relying on results presented therein without some proof checking.

https://tel.archives-ouvertes.fr/tel-03282212
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Y’a tant de vagues, et tant d’idées qu’on n’arrive
plus à décider le faux du vrai

— Michel Berger, Le paradis blanc
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Foreword

In this monograph we aim at describing the evolution in time of a body of fluid—typically water.
Of course the features of the dynamics depend greatly on the framework, and in particular on the
scales involved. As a rule of thumb, we will be motivated by the description of the motion of the
surface of water as seen by a human eye. These are often referred to as surface gravity waves, or
simply water waves. As any wanderer knows, despite the restrictive framework, water waves are
still remarkably diverse, and this is what makes them a fascinating subject of study.2 In order
to get a grasp at the behavior of water waves in a given situation, one typically uses simplified
models. Below we give examples of a few such models3 which appeared in the early literature,4

with the aim at emphasizing the diversity of possible waves and the hope of giving an insight at
the possible mechanisms involved in the full picture. The models described further on in this work
are refinements of such models.

2To quote Feynman during his well-known Lectures on Physics (Vol. I, Ch. 51: Waves): “Now, the next waves of
interest, that are easily seen by everyone and which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible example, because they are in no respects like
sound and light; they have all the complications that waves can have.”

3We do not attempt at exhaustiveness. The relentless reader will find more in the present document and much
more in the literature, using for instance [294, 268, 373, 64, 269] as starting points.

4The interested reader will find in [133] a detailed historical account on the early studies on water waves.
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There are many ways to formally derive the models presented below. Considering the Saint-
Venant system for instance, a typical way consists in integrating the horizontal velocity over the
fluid layer and invoking a closure formula, based on physical principles such as energy conservation.
One can also use some ad hoc hypotheses, such as columnar motion and hydrostatic approximation.
Or a loose assumption that derivatives of a function are smaller than the function itself. Our
strategy, called asymptotic modeling, is akin to the latter one, and provides a justification of the
former ones, with quantitative estimates of the inaccuracies. We start with the so-called full Euler
system presented in Section 1 (or more precisely, for models in this Prologue, the water waves
system presented in Section 2) whose solutions are regarded as “exact” (although, admittedly, the
derivation of the equations relies on many oversimplifications). Using the typical scales of the flow,
we can extract dimensionless parameters describing the strength of the main mechanisms involved;
see Section 2.4. The asymptotic models are obtained through a description of the operators involved
in the water waves system using assumptions on the size of these parameters, which will be called
the asymptotic regime.

The complete rigorous justification of models in a given asymptotic regime typically proceeds
in two steps. First we prove that sufficiently regular solutions to the water waves system satisfy
the equations of the model—or the other way around—up to a small remainder term, measured
by the size of the dimensionless parameters and data in a prescribed metric space; this is called
consistency. Anticipating with future notations and results, we find that the water waves system is
consistent with the acoustic wave equation (i) with precision O(µ + ε), with the linearized (Airy)
equations (ii) with precision O(ε), with the Saint-Venant system (iii) with precision O(µ), with
all the Boussinesq systems (vii) with precision O(µ2 + µε), etc. This is however not sufficient,
and there remains to prove that for a large class of sufficiently regular initial data (typically a
neighborhood of the rest state in the aforementioned metric space), there exist unique solutions
to both the water waves system and the asymptotic model, and that the two remain close on the
relevant timescale. Following Lannes [268], we call the former property (uniform) well-posedness,
and the latter convergence.

An important portion of this monograph is dedicated to the rigorous justification in the above
sense—together with the study of a few basic properties—of standard and less-standard models for
the propagation of surface, interfacial and internal gravity waves.
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i The linear acoustic wave equation

Arguably the simplest (partial differential) equation describing the motion of water waves, already
put forward by Lagrange [265], is the following:

∂2t ζ = gd ∆xζ . (i)

Here ζ represents the deformation of the free surface, in the sense that the surface of the body of
water at time t is parameterized as

Γtop = {(x , z) ∈ Rd+1 : z = ζ(t, x)}.

Hence the function ζ depends on time, t, and horizontal space variable, x . For simplicity we assume
that the horizontal variable lies in the full space Rd. The constant g denotes the gravity acceleration
and d is the depth of the layer. Equation (i) is called the linear acoustic wave equation as it
governs the propagation of infinitesimally small acoustic waves through a material medium. It is
only a coincidence that it also describes—very roughly, remember Feynman’s quote—water waves.
In fact the above equation describes infinitely small and infinitely long water waves.

In the special case of horizontal dimension d = 1,5 the solution of the initial-value problem is
easily found as

ζ(t, x) =
1

2

(
ζ(0, x + c0t) + ζ(0, x − c0t)

)
+

1

2c0

∫ x+c0t

x−c0t
∂tζ(0, y) dy .

with c0 =
√
gd . Hence the wave decomposes into the superposition of a right-going and a left-going

components, both translating with velocity c0. This is shown in Figure i where the evolution of
the surface deformation when taken initially as Gaussians (with zero initial velocities) according to
eq. (i) and eq. (ii) in dimension d = 1 is represented.

(a) Linear acoustic wave equation, eq. (i) (b) Linearized water waves system, eq. (ii)

Figure i: Disintegration of Gaussian initial data, ζ(t = 0, x) = 0.01 exp(−(0.1 x)2) (left) and
ζ(t = 0, x) = 0.01 exp(−x2) (right), with zero initial velocities. g = 9.81m.s−2, d = 1m.

In dimension d = 2, the solution is less explicit, but a formula can still be written—at least
for sufficiently regular initial data—with the use of Green’s function (we could also use Fourier
representation as in the next section):

ζ(t, x) =
1

2πc0

∫
|y−x|≤c0t

∂tζ(0, y)√
(c0t)2 − |y − x |2

dy +
1

2πc0
∂t

∫
|y−x|≤c0t

ζ(0, y)√
(c0t)2 − |y − x |2

dy

5The one-dimensional framework d = 1 is relevant for instance for waves propagating along a narrow channel.



Prologue iv

We can observe that the solution satisfies causality (but not Huygens’ principle): waves must be
given enough time to propagate between two specified points. Again, c0 is a good measure of the
(scalar) velocity of waves according to eq. (i). Less obvious is the fact that for sufficiently smooth
and decaying initial data, the amplitude of the solution decays for large time as (c0t)

−1/2. Figure ii
represents the evolution of the surface deformation when taken initially as Gaussians (with zero
initial velocities) according to eq. (i) and eq. (ii), in dimension d = 2.

(a) Linear acoustic wave equation, eq. (i) (b) Linearized water waves system, eq. (ii)

Figure ii: Disintegration of Gaussian initial data, with zero initial velocities.
g = 9.81m.s−2, d = 1m. The bottom plot represents the solution on {(x , y) : y = 0}.

ii The linearized (Airy) water waves equations

The following equations describe the propagation of infinitesimally small waves without the long
wave assumption of the previous section: it is the linearized system about the rest-state solution to
the water waves equations, whose solutions shall be considered as “exact”, and which is introduced
in Section 2.1. Consider the linearized water waves equations as{

∂tζ − G0ψ = 0,

∂tψ + gζ = 0
(ii)

where G0 = |D| tanh(d |D|) is the Fourier multiplier operator defined on sufficiently regular solutions
by

∀ξ ∈ Rd, Ĝ0ψ(ξ) = |ξ| tanh(d |ξ|)ψ̂(ξ).

Here, g, d and ζ are as above and ψ represents the trace of the velocity potential at the surface.
Equation (ii) is a system of linear constant-coefficient equations of the form

∂t

(
ζ
ψ

)
= L(D)

(
ζ
ψ

)
where L(D) is a matrix with Fourier multiplier coefficients.

Formally taking the limit d → 0, we may replace tanh(d |ξ|) with d |ξ| in G0, and then we recover
the acoustic wave equation, eq. (i). In fact using eq. (ii) instead of eq. (i) in the left side of Figure i
and Figure ii yields a very similar outcome; such is not the case for the narrower initial data used
for right sides.
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Modal analysis Plane waves of the form (ζ,ψ) = (ζ0e
i(ξ·x−ωt),ψ0e

i(ξ·x−ωt)) are solutions to eq. (ii)
provided that iωψ0 = gζ0 and the dispersion relation holds [250, 7]:

ω(ξ)2 = g|ξ| tanh(d |ξ|).

In other words, we can explicitly solve the equation in the Fourier space:(
ζ̂(t, ξ)

ψ̂(t, ξ)

)
= exp(L(ξ)t)

(
ζ̂(0, ξ)

ψ̂(0, ξ)

)
=

(
cos(|ω(ξ)|t) |ω(ξ)|

g
sin(|ω(ξ)|t)

− g
|ω(ξ)| sin(|ω(ξ)|t) cos(|ω(ξ)|t)

)(
ζ̂(0, ξ)

ψ̂(0, ξ)

)
.

For such plane wave solutions, ω is called the (angular) frequency, ξ the (angular) wave vector
(wavenumber if d = 1), and |ξ| the (angular) wavenumber. Phase velocities describe the velocity in
a given direction of a plane wave with wave vector ξ, and satisfy

cp · ξ = ω(ξ).

The group velocity represents the traveling velocity of a wave packet about wave vector ξ, and is
given by

cg = ∇ξ(ω(ξ)).

Misusing these definitions, we shall also refer to

cp =
|ω(ξ)|
|ξ|

=
√
gd
( tanh(d |ξ|)

d |ξ|

)1/2
as the phase velocity, and to

cg = |cg| =
√
gd

(
1

2

( tanh(d |ξ|)
d |ξ|

)1/2
+

sech2(d |ξ|)
2

( d |ξ|
tanh(d |ξ|)

)1/2)
as the group velocity. They are represented in Figure iii. That the phase velocity is different
(and greater) than the group velocity manifests the essential feature of the (linearized) water waves
equations as being dispersive. Notice however that for small-normed wave vectors, d |ξ| ≪ 1, both
velocities converge to c0 =

√
gd , the velocity of (non-dispersive) infinitely long waves. In the

opposite direction, for d |ξ| ≫ 1, we have cg ∼ 1
2cp ∼

√
g

2|ξ|1/2 .

0.0 2.5 5.0 7.5 10.0
d| |

0.00

0.25

0.50

0.75

1.00

|c
|/

gd

phase velocity
group velocity

Figure iii: Phase and group velocities of the linearized water waves system.
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Large-time behavior We can infer the large-time behavior of the solution, at least in dimension
d = 1, through the stationary phase theorem on oscillatory integrals; see e.g. [390]. Indeed, for any

c ∈ R, and initial data such that (ζ̂(0, ·), |ω|(·)ψ̂(0, ·)) ∈ L1(R)2, we have from the above

ζ(t, ct) =
1

4π

∫
R
ei(cξ−ω(ξ))t

(
ζ̂(0, ξ) + i

ω(ξ)

g
ψ̂(0, ξ)

)
+ ei((cξ+ω(ξ))t

(
ζ̂(0, ξ)− i

ω(ξ)

g
ψ̂(0, ξ)

)
dξ

where we denote ω(ξ) = sgn(ξ)(g|ξ| tanh(d |ξ|))1/2, and use a standard convention for the Fourier
transform. We deduce that the following holds for sufficiently decaying and regular initial data.

i. For any c ∈ (−∞,−
√
gd) ∪ (

√
gd ,+∞), one has for any n ∈ N,

|ζ|(t, ct) = O(t−n).

ii. For any c ∈ (−
√
gd ,

√
gd) \ {0}, one has

|ζ|(t, ct) ∼t→∞
1

4π
(2!)1/2Γ( 32 )|A(ξc)|

(
|ω′′(ξc)| t

)− 1
2

where ξc is defined by the relation c = ω′(ξc) and A(ξc)
def
= ζ̂(0, ξc) + sgn(c)iω(ξc)

g
ψ̂(0, ξc);

unless A(ξc) = 0 in which case the decay is at least O(t−1).

iii. If c ∈ {−
√
gd ,

√
gd} , one has

|ζ|(t, ct) ∼t→∞
1

4π
(3!)

1
3Γ( 43 )|A(0)|

(
d2
√
gd t

)− 1
3 ≈ a ((d2/λ2)

√
gd/λt)−

1
3 ,

with A(0)
def
= limξ→0 A(ξ) (notice we require regularity only on ξψ̂(0, ξ)); unless A(0) = 0, in

which case the decay is at least O(t−
2
3 ). The last approximation is meant in a loose sense,

where we set A(0) ≈ aλ. This allows to hint at the timescale for which dispersive mechanisms
have a bearing on the behavior of the flow, which is large compared with the time period of

long waves, T
def
= λ/

√
gd , when d2/λ2 ≪ 1.

Above, Γ is the Euler Gamma function: Γ(s)
def
=
∫ +∞
0

τs−1e−τ dτ . A loose interpretation of the
above is that for large time, the dominant part of the wave which will remain visible is the large
wavelength component, traveling at velocity |c | ≈ c0 =

√
gd .
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iii The Saint-Venant system

Our first nonlinear system is the so-called shallow water, or Saint-Venant system system [370]:{
∂tζ +∇ · (hu) = 0,

∂tu + g∇ζ + (u · ∇)u = 0,
(iii)

where h
def
= d+ζ represents the water depth, and u a horizontal velocity (it can be the layer-averaged

horizontal velocity, velocity at a certain depth, or ∇ψ). Pursuing the analogy of Section i, one can
notice that the Saint-Venant system is equivalent to the isentropic, compressible Euler equation for
ideal gases with the pressure law p(ρ) ∝ ρ2 (identifying ρ with h).

System (iii) is hence a prototype of quasilinear hyperbolic systems. Hyperbolicity amounts to
the non-cavitation assumption, that is restricting data to {(ζ, u) : d+ζ > 0}.6 Indeed, the system
in dimension d = 2 reads

∂t

 ζ
ux
uy

+

ux h 0
g ux 0
0 0 ux

 ∂x

 ζ
ux
uy

+

uy 0 h
0 uy 0
g 0 uy

 ∂y

 ζ
ux
uy

 =

0
0
0


and the eigenvalues of the associated symbol (see e.g. [310]) are

u · ξ and u · ξ ±
√
gh|ξ| .

Notice here again the “sound speed” of long surface gravity waves as being c0 =
√
gd .

In dimension d = 1, as any quasilinear system of two scalar balance laws, eq. (iii) enjoys a basis
of Riemann invariants. The Riemann invariants are explicit in this case: setting r± = u ± 2

√
gh,

the system (iii) is equivalent to {
∂tr+ + 3r++r−

4 ∂x r+ = 0,

∂tr− + 3r−+r+
4 ∂x r− = 0.

(iv)

Notice that 3r++r−
4 = u+

√
gh and 3r−+r+

4 = u−
√
gh, consistently with the hyperbolicity discussion.

The diagonal formulation, eq. (iv), allows to construct simple waves, i.e. solutions of the form

(r+, r−) = R(θ(t, x))

where θ is a scalar function. For instance, any sufficiently regular solution to eq. (iv) with initial
data satisfying u |

t=0
= 2

√
gh |

t=0
− 2

√
gd , the second equation yields r− ≡ −2

√
gd for all times,

from which we deduce r+ = 2
√
gd + 2u, where u(t, x) satisfies the inviscid Burgers (or Hopf)

equation
∂tu +

(√
gd + 3

2u
)
∂xu = 0. (v)

Conversely, any solution to the above equation provides a particular solution to eq. (iv) by setting
(r−, r+) = (2

√
gd + 2u,−2

√
gd), or equivalently a solution to eq. (iii) with ζ = g−1

(√
gdu + 1

4u
2
)
.

Equation (v) may be solved by the hodograph transform, or the characteristics method, and
exhibits a new phenomenon with respect to the linear equations discussed in previous sections:
finite-time singularity formation. Assume u is a Lipschitz solution to eq. (v) and define, for any

x0 ∈ R, vx0(t)
def
= u(t, xx0(t)) where xx0(t) is defined by the initial condition xx0(t) = x0 and the

ordinary differential equation x ′x0(t) =
√
gd+ 3

2u(t, xx0(t)). Chain rule and eq. (v) yields v ′x0(t) = 0,

6Sufficiently regular solutions with initial data in the hyperbolicity domain cannot leave the hyperbolicity domain
due to first equation (mass conservation) in eq. (iii). Indeed, denoting hx⋆ (t) = h(t, xx⋆ (t)) where xx⋆ (t) is defined
by the final condition xx⋆ (t⋆) = x⋆ and the ordinary differential equation x ′x⋆ (t) = u(t, xx⋆ (t)) for t ∈ [0, t⋆], we find

h(t⋆, x⋆) = hx⋆ (t⋆) = h(0, xx⋆ (0)) exp(−
∫ t⋆
0 (∇ · u)(t, xx⋆ (t)) dt) > 0.
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and hence vx0(t) = u(0, x0) and finally xx0(t) = x0+(
√
gd+ 3

2u(0, x0))t. In other words, the solution
is constant along the characteristics defined by xx0(t), for any x0 ∈ R, and the characteristics are
straight lines. This allows to define and describe solutions as long as two characteristics do not
cross, i.e. as long as for any t ∈ (0,T ), there does not exists x0 ̸= x1 ∈ R with

x0 +
(√

gd + 3
2u(0, x0)

)
t = x1 +

(√
gd + 3

2u(0, x1)
)
t ⇐⇒ u(0,x1)−u(0,x0)

x1−x0 = − 2
3t .

Hence we see that for any Lipschitz initial data u(t = 0, ·) = u0 ∈W 1,∞(R), the solution described
above (which is unique) exists on the time domain [0,T ⋆) where T ⋆ = − 2

3 (infR u
′
0)

−1 with the
convention T ⋆ = ∞ if infR u

′
0 ≥ 0. In the situation where infR u

′
0 < 0 (in particular for any non-

trivial u0 such that u0 → 0 as |x | → ∞), there exists indeed a singularity formation as t → T ⋆:
since the solution remains bounded but infR ∂xu(t, ·) → −∞ as t ↗ T ⋆, we say that a shock, or a
wavebreaking, occurs. We represent this situation in Figure iv.

(a) Evolution in time (b) Characteristics

Figure iv: Wavebreaking of a simple wave according to eq. (v). The initial data for ζ is the
Gaussian ζ(t = 0, x) = 0.5 exp(−(0.1 x)2) and corresponding velocity. g = 9.81m.s−2, d = 1m.

Going back to the system case, eq. (iv), each of the Riemann invariants, r±, is constant along
characteristics curves defined by

x±,x0(0) = x0, x ′±,x0(t) =
1

4
(3r± + r∓)(t, x±,x0(t)).

However the characteristics curves are no longer straight lines in general. Still we can infer the

behavior of solutions for instance if we assume that initial data (ζ(t = 0, ·), u(t = 0, ·)) def
= (ζ0, u0)

have compact support, say in (−λ,λ), and are are sufficiently small so that there exists c ∈ (0, c0)
with

r+,0
def
= u0 + 2

√
d + ζ0 ∈ (2c0 − c , 2c0 + c) and r−,0

def
= u0 − 2

√
d + ζ0 ∈ (−2c0 − c ,−2c0 + c).

Because the Riemann invariants are constant along characteristics, we have, as long as the solution
remains regular, 3r++r−

4 ∈ (c0 − c , c0 + c) and 3r−+r+
4 ∈ (−c0 − c ,−c0 + c), and as a consequence

r+(t, x) ≡ 2c0 if x ≤ −λ+ (c0 − c)t and r−(t, x) ≡ −2 if x ≥ λ− (c0 − c)t.

If the initial data is sufficiently small in order to ensure that no shock formation occurs before
T⋆ =

λ
c−c0 , we can afterwards decompose the flow as the superposition of two simple waves described

by Hopf equations, and in particular a shock inevitably occurs after sufficiently large time.
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iv Boussinesq systems

In his celebrated manuscript [59], Boussinesq introduced the first models for the propagation of
surface gravity waves taking into account both (first order) nonlinear and dispersive effects. While
restricted in the original work to unidirectional waves, models with similar flavor were later on
obtained for general waves. Eventually, one may obtain a full family of systems [295, 51], often
called (abcd) Boussinesq systems, of the form7{

∂t(ζ − bd2∆ζ) +∇ · (hu + ad3∇∇ · u) = 0,

∂t(u − dd2∇∇ · u) + g∇(ζ + cd2∆ζ) + (u · ∇)u = 0,
(vii)

where p = (a, b, c, d) ∈ R4 is such that (when neglecting surface tension) a + b + c + d = 1
3 . In

eq. (vii) the precise meaning of the velocity variable depends on the choice of the parameters. The
freedom in the choice of (a, b, c, d) ∈ p is at the same time a blessing—for instance one may tune
parameters so as to enhance the accuracy of the dispersion relation—and a curse, since important
properties of the system will typically depend on the choice of (a, b, c, d) ∈ p. In particular, the
initial-value problem of a subfamily of eq. (vii) is strongly ill-posed, as can be seen from modal
instabilities of the linearized equations about the rest state: the dispersion relation being

ω(ξ)2 = gd |ξ|2 (1− a|dξ|2)(1− c|dξ|2)
(1 + b|dξ|2)(1 + d|dξ|2)

with right-hand side taking arbitrarily large negative values at large wavenumbers, |ξ|, for ill-chosen
(a, b, c, d) ∈ p. Incidentally, this is also the case for the original “bad”Boussinesq equation, eq. (vi).
This is a useful reminder that consistency is not the only property to look for in a model.

In the other way, it is expected that for “good” choices of (a, b, c, d) ∈ p, dispersive properties
of the Boussinesq systems prevent the wavebreaking scenario in the Saint-Venant model, eq. (iii).
As a matter of fact, for several families of parameters, (a, b, c, d) ∈ p, global-in-time existence and
uniqueness of solutions have been proved (see [375, Remark 1.1]) and—to the author’s knowledge—
the emergence of finite-time singularity has not been proved or numerically witnessed on any of
the models, at least for solutions maintaining positive layer depth. In the situation of long waves
and relatively large amplitude, the solution typically generates a zone of rapid oscillations (or
modulations) often called dispersive shock wave, in place of the shock predicted by the Saint-
Venant system. Properties of these dispersive shock waves will typically depend on the choice of
(a, b, c, d) ∈ p, and is not expected to accurately describe the real-life phenomenon.

An important property of nonlinear and dispersive equations such as eq. (vii) is that they allow
the existence of traveling waves, that is solutions that maintain their shape while propagating at
a constant velocity, including solitary waves which in addition bear finite energy. Once again the
reader will find in [133] the fascinating and tumultuous story of the discovery and progressive
acceptance of these waves. Existence and properties of traveling waves again typically depend on
the choice of (a, b, c, d) ∈ p. We however expect that they exist at least for small supercritical
velocities, 0 < c − c0 ≪ 1, and grow in amplitude with the velocity parameter; see e.g. [142]. We
show examples in Figure v.

7The transport term (u · ∇)u is often replaced with 1
2
∇(|u|2), trading the direct comparison with the Saint-

Venant system, eq. (iii), with conservative form. The change is immaterial in dimension d = 1, or when rot u = 0.
Similar systems can be derived using momentum-type variables instead of velocity variables, thus slightly altering the
nonlinear/dispersive interplay; see [185]. These systems, sometimes called Abbott systems [2, 3], have conservative
form. Other ad hoc transformations can be performed, for instance to improve the mathematical properties of the
system; see [53]. Finally, the models can also be written as second order scalar equations similar to eq. (i), as in the
original work of Boussinesq [59, (26), p. 75]:

∂2t ζ = gd ∆
(
ζ + 3

2d
ζ2 + d2

3
∆ζ
)
. (vi)
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(a) Disintegration of Gaussian initial data (b) Traveling waves

Figure v: Left: Disintegration of the Gaussian ζ(t = 0, x) = 0.25 exp(−0.1x2), with zero initial
velocity. Right: Solitary wave solutions with velocities c = 1.05c0 and c = 1.01c0.

Both according to system (vii) with −a = b = d = 1
3 , c = 0, g = 9.81m.s−2, d = 1m.

It would be impossible to review all known results on Boussinesq systems and closely related
(symmetric, Abbott, etc.) variants. Let me lazily refer to [150, 269, 375]—in addition to previ-
ous references—and references therein, and conclude with a last warning. The Boussinesq systems
typically lose important properties of the original water waves equations and in particular its Hamil-
tonian structure (see Section 2.2). Hence unless the parameters (a, b, c, d) ∈ p are well-chosen,we
do not expect energy conservation, or Galilean invariance, etc.

v The Korteweg–de Vries and Whitham equations

It was mentioned in the previous section that Boussinesq’s original motivation was the study of
unidirectional waves, and in particular solitary waves. Using such assumption one may derive8 (as
did Boussinesq) simplified scalar equations, of which the most famous is the Korteweg–de Vries
equation [61, 262] for right-going waves in dimension d = 1:

∂tζ +
√
gd∂x (ζ +

3
4d ζ

2 + 1
6d

2∂2x ζ) = 0 . (viii)

One of the many reasons for the importance of the Korteweg–de Vries equation is the family of
explicit solitary wave solutions9

ζ(t, x) = ζc(x − ct), ζc(x)
def
= 2d( c

c0
− 1) sech2

(√
3

2d2 (
c
c0

− 1) x
)

where the velocity variable, c , may take any value c > c0 =
√
gd .

8We will not discuss in this document the interesting question of justifying such scalar equations from aforemen-
tioned systems of equations. Let me just mention that this justification is relatively straightforward for well-prepared
initial data accounting for the assumption of unidirectional propagation, and much more involved for general initial
data where we want to express that the flow can be decomposed at first order as the superposition of two counter-
propagating unidirectional waves. Let me also refer—once again—to [268] and references therein (see also [36] for a
recent development) for all details concerning the Korteweg–de Vries equation and to [178] for the Whitham equation.

9Far from being simply some entertaining special solutions, solitary waves play a very important role as they
allow to describe the large-time dynamics of generic solutions; a phenomenon designated as soliton resolution. We
will not discuss further on this feature as it relies on the integrability of the Korteweg–de Vries equation, a property
which is not shared by other models in this document.
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The existence of traveling waves with arbitrarily large amplitude and arbitrarily large velocity
may found undesirable as nonphysical [393]. Such is the case also for the global-in-time well-
posedness properties, preventing the aforedescribed wavebreaking scenario. With this in mind,
Whitham [412] introduced the following equation10 which is now called Whitham equation:

∂tζ +
√
gd∂x

(√
tanh(d|D|)

d|D| ζ + 3
4d ζ

2
)
= 0 . (x)

arguing that the fact that its linear dispersion relation reproduces exactly one branch of the dis-
persion relation of eq. (ii) would authorize wavebreaking and peaked traveling waves of extreme
height. This prediction turned out to be valid, as recently shown in [219, 173, 402, 374]. A numeri-
cal comparison of solitary wave solutions to the Korteweg–de Vries and Whitam equations is shown
in Figure vi.

(a) KdV equation, eq. (viii) (b) Whitham equation, eq. (x)

Figure vi: Solitary waves of unidirectional models with velocity c = 1.05c0 (blue, smaller) and
c = 1.2290408c0 (red, larger). g = 9.81m.s−2, d = 1m, c0 =

√
gd .

10He also proposed [413, §13.14]

∂tζ +

√
g
tanh(d|D|)

|D| ∂xζ +
(
3
√
g(d + ζ)− 3

√
gd
)
∂xζ = 0 , (ix)

where the advection term fits the decomposition in Riemann invariants of the Saint-Venant system.
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CHAPTER A

The“master”equations

Le problème de l’établissement [...] des équations
différentielles du mouvement, et ensuite de leur
intégration approchée, aura encore sa difficulté
souvent grande. Mais il ne présentera plus, envisagé
ainsi, cette désespérante énigme contre laquelle des
esprits distingués se sont heurtés en vain.

— Adhémar Barré de Saint-Venant, Comptes
rendus des séances de l’Académie des sciences,

séance du 18 mars 1872
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Foreword

In this chapter, we introduce and provide a preliminary study of the systems of equations from
which asymptotic models are derived in subsequent chapters. The presentation, as well as most of
the notations, are borrowed from Lannes’ book [268]. However concision has been pursued and I
cannot encourage enough a thorough reading of the book for a detailed account.

We shall first write down in Section 1 the most general system of equations which is considered
in this work, that is Euler equations for a layer of (non-necessarily homogeneous) incompressible
ideal fluid, coupled with boundary conditions accounting for the impermeable bottom and the free
surface. The only external force acting on the system will be the gravity force, assumed constant
and vertical. We refer to the system we obtain, namely eq. (1.1), as the full Euler system. Then
we focus on particular settings.

The homogeneous and irrotational framework is particularly rewarding, as it allows to rewrite
the whole system as two evolution equations for unknown functions of time and horizontal space
variables only. This is system (2.2), which we refer to as the water waves equations. Some
information concerning the water waves equations are given in Section 2.

Prominently important in the water waves equations is the Dirichlet-to-Neumann operator,
which is defined after solving a Laplace problem on the fluid domain with Dirichlet and Neu-
mann boundary conditions. Its study, and in particular the asymptotic expansions which allow
to derive asymptotic models, is postponed to Section 4, culminating with Proposition 4.10 and
Proposition 4.15.

Meanwhile we make a small step outside the world of homogeneous and potential flows to
consider interfacial waves between two layers of homogeneous fluids with irrotational velocities,
in Section 3. Additional Dirichlet/Neumann operators appearing in this framework are tackled in
Section 4.5.
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1 The full Euler system

Let us introduce the equations which will serve as a reference for any other models in this manuscript.
These equations are meant to predict the evolution of an infinite layer of a fluid (typically water)
delimited above by a free surface and below by a rigid bottom under the effect of gravity. We will
always assume that the upper surface and lower bottom of the fluid can be described through the
graph of regular functions—so that no surging waves are allowed—and as such we can denote the
domain of the fluid (see Figure 1.1) as

Ωt def
= {(x , z) ∈ Rd+1 : −d + b(t, x) < z < ζ(t, x)}.

As apparent in this definition, x ∈ Rd with d ∈ {1, 2} (when the dimension is prescribed we shall
denote x = x when d = 1 and x = (x , y) when d = 2) is the horizontal variable and z the vertical
variable. We represent the depth at rest by d > 0. We also denote the bottom topography and the
surface deformation

Γbot
def
= {(x , z) ∈ Rd+1 : z = −d + b(t, x)},

Γtop
def
= {(x , z) ∈ Rd+1 : z = ζ(t, x)},

although we occasionally misname the surface deformation as the function ζ instead of Γtop and
the bottom topography as b instead of Γbot.

Figure 1.1: Sketch of the domain and notations.

The main goal is to predict the evolution of the surface deformation, Γtop, together with the
velocity field inside the layer. To this aim, we introduce the following full Euler equations:

∂tρ+∇x,z · (ρU) = 0 in Ωt , (1.1a)

ρ∂tU + ρ(U · ∇x,z )U = −∇x,zP − ρgez in Ωt , (1.1b)

divU = 0 in Ωt , (1.1c)

∂tζ = w −∇ζ · U on Γtop, (1.1d)

∂tb = w −∇b · U on Γbot, (1.1e)

P − patm = −σ∇ ·
( ∇ζ√

1 + |∇ζ|2
)

on Γtop, . (1.1f)

The first three equations are the Euler equations for incompressible fluids, and represent the con-
servation of mass, of momentum and the incompressibility constraint. The fourth one is called the
kinematic boundary condition and corresponds to the assumption that no fluid particle shall cross
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the surface (in fact fluid particles at the surface are forever “trapped” at the surface). Similarly,
the subsequent one is the impermeability condition ensuring that no fluid particle shall cross the
bottom. We assume that the pressure jump at the surface is proportional to the mean curvature of
the surface, with the constant σ denoting the surface tension coefficient. Finally, we impose that
the density does not vanish on the fluid domain or on the boundaries and enforce the non-cavitation
assumption, i.e. the depth of the layer nowhere vanishes.

Here, ρ(t, x , z) is the fluid mass density at time t and position (x , z). We denote by U(t, x , z)
the velocity of the fluid particle at time t and position (x , z). We also denote U = (U,w) where U is
the horizontal component and w the vertical one. We denote ∇x,z the (d+1)-dimensional gradient
operator while∇ is the d-dimensional horizontal gradient operator. P denotes the pressure inside the
fluid; it is not an unknown but rather the Lagrange multiplier associated with the incompressibility
constraint, eq. (1.1c), and can be deduced from other unknowns at any time instant by solving
the equation obtained when taking the divergence of eq. (1.1b). Finally, patm is the (prescribed)
atmospheric pressure at the surface, g is the (constant) acceleration of gravity, and ez is the vertical
upward unit vector.

Additional assumptions Many assumptions were made so as to write eq. (1.1), and we shall add
other important ones even before we move towards the derivation of asymptotic models. For instance
we neglected the effects of compressibility, viscosity, and friction at the bottom. This is motivated
by the fact that when considering a large body of water with relatively mild behavior, these effects
are expected to have almost no contribution on the evolution of the flow. We have also neglected
the Coriolis effect, as well as the curvature of earth. This assumption is valid provided we consider
a body of water which is not too large. Hence our framework is restricted between two extremes,
the rule of thumb being that we describe waves that a human eye can see (see [268] for a more
detailed and quantitative discussion). As our aim is to highlight only the relevant mechanism in the
propagation of surface gravity waves, it makes sense to discard as early as possible any unnecessary
complexities. In the same spirit, we shall discard the surface tension effects:

σ = 0, i.e. P = patm on Γtop. (1.2a)

However it turns out that the surface tension component, although a priori negligible, has very im-
portant theoretical consequences for some problems because it strongly modifies the high frequency
behavior of the equations (in particular the linear group and phase velocity are no longer bounded
and decreasing with the size of the wavenumber). This has strong consequences for instance when
looking for traveling waves solutions, or for the well-posedness theory in the bilayer setting. This
being said, we will use eq. (1.2a) for the sake of concision when deriving models; a version of the
models with surface tension effects are always easy to deduce.

We will also assume thereafter that the bottom is time-independent:

∂tb = 0 on Γbot, (1.2b)

and that the atmospheric pressure at the surface is uniform in space,

∇patm = 0 on Γtop. (1.2c)

The above assumptions are made for concision and clarity, but again it is not difficult to add—at
least formally—the effects of atmospheric or topographic changes in the models, which can be then
used for studying the generation of waves in addition to their propagation. We refer for instance
to [189, 305] for such study.

Such is not the case concerning the following assumptions which will be very important for the
mathematical analysis: we assume that there exist ρ⋆ and d⋆ positive constants such that

ρ ≥ ρ⋆ > 0 in Ωt , (1.2d)

d + ζ − b ≥ d⋆ > 0 in Rd. (1.2e)
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The former assumption is quite natural in the oceanographic context, but not if eq. (1.1) is applied
to the atmospheric motion. The non-cavitation assumption, eq. (1.2e), is much more consequential,
and prevents any study near the shore, and in particular shoaling effects. We refer to [361, 319, 320]
(and [272, 387, 72] concerning important models in this manuscript) for some works dealing with
this situation. We mention here that our unknowns, and in particular the surface deformation, ζ,
will be assumed to vanish at infinity through finite energy assumptions. In particular we have the
far field conditions

|ζ|, |U| → 0, ρ(·, z) → ρ(z) as |x| → ∞. (1.2f)

Most of the results extend to the periodic setting with almost no modifications (d is then the
layer-depth average ensuring that ζ, b are mean-zero), but we expect they may also be extended
to the more relevant Kato’s uniformly local Sobolev spaces; see [12]. We will also assume sufficient
regularity on all variables so that the identities above hold on the classical, pointwise sense. Let
us now introduce the two crucial (and arguable) additional assumptions from which the so-called
water waves equations is derived. We shall, unless otherwise specified, assume that the fluid is
homogeneous, i.e. there exists a constant ρ0 > 0 such that

ρ ≡ ρ0 in Ωt . (1.3a)

This assumption needs only to be made initially in time, as it is automatically propagated for pos-
itive times thanks to the mass conservation, eq. (1.1a) and incompressibility constraint, eq. (1.1c).

Finally there is one last very important assumption: we shall most of the time restrict ourselves
to irrotational (or potential) flows, namely

rotU = 0 in Ωt . (1.3b)

In the homogeneous setting, because all the forces in the right-hand side of eq. (1.1b) are potential,
the irrotational assumption, eq. (1.3b), needs only to be set initially, and it is automatically propa-
gated by the equations for positive times. Restricting motions to homogeneous potential flows turns
out to be an extremely rewarding assumption, as it allows to rewrite the entire set of equations
as only two scalar evolution equations for unknowns depending only the time and horizontal space
variables. This striking reduction, which is described in the following Section, should be seen as a
warning that much of the diversity of the waves of the original system, eq. (1.1), has been discarded
through the assumptions of eq. (1.3a) and eq. (1.3b).

2 The water waves system

2.1 Derivation

We shall rewrite in this section the full Euler system, eq. (1.1)-(1.2), in the homogeneous—
eq. (1.3a)—and irrotational—eq. (1.3b)—framework as a simple-looking system of two scalar evo-
lution equations. This is the so-called Zakharov-Craig-Sulem formulation which we will refer to
simply as the water waves equations. The irrotationality assumption induces

U = ∇x,zΦ in Ωt , (1.3b′)

where Φ(t, x , z) ∈ R is the velocity potential, defined by U up to a time-dependent additive constant.
We can then rewrite the momentum equation and incompressibility constraint in terms of the
velocity potential:

∂tΦ+
1

2
|∇x,zΦ|2 = − 1

ρ0
(P − patm)− gz in Ωt , (1.1b′)

∆x,zΦ = 0 in Ωt , (1.1c′)
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The former is called the Bernoulli equation. As it has been obtained from an integration in space,
it should include a time-dependent source term, which has been set to zero by choosing suitably the
time-dependent additive constant in Φ. The latter equation is of course Laplace’s equation, hence
the potential is harmonic. With this in mind, we introduce its trace at the surface,

ψ(t, x)
def
= Φ(t, x , ζ(t, x)),

and notice that the velocity potential, Φ, is uniquely determined (under reasonable hypotheses, see
below) by the knowledge of (ζ, b,ψ) after solving ∆x,zΦ = 0 in Ωt ,

Φ = ψ on Γtop,
∂zΦ− (∇b) · ∇xΦ = 0 on Γbot,

(2.1)

the last equation being provided by eq. (1.1e), ∇x being the d-dimensional horizontal gradient
operator. The following result is standard in the theory of elliptic operators (see Appendix III for
the definition of functional spaces).

Proposition 2.1. Let (ζ, b) ∈W 2,∞(Rd) such that eq. (1.2e) holds. Then for any ψ ∈ H̊2(Rd), there
exists a unique Φ ∈ H̊2(Ωt) strong solution to eq. (2.1).

Following Craig, Sulem and Sulem [130, 129], it is then convenient to introduce the Dirichlet-
to-Neumann operator returning the rescaled normal component of the velocity at the surface:

Definition 2.2 (Dirichlet-to-Neumann operator). Under the assumptions of Proposition 2.1, the
Dirichlet-to-Neumann operator

G [ζ, b] :
H̊2(Rd) → H1/2(Rd)
ψ 7→ (∂zΦ− (∇ζ) · ∇xΦ)

∣∣
z=ζ

where Φ ∈ H̊2(Ωt) is the solution to eq. (2.1) provided by Proposition 2.1, is well-defined and
continuous. If, moreover, ζ, b,ψ ∈ H̊2+s⋆(Rd) with s⋆ > d/2, then G [ζ, b]ψ ∈ Hs⋆(Rd) ⊂ C0(Rd).

We provide a proof of these Propositions in Section 4. Sharper results are provided in [268]
together with a thorough description of many properties of the Dirichlet-to-Neumann operator. Let
us collect some of them for future reference.

Proposition 2.3. Under the assumptions of Proposition 2.1 the Dirichlet-to-Neumann operator sat-
isfies the following

• Identity of mass conservation:
G [ζ, b]ψ = −∇ · (hu)

where h = d + ζ − b and u
def
= 1

h

∫ ζ
−d+b∇xΦdz. In particular, G [ζ, b]ψ ∈ (H̊2(Rd))′.

• Symmetry: 〈
ψ1,G [ζ, b]ψ2

〉
H̊2−(H̊2)′

=
〈
ψ2,G [ζ, b]ψ1

〉
H̊2−(H̊2)′

.

• Positivity: 〈
ψ,G [ζ, b]ψ

〉
H̊2−(H̊2)′

≈
∣∣Λ−1/2∇ψ

∣∣2
L2(Rd)

.

• Shape derivative:
dζ G [ζ, b](δζ)ψ = −G [ζ, b]((δζ)w)−∇ · ((δζ)u)

where dζ G [ζ, b](δζ)ψ is the derivative of the mapping ζ 7→ G [ζ, b]ψ in the direction δζ, and

we denote w = G[ζ,b]ψ+∇ζ·∇ψ
1+|∇ζ|2 and u = ∇ψ − w∇ζ. One easily checks, by the above identity

and chain rules, that U
∣∣
z=ζ

= (∇x,zΦ)
∣∣
z=ζ

= (u,w).
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By the use of the chain rule, we can now rewrite the (trace at the surface of the) Bernoulli
equation, eq. (1.1b′), as well as the kinematic boundary condition at the surface, eq. (1.1d):

∂tζ − G [ζ, b]ψ = 0,

∂tψ + gζ + 1
2 |∇ψ|

2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

(2.2)

We call the closed set of equations (2.2) the water waves system in order to distinguish it from the
full Euler equations, eq. (1.1). It is easy to see, following the lines above, that any sufficiently regular
solution to the full Euler equations, (1.1) with (1.2)-(1.3), satisfies the water waves system, eq. (2.2).
The converse can also be verified. The analysis has been detailed even for mildly regular data—and
in particular a very rough topography—in [10].

We conclude this section by noticing that eq. (2.2) may be equivalently written as{
∂tζ +∇ · (hu) = 0,

∂tψ + gζ + u · ∇ψ − 1
2u · u − w

2 = 0,
(2.2’)

using the notations and identities of Proposition 2.3.

2.2 Variational structure

A remarkable property of the water waves equations, eq. (2.2), as put forward by Zakharov [424] is
its canonical Hamiltonian structure. Indeed, define the Hamiltonian as the total energy, summing
up the potential and kinetic energies (up to multiplying with ρ the mass density):

H (ζ,ψ)
def
=

1

2

∫
Rd

gζ2 + ψG [ζ, b]ψ dx

=

∫
Rd

∫ ζ

−d+b
gz +

1

2
|∇x,zΦ|2 dz − 1

2
(d − b)2 dx .

Then one can show (using Proposition 2.3) that eq. (2.2) reads

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζH
δψH

)
where δζH and δψH denote the functional derivatives: for instance

∀ϕ ∈ D(Rd), lim
ϵ→0

H (ζ,ψ + ϵϕ)− H (ζ,ψ)

ϵ
=

∫
Rd

(δψH )ϕdx .

We may associate a Lagrangian to the Hamiltonian structure: define

LZ =

∫ t1

t0

∫
Rd

ψ∂tζ dx − H (ζ,ψ) dt.

Then we see that the water waves equations, eq. (2.2) follows from Hamilton’s principle

δLZ = 0.

One may notice that, using the conservation of mass as a constraint, one can rewrite the Lagrangian
as the difference between the kinetic and potential energies.
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As noticed in [316], the Hamiltonian structure is closely related to Luke’s variational formula-
tion [289]. Indeed we can recover the water waves equations from Hamilton’s principle using the
Lagrangian action

LL =

∫ t1

t0

∫
Rd

∫ ζ

−d+b

P − patm
ρ0

dz +
1

2
(d − b)2 dx dt

= −
∫ t1

t0

∫
Rd

∫ ζ

−d+b
∂tΦ+

1

2
|∇x,zΦ|2 + gz dz +

1

2
(d − b)2 dx dt

where the second term is added for the sake of the finiteness of the integrals. As proof, let us
observe that

LL + LZ =

∫ t1

t0

d

dt

∫
Rd

∫ ζ

−d+b
Φdz dx dt,

and the right-hand side does not contribute to Hamilton’s principle. The Lagrangian action LZ

is somewhat more favorable than Luke’s counterpart, LL, as the former is well-defined for vari-
ables having finite energy, (ζ,ψ) ∈ L2(Rd)× H̊1/2(Rd), while the latter demands additional decay
assumptions at infinity.

Alternatively, we may specifically treat the conservation of mass as a constraint and write down
the Lagrangian action as

L
def
=

∫ t1

t0

∫
Rd

1

2
ψG [ζ, b]ψ − g

2
ζ2 + ϕ(∂tζ − G [ζ, b]ψ) dx dt,

where ϕ is a Lagrange multiplier associated with the conservation of mass constraint. Again the
water waves equations are obtained from Hamilton’s principle since

δϕL = ∂tζ − G [ζ, b]ψ, δζL = (
1

2
ψ − ϕ)δζG [ζ, b]ψ − gζ − ∂tϕ, δψL = G [ζ, b]ψ − G [ζ, b]ϕ.

Such formulation is quite handy to quickly (but formally) derive asymptotic models, which then
enjoy by construction a variational structure as well; see for instance [107], and Section 8.1.2.

One of the nice outcomes of the Hamiltonian structure is that it relates, through Noether’s
theorem, symmetry groups and conserved quantities (invariants) of the system.

2.2.1 Group symmetries

Some relevant group symmetries are as follows. If (ζ,ψ) is a solution to eq. (2.2), then for any
θ ∈ R, (ζθ,ψθ) also satisfies eq. (2.2), where

• Variation of base level for the velocity potential(
ζθ,ψθ

)
(t, x) =

(
ζ,ψ + θ

)
(t, x).

• Horizontal translation along the direction e ∈ Rd (in the flat bottom case)(
ζθ,ψθ

)
(t, x) =

(
ζ,ψ

)
(t, x − θe).

• Time translation (
ζθ,ψθ

)
(t, x) =

(
ζ,ψ

)
(t − θ, x).

• Galilean boost along the direction e ∈ Rd (in the flat bottom case)(
ζθ,ψθ

)
(t, x) =

(
ζ,ψ + θe · x

)
(t, x − θet).

• Horizontal rotation (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)(
ζθ,ψθ

)
(t, x) =

(
ζ,ψ

)
(t, Rθx)

where Rθ is the rotation matrix of angle θ.
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2.2.2 Preserved quantities

We have the following related preserved quantities (often one should multiply with ρ to reconcile
with the physical meaning).

• Excess of mass

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx .

• Horizontal impulse (in the flat bottom case)

d

dt
I = 0, I

def
=

∫
Rd

ζ∇ψ dx (if b ≡ 0).

• Total energy

d

dt
H = 0 H

def
=

1

2

∫
Rd

gζ2 + ψG [ζ, b]ψ dx .

• Horizontal coordinate of mass centroid times mass (in the flat bottom case)

d

dt
C =

∫
Rd

ζ∇ψ dx , C
def
=

∫
Rd

ζx dx (if b ≡ 0).

• Angular impulse (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)

d

dt
A = 0, A

def
=

∫
Rd

ζx⊥ · ∇ψ dx .

where (x , y)⊥
def
= (−y , x).

The horizontal impulse and horizontal momentum are directly related after integration by parts:
for instance in dimension d = 1 and in the flat bottom case

M
def
=

∫
Rd

∫ ζ

−d
∂xΦdz dx = I + lim

x→+∞

∫ ζ

−d
Φdz − lim

x→−∞

∫ ζ

−d
Φ dz ,

and the latter terms are time-independent (but do not necessarily vanish) as a consequence of the
Bernoulli equation and our boundary conditions.

The quantities are preserved in a stronger sense: their integrand satisfies a conservation law,
which we do not write out explicitly. The interested reader will find in [46] a full account on
symmetry groups and conserved quantities of the full Euler system.

2.3 The linearized system

The system (2.2) linearized about the trivial solution, (ζ = 0,ψ = 0)—and hence also around
(ζ = 0,ψ = u · x), where u ∈ Rd is constant, by Galilean invariance—is explicitly solvable in the
flat bottom case. Indeed, setting ζ = ϵζ0, ψ = ϵψ0 and b = 0, keeping only first-order terms with
respect to small ϵ, one is left with the system{

∂tζ
0 − G0ψ

0 = 0,

∂tψ
0 + gζ0 = 0

(2.3)

where G0
def
= G [0, 0]ψ0 = (∂zΦ

0) |
z=0

and Φ0 is the unique solution to ∆x,zΦ
0 = 0 in Rd × (−d , 0),

Φ0 = ψ0 on Rd × {0},
∂zΦ

0 = 0 on Rd × {−d}.
(2.4)
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Remark 2.4. It is possible to clarify the above vague statement and rigorously justify eq. (2.3) as an
asymptotic model in a small amplitude regime, in the same way we justify shallow water asymptotic
models in this document.

One can “explicitly” solve the Laplace problem, eq. (2.4), using the Fourier transform:

Φ0 =
cosh((z + d)|D|)

cosh(d |D|)
ψ0 (2.5)

and hence
G0ψ

0 = |D| tanh(d |D|)ψ0.

Here we use the convention for the Fourier multiplier operator (see Definition III.1) defined by

F̂ (D)φ(ξ) = F (ξ)φ̂(ξ),

where the Fourier transform is applied only on the horizontal variable. Plugging this formula into
eq. (2.3), we recognize the linearized “Airy” equations introduced in Section ii.

It is very natural to look for dispersive estimates on the flow map of eq. (2.3). For simplicity,
we will restrict our discussion here to dimension d = 1; see [146, 137] for extensions to more general
frameworks. Diagonalizing

L(D)
def
=

(
0 G0

−g 0

)
= P(D)

(
i(gG0)

1/2 0
0 −i(gG0)

1/2

)
P(D)−1, P(D) =

(
G1/2
0 G1/2

0

ig1/2 −ig1/2

)
,

we find it is sufficient to study the following semigroup

St = exp
(
it(gG0)

1/2
)
= exp

(
it(g|D| tanh(d |D|))1/2

)
.

To this aim, we shall use the standard Littlewood–Paley dyadic decomposition. Let χ ∈ C∞
0 ((−2, 2))

be such that χ(ξ) = 1 for |ξ| ≤ 1, χ is even and non-increasing on R+, and let χ̃(ξ)
def
= χ(ξ)−χ(2ξ),

and ∆λ the frequency cut-off operators defined for λ ∈ 2N by

∆2N = χ̃(|D|/(2N )) (N ∈ N⋆).

Hence
∑
λ∈2Z ∆λ = Id. We have the following dispersive estimate.

Lemma 2.5. Let d = 1. For any g, d > 0 and 2 ≤ r ≤ ∞, there exists C > 0 such that for any
t ∈ R⋆ and λ = 2N with N ∈ N⋆ and f ∈ Lr

′
(R) with 1

r +
1
r′ = 1,∣∣St∆λf ∣∣Lr ≤ C

(
λ3/4|t|−1/2

)1−2/r∣∣∆λf ∣∣Lr′ .

Proof. It suffices to prove the estimate for r = ∞ (and hence r′ = 1),11 the general case is deduced
by interpolating with the r = r′ = 2 estimate (using Plancherel equality)∣∣St∆λf ∣∣L2 ≤

∣∣∆λf ∣∣L2 .

We have(
St∆λf)(x) =

1

2π

∫
R
ei(xξ+m(ξ)t)χ̃(ξ/λ)f̂(ξ) dξ =

λ

2π

∫
R
ei(λxξ+m(λξ)t)χ̃(ξ)f̂(λξ) dξ,

where we denote m(ξ) = (g|ξ| tanh(d |ξ|))1/2. Hence∣∣St∆λf ∣∣L∞ ≲
∣∣Iλ,t ∣∣L∞

∣∣f̂ ∣∣
L∞ ≲

∣∣Iλ,t ∣∣L∞

∣∣f ∣∣
L1

11The L1 −L∞ estimate is of course consistent with the large-time behavior described in Section ii. In particular,
the power of λ is sharp, and the estimate does not hold uniformly for any N ∈ Z.
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where

Iλ,t(x) = λ

∫
R
eitϕλ(ξ)χ̃(ξ) dξ

where ϕλ(ξ) = λξx/t+m(λξ). The above is an oscillatory integral which can be estimated thanks
to [390, Corollary, p. 334], and using that

−m′′(ξ) ≳ |ξ|(1 + |ξ|2)−5/4.

It follows, for any λ ∈ 2N with N ∈ N ∪ {−1},∣∣St∆λf ∣∣L∞ ≲
∣∣Iλ,t ∣∣L∞

∣∣f ∣∣
L1 ≲ λ|λ1/2t|−1/2

∣∣f ∣∣
L1 .

The result follows using the identity ∆λ = (∆λ/2 + ∆λ + ∆2λ)∆λ.

As usual, Strichartz estimates follow from the dispersive estimates in Lemma 2.5.

Proposition 2.6. Let d = 1. For any g, d > 0 and 2 ≤ r ≤ ∞, as well as 2 ≤ q < ∞ such that
2
q = d

2 (1−
2
r ), there exists C > 0 such that for any t ∈ R⋆ and λ = 2N with N ∈ N⋆, any f ∈ L2(R),∣∣St∆λf ∣∣Lq

t L
r
x
≤ Cλ3d/8(1−2/r)

∣∣f ∣∣
L2 .

Proof. The proof is standard. Let q′ and r′ such that 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1. By Minkowski

inequality, Lemma 2.5 (replacing ∆λ with ∆2
λ, which is obviously valid) and the Hardy–Littlewood–

Sobolev inequality with 1
q′ +

d
2 (1−

2
r ) = 1 + 1

q , we have for any F such that ∆λF ∈ Lq
′

t L
r′

x∥∥∫
R
St−s∆

2
λF (s, ·) ds

∥∥
Lq
t L

r
x
≤
∣∣∫

R

∣∣St−s∆2
λF (s, ·)

∣∣
Lr
x
ds
∣∣
Lq
t

≲
∣∣∫

R

(
λ3d/4|t − s|−1/2

)1−2/r∣∣∆λF ∣∣Lr′
x
ds
∣∣
Lq
t

≲ λ3d/4(1−2/r)
∣∣∣∣∆λF ∣∣Lr′

x

∣∣
Lq′
t

= λ3d/4(1−2/r)
∥∥∆λF∥∥Lq′

t L
r′
x

.

We conclude with the infamous TT ⋆ argument; see e.g. [397].

Remark 2.7. Proposition 2.6 is still valid when d ≥ 2; see [146, 137]. The Strichartz estimate
exhibits a maximal regularizing effect of d/8 derivatives, with respect to the naive estimate following
from Bernstein inequality and Parseval equality:∣∣St∆λf ∣∣Lr

x
≲ λd/2(1−2/r)

∣∣St∆λf ∣∣L2
x
≤ λd/2(1−2/r)

∣∣∆λf ∣∣L2 ≲
∣∣f ∣∣

Hd/2(1−2/r) .

We did not include the low-frequency component, λ = 2N with N ∈ Z since then the time decay of
the dispersive estimate is weaker; see again [137]. Loosely speaking, the conclusion is that dispersive
effects are quite weak.

2.4 Non-dimensionalization

We discussed previously the relevance of neglecting some effects (viscosity, friction, etc.) based on
vague comments on the typical scales of the setting. These comments can be made quantitative
after scaling the variables so as to extract the relevant dimensionless parameters which allow to
measure the respective strength of various mechanisms. This step is also of tremendous importance
to our goal since we shall motivate asymptotic models based on a smallness assumption of such a
parameter. The following scaling appears naturally after solving explicitly the linearized system
around the trivial solution, eq. (2.3).
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We set

x =
x

λ
; z =

z

d
; t = t

√
gd

λ

and

ζ =
ζ

atop
; b =

b

abot
; Φ = Φ

d

atopλ
√
gd
.

In these formulae, we introduced a typical horizontal wavelength denoted λ as well as atop (resp.
abot) denoting the typical amplitude of the surface deformation (resp. bottom topography). We

also recognize c0
def
=

√
gd which is the celerity of infinitesimally long and small waves, and T = λ/c0

their time period. With this scaling and introducing the dimensionless parameters

ε =
atop
d

; β =
abot
d

; µ =
d2

λ2
, (2.6)

the dimensional water waves equations, eq. (2.2), becomes
∂tζ − 1

µG
µ[εζ, βb]ψ = 0,

∂tψ + ζ + ε
2 |∇ψ|

2 − µε
( 1µG

µ[εζ, βb]ψ + ε∇ζ · ∇ψ)2

2(1 + µε2|∇ζ|2)
= 0,

(2.7)

where we define the (dimensionless) Dirichlet-to-Neumann operator as

Gµ[εζ, βb]ψ = (∂zΦ− µ(ε∇ζ) · ∇xΦ)
∣∣
z=εζ

where Φ is the unique solution to µ∆xΦ+ ∂2zΦ = 0 in {(x, z) ∈ Rd+1 : −1 + βb(x) < z < εζ(x)},
Φ = ψ on {(x, z) ∈ Rd+1 : z = εζ(x)},
∂zΦ− µ(β∇b) · ∇xΦ = 0 on {(x, z) ∈ Rd+1 : z = −1 + βb(x)}.

(2.8)

Now all the variables except for the dimensionless parameters are typically of size O(1).12 It is
clear from the above that ε measures the strength of the nonlinear effects in the systems, while β
measures the magnitude of topography effects. Finally the parameter µ is the so-called shallowness
parameter. A small value of the shallowness parameter amounts to assuming that most of the
energy of the wave is located at low (spatial) frequencies, and that in some sense “derivatives of
the unknowns are smaller than the unknowns”. We have also found in the previous section that
smallness of the shallowness parameter is related to the weakness of dispersive effects.

As a rule of thumb, typical values of these dimensionless parameters in the context of coastal
oceanography range as

ε ∈ [0, 0.1] ; β ∈ [0, 0.5] ; µ ∈ (0, 0.01].

Our models will be derived from the assumption that

µ≪ 1 ; ε, β = O(1) ,

although (most of) our results will hold for any triple of parameters (µ, ε, β) in the shallow-water
regime defined in Definition III.2.

12More precisely, our results will be valid uniformly for data in a given ball around the origin of a Banach space
(typically Sobolev-based spaces with a given index of regularity) and the dependency with respect to the scales of
the setting will be measured only through the two dimensionless parameters, ε and µ. Of course, describing a whole
set of functions using only a handful of parameters is quite restrictive, and as a consequence our results offer only a
rough description of the solutions.
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Remark 2.8. Keeping track of the surface tension effects would yield
∂tζ − 1

µG
µ[εζ, βb]ψ = 0,

∂tψ + ζ + ε
2 |∇ψ|

2 − µε
( 1µG

µ[εζ, βb]ψ + ε∇ζ · ∇ψ)2

2(1 + µε2|∇ζ|2)
= 1

Bo∇ ·
(

∇ζ√
1+µε2|∇ζ|2

)
,

(2.9)

where the Bond number, Bo = ρ0gλ
2

σ
, measures the ratio of gravity forces over capillary forces.

Our choice of scaling has been done having in mind the applications to coastal oceanography, and
in particular the range µ ∈ (0, µ⋆]. Another natural framework is that of deep water µ ∈ [µ⋆,∞),
for which the usual scaling is

x =
x

λ
; z =

z

λ
; t = t

√
gλ

λ

(the scaling in the variable z is somehow immaterial and appears only in the Laplace problem) and

ζ =
ζ

atop
; b =

b

abot
; Φ = Φ

1

atop
√
gλ
.

With this scaling the dimensionless problem becomes
∂tζ − 1√

µG
µ[ ϵ√

µζ, βb]ψ = 0,

∂tψ + ζ + ϵ
2 |∇ψ|

2 − ϵ
( 1√

µG
µ[ ϵ√

µζ, βb]ψ + ϵ∇ζ · ∇ψ)2

2(1 + ϵ2|∇ζ|2)
= 1

Bo∇ ·
(

∇ζ√
1+ϵ2|∇ζ|2

)
,

(2.10)

where we introduce a convenient new dimensionless parameter,

ϵ = ε
√
µ =

atop
λ
,

representing the typical steepness of the wave. Notice that in the limit µ→ ∞, one has

lim
µ→∞

1
√
µ
Gµ[ ϵ√

µ
ζ, βb]ψ = G∞[ϵζ, βb]ψ = (∂zΦ

∞ − (ϵ∇ζ) · ∇xΦ
∞)
∣∣
z=ϵζ

where Φ∞ is the unique solution to ∆xΦ
∞ + ∂2zΦ

∞ = 0 in {(x, z) ∈ Rd+1 : −∞ < z < ϵζ(x)},
Φ∞ = ψ on {(x, z) ∈ Rd+1 : z = ϵζ(x)},
∂zΦ

∞ → 0 as z → −∞.

Hence eq. (2.10) also makes sense in the infinite-layer framework (µ = ∞), and in this case any
reference to the depth d has disappeared, as it should.

If one wants to cover the full range of values µ ∈ (0,∞), then may as in [268] use the scaling

x =
x

λ
; z =

z

λ
; t = t

√
gdν

λ

and

ζ =
ζ

atop
; b =

b

abot
; Φ = Φ

1

atop
√
gd/ν

.

with ν = min(1, 1/
√
µ) (or, say, tanh(

√
µ)/

√
µ) which yields

∂tζ − 1
µνG

µ[εζ, βb]ψ = 0,

∂tψ + ζ + ε
2ν |∇ψ|

2 − ε
ν

( 1√
µG

µ[εζ, βb]ψ +
√
µε∇ζ · ∇ψ)2

2(1 + µε2|∇ζ|2)
= 1

Bo∇ ·
(

∇ζ√
1+µε2|∇ζ|2

)
.

(2.11)
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We conclude this section by noticing that system (2.7) may be equivalently written as{
∂tζ − 1

µG
µ[εζ, βb]ψ = 0,

∂tψ + ζ + εu · ∇ψ − ε
2u · u− µε

2 w
2 = 0,

(2.7’)

where we denote (u, w)
def
= (∇xΦ,

1
µ∂zΦ)

∣∣
z=εζ

and used the identities

u = ∇ψ − µεw∇ζ and w = εu · ∇ζ + 1

µ
Gµ[εζ, βb]ψ =

ε∇ψ · ∇ζ + 1
µG

µ[εζ, βb]ψ

1 + µε2|∇ζ|2
.

2.5 Well-posedness

The full justification of asymptotic models in the shallow water regime is made possible by a
well-posedness result in Sobolev spaces proved by Iguchi [224] and Lannes [268] (improving the
earlier work in collaboration with Alvarez-Samaniego [14]), and of which we provide below a rough
statement. The main point in this result is that it allows to control the size of solutions on a relevant
time interval, uniformly with respect parameters in the shallow water regime, defined as follows.

Definition (Shallow water asymptotic regime). Given µ⋆ > 0, we let

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

Theorem 2.9. Let d ∈ {1, 2}, µ⋆ > 0, h⋆ > 0, a⋆ > 0, M⋆ ≥ 0, and N ≥ 5. There exists
C, T > 0 and an operator a : HN+1(Rd) × H̊N+1(Rd) ×WN+1,∞(Rd) → C(Rd) such that for any
(µ, ε, β) ∈ pSW, for any (ζ0, ψ0) ∈ HN+1(Rd)× H̊N+1(Rd) and b ∈WN+1,∞(Rd) satisfying

M0
def
=
∣∣εζ0∣∣HN+1 +

∣∣ε∇ψ0

∣∣
HN +

∣∣βb∣∣
WN+1,∞ ≤M⋆

and
inf
Rd

(
1 + εζ0 − βb

)
≥ h⋆ > 0 and inf

Rd
a[εζ0, εψ0, βb] ≥ a⋆ > 0,

there exists a unique (ζ, ψ) ∈ C0([0, T/M0);H
N (Rd) × H̊N−1/2(Rd)) classical solution to eq. (2.7)

with initial data (ζ, ψ) |
t=0

= (ζ0, ψ0). Moreover, one has for any t ∈ (0, T/M0]∣∣ζ(t, ·)∣∣
HN +

∣∣∇ψ(t, ·)∣∣
HN−3/2 ≤ C

(∣∣ζ0∣∣HN+1 +
∣∣∇ψ0

∣∣
HN

)
and infRd

(
1 + εζ(t, ·)− βb

)
≥ h⋆/2, infRd a[εζ, εψ, βb] ≥ a⋆/2.

Remark 2.10. The loss of derivatives in the statement is only apparent: we can define an energy
functional and a corresponding functional space which is propagated by the flow,13 and we can
prove in fact the well-posedness in the sense of Hadamard (i.e. with the continuity of the flow
with respect to the initial data). Oversimplifying, Theorem 2.9 relies in one part on estimates
on the Dirichlet-to-Neumann operator refining the elliptic theory covered in Section 4, and on the
other part on energy estimates, viewing the water waves equations as a quasilinear system—when
written using the appropriate (Alinhac’s) unknowns—in the same way we will consider the Saint-
Venant system (in Section 5.3), the Green-Naghdi system (in Section 8.5 and Section 8.6) and fully
dispersive counterparts (in Section 10.5) and the Isobe–Kakinuma systems (in Section 13.6) later on.

13Specifically, the proof relies on the control of the energy functional

Es(t)
def
=
∣∣ζ(t, ·)∣∣2

HN +
∣∣(Gµ

0 )
1/2ψ

∣∣2
HN−1 +

N∑
|k|=0

∣∣(∂k(Gµ
0 )

1/2ψ − εw∂k(Gµ
0 )

1/2ζ
)
(t, ·)

∣∣2
L2 ,

with k ∈ Nd multi-indices and Gµ
0 = 1√

µ
|D| tanh(√µ|D|) ≈ |D|2

1+
√
µ|D| ; see [268, §4].
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Incidentally, a nice proof of the quasilinear nature of the water waves system was recently provided
in [369]. The operator a naturally arises as a hyperbolicity condition on the system. Specifically, it
is defined as14

a[εζ, εψ, βb]
def
= 1 + ε(∂t + εu · ∇)w,

where we recall (u, w)
def
= (∇xΦ,

1
µ∂zΦ)

∣∣
z=εζ

. It is also physically motivated since it is equivalent

to the Rayleigh–Taylor criterion, namely infRd(−∂zP
∣∣
z=εζ

) > 0; see [268, Proposition 4.29]. The
water waves equations is ill-posed if this criterion is violated [170]. The Rayleigh–Taylor criterion
is automatically satisfied as soon as we restrict the set of parameters pSW to εµ or ε2βµ being
sufficiently small; see [268, §4.3.5].

Theorem 2.9 is only one of the well-posedness results on the water waves equations, and is neither
the oldest nor the sharpest one. The reader can refer to [268, footnote 4, p. 102] for earlier important
references. Among them one can point out as specially relevant to our future discussion the works
by Ovsjannikov [350, 351] and Kano and Nishida [244, 245, 243], which set the foundation—after
the formal expansion procedure described by Friedrichs in [392, Appendix A]—for the rigorous
justification of shallow water models for data with analytic regularity, and [339, 422, 117] for
pioneering explorations in finite-regularity (Sobolev) spaces.

As for posterior results, Alazard, Burq and Zuily (see [11] among other works) have extracted
the paradifferential structure of the water waves equations, which allowed to considerably lower the
regularity threshold for which well-posedness holds. More recently, an impressive body of literature
has been dedicated to the delicate study of the large-time behavior of solutions—such as global or
almost-global existence results, scattering or modified scattering for small initial data—depending
on the dimension d, the domain Rd or Td, the presence of surface tension, etc.. A comprehensive
account with extensive references can be found for instance in [136, 6, 332]. These latter results
typically rely on the dispersive nature of the system and hence do not hold uniformly with respect
to the parameter µ ≪ 1. A detailed study of the interplay between these results and smallness
assumptions of the shallowness parameter is yet to be accomplished.

In the opposite direction, the existence time is finite in general at least in the infinite-depth
situation and dimension d = 1: (i) regular initial data exist whose interface is a graph and such
that the corresponding solution to the water waves system generates a finite time singularity, as
the interface ceases to be a graph; and (ii) regular initial data exist such that the solution to the
water waves system written in coordinates that allow overturning waves produces a self-intersecting
interface in finite time; see [82, 81, 80] and the survey [115].

Another interesting question arises when comparing Theorem 2.9 and the result in [11] as in the
latter the bottom topography can be very wild, due to smoothing effects on the contribution of the
bottom topography. Yet this smoothing effect is not uniform with respect to the parameter µ≪ 1
(see discussion in [268, §2.5.3, 3.7.2 and A.4]), and the important issue of the behavior of shallow
water waves over “rough”, random or non-smooth topographies is still not fully understood from a
mathematical viewpoint, despite important advances in [210, 366, 337, 186, 367, 122, 123, 127, 86];
see also [85] for an extended discussion and other relevant references. Concerning the influence of
large but smooth bottom topography one can also ask whether the existence time in Theorem 2.9
can be proved to be uniform with respect to the parameter β. A partial result, using surface tension
has been obtained in [308]; see also the discussion in Section 8.7.

2.6 Traveling waves

It is not the place—nor the author—to review the rich theory of traveling waves for the water waves
system, let alone the much richer one concerning the full Euler equation. Let me simply mention,
for comparison with corresponding results on subsequent models, that in the unidimensional (d = 1)

14The right-hand side may be defined pointwise in time (that is, without involving time derivatives) from
(εζ0, εψ0, βb) after solving the Laplace problem and using the water waves equations; see [268, §4.3.1].
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and flat bottom (b ≡ 0) framework, the existence of smooth solitary waves15 has been obtained
by Lavrent′ev [274], Friedrichs and Hyers [187], Beale [43] and Mielke [313]. These waves are of
small amplitude and supercritical (c > 1). The limit of large (but finite) amplitude solutions has
been investigated by Amick and Toland [400, 23], leading to the proof of Stokes’ conjecture that
(solitary) waves of greatest height are characterized by a sharp crest with angle 2π/3; see [22, 359].

These results only scratch the surface of the theory—spanning over more than a century—
concerning special solutions to eq. (2.7) or the infinite-depth counterpart, with or without surface
tension (see Remark 2.8), which include periodic traveling waves [279, 394], three-dimensional
(d = 2) waves [128, 203, 67], standing waves [360] and quasi-periodic waves; see [183] and references
in the Literature paragraph therein, and the surveys in [112, 64, 211] for more details.

15that is (ζ, ψ) ∈ C∞(R× R)2 solutions to eq. (2.7) of the form

(ζ, ψ)(t, x) = (ζc, ψc)(x− ct), lim
|x|→∞

|(ζc, ψ′
c)|(x) = 0.
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3 Interfacial waves system

While the two assumptions of homogeneity, eq. (1.3a), and irrotationality, eq. (1.3b), are extremely
beneficial, as we have seen in the preceding section, they can be seen as too restrictive and indeed
miss important physical phenomena; see e.g. [235, 213] and references therein. We will not consider
the case of homogeneous water waves with vorticity in this work,16 but will slightly unveil some
properties in the wild world of inhomogeneous water waves.

The simplest setting one can imagine is that of interfacial waves, where the fluid consists in two
layers separated by a free interface. This is physically sound in locations where the water contains
fresh/warm water above denser salted/cold water, and if the separation between the two (the
pycnocline) is sharp. If the fluids inside each layer are assumed homogeneous and flows irrotational,
then we can build an extension to the water waves equations in this bilayer framework. While
having a similar structure as the water wave equations, eq. (2.2), and in particular consisting in a
handful of scalar equations for unknown functions of time and horizontal space variables only, the
resulting equations are more intricate and possess interesting new features. Among them we shall
emphasize the role of the density contrast, and the emergence of Kelvin–Helmholtz instabilities.

3.1 Derivation

Figure 3.1: Sketch of the domain and notations.

In this section we consider special solutions to the full Euler system, eq. (1.1)-(1.2), satisfying
that the fluid can be split into two layers with homogeneous densities and irrotational velocities;
see Figure 3.1. Denote the two fluid domains as

Ωt
1

def
= {(x , z) ∈ Rd+1 : ζ2(t, x) < z < d1 + ζ1(t, x)}

and

Ωt
2

def
= {(x , z) ∈ Rd+1 : −d2 + b(x) < z < ζ2(t, x)}

delimited by the free surface, the interface and the bottom topography:

Γtop
def
= {(x , z) ∈ Rd+1 : z = d1 + ζ1(t, x)},

Γint
def
= {(x , z) ∈ Rd+1 : z = ζ2(t, x)},

Γbot
def
= {(x , z) ∈ Rd+1 : z = −d2 + b(x)}.

16Let me simply mention [84] for an extension of Theorem 2.9 to the rotational framework and [113] for a seminal
work on traveling waves with vorticity.
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Assuming17 that the fluid is homogeneous in each layer:

ρ ≡ ρℓ > 0 in Ωt
ℓ (ℓ ∈ {1, 2}),

and that the flows are potential in each layer:

U = ∇x,zΦℓ in Ωt
ℓ (ℓ ∈ {1, 2}),

and imposing the kinematic boundary condition at the interface:18

∂tζ2 = ∂zΦ1 − (∇ζ2) · ∇xΦ1 = ∂zΦ2 − (∇ζ2) · ∇xΦ2 in Γint,

and the continuity of the pressure at the interface (in addition to the surface), we can follow the
strategy in Section 2.1 and (see e.g. [152]) rewrite the full Euler equations (1.1)-(1.2) equivalently
as the following system, which we refer to as the interfacial waves system.

∂tζ1 − G1[ζ1, ζ2, b](ϕ1,ψ2) = 0,

∂tζ2 − G2[ζ2, b]ψ2 = 0,

∂tϕ1 + gζ1 +
1
2 |∇ϕ1|2 −

(G1[ζ1, ζ2, b]ϕ1 +∇ζ1 · ∇ϕ1)
2

2(1 + |∇ζ1|2)
= 0,

∂t
(
ρ2ψ2 − ρ1ψ1

)
+ g(ρ2 − ρ1)ζ2 + 1

2

(
ρ2|∇ψ2|2 − ρ1|∇ψ1|2

)
−ρ2(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)

2 − ρ1(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ1)
2

2(1 + |∇ζ2|2)
= 0,

(3.1)

where G1[ζ1, ζ2, b](ϕ1,ψ2), G2[ζ2, b]ψ2 and ψ1 = H [ζ1, ζ2, b](ϕ1,ψ2) are defined by

G2[ζ2, b]ψ2 = (∂zΦ2 − (∇ζ2) · ∇xΦ2)
∣∣
z=ζ2

,

G1[ζ1, ζ2, b](ϕ1,ψ2) = (∂zΦ1 − (∇ζ1) · ∇xΦ1)
∣∣
z=d1+ζ1

,

ψ1 = H [ζ1, ζ2, b](ϕ1,ψ2) = Φ1

∣∣
z=ζ2

,

where Φ2 is uniquely determined by ∆x,zΦ2 = 0 in Ωt
2,

Φ2 = ψ2 on Γint,
∂zΦ2 − (∇b) · ∇xΦ2 = 0 on Γbot,

(3.2)

and then Φ1 is uniquely determined by ∆x,zΦ1 = 0 in Ωt
1,

Φ1 = ϕ1 on Γtop,
∂zΦ1 − (∇ζ2) · ∇xΦ1 = G2[ζ2, b]ψ2 on Γint.

(3.3)

By the superposition principle, we have the decomposition

Φ1 = Φ1,D + Φ1,N

where ∆x,zΦ1,D = 0 in Ωt
1,

Φ1,D = ϕ1 on Γtop,
∂zΦ1,D − (∇ζ2) · ∇xΦ1,D = 0 on Γint,

 ∆x,zΦ1,N = 0 in Ωt
1,

Φ1,N = 0 on Γtop,
∂zΦ1,N − (∇ζ2) · ∇xΦ1,N = G2[ζ2, b]ψ2 on Γint,

17As in the one-layer framework, homogeneity and irrotationality assumptions are needed only at initial time, and
then propagate for positive times.

18Hence we assume that particles of fluid initially at the interface remain trapped at the interface, or in other
words that no mixing occurs between the two fluids. Notice in particular that while the normal component of the
velocity is continuous at the interface, the horizontal—or tangential—components cannot remain continuous even if
this holds at initial time.
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and we consistently decompose, with hopefully obvious definitions,

G1[ζ1, ζ2, b](ϕ1,ψ2) = G1,D[ζ1, ζ2]ϕ1 + G1,N[ζ1, ζ2]G2[ζ2, b]ψ2

H [ζ1, ζ2, b](ϕ1,ψ2) = HD[ζ1, ζ2]ϕ1 + HN[ζ1, ζ2]G2[ζ2, b]ψ2

In particular the operators G1, G2 and H are well-defined (and continuous) in suitable functional
Sobolev or Beppo Levi spaces by the following result, which follows from the analysis in Section 4,
and in particular Proposition 4.5 and Proposition 4.20.

Proposition 3.1. Let (ζ1, ζ2, b) ∈W 2,∞(Rd) such that{
d2 + ζ2 − b ≥ d⋆ > 0

d1 + ζ1 − ζ2 ≥ d⋆ > 0
in Rd. (3.4)

Then for any ϕ1,ψ2 ∈ H̊2(Rd), there exist unique Φℓ ∈ H̊2(Ωt
ℓ) (ℓ ∈ {1, 2}) strong solution

to eq. (3.2)-(3.3).

3.1.1 The rigid-lid assumption

In the study of interfacial waves in the oceanographic context, one often uses the so-called rigid-lid
assumption, based on the observation that the amplitude of interfacial waves are of several order of
magnitudes greater than surface waves. Hence we assume altogether that the surface is flat (this is
only an approximation of course, whose validity is discussed below, and here we depart from exact
solutions to the full Euler equations), that is

Ωt
1

def
= {(x , z) ∈ Rd+1 : ζ2(t, x) < z < d1} ; Γtop

def
= {(x , z) ∈ Rd+1 : z = d1 + ζ1(t, x)},

and eq. (3.1) becomes
∂tζ2 − G2[ζ2, b]ψ2 = 0,

∂t
(
ρ2ψ2 − ρ1ψ1

)
+ g(ρ2 − ρ1)ζ2 + 1

2

(
ρ2|∇ψ2|2 − ρ1|∇ψ1|2

)
−ρ2(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)

2 − ρ1(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ1)
2

2(1 + |∇ζ2|2)
= 0,

(3.5)

where G2[ζ2, b]ψ2 and ψ1 = H [ζ2, b]ψ2 are defined (mind the abuse of notation) by

G2[ζ2, b]ψ2 = (∂zΦ2 − (∇ζ2) · ∇xΦ2)
∣∣
z=ζ2

,

ψ1 = H [ζ2, b]ψ2 = Φ1

∣∣
z=ζ2

,

where Φ2 is uniquely determined as above by ∆x,zΦ2 = 0 in Ωt
2,

Φ2 = ψ2 on Γint,
∂zΦ2 − (∇b) · ∇xΦ2 = 0 on Γbot,

(3.6)

and then Φ1 is determined up to a harmless additive constant by the Laplace problem with rigid-lid ∆x,zΦ1 = 0 in Ωt
1,

∂zΦ1 = 0 on Γtop,
∂zΦ1 − (∇ζ2) · ∇xΦ1 = G2[ζ2, b]ψ2 on Γint.

(3.7)

Again, the operators G2 and H are well-defined (and continuous) in suitable functional Sobolev
or Beppo Levi spaces; see [54, Appendix A] or [267, Proposition 1]. System (3.5) is seemingly
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simpler that system (3.1) since it contains only two scalar equations. It allows to concentrate on
the propagation of interfacial waves while the bilayer system with free surface describes the coupled
propagation of surface and interfacial waves. In the limit of small density contrast, 1 − ρ1

ρ2
≪ 1,

one can observe a decoupling of the two modes of propagation, the surface waves propagating much
faster than interfacial waves. The validity of the rigid-lid assumption lies in that regime, which is
somewhat similar to the weakly incompressible limit. This analogy is quite apparent (and rigorously
justified) for the hydrostatic equations, studied in Section 6.2.5.

Another formulation equivalent to eq. (3.5) is the following:
∂tζ2 = G1[ζ2]ψ1 = G2[ζ2, b]ψ2,

∂tψ1 + gζ2 +
1
2 |∇ψ1|2 −

(G1[ζ2]ψ1 +∇ζ2 · ∇ψ1)
2

2(1 + |∇ζ2|2)
= − 1

ρ1
pint

∂tψ2 + gζ2 +
1
2 |∇ψ2|2 −

(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)
2

2(1 + |∇ζ2|2)
= − 1

ρ2
pint,

(3.8)

where G2 is as above and (mind the abuse of notation)

G1[ζ2]ψ1 = (∂zΦ1 − (∇ζ2) · ∇xΦ1)
∣∣
z=ζ2

where Φ1 is uniquely determined by the Laplace problem ∆x,zΦ1 = 0 in Ωt
1,

∂zΦ1 = 0 on Γtop,
Φ1 = ψ1 on Γint.

(3.9)

The variable pint, representing the pressure at the interface, can be interpreted as a Lagrange
multiplier associated with the compatibility condition G1[ζ2]ψ1 = G2[ζ2, b]ψ2. While eq. (3.8) seems
more complicated than the previous formulation, it is beneficial that both G1 and G2 are Dirichlet-
to-Neumann operators, which are studied in details in Section 4, while H [ζ2, b] = G1[ζ2]

−1◦G2[ζ2, b]
requires the analysis of its inverse; see again [267].

3.1.2 The Boussinesq approximation

Another standard approximation for systems with weak density contrast is the so-called Boussinesq
approximation. Here we neglect the density difference in all but buoyancy terms (that is the ones
with a g prefactor) in the Bernoulli equation in eq. (3.5):

∂tζ2 − G2[ζ2, b]ψ2 = 0,

∂t
(
ψ2 − ψ1

)
+ g(ρ2 − ρ1)ζ2 + 1

2

(
|∇ψ2|2 − |∇ψ1|2

)
− (G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)

2 − (G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ1)
2

2(1 + |∇ζ2|2)
= 0.

(3.5’)

(the definitions of ψ1 = H [ζ2, b]ψ2 and the operators G1 and H are unchanged). This yields some
striking simplifications in the analysis, in particular on the hydrostatic equations; see Section 6.2.1.

We could do the same approximation in the free-surface equations, eq. (3.1), but this would
be somehow inconsistent as the rigid-lid assumption and Boussinesq approximation stem from the
same hypothesis.

3.1.3 Interfacial tension

As we shall discuss below, the Cauchy problem for eq. (3.5)—or eq. (3.5’)—is ill-posed in Sobolev
spaces, due to the so-called Kelvin–Helmholtz instabilities. However, these instabilities disappear
(at least from the modal study as we shall see below; see [267] for the rigorous nonlinear study)
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when interfacial tension effects are added. 19 Taking into account a density jump proportional to
the mean curvature at the interface yields the following generalization of eq. (3.5):

∂tζ2 − G2[ζ2, b]ψ2 = 0,

∂t
(
ρ2ψ2 − ρ1ψ1

)
+ g(ρ2 − ρ1)ζ2 + 1

2

(
ρ2|∇ψ2|2 − ρ1|∇ψ1|2

)
−ρ2(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ2)

2 − ρ1(G2[ζ2, b]ψ2 +∇ζ2 · ∇ψ1)
2

2(1 + |∇ζ2|2)
= σ∇ ·

(
∇ζ2√

1+|∇ζ2|2

)
,

(3.10)
where σ is the interfacial tension coefficient. Of course we could do the same for the free-surface
equations, eq. (3.1), with or without surface tension.

3.2 Variational structure

Zakharov’s canonical Hamiltonian formulation to the water waves equations (recall Section 2.2) can
be generalized to the bilayer framework, and the Hamiltonian functional is still the total (perturba-
tion of the) energy of the system, written with suitable variables. This was put forward in [45, 120]
in the rigid-lid (or rather infinite-depth) case, and in [20, 121] for the free-surface case.

The free-surface case Consider

H
def
=

1

2

∫
Rd

g(ρ2 − ρ1)ζ22 + gρ1ζ
2
1 + (ρ2ψ2 − ρ1ψ1)G2[ζ2, b]ψ2 + ρ1ϕ1G1[ζ1, ζ2, b](ϕ1,ψ2) dx

=

∫
Rd

C +

∫ ζ2

−d2+b
ρ2gz +

ρ2
2
|∇x,zΦ2|2 dz +

∫ d1+ζ1

ζ2

ρ1gz +
ρ1
2
|∇x,zΦ1|2 dz .

where C is a constant tailored so that the second integral is finite. Viewing H as a functional for

(ζ1, ζ2, ξ1
def
= ρ1ϕ1, ξ2

def
= ρ2ψ2 − ρ1ψ1), one can check that—at least formally—eq. (3.1) reads

∂t


ζ1
ξ1
ζ2
ξ2

 =


δξ1H
−δζ1H
δξ2H
−δζ2H

 .

Alternatively, we can define the Lagrangian of the system with the difference between potential and
kinetic energy; see [121, (2.23)].

Associated with the Hamiltonian formulation and natural symmetry groups of the system are
preserved quantities (invariants). Related to the variation of base level for the velocity potentials
are the obvious conservation of the excess of mass:

d

dt
Zℓ = 0, Zℓ

def
=

∫
Rd

ζℓ dx (ℓ ∈ {1, 2}).

From horizontal translation invariance (in the flat bottom case) we obtain the conservation of the
horizontal impulse

d

dt
I = 0, I

def
=

∫
Rd

ζ1∇ξ1 + ζ2∇ξ2 dx (if b ≡ 0).

From time translation invariance we obtain the conservation of the energy

d

dt
H = 0.

19It should be warned however that there is no interfacial tension effects in the oceanographic context where the
top fluid is warm and fresh water and the bottom fluid is cold and salted water. Interfacial tension should be
considered as a mathematical artifact, in view of explaining the existence and robustness of interfacial waves despite
Kelvin–Helmholtz instabilities. See the discussion in the prologue of Chapter E.
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The rigid-lid case Consider now

H
def
=

1

2

∫
Rd

g(ρ2 − ρ1)ζ22 + (ρ2ψ2 − ρ1ψ1)G2[ζ2, b]ψ2 dx

=

∫
Rd

C +

∫ ζ2

−d2+b
ρ2gz +

ρ2
2
|∇x,zΦ2|2 dz +

∫ d1

ζ2

ρ1gz +
ρ1
2
|∇x,zΦ1|2 dz .

where C is a constant tailored so that the second integral is finite. Viewing H as a functional for

(ζ2, ξ2
def
= ρ2ψ2 − ρ1ψ1), one obtains the canonical formulation for eq. (3.5):

∂t

(
ζ2
ξ2

)
=

(
δξ2H
−δζ2H

)
.

Alternatively, we can define the Lagrangian of the system with the difference between potential and
kinetic energy; see [121, above (2.15)].

Associated with the Hamiltonian formulation and natural symmetry groups of the system are
preserved quantities (invariants). Related to the variation of base level for the velocity potentials
are the obvious conservation of the excess of mass:

d

dt
Z = 0, Z

def
=

∫
Rd

ζ2 dx .

From horizontal translation invariance (in the flat bottom case) we obtain the conservation of the
horizontal impulse

d

dt
I = 0, I

def
=

∫
Rd

ζ2∇ξ2 dx (if b ≡ 0).

From time translation invariance we obtain the conservation of the energy

d

dt
H = 0.

See [45] for more details.

3.3 Modal analysis

The free-surface case We linearize (3.1) about the trivial solution (ζ1 = ζ2 = 0,ϕ1 = ψ2 = 0).
While this can be straightforwardly generalized to ϕ1 = ψ2 = u ·x by Galilean invariance, it should
be noticed that the assumption ϕ1 = ψ2 is strong and consequential, and the case of different
background velocities is tackled in the rigid-lid framework below. Setting ζℓ = ϵζ0ℓ , ψℓ = ϵψ0

ℓ

(ℓ ∈ {1, 2}) and b = 0, keeping only first-order terms with respect to small ϵ, one obtains
∂tζ

0
1 − G1[0, 0, 0](ϕ

0
1,ψ

0
2) = 0,

∂tζ
0
2 − G2[0, 0]ψ

0
2 = 0,

∂tϕ
0
1 + gζ

0
1 = 0,

∂t
(
ρ2ψ

0
2 − ρ1H [0, 0, 0](ϕ0

1,ψ
0
2)
)
+ g(ρ2 − ρ1)ζ02 = 0,

(3.11)

where G1[0, 0, 0], G2[0, 0] and H [0, 0, 0] are explicitly found by solving in (horizontal) Fourier space ∆x,zΦ
0
2 = 0 in Rd × (−d2, 0),

Φ0
2 = ψ0

2 on Rd × {0},
∂zΦ

0
2 = 0 on Rd × {−d2},

and

 ∆x,zΦ
0
1 = 0 in Rd × (0, d1),

Φ0
1 = ϕ0

1 on Rd × {d1},
∂zΦ

0
1 = G2[0, 0]ψ

0
2 on Rd × {0}.
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We find

Φ0
2 =

cosh((z + d2)|D|)
cosh(d2|D|)

ψ0
2 ; Φ0

1 =
cosh(z |D|)
cosh(d1|D|)

ϕ0
1 +

sinh((z − d1)|D|)
cosh(d1|D|)

tanh(d2|D|)ψ0
2

and hence

G2[0, 0]ψ
0
2 = |D| tanh(d2|D|)ψ0

2 ,

G1[0, 0, 0](ϕ
0
1,ψ

0
2) = |D| tanh(d1|D|)ψ0

2 +
|D| tanh(d2|D|)
cosh(d1|D|)

ψ0
2 ,

H [0, 0, 0](ϕ0
1,ψ

0
2) =

1

cosh(d1|D|)
ϕ0
1 − tanh(d1|D|) tanh(d2|D|)ψ0

2 .

Plugging these expressions into eq. (3.11) yields the dispersion relation

ω(ξ)4 − g|ξ|ρ2
tanh(d1|ξ|) + tanh(d2|ξ|)

ρ2 + ρ1 tanh(d1|ξ|) tanh(d2|ξ|)
ω(ξ)2 + g2|ξ|2 (ρ2 − ρ1) tanh(d1|ξ|) tanh(d2|ξ|)

ρ2 + ρ1 tanh(d1|ξ|) tanh(d2|ξ|)
= 0.

This equation has two non-negative solutions (and their opposite) if 0 ≤ ρ1 ≤ ρ2 (we implicitly
assume g > 0), corresponding to the “stable” case wherein the lower fluid is heavier than the upper
one. Taking the limit ρ1 → 0, we observe

ωℓ(ξ)
2 → g|ξ| tanh(dℓ|ξ|) as ρ1 → 0 (ℓ ∈ {1, 2}),

and we recognize the dispersion relation of the (one-layer) linearized water waves equations, with
reference depth d1 and d2. Taking the limit ρ1 → ρ2, we observe a strong separation between the
two modes of propagation:{

ω+(ξ)
2 → g|ξ| tanh((d1 + d2)|ξ|)

ω−(ξ)
2 ∼ g|ξ| (ρ2−ρ1) tanh(d1|D|) tanh(d2|D|)

ρ2 tanh(d1|D|)+ρ1 tanh(d2|D|)
as ρ1 ↗ ρ2.

The first solution corresponds to the barotropic (or surface) mode, while the second one corre-
sponds to the baroclinic mode, and is of interest for the propagation of interfacial waves. While
for fixed wave number, the baroclinic mode has considerably lower group or phase velocity than
the corresponding barotropic one, it should be noticed that there always exist a larger wavenumber
for which the barotropic velocity will coincide. See [124, 125, 126] for a study of the effect of long
baroclinic (interfacial) waves to short barotropic (surface) waves, and Figure 3.2 for an illustration.

The rigid-lid case Now we linearize eq. (3.8), about the constant shear solution:

(ζ2 = ϵζ0,ψ1 = u1 · x + ϵψ0
1 ,ψ2 = u2 · x + ϵψ0

2)

in the flat bottom case, b ≡ 0. Notice that contrary to above, we use here different (but constant)

background velocities in the two layers. The shear velocity v
def
= u2 − u1 is invariant by Galilean

transformation. In this framework we mimic the behavior of small perturbations to any solutions.20

Keeping only first-order terms in ϵ yields the following closed system for the perturbations ζ0 and
ψ0 = ρ2

ρ1+ρ2
ψ0

2 − ρ1
ρ1+ρ2

ψ0
1 (see e.g. [266, 87, 45, 273]){

∂tζ
0 + c(D) · ∇ζ0 − b(D)ψ0 = 0,

∂tψ
0 + a(D)ζ0 + c(D) · ∇ψ0 = 0,

20The reader can refer to Section 15.2.2 for a display of such approach, and in particular to Remark 15.6 for a
comparison with the linearization about the constant shear solutions. For our purpose the outcome—that is the
presence of high frequency instabilities due to shear velocities—is captured equally by both approaches.
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(a) Small upper density, ρ1/ρ2 = 0.1.
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(b) Small density contrast, ρ1/ρ2 = 0.9.

Figure 3.2: Wave frequencies, |ω|(d1|ξ|), according to eq. (3.11). d2 = 4d1.

where

a(D)
def
= g

ρ2 − ρ1
ρ1 + ρ2

− ρ1ρ2/(ρ1 + ρ2)

ρ2 tanh(d1|D|) + ρ1 tanh(d2|D|)
(v ·D)2

|D|
,

b(D)
def
=

(ρ1 + ρ2) tanh(d1|D|) tanh(d2|D|)
ρ2 tanh(d1|D|) + ρ1 tanh(d2|D|)

|D|,

c(D)
def
=
ρ2 tanh(d1|D|)u2 + ρ1 tanh(d2|D|)u1
ρ2 tanh(d1|D|) + ρ1 tanh(d2|D|)

,

and hence we have the dispersion relation

(ω(ξ)− c(ξ) · ξ)2 = a(ξ)b(ξ). (3.12)

Notice incidentally that for u1 = u2 = 0, we obtain the dispersion relation of the baroclinic mode
in the small density contrast limit.

Since b(ξ) > 0 for ξ ̸= 0, we find that the Fourier mode with wave vector ξ is exponentially
amplified (i.e. unstable) if a(ξ) < 0. This occurs for |ξ| sufficiently large as soon as v ̸= 0,
which brings to light the role of shear velocities. This phenomenon is known as Kelvin–Helmholtz
instabilities. Moreover, the exponential rate grows proportionally to |v · ξ| as |ξ| → ∞ and in
particular takes arbitrarily large values.

In the opposite direction, as |ξ| → 0, we have a(ξ)
def
= g ρ2−ρ1

ρ1+ρ2
− ρ1ρ2/(ρ1+ρ2)

ρ2d1+ρ1d2
( v ·ξ|ξ| )

2 + O(|v ||ξ|2),
so that Kelvin–Helmholtz modal instabilities do not appear for small wavenumbers provided that
ρ2 > ρ1 and the shear velocity is sufficiently small. This is consistent with the well-posedness results
obtained on the (nonlinear) Saint-Venant systems presented in Section 6.

In order to tame Kelvin–Helmholtz instabilities, it has been suggested to include surface tension
effects, as in Section 3.1.3. Indeed for eq. (3.10) the dispersion relation becomes

(ω(ξ)− c(ξ) · ξ)2 = aσ(ξ)b(ξ), aσ(ξ) = a(ξ) +
σ

ρ1 + ρ2
|ξ|2

and hence, for any σ > 0, aσ(ξ) > 0 for |ξ| sufficiently large. Moreover, for v sufficiently small,
Fourier modes are stable for all wave vectors. We refer again to [273] for an extended modal
analysis, and to [267] (and references therein) for the rigorous nonlinear approach. See Figure 3.3
for a numerical illustration.
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Figure 3.3: Dispersion relation. We plot (ω(dξ)− c(dξ) · dξ)2/|c ′0dξ|2 = aσ(dξ)b(dξ)/|c ′0dξ|2;
negative values indicate unstable modes.

We set ρ1/ρ2 = 0.9, d1 = d2/4, 2v = c ′0 =
√
g (ρ2−ρ1)d1d2
ρ2d1+ρ1d2

.

In the presence of surface tension, Bo =
g(ρ2−ρ1)d2

1

σ
= 15.

3.4 Non-dimensionalization

As for the water waves equations (see Section 2.4), we non-dimensionalize the equations as a first
step before introducing asymptotic models.

The free-surface case We set

x =
x

λ
; z =

z

d1
; t = t

c ′0
λ

and

ζ1 =
ζ

atop
; ζ2 =

ζ

aint
; b =

b

abot
; Φℓ = Φℓ

d1
aintλc

′
0

.

In these formulae, we introduced a typical horizontal wavelength denoted λ as well as atop (resp.
aint, abot) denoting the typical amplitude of the surface deformation (resp. interface deformation,

bottom topography). We also set c ′0
def
=
√
g (ρ2−ρ1)d1d2
ρ2d1+ρ1d2

which is the celerity of infinitesimally long

and small internal waves—based on eq. (3.12)—and T = λ/c ′0 their time period. We also introduce
the dimensionless parameters

ε =
aint
d1

; β =
abot
d1

; µ =
d2

λ2
; α =

atop
aint

; δ =
d1
d2

; γ =
ρ1
ρ2
. (3.13)

In addition to ε measuring the strength of the nonlinear effects in the systems, β measuring the
magnitude of topography effects and µ the shallowness parameter, we added three dimensionless
parameters; namely α the amplitude ratio of surface deformations to interface deformations (being
somewhat artificial, it is straightforwardly removed by redefining ζ1), δ the ratio of the upper-layer
to the lower-layer depth, and γ the ratio of the mass density between the two fluids. For stability
reasons explained in Section 3.3, we shall always assume γ ∈ [0, 1). However the interval is not
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closed, and the interesting limit (both from a physical and mathematical perspectives) of weak
density contrast, γ ↗ 1, will be studied in the hyperbolic framework in Section 6.2.5. Setting γ = 0
and δ = 1, we recover the one-layer water waves equations. We have used d1 as the reference depth;
a choice which is harmless as we shall give some upper and lower bounds on the depth ratio, δ;
see for instance [373] and references therein for some studies in the physically sound regime where
the lower layer is much deeper than the upper layer. To summarize, the results in this manuscript
concerning interfacial waves will be restricted to parameters in the following set.

Definition (Shallow water/Shallow water asymptotic regime). Given µ⋆, δ⋆, δ
⋆ > 0, we let

p SW

SW

=
{
(µ, ε, β, α, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], α ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

Using the above scalings the dimensional free-surface interfacial waves equations, eq. (3.1),
becomes

α∂tζ1 − 1
µG

µ,δ
1 [αεζ1, εζ2, βb](φ1, ψ2) = 0,

∂tζ2 − 1
µG

µ,δ
2 [εζ2, βb]ψ2 = 0,

∂tφ1 +
δ+γ
1−γαζ1 +

ε
2 |∇φ1|2 − µε

( 1µG
µ
1 [αεζ1, εζ2, βb](φ1, ψ2) + αε∇ζ1 · ∇φ1)

2

2(1 + µ|αε∇ζ1|2)
= 0,

∂t
(
ψ2 − γψ1

)
+ (δ + γ)ζ2 +

ε
2

(
|∇ψ2|2 − γ|∇ψ1|2

)
−µε

( 1µG
µ,δ
2 [εζ2, βb]ψ2 + ε∇ζ2 · ∇ψ2)

2 − γ( 1µG
µ,δ
2 [εζ2, βb]ψ2 + ε∇ζ2 · ∇ψ1)

2

2(1 + µ|ε∇ζ2|2)
= 0,

(3.14)

where Gµ,δ2 [εζ2, βb]ψ2, Gµ,δ1 [αεζ1, εζ2, βb](φ1, ψ2) = Gµ1,D[αεζ1, εζ2]φ1+Gµ1,N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2,

and ψ1 = Hµ
D[αεζ1, εζ2]φ1 +Hµ

N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2 are defined by

Gµ,δ2 [εζ2, βb]ψ2 = (∂zΦ2 − µ(ε∇ζ2) · ∇xΦ2)
∣∣
z=εζ2

,

Gµ1,D[αεζ1, εζ2]φ1 = (∂zΦ1,D − µ(αε∇ζ1) · ∇xΦ1,D)
∣∣
z=1+αεζ1

,

Gµ1,N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2 = (∂zΦ1,N − µ(αε∇ζ1) · ∇xΦ1,N)

∣∣
z=1+αεζ1

,

Hµ
D[αεζ1, εζ2, b]φ1 = Φ1,D

∣∣
z=εζ2

,

Hµ
N[αεζ1, εζ2, b]G

µ,δ
2 [εζ2, βb]ψ2 = Φ1,N

∣∣
z=εζ2

,

where Φ2 is uniquely determined by µ∆xΦ2 + ∂2zΦ2 = 0 in {(x, z) ∈ Rd+1 : −1/δ + βb < z < εζ2},
Φ2 = ψ2 on {(x, z) ∈ Rd+1 : z = εζ2},
∂zΦ2 − µ(β∇b) · ∇xΦ2 = 0 on {(x, z) ∈ Rd+1 : z = −1/δ + βb},

and then Φ1,D and Φ1,N are uniquely determined by µ∆xΦ1,D + ∂2zΦ1,D = 0 in {(x, z) ∈ Rd+1 : εζ2 < z < 1 + αεζ1},
Φ1,D = φ1 on {(x, z) ∈ Rd+1 : z = 1 + αεζ1},
∂zΦ1,D − µ(ε∇ζ2) · ∇xΦ1,D = 0 on {(x, z) ∈ Rd+1 : z = εζ2}.

and
µ∆xΦ1,N + ∂2zΦ1,N = 0 in {(x, z) ∈ Rd+1 : εζ2 < z < 1 + αεζ1},
Φ1,N = 0 on {(x, z) ∈ Rd+1 : z = 1 + αεζ1},
∂zΦ1,N − µ(ε∇ζ2) · ∇xΦ1,N = Gµ,δ2 [εζ2, βb]ψ2 on {(x, z) ∈ Rd+1 : z = εζ2}.
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The rigid-lid case We proceed as above, although αζ1 is now irrelevant, so that the shallow water
regime in the rigid-lid situation is defined as follows.

Definition (Shallow water/Shallow water asymptotic regime). Given µ⋆, δ⋆, δ
⋆ > 0, we let

p SW

SW

=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

Then we can check that eq. (3.8) becomes

∂tζ2 = 1
µG

µ
1 [εζ2]ψ1 = 1

µG
µ,δ
2 [εζ2, βb]ψ2,

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ1|2 − µε

( 1µG
µ
1 [εζ2]ψ1 + ε∇ζ2 · ∇ψ1)

2

2(1 + µ|ε∇ζ2|2)
= −γ−1pint

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ2|2 − µε

( 1µG
µ,δ
2 [εζ2, βb]ψ2 + ε∇ζ2 · ∇ψ2)

2

2(1 + µ|ε∇ζ2|2)
= −pint,

(3.15)

where Gµ,δ2 [εζ2, βb]ψ2 and Gµ1 [εζ2]ψ1 are defined by

Gµ,δ2 [εζ2, βb]ψ2 = (∂zΦ2 − µ(ε∇ζ2) · ∇xΦ2)
∣∣
z=εζ2

,

Gµ1 [εζ2]ψ1 = (∂zΦ1 − µ(ε∇ζ2) · ∇xΦ1)
∣∣
z=εζ2

,

where Φ1 and Φ2 are uniquely determined by the Laplace problems µ∆xΦ2 + ∂2zΦ2 = 0 in {(x, z) ∈ Rd+1 : −1/δ + βb < z < εζ2},
Φ2 = ψ2 on {(x, z) ∈ Rd+1 : z = εζ2},
∂zΦ2 − µ(β∇b) · ∇xΦ2 = 0 on {(x, z) ∈ Rd+1 : z = −1/δ + βb},

and  µ∆xΦ1 + ∂2zΦ1 = 0 in {(x, z) ∈ Rd+1 : εζ2 < z < 1},
∂zΦ1 = 0 on {(x, z) ∈ Rd+1 : z = 1},
Φ1 = ψ1 on {(x, z) ∈ Rd+1 : z = εζ2}.

Again, the variable pint can be interpreted as a Lagrange multiplier associated with the compatibility
condition Gµ1 [εζ2]ψ1 = 1

µG
µ,δ
2 [εζ2, βb]ψ2, and physically represents the dimensionless pressure at the

interface, scaled as

pint
def
=

d1
ρ2aint(c ′0)

2
pint.

Using the formulation with only two equations, namely eq. (3.5), and adding surface tension effects
for the sake of completeness (and hence using rather eq. (3.10)), we obtain

∂tζ2 = 1
µG

µ,δ
2 [εζ2, βb]ψ2,

∂t(ψ2 − γψ1) + (δ + γ)ζ2 +
ε
2

(
|∇ψ2|2 − γ|∇ψ1|2

)
−
( 1µG

µ,δ
2 [εζ2, βb]ψ2 + ε∇ζ2 · ∇ψ2)

2 − γ( 1µG
µ,δ
2 [εζ2, βb]ψ1 + ε∇ζ2 · ∇ψ1)

2

2(1 + µ|ε∇ζ2|2)
= δ+γ

Bo ∇ ·
(

∇ζ2√
1+µ|ε∇ζ2|2

)
,

(3.16)

where Bo = g(ρ2−ρ1)λ2

σ
is the Bond dimensionless number measuring the ratio of gravity forces

over capillary forces (obviously, neglecting surface tension effects consists in setting Bo = ∞), and

ψ1 = Gµ1 [εζ2]−1 ◦ Gµ,δ2 [εζ2, βb]ψ2. Once again, we immediately recover the one-layer case, eq. (2.9),
by setting γ = 0 and δ = 1. The Boussinesq approximation consists in setting γ = 1 in eq. (3.16);21

21although not (necessarily) in the prefactors (δ + γ) and δ+γ
Bo

. Of course, γ therein can indeed be set to 1 by a
slightly different choice of scalings.
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notice the contribution of the buoyancy term is not neglected, whereas it would have been if we
had naively set ρ1 = ρ2 in eq. (3.10). Alternatively, we can use the formulation (3.15) and replace
γ−1pint with pint in the second equation (or use a reference density in both pressure contributions;
see Remark 6.18).

3.5 Well-posedness

The well-posedness result for the water waves system presented in Section 3.5 does not extend
to interfacial gravity waves systems, as soon as ρ1 ̸= 0. Indeed, recall that the modal analysis in
Section 3.3 shows that in the absence of surface tension, the interfacial waves system—at least in the
rigid-lid framework—exhibits strong (Kelvin–Helmholtz) instabilities. Consistently, ill-posedness
results in finite-regularity spaces have obtained in [170, 227, 277, 242, 417]. However, the (local-
in-time) well-posedness of the initial-value problem may be restored by including the effects of
surface tension [16, 19, 92, 384, 385]. Moreover, Lannes exhibits in [267] a stability criterion for the
existence of strong regular solutions to the (rigid-lid) system with surface tension, that is eq. (3.16),
which is obviously not uniform with respect to the Bond dimensionless number measuring the ratio

of gravity forces over capillary forces, Bo = g(ρ2−ρ1)λ2

σ
, but weakens as the shallow water parameter

decreases. More precisely the nonlinear criterion therein is satisfied as soon as the dimensionless

number Υ
def
= γ2µε4 Bo is sufficiently small. Again this is in full accordance with the modal analysis;

see [273].

3.6 Traveling waves

In Section 2.6 I refused to survey the vast literature on special solutions to the water waves system.
The literature in the non-homogeneous case—even restricting the study of two layers with irrota-
tional homogeneous flows—is even more intricate, with specific new phenomena including the role
of the rigid-lid versus free-surface assumption, the role of (weak or strong) interfacial tension, and
the existence of bores and generalized solitary waves. A comprehensive review of known results
is yet to be accomplished as far as I am aware. Let me lazily refer to [90, 211] for some relevant
references, in particular concerning the existence of solitary waves, periodic waves and fronts.
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4 The Laplace problem and Dirichlet-to-Neumann operator

We provide here a brief account on some essential results concerning the Laplace problem under-
lying the Dirichlet-to-Neumann operator. Indeed, crucial estimates on and approximations of the
Dirichlet-to-Neumann operators follow from related estimates on the Laplace problem. The latter
are obtained following standard tools of elliptic problems, with special attention to the dependence
with respect to the boundary of the domain—since it stands for a variable of the time-evolution
problem—and to dimensionless parameters. Most of the material of this section is given with more
details and sharper estimates in [268, Ch. 2&3]. However, significant modifications have been made
so as to provide as simple proofs as possible.

Recall the (scaled) Dirichlet-to-Neumann operator is defined for sufficiently smooth data as

Gµ[εζ, βb]ψ = (∂zΦ− µ(ε∇ζ) · ∇xΦ)
∣∣
z=εζ

where Φ is the unique solution (see below) to µ∆xΦ+ ∂2zΦ = 0 in Ω = {(x, z) ∈ Rd+1 : −1 + βb < z < εζ},
Φ = ψ on Γtop = {(x, z) ∈ Rd+1 : z = εζ},
∂zΦ− µ(β∇b) · ∇xΦ = 0 on Γbot = {(x, z) ∈ Rd+1 : z = −1 + βb}.

(4.1)

In this section, we drop any reference to the time variable, which acts as a parameter. We always
assume thereafter the non-cavitation assumption:

Assumption 4.1. We have ζ, b ∈W 1,∞(Rd) and satisfy

∀x ∈ Rd, h(x) = 1 + εζ(x)− βb(x) ≥ h⋆ > 0.

4.1 Flattening the domain

It is convenient to change variables so as to rewrite the constant-coefficient Laplace equations in a

variable domain as variable-coefficient equations in a fixed domain; here the strip S def
= Rd×(−1, 0).

We choose here the most obvious diffeomorphism for simplicity, since we are not too concerned by
regularity issues. 22 Let us define

Σ :
S → Ω

(x, z) 7→
(
x , (1 + εζ(x)− βb(x))z + εζ(x)

) .

Of course this defines a diffeomorphism from the strip, S, to the fluid domain, Ω, by Assumption 4.1.
For sufficiently regular Φ, ψ,R, rbot satisfying µ∆xΦ+ ∂2zΦ = R in Ω,

Φ = ψ on Γtop,
∂zΦ− µ(β∇b) · ∇xΦ = rbot on Γbot,

(4.2)

we have that Φ
def
= Φ ◦ Σ, and R def

= R ◦ Σ satisfies
1
∂zσ

∇µ
x,z · P (Σ)∇µ

x,zΦ = R in Rd × (−1, 0),

Φ = ψ on Rd × {0},
ed+1 · P (Σ)∇µ

x,zΦ = rbot on Rd × {−1}.
(4.3)

22see [268] or [224] for more involved—regularizing—diffeomorphisms which are useful for obtaining optimal regu-
larity estimates. The latter ones are crucial when studying the well-posedness of the water waves problem, but not
so much for deriving asymptotic models since we allow losses of derivatives.
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where we denote ∇µ
x,z = (

√
µ∇, ∂z)⊤, ed+1 is the unit (upward) vector in the vertical direction,

σ(x, z)
def
= (1 + εζ(x)− βb(x))z + εζ(x) and

P (Σ)
def
=

(
(∂zσ) Idd −√

µ∇xσ

−√
µ∇⊤

xσ
1+µ|∇xσ|2

∂zσ

)
.

That the two problems are equivalent for sufficiently regular solutions can be straightforwardly
checked by chain rules. It also holds true for less regular, variational solutions, from which the
elliptic theory can be built on. To this aim, it is convenient to subtract the trace of the velocity
potential, ψ, to the solutions, so as to work with functions with value zero at the surface. Specifically
we introduce the following functional spaces: H1

0,top(Ω) the completion of D(Ω ∪ Γbot) in H1(Ω),

and H1
0,top(S) the completion of D(Rd × [−1, 0)) in H1(S). Notice that the above closures could

equivalently use the Beppo-Levi (semi) norm
∥∥•∥∥

H̊1

def
=
∥∥∇x,z•

∥∥
L2 thanks to Poincaré’s inequality:

for any ϕ ∈ D(Ω ∪ Γbot),

∥∥ϕ∥∥2
L2(Ω)

=

∫∫
Ω

|ϕ(x, z)|2 dz dx =

∫
Rd

∫ ϵζ(x)

−1+βb(x)

∣∣∣ ∫ εζ(x)

z

∂zϕ(x, z
′) dz′

∣∣∣2 dz dx
≤
(
sup
Rd

(1 + εζ − βb)

)2 ∥∥∂zϕ∥∥2L2(Ω)
. (4.4)

We shall also make use of the following trace formula:∣∣ϕ ∣∣
z=−1+βb

∣∣2
L2(Rd)

=

∫
Rd

(∫ ϵζ(x)

−1+βb(x)

∂zϕ(x, z) dz
)2

dx ≤
(
sup
Rd

(1 + εζ − βb)

)∥∥∂zϕ∥∥2L2(Ω)
. (4.5)

By a density argument, eq. (4.4) and eq. (4.5) hold for any ϕ ∈ H1
0,top(Ω), and obviously replacing

the domain Ω with the strip S. The latter is easily extended to ϕ ∈ H1(Ω) using a smooth truncation
function.

Definition 4.2 (Variational solutions). Let ψ ∈ H̊1(Rd) and ζ, b satisfying Assumption 4.1. We say

that Φ is a variational solution to eq. (4.1) if there exists Φ̃ ∈ H1
0,top(Ω) such that Φ = ψ + Φ̃ and

for any φ ∈ H1
0,top(Ω), ∫∫

Ω

∇µ
x,zΦ̃ · ∇µ

x,zφdx dz = −µ
∫∫

Ω

∇ψ · ∇xφdx dz.

Let additionally R ∈ L2(S). We say that Φ is a variational solution to eq. (4.3) with remainder

terms (∂zσ)R = ∇µ
x,z ·R and rbot = ed+1 ·R

∣∣
z=−1

if there exists Φ̃ ∈ H1
0,top(S) such that Φ = ψ+ Φ̃

and for any φ ∈ H1
0,top(S),∫∫

S
∇µ

x,zΦ̃ · P (Σ)∇µ
x,zφdx dz =

∫∫
S

(
R− P (Σ)∇µ

x,zψ
)
· ∇µ

x,zφdx dz.

In the formula above we identified x 7→ ψ(x) ∈ H̊1(Rd) and (x, z) 7→ ψ(x) ∈ H̊1(Ω) or H̊1(S).

Remark 4.3. We have specified a particular form of remainder terms because these are the ones
appearing in the proof of Proposition 4.5, below. We could treat in a similar way more general
remainder terms, which would then be useful to justify asymptotic models, as in [268]. We however
use a slightly different path, and Proposition 4.5 will be used in fine only with R = 0.

Remark 4.4 (Assumption on the bottom topography). In the following, we choose to work with
regular but not asymptotically flat topography, i.e. b ∈ Wn,∞(Rd). All the results below are valid
(with the same proof) for less regular but square-integrable b ∈ Hn(Rd), and may be refined to
b ∈ L∞(Rd) ∩ H̊n(Rd).
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4.2 The Laplace problem

The following result guarantees the existence and uniqueness of the above variational solutions,
consistency with respect to strong and classical solutions for sufficiently regular data, as well as
very useful regularity estimates. These results are not sharp; see [268, Sect. 2] for a much more
thorough analysis.

Proposition 4.5. Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0. We have the following.

i. For any (µ, ε, β) ∈ pSW and ζ, b ∈W 1,∞(Rd) satisfying Assumption 4.1 and any ψ ∈ H̊1(Rd),
there exists a unique variational solution, Φ, to eq. (4.1). Setting additionally R ∈ L2(S)d+1,
there exists a unique variational solution, Φ, to eq. (4.3). If R = 0, one has Φ = Φ ◦ Σ.
If, moreover, ζ, b ∈ W 2,∞(Rd), R ∈ H1(S)d+1 and ψ ∈ H̊2(Rd), then ∇x,zΦ ∈ H1(S) and Φ

is a strong solution to eq. (4.3), i.e. the identities hold in L2(S)× H̊1(Rd)× L2(Rd).

ii. LetM ≥ 0. There exists C > 0 such that for any (µ, ε, β) ∈ pSW and any ζ, b ∈W 1,∞(Rd) sat-
isfying Assumption 4.1 and

∣∣εζ∣∣
W 1,∞ +

∣∣βb∣∣
W 1,∞ ≤M , for any R ∈ L2(S)d+1, the variational

solution to eq. (4.3) satisfies∥∥∇µ
x,zΦ

∥∥
L2(S)

≤ C
(∥∥R∥∥

L2(S)
+

√
µ
∣∣∇ψ∣∣

L2(Rd)

)
.

iii. Let k ∈ N⋆,M ≥ 0. There exists Ck such that for any (µ, ε, β) ∈ pSW, ζ ∈ Hmax{1+k,2+s⋆}(Rd)
and b ∈W 1+k,∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

for any ψ ∈ H̊1+k(Rd) and R ∈ L2(S)d+1 such that ΛkR ∈ L2(S)d+1, the strong solution to
eq. (4.3) satisfies Λk∇µ

x,zΦ ∈ L2(S) and∥∥Λk∇µ
x,zΦ

∥∥
L2(S)

≤ Ck
(∥∥ΛkR∥∥

L2(S)
+

√
µ
∣∣∇ψ∣∣

Hk

)
+ Ck

〈(∣∣ε∇ζ∣∣
Hk +

∣∣β∇b∣∣
Wk,∞

)(∥∥Λ1+s⋆R
∥∥
L2(S)

+
√
µ
∣∣∇ψ∣∣

H1+s⋆

)〉
k>1+s⋆

.

Moreover, for k ≥ 1 + s⋆ and if R = 0, it holds that Φ ∈ C2(S) and is a classical solution to
eq. (4.3), i.e. the identities hold pointwise everywhere.

Proof. The bilinear form

(φ1, φ2) 7→
∫∫

Ω

µ(∇xφ1) · (∇xφ2) + (∂zφ1)(∂zφ2) dx dz

is continuous and coercive on the Hilbert space (H1
0,top(Ω),

∥∥•∥∥
H1) by Poincaré’s inequality (4.4).

Using that (x, z) 7→ ψ(x) ∈ H̊1(Ω), the linear form

φ 7→ −
∫∫

Ω

µ∇ψ · ∇xφdx dz,

is well-defined and continuous. Hence the existence and uniqueness of a variational solution to
eq. (4.2) follows by Lax–Milgram theorem (or Riesz representation Lemma).

The existence and uniqueness of a variational solution to eq. (4.3) is obtained in the same way,
using that P (Σ) is coercive thanks to Assumption 4.1.

In order to check that the variational solutions correspond, namely that Φ = Φ◦Σ when R = 0,
it suffices to change variables in the integrals, since (∇µ

x,zΦ) ◦ Σ = (J−1
Σ,µ)

⊤∇µ
x,zΦ, and

P (Σ) = det(JΣ,µ)(J
−1
Σ,µ)(J

−1
Σ,µ)

⊤ with (J−1
Σ,µ)

⊤ =

(
Idd

−√
µ∇xσ

∂zσ

0⊤ 1
∂zσ

)
.



4. The Laplace problem and Dirichlet-to-Neumann operator 32

The estimate of item ii is a obtained by using the test function φ = Φ̃ in the variational identity,
and the uniform coercivity of P (Σ).

Now we prove that Φ̃ ∈ H2(S) if ψ ∈ H̊2(Rd) and ζ, b ∈W 2,∞(Rd). For h > 0 and e ∈ Rd, let

Φ̃he
def
= (DheΦ̃) : (x, z) 7→

Φ̃(x+ he, z)− Φ̃(x, z)

h
.

We have, using the test function −D−heDheΦ̃ ∈ H1
0,top(S) ,∫∫

S
∇µ

x,zΦ̃he · P (Σ)∇µ
x,zΦ̃he dx dz = +

∫∫
S
Dhe

(
R− P (Σ)∇µ

x,zψ
)
· ∇µ

x,zΦ̃he dz dx

−
∫∫

S

[
Dhe, P (Σ)

]
∇µ

x,zΦ̃ · ∇µ
x,zΦ̃he dx dz.

Using the previous estimate yields∥∥∇µ
x,zΦ̃he

∥∥
L2(S)

≤ C(h−1
⋆ ,
∣∣εζ∣∣

W 2,∞ ,
∣∣βb∣∣

W 2,∞)
(∣∣Λ1R

∣∣
L2(S)

+
√
µ
∣∣∇ψ∣∣

H1(Rd)

)
,

were we used that for any v ∈ H1(Rd),
∣∣vhe∣∣L2(Rd)

=
∣∣∫ 1

0
e · ∇v(x+ hre) dr

∣∣
L2(Rd)

≤
∣∣e · ∇v∣∣

L2(Rd)
,

by Minkowski’s inequality. By Poincaré’s inequality, we obtain a bound on
∥∥Φ̃he∥∥H1(S)

which is

independent of h. Hence since H1(S) is a reflexive Banach space, there exists Ψ ∈ H1(S) and a

subsequence (Φ̃hne)n with hn ↘ 0 such that Φhne ⇀ Ψ . By uniqueness of the limit in L2(S), we
deduce that Ψ = e · ∇xΦ̃ ∈ H1(S). The limit satisfies the inequality above, and the estimate of
item iii holds for k = 1 and ζ, b ∈ W 2,∞(Rd). In order to control the derivative in the vertical
variable, we decompose for any φ ∈ D(S),∫∫

S
∇µ

x,zΦ̃ · P (Σ)∇µ
x,zφdx dz =

∫∫
S

1 + µ|∇xσ|2

∂zσ
(∂zΦ̃)(∂zφ) +∇µ

x,zΦ̃ · P0(Σ)∇µ
x,zφdx dz.

Thanks to the estimate above, we may integrate by parts in the horizontal variable and deduce that∫∫
S

1 + µ|∇xσ|2

∂zσ
(∂zΦ̃)(∂zφ) dx dz =

∫∫
S
Fφdz dx

with F = ∇µ
x,z ·

(
P0(Σ)∇µ

x,zΦ̃−R+ P (Σ)∇µ
x,zψ

)
∈ L2(S). Hence 1+µ|∇xσ|2

∂zσ
∂zΦ̃ is weakly differ-

entiable in the vertical variable and ∂z

(
1+µ|∇xσ|2

∂zσ
∂zΦ̃

)
∈ L2(S). By the positivity and regularity of

1+µ|∇xσ|2
∂zσ

, we deduce that ∂zΦ̃ is weakly differentiable in the vertical variable and ∂2z Φ̃ ∈ L2(S). In
particular, the Laplace equation holds in L2(S). By the trace formula (4.5), the boundary condition
in eq. (4.3) is well-defined (and satisfied) in L2(Rd).

Let us now estimate higher order derivatives, by induction on k ∈ N. For k ≥ 2, let us define
k ∈ (N⋆)d a multi-index such that |k| = k, and ∂k = ∂k1

x1
∂k2
x2
. Using that Φ is a strong solution to

eq. (4.3), we may differentiate the identities and deduce that ∂kΦ is a distributional solution to
∇x,z · Pµ(Σ)∇x,zΦk = ∇µ

x,z ·
(
∂kR− [∂k, P (Σ)]∇µ

x,zΦ
)

in Rd × (−1, 0),
Φk = ∂kψ on Rd × {0},
ed+1 · Pµ(Σ)∇x,zΦk = ed+1 ·

(
∂kR− [∂k, P (Σ)]∇µ

x,zΦ
)

on Rd × {−1}.
(4.6)

Using the previously obtained estimate of item ii (i.e. with k = 0) and using the product and
commutator estimates in Appendix II, we obtain that the variational solution satisfies∥∥∇µ

x,zΦk

∥∥
L2 ≤ C

(∥∥Λk−1∇µ
x,zΦ

∥∥
L2(S)

+
∥∥ΛkR∥∥

L2(S)
+
√
µ
∣∣∇ψ∣∣

Hk

)
+ C

〈(∣∣ε∇ζ∣∣
Hk +

∣∣β∇b∣∣
Wk,∞

)∥∥Λs⋆∇µ
x,zΦ

∥∥
L2(S)

〉
k>1+s⋆
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with C = C(h−1
⋆ ,
∣∣εζ∣∣

H2+s⋆
,
∣∣βb∣∣

W 2+s⋆,∞). The desired estimates follow by induction, and one

readily observes that the distributional and variational solutions must coincide, i.e. Φk = ∂kΦ.
To conclude, we notice that for k ≥ 1 + s⋆ and if R = 0, using that Φ is a strong solution and

the aforementioned decomposition and the trace formula (4.5), one obtains easily ∂2zΦ ∈ C0(S), so
that Φ ∈ C2(S), and the Laplace equation holds in a classical sense.

4.3 The Dirichlet-to-Neumann operator

We now apply what we have learned on the Laplace problem, to the Dirichlet-to-Neumann operator.
We start with two handy identities.

Lemma 4.6. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd)
satisfying Assumption 4.1 and ψ ∈ H̊2(Rd). Then we have

Gµ[εζ, βb]ψ = −µ∇ · (hu)

where h = 1 + εζ − βb and

u =
1

h

∫ εζ

−1+βb

∇xΦdz =
1

h

∫ 0

−1

(∂zσ)∇xΦ− (∇xσ)∂zΦdz,

recalling that Φ is the (strong) solution to eq. (4.1), Φ = Φ ◦ Σ where Σ(x, z) = (x, σ(x, z)) and

σ(x, z)
def
= (1 + εζ(x)− βb(x))z + εζ(x).

Proof. Using that Φ is a strong solution to eq. (4.1), we test the equation against φ(x, z) = φ(x)
with φ ∈ D(Rd), and infer

∫
Ω
(µ∆xΦ+ ∂2zΦ)φ = 0. It follows, using Green’s identity,

0 = −
∫
Ω

µ(∇xΦ) · (∇xφ) + (∂zΦ)(∂zφ) dz dx+

∫
Rd

((∂zΦ− µ(ε∇ζ) · ∇xΦ)φ)
∣∣
z=εζ

dx

= −µ
∫
Rd

(∫ εζ

−1+βb

∇xΦdz

)
· ∇xφdx+

∫
Rd

(Gµ[εζ, βb]ψ)φdx,

and the result follows from integration by parts. The identity with Φ follows by changing variables
on the integral above.

Lemma 4.7. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd) satisfying
Assumption 4.1 and ψ ∈ H̊2(Rd). Then Φ the (strong) solution to eq. (4.3) with R = 0 satisfies

Φ+ µℓ[εζ, βb]Φ = ψ

where, denoting h = 1 + εζ − βb and σ = hz + εζ,

ℓ[εζ, βb]Φ(·, z) def
=

∫ 0

z

(
h(∇xσ) · (∇xΦ)− |∇xσ|2(∂zΦ)

)
(·, z′) dz′

− h

∫ 0

z

∫ z′

−1

∇x ·
(
(∂zσ)(∇xΦ)− (∇xσ)(∂zΦ)

)
(·, z′′) dz′′ dz′.

Proof. Denoting Ψ = Φ + µℓ[εζ, βb]Φ, we have that Ψ, ∂zΨ, ∂
2
zΨ ∈ L2(S). By direct algebraic

computations, one checks that

ℓ[εζ, βb]Φ = −z (β∇b) · (h∇xΦ− (β∇b)∂zΦ)
∣∣
z=−1

− h

∫ 0

z

∫ z′

−1

∇x,z · P1(Σ)∇x,zΦ(·, z′′) dz′′ dz′

with P1(Σ) =

(
(∂zσ) Idd −∇xσ

−∇⊤
xσ

|∇xσ|2
∂zσ

)
. Using P (Σ) = 1

h

(
Od 0
0⊤ 1

)
+ µP1(Σ), and that Φ is a strong

solution to eq. (4.3), one readily checks that ∂2zΨ = 0 on S, ∂zΨ
∣∣
z=−1

= 0, and Ψ |
z=0

= ψ.
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Proposition 4.8. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0 and k ∈ N⋆. Then there exists
C > 0 such that for any (µ, ε, β) ∈ pSW, any ζ ∈ Hmax{k+3,1+s⋆}(Rd) and b ∈Wmax{k+3,1+s⋆}(Rd)
satisfying Assumption 4.1 and ∣∣εζ∣∣

H1+s⋆
+
∣∣βb∣∣

W 1+s⋆,∞ ≤M,

any Ψ ∈ H̊1(S) such that Λk+2∇x,zΨ ∈ L2(S), one has Λkℓ[εζ, βb]Ψ ∈ H1(S) and∥∥Λk∇x,z

(
ℓ[εζ, βb]Ψ

)∥∥
L2(S)

≤ C
∥∥Λk+2∇x,zΨ

∥∥
L2(S)

+ C
〈(∣∣εζ∣∣

Hk+3 +
∣∣βb∣∣

Wk+3,∞

)∥∥Λs⋆∇x,zΨ
∥∥
L2(S)

〉
k+2>s⋆

.

Proof. The result follows directly from the definition and product estimates in Appendix II.

It is now simple to deduce approximate expressions of u with arbitrary precision in terms of
powers of µ.

Proposition 4.9. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0, k ∈ N⋆, n ∈ {0, 1, 2}. There
exists Cn such that the following holds. For any (µ, ε, β) ∈ pSW, any ζ ∈ Hmax{k+2n+1,2+s⋆}(Rd)
and b ∈Wmax{k+2n+1,2+s⋆},∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the operator

H̊k+1(Rd) → Hk(Rd)
ψ 7→ u = 1

1+εζ−βb
∫ εζ
−1+βb

∇xΦ(·, z) dz

where Φ is the unique solution to eq. (4.1), is well-defined and continuous, and the following holds.

• If n = 0, then for any ψ ∈ H̊k+1(Rd) and denoting h = 1 + εζ − βb one has∣∣hu∣∣
Hk ≤ C0

(∣∣∇ψ∣∣
Hk +

〈(∣∣εζ∣∣
Hk+1 +

∣∣βb∣∣
Wk+1,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

• If n = 1, then for any ψ ∈ H̊k+3(Rd)∣∣hu− h∇ψ
∣∣
Hk ≤ C1 µ

(∣∣∇ψ∣∣
Hk+2 +

〈(∣∣εζ∣∣
Hk+3 +

∣∣βb∣∣
Wk+3,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
.

• If n = 2, then for any ψ ∈ H̊k+5(Rd)∣∣hu− h∇ψ + µhT [h, β∇b]∇ψ
∣∣
Hk

≤ C2 µ
2
(∣∣∇ψ∣∣

Hk+4 +
〈(∣∣εζ∣∣

Hk+5 +
∣∣βb∣∣

Wk+5,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+4>1+s⋆

)
,

where we define

T [h, β∇b]u def
=

−1

3h
∇(h3∇·u)+ 1

2h

(
∇
(
h2(β∇b) ·u

)
−h2(β∇b)∇·u

)
+(β∇b ·u)(β∇b). (4.7)

Proof. By Lemma 4.6, we have the identity

hu =

∫ εζ

−1+βb

∇xΦdz =

∫ 0

−1

(∂zσ)∇xΦ− (∇xσ)∂zΦ dz,
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where Φ is the solution to eq. (4.3) with R = 0. The result for n = 0 follows from product estimates
in Appendix II and Proposition 4.5. Plugging above the identity in Lemma 4.7, we obtain

hu = h∇ψ − µ

∫ 0

−1

(∂zσ)∇x(ℓ[εζ, βb]Φ)− (∇xσ)∂z(ℓ[εζ, βb]Φ) dz.

The result for n = 1 is deduced, using additionally Proposition 4.8. Plugging again the identity in
Lemma 4.7 in the identity above yields the result for n = 2, using that

ℓ[εζ, βb]ψ =

∫ 0

z

h((1 + z′)∇h+ β∇b) · (∇ψ) dz′ − h

∫ 0

z

∫ z′

−1

∇ · (h∇ψ) dz′′ dz′

= (z +
z2

2
)h2∇ · ∇ψ − zh(β∇b) · (∇ψ)

and hence, after tedious computations,∫ 0

−1

h∇x(ℓ[εζ, βb]ψ)− (∇xσ)∂z(ℓ[εζ, βb]ψ) dz = hT [h, β∇b]∇ψ.

This concludes the proof.

The following result is an obvious consequence of Proposition 4.9 and the identity of Lemma 4.6.

Proposition 4.10. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0, k ∈ N⋆, n ∈ {0, 1, 2}. There
exists Cn such that the following holds. For any (µ, ε, β) ∈ pSW, any ζ ∈ Hmax{k+2n+1,2+s⋆}(Rd)
and b ∈Wmax{k+2n+1,2+s⋆},∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the operator

Gµ[εζ, βb] : H̊k+1(Rd) → Hk−1(Rd)
ψ 7→ (∂zΦ− µ(ε∇ζ) · ∇xΦ)

∣∣
z=εζ

where Φ is the unique solution to eq. (4.1), is well-defined and continuous, and the following holds.

• If n = 0, then for any ψ ∈ H̊k+1(Rd)∣∣ 1
µ
Gµ[εζ, βb]ψ

∣∣
Hk−1 ≤ C0

(∣∣∇ψ∣∣
Hk +

〈(∣∣εζ∣∣
Hk+1 +

∣∣βb∣∣
Wk+1,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

• If n = 1, then for any ψ ∈ H̊k+3(Rd)∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ · ((1 + εζ − βb)∇ψ)

∣∣
Hk−1

≤ C1 µ
(∣∣∇ψ∣∣

Hk+2 +
〈(∣∣εζ∣∣

Hk+3 +
∣∣βb∣∣

Wk+3,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
.

• If n = 2, then for any ψ ∈ H̊k+5(Rd) , denoting h = 1 + εζ − βb and T as in eq. (4.7)∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ · (h∇ψ)− µ∇ ·

(
hT [h, β∇b]∇ψ

)∣∣
Hk−1

≤ C2 µ
2
(∣∣∇ψ∣∣

Hk+4 +
〈(∣∣εζ∣∣

Hk+5 +
∣∣βb∣∣

Wk+5,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+4>1+s⋆

)
.

The strategy for deriving asymptotic models for the water waves equations, eq. (2.7), is now
fairly obvious: we simply plug the truncated expansion at the desired order (in terms of powers of
µ) in the system, and withdraw any negligible contribution. The result above allows to rigorously
justifies such an approximation in the sense of consistency. The first-order system we obtain this
way is the so-called Saint-Venant system, studied in Section 5. One can obtain at next order the
Green-Naghdi system, studied in Section 8.
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4.4 Improved “fully dispersive” estimates

In this section we refine the results obtained in Section 4.3 so that all the expansions are exact at
the linear level (i.e. if β = ε = 0). Our first task is to study the inverse of the operator Id+µℓ0
where

ℓ0Φ(·, z)
def
= −

∫ 0

z

∫ z′

−1

∆xΦ(·, z′′) dz′′ dz′.

Lemma 4.11. For any d ∈ N⋆, µ > 0, the following holds. For any F ∈ H1
0,top(S), there exists a

unique Φ0 ∈ H1
0,top(S) solution to

Φ0 + µℓ0Φ0 = F,

which we denote Φ0
def
= (Id+µℓ0)

−1F ; and one has∥∥∇µ
x,zΦ0

∥∥
L2(S)

≤
∥∥∂zF∥∥L2(S)

.

Moreover, for any k ∈ N, if ΛkF ∈ H1
0,top(S), then Λk(Id+µℓ0)

−1F = (Id+µℓ0)
−1ΛkF ∈ H1

0,top(S).
For any ψ ∈ H̊1(Rd),

Φ0(·, z) =
cosh(

√
µ|D|(z + 1))

cosh(
√
µ|D|)

ψ

is the unique Φ0 ∈ H̊1(S) solution to Φ0 + µℓ0Φ0 = ψ, identifying x 7→ ψ(x) ∈ H̊1(Rd) and
(x, z) 7→ ψ(x) ∈ H̊1(S).

Proof. It is straightforward to check that Φ0 is a (variational, that is in the sense of Definition 4.2)
solution to 

µ∆xΦ0 + ∂2zΦ0 = ∂2zF in S,
Φ0 = 0 on Rd × {0},
∂zΦ0 = ∂zF on Rd × {−1}.

While the above could be explicitly solved using Fourier multipliers, it is simpler to refer to Propo-
sition 4.5 with εζ = βb = 0 and R = (0, ∂zF ), ψ = 0. It is straightforward to check that the
multiplicative constant therein can be set to C = 1.

For the second part of the statement, existence and uniqueness follows as above, and we do solve
in Fourier space the corresponding Laplace problem (as in Section 2.3), i.e.

µ∆xΦ0 + ∂2zΦ0 = 0F in S,
Φ0 = ψ on Rd × {0},
∂zΦ0 = 0 on Rd × {−1}.

to obtain the desired expression.

Our results will be deduced from the following key identity.

Lemma 4.12. Under the assumptions of Lemma 4.7, Φ the (strong) solution to eq. (4.3) with R = 0
satisfies

(Id+µℓ0)(Φ− Φ0) = −µ(ℓ[εζ, βb]− ℓ0)Φ

where Φ0(·, z) =
cosh(

√
µ|D|(z+1))

cosh(
√
µ|D|) ψ and, denoting h = 1 + εζ − βb and σ = hz + εζ,

ℓ[εζ, βb]Φ(·, z) def
=

∫ 0

z

(
h(∇xσ) · (∇xΦ)− |∇xσ|2(∂zΦ)

)
(·, z′) dz′

− h

∫ 0

z

∫ z′

−1

∇x ·
(
(∂zσ)(∇xΦ)− (∇xσ)(∂zΦ)

)
(·, z′′) dz′′ dz′.
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Proof. The result is an obvious consequence of the identities

Φ+ µℓ[εζ, βb]Φ = ψ = Φ0 + µℓ0Φ0.

proved respectively in Lemma 4.7 and Lemma 4.11.

We now extend Proposition 4.8.

Proposition 4.13. Under the assumptions and using the notations of Proposition 4.8, one has∥∥Λk∇x,z

(
ℓ[εζ, βb]Ψ − ℓ0Ψ

)∥∥
L2(S)

≤ C
(∣∣εζ∣∣

H1+s⋆
+
∣∣βb∣∣

W 1+s⋆,∞

)∥∥Λk+2∇x,zΨ
∥∥
L2(S)

+ C
〈(∣∣εζ∣∣

Hk+3 +
∣∣βb∣∣

Wk+3,∞

)∥∥Λs⋆∇x,zΨ
∥∥
L2(S)

〉
k+2>s⋆

.

Proof. The result follows as for Proposition 4.8 from product estimates in Appendix II, and using
the cancellation stemming from the fact that ℓ0 = ℓ[0, 0].

It is now simple to deduce the desired approximate expressions of u.

Proposition 4.14. Under the assumptions and using the notations of Proposition 4.9, one has

• if n = 1,

∣∣hu− h
tanh(

√
µ|D|)√

µ|D| ∇ψ
∣∣
Hk ≤ C1 µ

((∣∣εζ∣∣
H2+s⋆

+
∣∣βb∣∣

W 2+s⋆,∞

)∣∣∇ψ∣∣
Hk+2

+
〈(∣∣εζ∣∣

Hk+3 +
∣∣βb∣∣

Wk+3,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
;

• if n = 2,∣∣hu− h
tanh(

√
µ|D|)√

µ|D| ∇ψ + µhT [h, β∇b]∇ψ +
µ

3
h∇∆ψ

∣∣
Hk

≤ C2 µ
2
((∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞

)∣∣∇ψ∣∣
Hk+4

+
〈(∣∣εζ∣∣

Hk+5 +
∣∣βb∣∣

Wk+5,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+4>1+s⋆

)
.

Proof. Recall that by Lemma 4.6, we have the identity

hu =

∫ εζ

−1+βb

∇xΦdz =

∫ 0

−1

(∂zσ)∇xΦ− (∇xσ)∂zΦdz,

=

∫ 0

−1

(∂zσ)∇x(Φ− Φ0)− (∇xσ)∂z(Φ− Φ0) dz +

∫ 0

−1

(∂zσ)∇xΦ0 − (∇xσ)∂zΦ0 dz

where Φ is the solution to eq. (4.3) with R = 0, and Φ0 =
cosh(

√
µ|D|(z+1))

cosh(
√
µ|D|) ψ. Plugging above the

identity in Lemma 4.12, we obtain

hu = hu0 − µ

∫ 0

−1

(∂zσ)∇xΦ≥1 − (∇xσ)∂zΦ≥1 dz.

with hu0
def
=
∫ 0

−1
(∂zσ)∇xΦ0 − (∇xσ)∂zΦ0 dz and Φ≥1

def
= (Id+µℓ0)

−1(ℓ[εζ, βb] − ℓ0)Φ. By direct
algebra, we find

hu0 = h
tanh(

√
µ|D|)√

µ|D| ∇ψ + (ε∇ζ)(Id− tanh(
√
µ|D|)√

µ|D| )ψ − (β∇b)( 1
cosh(

√
µ|D|) −

tanh(
√
µ|D|)√

µ|D| )ψ.
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The result for n = 1 is deduced, using product estimates in Appendix II, Proposition 4.5 to control
Φ, and Lemma 4.11 and Proposition 4.13 to control Φ1. The result for n = 0 follows from product
estimates in Appendix II and Proposition 4.5. Plugging once more the identity in Lemma 4.12, we
find

hu = hu0 + µhu1 − µ

∫ 0

−1

(∂zσ)∇xΦ2 − (∇xσ)∂zΦ2 dz.

with hu1
def
=
∫ 0

−1
(∂zσ)∇xΦ1−(∇xσ)∂zΦ1 dz where Φ1

def
= (Id+µℓ0)

−1(ℓ[εζ, βb]−ℓ0)Φ0, and denoting

Φ≥2
def
=
(
(Id+µℓ0)

−1(ℓ[εζ, βb] − ℓ0)
)(
(Id+µℓ0)

−1(ℓ[εζ, βb] − ℓ0)
)
Φ. The contribution of the latter

is estimated by using once gain Lemma 4.11 and Proposition 4.13. The contribution from hu1 is
deduced from Φ1 = (ℓ[εζ, βb]− ℓ0)ψ +O(µ), using as in Proposition 4.9∫ 0

−1

h∇x(ℓ[εζ, βb]ψ)− (∇xσ)∂z(ℓ[εζ, βb]ψ) dz = hT [h, β∇b]∇ψ.

and computing∫ 0

−1

h∇x(ℓ0ψ)− (∇xσ)∂z(ℓ0ψ) dz =
−1

3
∇(∇ · ∇ψ) + (∆ψ)

(1
6
∇h− ε

2
∇ζ),

where the last term compensates the corresponding contribution in hu0. The proof is complete.

The following result is an obvious consequence of Proposition 4.14 and the identity of Lemma 4.6.

Proposition 4.15. Under the assumptions and using the notations of Proposition 4.9, one has

• if n = 1, then∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
(1 + εζ − βb)

tanh(
√
µ|D|)√

µ|D| ∇ψ
)∣∣
Hk−1

≤ C1 µ
((∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞

)∣∣∇ψ∣∣
Hk+2

+
〈(∣∣εζ∣∣

Hk+3 +
∣∣βb∣∣

Wk+3,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
;

• if n = 2, then∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
h
tanh(

√
µ|D|)√

µ|D| ∇ψ + µhT [h, β∇b]∇ψ +
µ

3
h∇∆ψ

)∣∣
Hk−1

≤ C2 µ
2
((∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞

)∣∣∇ψ∣∣
Hk+4

+
〈(∣∣εζ∣∣

Hk+5 +
∣∣βb∣∣

Wk+5,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+4>1+s⋆

)
.

Remark 4.16. • It is remarkable that all the results we obtain in this section improve the ones
in Section 4.3 (in terms of asymptotic precision) without asking extra regularity on the data.
In fact, using the regularizing effects of the operator (Id+µℓ0)

−1, it is conceivable that the
same results hold with less regular data.

• While we do not display explicitly a formula for the velocity potential inside the fluid domain,
the proof offers such (approximate) expression, for variables in the flat strip. A nice compact
formula is exhibited in [177], namely

Φ(·, z) = ψ + (1 + εζ − βb)2
( cosh(√µ|D|(z+1))

cosh(
√
µ|D|) − Id)ψ +O(µ2(ε+ β))

which directly echoes (and refines) the widely used weakly dispersive approximation,

Φ(·, z) = ψ − µ(1 + εζ − βb)2
(z + 1)2

2
∆ψ +O(µ2),

as well as the linear approximation, eq. (2.5).
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4.5 Dirichlet-to-Dirichlet, Neumann-to-Dirichlet, Neumann-to-Neumann

Section 4 has been so far dedicated to the Dirichlet-to-Neumann operator, since it appears in the
water waves problem for homogeneous fluids, eq. (2.2). When considering interfaces between fluids
(typically with different densities), as in eq. (3.1), then other operators are involved, which are the
subject of this section. As always, the results are not sharp in terms of regularity. We have aimed
at conciseness, borrowing as much as possible from the study of the Dirichlet-to-Neumann operator.

4.5.1 The Dirichlet-to-Dirichlet operator

We refer as the Dirichlet-to-Dirichlet operator the following:

GµD2D[εζ, βb]ψ = Φ
∣∣
z=−1+βb

where Φ is the unique solution to eq. (4.1), which we recall for convenience: µ∆xΦ+ ∂2zΦ = 0 in Ω = {(x, z) ∈ Rd+1 : −1 + βb < z < εζ},
Φ = ψ on Γtop = {(x, z) ∈ Rd+1 : z = εζ},
∂zΦ− µ(β∇b) · ∇xΦ = 0 on Γbot = {(x, z) ∈ Rd+1 : z = −1 + βb}.

(4.8)

We follow the strategy in Section 4.3 for the Dirichlet-to-Neumann operator, with the help of
the following obvious identity:

Lemma 4.17. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd)
satisfying Assumption 4.1 and ψ ∈ H̊2(Rd). Then we have

GµD2D[εζ, βb]ψ = ψ −
∫ εζ

−1+βb

∂zΦdz = ψ −
∫ 0

−1

∂zΦdz,

where Φ is the (strong) solution to eq. (4.8) and Φ = Φ ◦ Σ where Σ(x, z) = (x, σ(x, z)) and

σ(x, z)
def
= (1 + εζ(x)− βb(x))z + εζ(x).

Proposition 4.18. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0, k ∈ N⋆, n ∈ {0, 1, 2}, and put
m = max({k + 2n+ 1, k + 1, 2 + s⋆}). There exists Cn > 0 such that the following holds. For any
(µ, ε, β) ∈ pSW, any ζ ∈ Hm(Rd) and b ∈Wm,∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the operator

GµD2D[εζ, βb] :
H̊k+1(Rd) → H̊k(Rd)

ψ 7→ Φ
∣∣
z=−1+βb

where Φ is the unique solution to eq. (4.8), is well-defined and continuous, and the following holds.

• If n = 0, then for any ψ ∈ H̊k+1(Rd)∣∣GµD2D[εζ, βb]ψ − ψ
∣∣
Hk ≤ C0

√
µ
(∣∣∇ψ∣∣

Hk +
〈(∣∣εζ∣∣

Hk+1 +
∣∣βb∣∣

Wk+1,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

• If n = 1, then for any ψ ∈ H̊k+2(Rd)∣∣GµD2D[εζ, βb]ψ−ψ
∣∣
Hk ≤ C1 µ

(∣∣∇ψ∣∣
Hk+1 +

〈(∣∣εζ∣∣
Hk+2 +

∣∣βb∣∣
Wk+2,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+1>1+s⋆

)
.

• If n = 2, then for any ψ ∈ H̊k+4(Rd)∣∣GµD2D[εζ, βb]ψ −
(
ψ + µ 1

2h
2∇ · ∇ψ − µh(β∇b) · (∇ψ)

)∣∣
Hk

≤ C2 µ
2
(∣∣∇ψ∣∣

Hk+3 +
〈(∣∣εζ∣∣

Hk+4 +
∣∣βb∣∣

Wk+4,∞

)∣∣∇ψ∣∣
H1+s⋆

〉
k+3>1+s⋆

)
.
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Proof. The result for n = 0 follows immediately from Proposition 4.5 (with R = 0) and Cauchy-
Schwarz inequality in Lemma 4.17. Now, using the identity in Lemma 4.7 yields

GµD2D[εζ, βb]ψ − ψ = µ

∫ 0

−1

∂z(ℓ[εζ, βb]Φ) dz

and hence ∣∣GµD2D[εζ, βb]ψ − ψ
∣∣
Hk ≤ µ

∥∥Λk∂zℓ[εζ, βb]Φ∥∥L2(S)
,

where we used Cauchy-Schwarz inequality in the vertical variable. The result for n = 1 is deduced
from Proposition 4.8 (or rather a slightly improved version, taking into account that only the vertical
derivative is involved).

Plugging again the identity in Lemma 4.7 in the identity above yields

GµD2D[εζ, βb]ψ − ψ = µ

∫ 0

−1

∂z
(
ℓ[εζ, βb](ψ − µℓ[εζ, βb]Φ)

)
dz

and the result for n = 2 follows, using Proposition 4.8 and the identity

∂z
(
ℓ[εζ, βb]ψ

)
= (1 + z)h2∇ · ∇ψ − h(β∇b) · (∇ψ) .

This concludes the proof.

4.5.2 The Neumann-to-Neumann operator

We refer as the Neumann-to-Neumann operator the following:

GµN2N[εζ, βb]ϖ = (∂zΦ− µ(ε∇ζ) · ∇xΦ)
∣∣
z=εζ

where Φ is the unique solution to µ∆xΦ+ ∂2zΦ = 0 in Ω = {(x, z) ∈ Rd+1 : −1 + βb < z < εζ},
Φ = 0 on Γtop = {(x, z) ∈ Rd+1 : z = εζ},
∂zΦ− µ(β∇b) · ∇xΦ = ϖ on Γbot = {(x, z) ∈ Rd+1 : z = −1 + βb}.

(4.9)

We can solve eq. (4.9) in the same way we solved eq. (4.8), and in particular introduce the Laplace
problem on the flattened domain:

1
∂zσ

∇µ
x,z · P (Σ)∇µ

x,zΦ = 0 in Rd × (−1, 0),

Φ = 0 on Rd × {0},
ed+1 · P (Σ)∇µ

x,zΦ = ϖ on Rd × {−1}.
(4.10)

where we denote as above σ(x, z)
def
= (1 + εζ(x)− βb(x))z + εζ(x) and

P (Σ)
def
=

(
(∂zσ) Idd −√

µ∇xσ

−√
µ∇⊤

xσ
1+µ|∇xσ|2

∂zσ

)
.

Definition 4.19 (Variational solutions). Let ϖ ∈ L2(Rd) and ζ, b satisfying Assumption 4.1. We say
that Φ ∈ H1

0,top(Ω) is a variational solution to eq. (4.9) if for any φ ∈ H1
0,top(Ω),∫∫

Ω

∇µ
x,zΦ · ∇µ

x,zφ
∣∣
z=−1+βb

dz dx = −
∫
Rd

ϖφdx =

∫∫
Ω

ϖ∂zφdz dx.

We say that Φ ∈ H1
0,top(S) is a variational solution to eq. (4.10) for any φ ∈ H1

0,top(S),∫∫
S
∇µ

x,zΦ · P (Σ)∇µ
x,zφ

∣∣
z=−1

dx dz = −
∫
Rd

ϖφdx =

∫∫
S
ϖ∂zφdz dx.
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We can then follow the proof of Proposition 4.5 with straightforward adjustments to obtain the
following counterpart.

Proposition 4.20. Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0. We have the following.

i. For any (µ, ε, β) ∈ pSW and ζ, b ∈W 1,∞(Rd) satisfying Assumption 4.1 and any ϖ ∈ L2(Rd),
there exists a unique variational solution, Φ, to eq. (4.9), a unique variational solution, Φ, to
eq. (4.10); and Φ = Φ ◦ Σ.
If, moreover, ζ, b ∈ W 2,∞(Rd), ϖ ∈ H1(Rd), then one has Φ ∈ H2(S) and Φ is a strong
solution to eq. (4.3), i.e. the identities hold in L2(S)×H1(Rd)×H1(Rd).

ii. Let M ≥ 0. There exists C > 0 such that for any (µ, ε, β) ∈ pSW and any ζ, b ∈ W 1,∞(Rd)
satisfying Assumption 4.1 and

∣∣εζ∣∣
W 1,∞+

∣∣βb∣∣
W 1,∞ ≤M , the variational solution to eq. (4.10)

satisfies ∥∥∇µ
x,zΦ

∥∥
L2(S)

≤ C
∣∣ϖ∣∣

L2(Rd)
.

iii. Let k ∈ N⋆,M ≥ 0. There exists Ck such that for any (µ, ε, β) ∈ pSW, ζ ∈ Hmax{1+k,2+s⋆}(Rd)
and b ∈W 1+k,∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

for any ϖ ∈ Hk(Rd), the strong solution to eq. (4.10) satisfies ΛkΦ ∈ H1(S) and∥∥Λk∇µ
x,zΦ

∥∥
L2(S)

≤ Ck

(∣∣ϖ∣∣
Hk +

〈(∣∣ε∇ζ∣∣
Hk +

∣∣β∇b∣∣
Wk,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

Moreover, for k ≥ 1 + s⋆, it holds that Φ ∈ C2(S) and is a classical solution to eq. (4.10),
i.e. the identities hold pointwise everywhere.

We may then proceed with the counterpart to Lemma 4.6 and Lemma 4.7.

Lemma 4.21. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd)
satisfying Assumption 4.1 and ϖ ∈ H1(Rd). Then we have

GµN2N[εζ, βb]ϖ = ϖ − µ∇ · (hu)

where h = 1 + εζ − βb and

u =
1

h

∫ εζ

−1+βb

∇xΦdz =
1

h

∫ 0

−1

(∂zσ)∇xΦ− (∇xσ)∂zΦdz,

where Φ is the (strong) solution to eq. (4.9), and Φ = Φ ◦ Σ.

Lemma 4.22. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd) satisfying
Assumption 4.1 and ϖ ∈ H1(Rd). Then Φ the (strong) solution to eq. (4.10) satisfies

Φ+ µℓ[εζ, βb]Φ = hϖz

where h = 1 + εζ − βb and ℓ is defined as in Lemma 4.7:

ℓ[εζ, βb]Φ(·, z) def
=

∫ 0

z

(
h(∇xσ) · (∇xΦ)− |∇xσ|2(∂zΦ)

)
(·, z′) dz′

− h

∫ 0

z

∫ z′

−1

∇x ·
(
(∂zσ)(∇xΦ)− (∇xσ)(∂zΦ)

)
(·, z′′) dz′′ dz′.
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Proposition 4.23. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0, k ∈ N⋆, n ∈ {0, 1, 2, 3}. There
exists Cn such that the following holds. For any (µ, ε, β) ∈ pSW, any ζ ∈ Hmax{k+n+1,2+s⋆}(Rd)
and b ∈Wmax{k+n+1,2+s⋆},∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the operator

GµN2N[εζ, βb] :
Hk(Rd) → Hk−1(Rd)
ϖ 7→ (∂zΦ− µ(ε∇ζ) · ∇xΦ)

∣∣
z=εζ

where Φ is the unique solution to eq. (4.9), is well-defined and continuous, and the following holds.

• If n = 0, then for any ϖ ∈ Hk(Rd)∣∣GµN2N[εζ, βb]ϖ −ϖ
∣∣
Hk−1 ≤ C0

√
µ
(∣∣ϖ∣∣

Hk +
〈(∣∣εζ∣∣

Hk+1 +
∣∣βb∣∣

Wk+1,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

• If n = 1, then for any ϖ ∈ Hk+1(Rd)∣∣GµN2N[εζ, βb]ϖ −ϖ
∣∣
Hk−1 ≤ C1 µ

(∣∣ϖ∣∣
Hk+1 +

〈(∣∣εζ∣∣
Hk+2 +

∣∣βb∣∣
Wk+2,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k+1>1+s⋆

)
.

• If n = 2, then for any ϖ ∈ Hk+2(Rd) and denoting h = 1 + εζ − βb∣∣GµN2N[εζ, βb]ϖ −ϖ + µ∇ ·
(
h(ϖε∇ζ − 1

2h∇ϖ)
)∣∣
Hk−1

≤ C2 µ
3/2

(∣∣ϖ∣∣
Hk+2 +

〈(∣∣εζ∣∣
Hk+3 +

∣∣βb∣∣
Wk+3,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
.

• If n = 3, then for any ϖ ∈ Hk+3(Rd)∣∣GµN2N[εζ, βb]ϖ −ϖ + µ∇ ·
(
h(ϖε∇ζ − 1

2h∇ϖ)
)∣∣
Hk−1

≤ C3 µ
2
(∣∣ϖ∣∣

Hk+3 +
〈(∣∣εζ∣∣

Hk+4 +
∣∣βb∣∣

Wk+4,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k+3>1+s⋆

)
.

Proof. The proof follows exactly as (the cases n = 0 and n = 1) in the proof of Proposition 4.9
and Proposition 4.10, using Proposition 4.20 in place of Proposition 4.5, Lemma 4.21 in place of
Lemma 4.6 and Lemma 4.22 in place of Lemma 4.7. The cost of µ1/2 prefactor stems from the
anisotropic gradient ∇µ

x,z in Proposition 4.5, and can be removed by incrementing the regularity
index and using Poincaré’s inequality, eq. (4.4).

4.5.3 The Neumann-to-Dirichlet operator

We refer as the Neumann-to-Dirichlet operator the following:

GµN2D[εζ, βb]ϖ = Φ
∣∣
z=−1+βb

where Φ is the unique solution to eq. (4.9). Here we can borrow the idea of Section 4.5.1 and results
of Section 4.5.2. We have the following identity.

Lemma 4.24. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and (µ, ε, β) ∈ pSW. Let ζ, b ∈ W 2,∞(Rd)
satisfying Assumption 4.1 and ϖ ∈ H1(Rd). Then we have

GµN2D[εζ, βb]ϖ = −
∫ εζ

−1+βb

∂zΦdz = −
∫ 0

−1

∂zΦdz,

where Φ is the (strong) solution to eq. (4.9) and Φ = Φ ◦ Σ where Σ(x, z) = (x, σ(x, z)) and

σ(x, z)
def
= (1 + εζ(x)− βb(x))z + εζ(x).
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We deduce the last result of this section.

Proposition 4.25. Let d, s⋆ ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0, k ∈ N⋆, n ∈ {0, 1, 2}. There
exists Cn such that the following holds. For any (µ, ε, β) ∈ pSW, any ζ ∈ Hmax{k+n+1,2+s⋆}(Rd)
and b ∈Wmax{k+n+1,2+s⋆},∞(Rd) satisfying Assumption 4.1 and∣∣εζ∣∣

H2+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the operator

GµN2D[εζ, βb] :
Hk(Rd) → Hk(Rd)
ϖ 7→ Φ

∣∣
z=−1+βb

where Φ is the unique solution to eq. (4.9), is well-defined and continuous, and the following holds.

• If n = 0, then for any ϖ ∈ Hk(Rd)∣∣GµN2D[εζ, βb]ϖ
∣∣
Hk ≤ C0

(∣∣ϖ∣∣
Hk +

〈(∣∣εζ∣∣
Hk+1 +

∣∣βb∣∣
Wk+1,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k>1+s⋆

)
.

• If n = 1, then for any ϖ ∈ Hk+1(Rd) and denoting h = 1 + εζ − βb∣∣GµN2D[εζ, βb]ϖ+hϖ
∣∣
Hk ≤ C1

√
µ
(∣∣ϖ∣∣

Hk+1 +
〈(∣∣εζ∣∣

Hk+2 +
∣∣βb∣∣

Wk+2,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k+1>1+s⋆

)
.

• If n = 2, then for any ϖ ∈ Hk+2(Rd)∣∣GµN2D[εζ, βb]ϖ + hϖ
∣∣
Hk ≤ C2 µ

(∣∣ϖ∣∣
Hk+2 +

〈(∣∣εζ∣∣
Hk+3 +

∣∣βb∣∣
Wk+3,∞

)∣∣ϖ∣∣
H1+s⋆

〉
k+2>1+s⋆

)
.

Proof. The result for n = 0 follows from Lemma 4.24 and Proposition 4.20. Now, using the identity
in Lemma 4.22 yields

GµN2D[εζ, βb]ϖ + hϖ = µ

∫ 0

−1

∂z(ℓ[εζ, βb]Φ) dz

and the result for n ∈ {1, 2} is deduced from Proposition 4.8 (or rather a slightly improved version,
taking into account that only the vertical derivative is involved). As aforementioned, the µ1/2

prefactor when n = 1 stems from the anisotropic gradient ∇µ
x,z in Proposition 4.5, and can be

removed by incrementing the regularity index and using Poincaré’s inequality, eq. (4.4).
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CHAPTER B

Hydrostatic models

“Begin at the beginning,” the King said gravely, “and
go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Contents
5 The Saint-Venant system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Hamiltonian structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Rigorous justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 The bilayer hydrostatic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 The free-surface case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Hamiltonian structure . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.3 Rigorous justification . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The rigid-lid approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 The Boussinesq approximation . . . . . . . . . . . . . . . . . . . 63

6.2.2 Hamiltonian structure . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.4 Rigorous justification . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.5 The weak density contrast limit . . . . . . . . . . . . . . . . . . 68

6.3 The multilayer case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 The weak density contrast limit . . . . . . . . . . . . . . . . . . 73

6.3.3 The continuous stratification limit . . . . . . . . . . . . . . . . . 74

6.4 Discussion and open questions . . . . . . . . . . . . . . . . . . . . . . . . 76

7 The continuously stratified hydrostatic systems . . . . . . . . . . . . . . . . . . . 78

7.1 Formal derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Isopycnal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Discussion and open questions . . . . . . . . . . . . . . . . . . . . . . . . 83



46

specific case

rigorous asymptotic

formal asymptotic

water waves
eq. (2.2)

interfacial waves
eq. (3.1)

full Euler
eq. (1.1)

Saint-Venant
eq. (5.4)

bilayer hydrostatic
eq. (6.3)

bilayer hydrostatic
with rigid lid and Boussinesq

eq. (6.12’)

hydrostatic equations
eq. (7.3)

homogen.

potential

zero

upper density

homogen.

columnar

zero

upper density

shallow water,

µ≪ 1
shallow water,

µ≪ 1
shallow water,

µ≪ 1

weak density contrast,

γ ↗ 1

Figure B: Models in Chapter B (in green) and some filiations.

Foreword

We start our journey towards asymptotic models with ones among the oldest and simplest-looking.
The so-called hydrostatic models can be formally derived from the “master” full Euler equations by
using the hydrostatic assumption, that is approximating the pressure terms using an explicit formula
stemming from neglecting the velocity advection terms in the horizontal momentum conservation
equation, eq. (1.1b), specifically

−∂zP = ρg,

which we can integrate using the known pressure at the free surface, by eq. (1.1f). Additionally, one
often adds the assumption of columnar motion, stating that the horizontal velocity (approximately)
does not depend on the vertical variable. When both assumptions are made, then we quickly obtain
models with the rewarding properties that the vertical space variable has disappeared from the
equations and only (first order) differential operators are involved.

Yet we shall not assume a priori—but indirectly prove—the hydrostatic assumption nor the
columnar motion and will rather justify models asymptotically—with quantitative error estimates—
in the shallow water regime, as µ≪ 1; and using the irrotationality assumption in lieu of columnar
motion.

Our first model is derived from the water waves system, that is assuming that the density is
homogeneous and the flow potential (recall this allows to discard the vertical variable except in the
Dirichlet-to-Neumann operator). We then obtain the well-known and much-studied Saint-Venant
system, eq. (5.4), already introduced in Section iii. Its derivation and rigorous justification, together
with a very short description of some of its properties, is the subject of Section 5.

Then we move in Section 6 to the bilayer framework, with two layers of homogeneous potential
flows. The situation is slightly messier as models differ whether we use the free-surface framework
(in which case we obtain eq. (6.3)) or the rigid-lid framework (in which case we obtain eq. (6.12)),
and in the latter one often uses the so-called Boussinesq approximation (which yields eq. (6.12’)).
It turns out the rigid-lid assumption and Boussinesq approximation both follow from the same
assumption of weak density contrast, as shown in Section 6.2.5.

In Section 6.3 we quickly extend the analysis to N ≥ 2 layers as above. While this multilayer
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framework may appear artificial, it is expected to approximate (as N ≫ 1) the setting of continu-
ously stratified flows, in view of withdrawing the assumptions of homogeneous density and potential
flows while keeping the hydrostatic approximation in the shallow water regime.

Hydrostatic equations for continuously stratified flows are discussed in more details in Sec-
tion 7. As we mention in Section 7.3, very little is known on these equations, despite the fact
that they are at the core of the primitive equations which are widely used in studies and numerical
simulations of geophysical flows. This offers stimulating mathematical challenges.
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5 The Saint-Venant system

We now introduce the simplest fully nonlinear shallow water model for the water waves system. It
is obtained by plugging the approximation

1

µ
Gµ[εζ, βb]ψ = −∇ · ((1 + εζ − βb)∇ψ) +O(µ). (5.1)

stemming from Proposition 4.10 into the water waves equations, eq. (2.7), and withdrawing all
terms of size O(µ). One obtains the system{

∂tζ +∇ · ((1 + εζ − βb)∇ψ) = 0,

∂tψ + ζ + ε
2 |∇ψ|

2 = 0.
(5.2)

One usually rewrites eq. (5.2) using a velocity variable{
∂tζ +∇ ·

(
(1 + εζ − βb)u

)
= 0,

∂tu+∇ζ + ε(u · ∇)u = 0.
(5.3)

System (5.3) is obtained immediately from eq. (5.2), taking the gradient of the second equation and

setting u
def
= ∇ψ. It is also valid if we set u

def
= u where u is the layer-averaged horizontal velocity,

u
def
=

1

1 + εζ − βb

∫ εζ

−1+βb

∇xΦdz,

in which case the first equation, representing the conservation of mass, is exactly satisfied by so-
lutions of the water waves equations eq. (2.7) (by Lemma 4.6), and only the last (d-dimensional)
equation is a O(µ) approximation (and is a valid approximation even out of the irrotational frame-
work; see [83]).

Using physical variables, (5.2) yields the Saint-Venant system{
∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u = 0,
(5.4)

with h = d + ζ− b. By analogy with the compressible Euler equation, one recognizes here that the
“sound speed” of long surface gravity waves in a layer of depth d is c =

√
gd .

System (5.4) is the prototype of hyperbolic quasilinear systems, the strong hyperbolicity being
guaranteed by the non-cavitation assumption, h > 0; see below. In fact, in the flat bottom case,
b ≡ 0, the Saint-Venant system corresponds to the isentropic, compressible Euler equation for ideal
gases with the pressure law p(ρ) ∝ ρ2 (identifying ρ with h). As such the literature on the Saint-
Venant system is extremely vast, and we will cover here only very partial results which are directly
useful for our purposes, and in particular can be extended to other more sophisticated models in
subsequent sections.

5.1 Hamiltonian structure

System (5.2) inherits a canonical Hamiltonian structure from the water waves equations (see Sec-
tion 2.2):

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζHSV

δψHSV

)
with

HSV(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + (1 + εζ − βb)|∇ψ|2 dx.
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In fact, one could have (formally) derived the Saint-Venant system by plugging the approximation in
eq. (5.1) directly into the water waves Hamiltonian functional, and derive the Saint-Venant system
from Hamilton’s principle on ∫ t2

t1

∫
Rd

ζ∂tψ dx+ HSV dt.

The Saint-Venant system enjoys the same symmetry groups as the water waves equations (again,
see Section 2.2), and consistent preserved quantities, in particular

d

dt
Z =

d

dt
I =

d

dt
HSV = 0, where Z

def
=

∫
Rd

ζ dx , I
def
=

∫
Rd

ζ∇ψ dx.

Written with the velocity variable u, the system still enjoys a (non-canonical) symplectic form
(see e.g. [386]). In dimension d = 2, one has

∂t

 ζ
ux
uy

 = −

 0 ∂x ∂y
∂x 0 −q
∂y q 0

 δζHSV

δuxHSV

δuyHSV

 .

where q = ε curluh = ε
∂xuy−∂yux

1+εζ−βb and (misusing notations)

HSV(ζ,u)
def
=

1

2

∫
Rd

ζ2 + (1 + εζ − βb)|u|2 dx.

Of course, in our situation, q ≡ 0 if u = ∇ψ, but it turns out the Saint-Venant system is also
relevant for non-potential flows; see [83, 84] for a rigorous justification. Within this formalism, one
can check that the time and space invariance of the Hamiltonian yield the conservation of total
energy and momentum,

d

dt
HSV = 0 ;

d

dt

∫
Rd

(1 + εζ − βb)udx = 0,

while Casimir invariants are, for any function C,

d

dt

∫
Rd

hC(q) dx = 0,

which yields the conservation of mass—with C(q) = 1—and circulation—with C(q) = q—as special
cases. It is of course straightforward to derive conservation laws associated with any of these
preserved quantities.

5.2 Hyperbolicity

As mentioned previously, eq. (5.3) is a quasilinear system of first-order evolution equations, i.e. can
be written under the form

∂tU +

d∑
i=1

Ai(U)∂xi
U = F (t, x,U), (5.5)

where U : R+ × Rd → Rn (here, n = 1 + d) represents the unknowns, and Ai : Rn → Mn(R)
(where Mn(R) denotes n× n square matrices with real coefficients) and F : R+ × Rd × Rn → Rn
are given and smooth.

We shall not recall the rich theory of such systems (see for instance [49, 310]), but recall a few
facts adapted to our particular system, and which in particular allow to obtain the well-posedness
and stability results stated in Theorem 5.3 and Theorem 5.7.
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Recall the principal symbol of eq. (5.5) is

A(U , ξ)
def
=

d∑
i=1

ξAi(U)

where ξ = (ξ1, . . . , ξd) ∈ Rd. One can check that for eq. (5.3), the characteristic equation

det(A(U , ξ)− λ Id1+d) = 0

admits d+ 1 real solutions for any ξ ̸= 0 as soon as h = 1 + εζ > 0:

λδ = ε(u · ξ) + δ
√
h|ξ|2

where δ ∈ {−1, 1} if d = 1 and δ ∈ {−1, 0, 1} if d = 2. Because all the eigenvalues of A(U , ξ)

are distinct for any for ξ ̸= 0 and any U ∈ R1+d
h>0

def
= {(ζ,u) ∈ R1+d : 1 + εζ − βb > 0}, the

Saint-Venant system is strictly hyperbolic.
As a consequence, the symbol is smoothly diagonalizable with real eigenvalues, which in turn

allows to construct a symbolic symmetrizer, namely S : (U , ξ) ∈ R1+d
h>0 × Rd \ {0} → M1+d(R),

smooth and homogeneous of degree 0 in the second variable such that for all (U , ξ) ∈ R1+d
h>0×Rd\{0},

S(U , ξ) is symmetric and definite positive, and S(U , ξ)A(U , ξ) is symmetric.
In our case, it is in fact easy to see that the system is symmetric-hyperbolic in the sense of

Friedrichs, namely we can exhibit a (non-symbolic) explicit symmetrizer S ∈ C∞(R1+d
h>0,M1+d(R))

such that for all U ∈ R1+d
h>0, S(U) is symmetric and definite positive, and for all i ∈ {1, . . . , d},

S(U)Ai(U) is symmetric. An example of such symmetrizer is

S(U) =

(
1 0
0⊤ h Idd

)
, U = (ζ,u), h = 1 + εζ − βb.

In other words, the Saint-Venant system is symmetric if one multiplies the second equation with
the depth.

5.3 Rigorous justification

In this section we provide the full justification of the Saint-Venant system as an asymptotic model
for water waves in the shallow water regime (Definition III.2) that is for parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

Thanks to the results of Section 4, and in particular Proposition 4.10, it is now straightforward to
justify eq. (5.2) in the sense of consistency.

Theorem 5.1 (Consistency). Let d, s⋆ ∈ N⋆, h⋆ > 0, µ⋆ > 0. Let s ∈ N and M⋆ ≥ 0. There
exists C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈Wmax{s+4,2+s⋆},∞(Rd), any T > 0 and any
(ζ, ψ) ∈ L∞(0, T ;Hmax{s+4,2+s⋆}(Rd)× H̊max{s+4,2+s⋆}(Rd)2) classical solution to the water waves
equations, eq. (2.7), satisfying

∀x ∈ Rd, h(t,x)
def
= 1 + εζ(t,x)− βb(x) ≥ h⋆ > 0. (5.6)

uniformly for t ∈ (0, T ) and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ(t, ·)∣∣

H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+4,2+s⋆},∞ ≤M⋆,

one has {
∂tζ +∇ · (h∇ψ) = r1,

∂tψ + ζ + ε
2 |∇ψ|

2 = r2,
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and one has for almost every t ∈ (0, T )∣∣r1(t, ·)∣∣Hs ≤ C µ
(∣∣ζ(t, ·)∣∣

Hs+4 +
∣∣∇ψ(t, ·)∣∣

Hs+3

)
,∣∣r2(t, ·)∣∣Hs+2 ≤ C µε

∣∣∇ψ(t, ·)∣∣
H1+s⋆

(∣∣ζ(t, ·)∣∣
Hs+4 +

∣∣∇ψ(t, ·)∣∣
Hs+3

)
.

Proof. The Proposition is an immediate consequence of Proposition 4.10 with n = 1 and k = s+ 1
for the first equation, and with n = 1 and k = s + 3 and k = 1 + s⋆ (with the product and
composition estimates of Appendix II) for the second equation.

Remark 5.2. One could also prove that, provided that ∂tζ, ∂t∇ψ are sufficiently regular—or inferring
their regularity from the water waves equations, eq. (2.7)—then u defined as in Proposition 4.9,
satisfies {

∂tζ +∇ · (hu) = 0,

∂tu+∇ζ + ε(u · ∇)u = r,

with an explicit estimate for
∥∥r∥∥

L∞(0,T ;Hs)
= O(µ). The first equation, representing the conserva-

tion of mass, is an exact identity by Lemma 4.6. The second equation follows from Proposition 4.9
as well as an estimate on ∥∥∂t∇ψ − ∂tu

∥∥
L∞(0,T ;Hs)

= O(µ),

which would be obtained by applying Proposition 4.5 to ∂tΦ the strong solution to
1
∂zσ

∇µ
x,z · P (Σ)∇µ

x,z∂tΦ = − 1
∂zσ

∇µ
x,z ·

[
∂t, P (Σ)]∇µ

x,zΦ in Rd × (−1, 0),

∂tΦ = ∂tψ on Rd × {0},
ed+1 · P (Σ)∇µ

x,z∂tΦ = −ed+1 ·
[
∂t, P (Σ)]∇µ

x,zΦ on Rd × {−1},

and differentiating (with respect to time) the identity provided by Lemma 4.6 and Lemma 4.7:

u = ∇ψ − µ

h

∫ 0

−1

(∂zσ)∇x(ℓ[εζ, βb]Φ)− (∇xσ)∂z(ℓ[εζ, βb]Φ) dz.

The consistency alone is not sufficient to provide a full justification of the Saint-Venant system
eq. (5.3). Fortunately, classical results on hyperbolic systems (see e.g. [49, 310], and Section 8.6)
provide the well-posedness theory and stability estimates which allow a stronger notion of justifi-
cation.

Theorem 5.3 (Local well-posedness). Let d ∈ N⋆, h⋆ > 0, s⋆ > d/2, s ≥ 1 + s⋆ and M⋆ > 0.
There exists T > 0 and C > 0 such that for any ε, β ∈ [0, 1], any b ∈ W s+1,∞(Rd), and any
(ζ0,u0) ∈ Hs(Rd)1+d satisfying eq. (5.6) and

M0
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣εu0

∣∣
H1+s⋆

+
∣∣βb∣∣

W s+1,∞ ≤M⋆,

there exists a unique (ζ,u) ∈ C0([0, T/M0];H
s(Rd)1+d) ∩ C1([0, T/M0];H

s−1(Rd)1+d) classical so-
lution to the Saint-Venant system, eq. (5.3), with initial data (ζ,u) |

t=0
= (ζ0,u0); and one has for

any t ∈ [0, T/M0] ∣∣ζ(t, ·)∣∣
Hs +

∣∣u(t, ·)∣∣
Hs ≤ C ×

(∣∣ζ0∣∣Hs +
∣∣u0

∣∣
Hs

)
and eq. (5.6) holds with constant h⋆/2.

Remark 5.4. Theorem 5.3 may be improved in order to obtain existence and control of the solution

on the time interval t ∈ [0, T/M̃0] with M̃0
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣εu0

∣∣
H1+s⋆

; see [62].
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Remark 5.5. Uniqueness in Theorem 5.3 allows to define Tmax the supremum of T > 0 such that
the Cauchy problem has a solution (ζ,u) ∈ C0([0, T ];Hs(Rd)1+d) ∩ C1([0, T ];Hs−1(Rd)1+d) which
remains in the hyperbolic domain, inf(t,x)∈[0,T ]×Rd

(
1+ εζ(t,x)

)
> 0. The use of tame estimates as

in Remark II.12 yields the following blowup criterion:

Tmax <∞ =⇒ lim
t↗Tmax

(∥∥ζ∥∥
L∞(0,t;W 1,∞)

+
∥∥u∥∥

L∞(0,t;W 1,∞)

)
→ ∞,

since the hyperbolicity criterion remains satisfied as a consequence of the conservation of mass; see
footnote 6 page vii. In particular, for given initial data, Tmax and the maximal solution do not
depend on the choice of the regularity index, s > 1 + d/2.

Remark 5.6. In order to prove the well-posedness of the Cauchy problem associated with eq. (5.7)
in the sense of Hadamard, one should state the continuity of the flow map

φt : (ζ0,u0) ∈ Hs(Rd)1+d 7→ (ζ(t, ·),u(t, ·)) ∈ Hs(Rd)1+d.

While this property holds true (see the aforementioned references), it is not significant for our
purposes, where we are happy to ask an extra derivative on the initial data to ensure that the flow
map is Lipschitz. This result is a particular case of the stability property, Theorem 5.7, below.

Theorem 5.7 (Stability). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, s ∈ N, M⋆ ≥ 0, n0
def
= max{s, 1 + s⋆},

n
def
= max{s+ 1, 1 + s⋆}. There exists C > 0 such that for any ε, β ∈ [0, 1], for any b ∈Wn,∞(Rd),

for any T ⋆ > 0 and (ζ0,u0) ∈ C0([0, T ⋆];Hn0(Rd)1+d) satisfying the Saint-Venant system, eq. (5.3),
as well as any (ζ,u) ∈ L∞(0, T ⋆;Hn(Rd)1+d) satisfying{

∂tζ +∇ ·
(
(1 + εζ − βb)u

)
= r,

∂tu+∇ζ + ε(u · ∇)u = r,
(5.7)

with (r, r) ∈ L1(0, T ⋆;Hs(Rd)1+d), and assuming that h = 1+ εζ−βb and h0 = 1+ εζ0−βb satisfy
eq. (5.6) uniformly for t ∈ [0, T ⋆] and

M
def
= ess sup

t∈[0,T⋆]

(∣∣(εζ(t, ·), εu(t, ·))∣∣
Hn×Hn +

∣∣(εζ0(t, ·), εu0(t, ·))
∣∣
Hn0×Hn0

)
+
∣∣βb∣∣

Wn,∞ ≤M⋆,

one has, for any t ∈ [0, T ⋆],∣∣(ζ − ζ0)(t, ·)
∣∣
Hs +

∣∣(u− u0)(t, ·)
∣∣
Hs ≤ CeCMt

(∣∣(ζ − ζ0)(t = 0, ·)
∣∣
Hs +

∣∣(u− u0)(t = 0, ·)
∣∣
Hs

)
+ C

∫ t

0

eCM(t−τ) (∣∣r(τ, ·)∣∣
Hs +

∣∣r(τ, ·)∣∣
Hs

)
dτ .

The following result is a direct consequence of Theorem 5.1, Theorem 5.3 and Theorem 5.7.

Theorem 5.8 (Convergence). Let d ∈ N⋆, s ∈ N, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and M⋆ ≥ 0. There
exists T > 0 and C > 0 such that for any (µ, ε, β) ∈ (0, µ⋆]× [0, 1]2, any b ∈Wmax{s+4,2+s⋆},∞(Rd),
any T ⋆ > 0 and any (ζ, ψ) ∈ C0([0, T ⋆];Hmax{s+4,2+s⋆}(Rd)×H̊max{s+4,2+s⋆}(Rd)) classical solution
to the water waves equations, eq. (2.7), satisfying eq. (5.6) uniformly on [0, T ⋆] and

M
def
= sup

t∈[0,T⋆]

(∣∣εζ(t, ·)∣∣
Hmax{s+1,2+s⋆} +

∣∣ε∇ψ(t, ·)∣∣
Hmax{s+1,1+s⋆}

)
+
∣∣βb∣∣

Wmax{s+4,2+s⋆},∞ ≤M⋆,

there exists a unique (ζSV,uSV) ∈ C0([0, T/M ];Hmax{s,1+s⋆}(Rd)1+d) solution to the Saint-Venant
system (5.3) with initial data (ζSV,uSV) |t=0

= (ζ,∇ψ) |
t=0

and for any t ∈ (0,min{T ⋆, T/M}],∣∣(ζ − ζSV)(t, ·)
∣∣
Hs +

∣∣(∇ψ − uSV)(t, ·)
∣∣
Hs ≤ C µ t

(∥∥ζ∥∥
L∞(0,t;Hs+4)

+
∥∥∇ψ∥∥

L∞(0,t;Hs+3)

)
.

Remark 5.9. That for regular initial data (satisfying the non-cavitation and Rayleigh–Taylor cri-
teria), uniquely defined regular solutions to the water waves equations exist on the time scale of
Theorem 5.8 is provided by Theorem 2.9.
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6 The bilayer hydrostatic systems

We introduce the extensions of the Saint-Venant system displayed in Section 5 which describe
infinitely long interfacial waves, following the framework presented in Section 3. The case of two
homogeneous layers with a free interface and a free surface is studied in Section 6.1. The rigid-lid
setting is studied in Section 6.2. Finally, the extension to multiple layers is tackled in Section 6.3.
Incidentally, while we could use the terminology of “multilayer Saint-Venant system”, these should
not be confused with the multilayer systems “with mass exchange” discussed for instance in [31, 30]
as in the latter the layers are not prescribed by the density stratification.

6.1 The free-surface case

We recall that the full Euler equations describing the motion of two layers of incompressible, ho-
mogeneous, inviscid fluids under the assumption of potential flows being subject to vertical gravity
forces can be written as a system of four equations on the deformation of the surface and interface
(denoted respectively ζ1 and ζ2), and the trace of the velocity potential of the upper fluid at the
surface and the lower fluid at the interface (denoted respectively φ1 and ψ2). These equations are
given in eq. (3.1)—and eq. (3.14) for the dimensionless version—and will be referred in this section
as the interfacial waves system.

Following the strategy from Proposition 4.10 and Proposition 4.23, we find that the operators
defined therein satisfy

1

µ
Gµ,δ2 [εζ2, βb]ψ2 = −∇ ·

(
h2∇ψ2

)
+O(µ),

1

µ
Gµ,δ1 [αεζ1, εζ2, βb](φ1, ψ2) = −∇ ·

(
h1∇φ1

)
−∇ ·

(
h2∇ψ2

)
+O(µ),

ψ1 = Hµ[αεζ1, εζ2, βb](φ1, ψ2) = φ1 +O(µ),

where h1 = 1+ εαζ1 − εζ2 and h2 = δ−1 + εζ2 − βb. Plugging these approximations into eq. (3.14)
and withdrawing all terms of size O(µ) yields

α∂tζ1 +∇ ·
(
h1∇ψ1

)
+∇ ·

(
h2∇ψ2

)
= 0,

∂tζ2 +∇ ·
(
h2∇ψ2

)
= 0,

∂tψ1 +
δ+γ
1−γαζ1 +

ε
2 |∇ψ1|2 = 0,

∂t
(
ψ2 − γψ1

)
+ (δ + γ)ζ2 +

ε
2

(
|∇ψ2|2 − γ|∇ψ1|2

)
= 0.

(6.1)

As for the (one-layer) Saint-Venant system, it is customary to rewrite eq. (6.1) using velocity
variables, that is 

α∂tζ1 +∇ ·
(
h1u1

)
+∇ ·

(
h2u2

)
= 0,

∂tζ2 +∇ ·
(
h2u2

)
= 0,

∂tu1 +
δ+γ
1−γα∇ζ1 + ε(u1 · ∇)u1 = 0,

∂tu2 + γ δ+γ1−γα∇ζ1 + (δ + γ)∇ζ2 + ε(u2 · ∇)u2 = 0.

(6.2)

System (6.2) is obtained immediately from eq. (6.1), defining uℓ
def
= ∇ψℓ (ℓ ∈ {1, 2}) and after

a little algebra. It is also valid if we set uℓ
def
= uℓ (ℓ ∈ {1, 2}) where uℓ are the layer-averaged

horizontal velocities,

u1 =
1

h1

∫ 1+εαζ1

εζ2

∇xΦ1 dz, u2 =
1

h2

∫ εζ2

−δ−1+βb

∇xΦ2 dz,
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in which case the first two equations, representing the conservation of mass, are exactly satisfied
by solutions of the interfacial waves equations eq. (3.14), and only the last two (d-dimensional)
equations are O(µ) approximations (and are expected to be valid even out of the irrotational
framework).

Physical variables Using physical variables (recall Section 3.4), system (6.2) reads
∂th1 +∇ ·

(
h1u1

)
= 0,

∂th2 +∇ ·
(
h2u2

)
= 0,

ρ1∂tu1 + gρ1∇(h1 + h2 + b) + ρ1(u1 · ∇)u1 = 0,

ρ2∂tu2 + gρ1∇h1 + gρ2∇(h2 + b) + ρ2(u2 · ∇)u2 = 0,

(6.3)

with h1(t, x)
def
= d1 + ζ1(t, x) − ζ2(t, x) and h2(t, x)

def
= d2 + ζ2(t, x) − b(x). We refer to this

system as the (free-surface) bilayer hydrostatic system because it can be formally derived from
the hydrostatic assumption (and columnar motion), that is setting ∂zP = −ρg in the full Euler
equations (1.1)-(1.2); see for instance [201, § 6.2].

6.1.1 Hamiltonian structure

The bilayer hydrostatic system, eq. (6.1), enjoys a canonical formulation which is directly inherited
from the corresponding one of the interfacial waves system described in Section 3.2. Introducing

Hhydro
def
=

1

2

∫
Rd

γ δ+γ1−γ (αζ1)
2 + (δ + γ)ζ22 + γh1|∇ψ1|2 + h2|∇ψ2|2 dx

where h1 = 1 + εαζ1 − εζ2 and h2 = δ−1 + εζ2 − βb and viewing Hhydro as a functional for

(αζ1, ζ2, ξ1
def
= γψ1, ξ2

def
= ψ2 − γψ1), one can check that eq. (6.1) reads

∂t


αζ1
ξ1
ζ2
ξ2

 =


δξ1Hhydro

−δαζ1Hhydro

δξ2Hhydro

−δζ2Hhydro

 .

Alternatively, we can define the Lagrangian of the system with the difference between potential
and kinetic energy; see [121, (2.23)]. Associated with the Hamiltonian formulation and natural
symmetry groups of the system are preserved quantities (invariants). Related to the variation of
base level for the velocity potentials are the obvious conservation of the excess of mass:

d

dt
Zℓ = 0, Zℓ

def
=

∫
Rd

ζℓ dx (ℓ ∈ {1, 2}).

From horizontal translation invariance (in the flat bottom case) we obtain the conservation of the
horizontal impulse

d

dt
I = 0, I

def
=

∫
Rd

αζ1∇ξ1 + ζ2∇ξ2 dx (if βb ≡ 0)

and hence the horizontal momentum which under the hydrostatic assumption simply reads

d

dt
Mhydro = 0, Mhydro

def
=

∫
Rd

γh1∇ψ1 + h2∇ψ2 dx (if βb ≡ 0).

From time translation invariance we obtain the conservation of the energy

d

dt
Hhydro = 0.

As in Section 5.1, we may also devise a (non-canonical) symplectic form for the equations with
the velocity variables, eq. (6.2). We omit to write it down.
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6.1.2 Hyperbolicity

Conservative form Equations (6.2) (or (6.3)) is—as in the one-layer case—a first-order quasilinear
system. Some crucial differences arise however in the bilayer framework. Firstly, the system can
(apparently) no longer be written under conservative form, that is

∂tU + divF = G

with well-chosen functions F (U) and G(U , b). Indeed, the standard way of writing eq. (6.2) in a

conservative way is to used momentum variables, that is mℓ
def
= hℓuℓ (ℓ ∈ {1, 2}) so that we have

α∂tζ1 +∇ ·
(
h1u1

)
+∇ ·

(
h2u2

)
= 0,

∂tζ2 +∇ ·
(
h2u2

)
= 0,

∂t(h1u1) +
δ+γ
1−γαh1∇ζ1 + ε∇ · (h1u1 ⊗ u1) = 0,

∂t(h2u2) + γ δ+γ1−γαh2∇ζ1 + (δ + γ)h2∇ζ2 + ε∇ · (h2u2 ⊗ u2) = 0,

(6.4)

and we recognize non-conservative contributions of the form ζ2∇ζ1 in the last equation. Let us
remark however that this fact is of utmost importance in the theory of discontinuous solutions but
not so much for regular solutions, and that in our irrotational framework we can use the identities(

uℓ · ∇
)
uℓ =

(
(∇ψℓ) · ∇

)
∇ψℓ =

1

2
∇
(
|∇ψℓ|2

)
to rewrite equivalently (6.2) (for irrotational data) under conservative form.

Remark 6.1. Setting γ = 0 and δ = 1, we recover the one-layer (with free surface) situation, that is
the Saint-Venant system.

Hyperbolicity Another difference with respect to the (one-layer) Saint-Venant equations, and
which is much more important for our purposes, is that the hyperbolicity domain (see Section 5.2)
can no longer be described by simple explicit formulae, and in particular the non-cavitation as-
sumptions

inf
Rd
h1 > 0, inf

Rd
h2 > 0

(which we always assume thereafter) are not sufficient to guarantee hyperbolicity. However the hy-
perbolicity can be clarified through a nice “geometrical approach”, dating back to Ovsjannikov [352]
(see also [39] and [408]). We quickly recall this approach in the situation of flat bottom (since the
the bottom contributions are order-zero terms) and horizontal dimension d = 1 (since the general
case can be recovered thanks to the rotational invariance property—see [329, 157]—and symbolic
analysis).Then eq. (6.2) can be written as

∂tU +A(U)∂xU = 0, U
def
=


h1
h2
εu1
εu2

 , A(U) =


εu1 0 h1 0
0 εu2 0 h2
ϱ−1 ϱ−1 εu1 0
γϱ−1 ϱ−1 0 εu2


where ϱ

def
= 1−γ

δ+γ measures the density contrast. The key idea consists in writing the characteristic
polynomial of A under the form

P (λ) =
(
(εu2 − λ)2 − ϱ−1h2

)(
(εu1 − λ)2 − ϱ−1h1

)
− γϱ−2h1h2

and to define

pℓ =
λ− εuℓ√

hℓ
, ℓ ∈ {1, 2}.
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Hence real solutions of the characteristic polynomials correspond in a one-to-one manner to solutions
p1, p2 ∈ R to

(p22 − ϱ−1)(p21 − ϱ−1) = γϱ−2, p1
√
h1 + εu1 = p2

√
h2 + εu2. (6.5)

Geometrically, the solutions of the above are the intersection of a fourth-order curve which is
the union of a closed curve (resembling a circle) and fourfold unbounded curve (resembling four
hyperbolas), and the straight line with slope

√
h1/h2 passing through (p1, p2) = (0, εu1−u2√

h2
). From

this interpretation and straightforward scaling arguments, we see that when h1/h2 and γ are fixed,
there exists two critical values V−, V+ such that

• If (ε|u1 − u2|)2 < h2

ϱ V−(
h1

h2
, γ) or (ε|u1 − u2|)2 > h2

ϱ V+(
h1

h2
, γ), there exists four distinct real

solutions to the characteristic polynomial, and hence the system is strictly hyperbolic.

• If h2

ϱ V−(
h1

h2
, γ) < (ε|u1 − u2|)2 < h2

ϱ V+(
h1

h2
, γ), there exists only two (simple) real solutions to

the characteristic polynomial, and hence the system is of mixed elliptic-hyperbolic type.

Shortly put, the linearized bilayer hydrostatic system is stable if and only if the shear velocity is
sufficiently small or sufficiently large. Moreover we see that when shear velocities are sufficiently
small, we can distinguish two pairs of solution, depending on whether they cross the “inner” closed
curve or “outer” unbounded curve. The former correspond to the so-called baroclinic mode, and the
latter to the barotropic mode; see e.g. [201, § 6.2].

(a) γ = 0.1 (b) γ = 0.5 (c) γ = 0.9

Figure 6.1: Solutions to eq. (6.5). Solutions to the quartic equation are in black (plain). Solutions
to the linear equation with ε(u1 − u2) = 1 (green, plain), ε(u1 − u2) = 3 (red, dashed) and

ε(u1 − u2) = 5 (blue, dot-dashed). Parameters are h1 = 1, h2 = 1
δ = 2.

Special limits It is interesting to study the limit of vanishing density contrast, that is γ ↗ 1. In
this case, and recalling the definition ϱ = 1−γ

δ+γ , one may check that the aforementioned closed curve

converges towards the circle around the origin with squared radius (1−γ)ϱ−1 = δ+γ → 1+δ (γ ↗ 1).
The unbounded curves are in the outer region delimited by the circle around the origin with squared
radius ϱ−1 and hence go to infinity (due to our choice of scaling when non-dimensionalizing which
allows to concentrate on the baroclinic mode), and in the limit we have the simple criterion that
the system is of strict hyperbolic type if and only if(

ε|u1 − u2|
)2
< (1 + δ)(h1 + h2).

This will correspond to the corresponding criterion for the rigid-lid system in the same limit; see
Section 6.2.3 and discussion in [26].

In the opposite direction, if we consider the limit γ ↘ 0, then the quadratic curve degenerates in
the set {−ϱ−1, ϱ−1}2. Then there are always four real eigenvalues (counting multiplicities), that is

λ = εuℓ±
√
ϱ−1hℓ (ℓ ∈ {1, 2}), and the system is strongly hyperbolic as soon as the non-cavitation
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assumption is satisfied. This corresponds to the one-layer situation, with the addition of a spurious
propagation mode for the free surface which does not interact with the propagation mode of the
interface.

6.1.3 Rigorous justification

Let us now rigorously justify the bilayer, hydrostatic equations, eq. (6.3), as an asymptotic model
for the interfacial waves system, eq. (3.1). It is informative to compare the results below with the
corresponding ones on the Saint-Venant system in Section 5.3.

In this section we denote, given µ⋆ > 0, δ⋆ > 0, and δ⋆ > 0:

p SW

SW

def
=
{
(µ, ε, β, α, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], α ∈ (0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

We state and prove below two consistency results, the first one being adapted to the formulation
of eq. (6.1)—or more precisely an artificially extended system involving a variable ψ1 (representing
the trace of the upper velocity potential at the interface) coupled with the constraint ψ1 = φ1—and
the second one being adapted to the formulation of eq. (6.2), and more useful in practice.

Theorem 6.2 (Consistency). Let d ∈ N⋆, s ∈ N, s⋆ > d/2, µ⋆ > 0, δ⋆ > 0, δ⋆ > 0, h⋆ > 0 and
M⋆ ≥ 0. There exist C > 0 such that for any (µ, ε, β, α, δ, γ) ∈ p SW

SW

, any b ∈ Wmax{s+4,2+s⋆}(Rd),

any T > 0 and any (ζ1, ζ2, φ1, ψ2) ∈ L∞(0, T ;Hmax{s+4,2+s⋆}(Rd)2×H̊max{s+4,2+s⋆}(Rd)2) solution
to the interfacial waves equations, eq. (3.14) with ψ1 satisfying the constraint equation

ψ1 = Hµ
D[αεζ1, εζ2]φ1 +Hµ

N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2,

and such that

∀t ∈ [0, T ], ∀x ∈ Rd,

{
h1(t,x)

def
= 1 + αεζ1(t,x)− εζ2(t,x) ≥ h⋆ > 0,

h2(t,x)
def
= δ−1 + εζ2(t,x)− βb(x) ≥ h⋆ > 0,

and

ess sup
t∈(0,T )

(∣∣(αεζ1(t, ·), εζ2(t, ·))∣∣H2+s⋆
+
∣∣(ε∇φ1(t, ·), ε∇ψ2(t, ·))

∣∣
H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+4,2+s⋆},∞ ≤M⋆,

one has 

α∂tζ1 +∇ ·
(
h1∇φ1

)
+∇ ·

(
h2∇ψ2

)
= r1,

∂tζ2 +∇ ·
(
h2∇ψ2

)
= r2,

∂tφ1 +
δ+γ
1−γαζ1 +

ε
2 |∇φ1|2 = r3,

∂t
(
ψ2 − γψ1

)
+ (δ + γ)ζ2 +

ε
2

(
|∇ψ2|2 − γ|∇ψ1|2

)
= r4,

ψ1 − φ1 = r5,

and one has for almost every t ∈ (0, T )∣∣(r1(t, ·), r2(t, ·))∣∣(Hs)2
≤ C µ

(∣∣αζ1(t, ·)∣∣Hs+4 +
∣∣ζ2(t, ·)∣∣Hs+4 +

∣∣∇φ1(t, ·)
∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,∣∣(r3(t, ·), r4(t, ·))∣∣(Hs+1)2

≤ C µεM
(∣∣αζ1(t, ·)∣∣Hs+4 +

∣∣ζ2(t, ·)∣∣Hs+4 +
∣∣∇φ1(t, ·)

∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,∣∣(r5(t, ·))∣∣Hs+2 ≤ C µ

(∣∣αζ1(t, ·)∣∣Hs+4 +
∣∣ζ2(t, ·)∣∣Hs+4 +

∣∣∇φ1(t, ·)
∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,

with M
def
=
∣∣∇φ1(t, ·)

∣∣
H1+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H1+s⋆

.
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Moreover, denoting u1 = ∇φ1 and u2 = ∇(ψ2 − γψ1 + γφ1), one has
α∂tζ1 +∇ ·

(
h1u1

)
+∇ ·

(
h2u2

)
= r̃1,

∂tζ2 +∇ ·
(
h2u2

)
= r̃2,

∂tu1 +
δ+γ
1−γα∇ζ1 + ε(u1 · ∇u1) = r̃3,

∂tu2 + γ δ+γ1−γα∇ζ1 + (δ + γ)∇ζ2 + ε(u2 · ∇u2) = r̃4

with, for almost every t ∈ (0, T )∣∣(r̃1(t, ·), r̃2(t, ·))∣∣(Hs)2
≤ C µ

(∣∣αζ1(t, ·)∣∣Hs+4 +
∣∣ζ2(t, ·)∣∣Hs+4 +

∣∣∇φ1(t, ·)
∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,∣∣(r̃3(t, ·), r̃4(t, ·))∣∣(Hs)2d

≤ C µεM̃
(∣∣αζ1(t, ·)∣∣Hs+4 +

∣∣ζ2(t, ·)∣∣Hs+4 +
∣∣∇φ1(t, ·)

∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
.

with M̃
def
=
∣∣∇φ1(t, ·)

∣∣
H2+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H2+s⋆

.

Proof. The estimate for r2 is obtained as the corresponding one in Theorem 5.1—that is by Propo-
sition 4.10 with n = 1 and k = s+ 1—using the identity

1

µ
Gµ,δ2 [εζ2, βb]ψ2 =

δ

µ
Gµ/δ

2

[εδζ, βδb]ψ2.

Concerning r1, we use Gµ,δ1 [αεζ1, εζ2, βb](φ1, ψ2) = Gµ1,D[αεζ1, εζ2]φ1+Gµ1,N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2

and remark
1

µ
Gµ1,D[αεζ1, εζ2]φ1 =

1

µ
Gµ[αεζ1, εζ2]φ1

so that we have as above23∣∣ 1
µ
Gµ1,D[αεζ1, εζ2]φ1 +∇ · (h1∇φ1)

∣∣
Hs ≤ C µ

(∣∣αζ1∣∣Hs+4 +
∣∣ζ2∣∣Hs+4 +

∣∣∇φ1

∣∣
Hs+3

)
with C as in the statement (we will always use this convention). Now, by using Proposition 4.23
with n = 1 and k = s+1 in conjunction with Proposition 4.10 with n = 0 and k ∈ {s+3, 2+s⋆} (and
using the standard trick stemming from interpolation Lemma II.3 and Lemma II.13 and Young’s
inequality as in Proposition II.7) we deduce

1

µ

∣∣Gµ1,N[αεζ1, εζ2]Gµ,δ2 [εζ2, βb]ψ2 − Gµ,δ2 [εζ2, βb]ψ2

∣∣
Hs ≤ C µ

(∣∣αζ1∣∣Hs+4 +
∣∣ζ2∣∣Hs+4 +

∣∣∇ψ2

∣∣
Hs+3

)
.

and by Proposition 4.10 with n = 1 and k = s+ 1∣∣ 1
µ
Gµ[εζ2, βb]ψ2 +∇ ·

(
(δ−1 + εζ2 − βb)∇ψ2

)∣∣
Hs ≤ C µ

(∣∣ζ2∣∣Hs+4 +
∣∣∇ψ2

∣∣
Hs+3

)
,

and the estimate on r1 follows from the triangular inequality.
The estimate for r3 follows as above, but using (in addition to product and composition esti-

mates, Proposition II.7 and Proposition II.11) Proposition 4.23 with n = 0 and k = s + 2, while
the estimate for r4 uses Proposition 4.23 with n = 0 and k = s+ 3.

We conclude with the estimate for r5. Recall

ψ1 = Hµ
D[αεζ1, εζ2]φ1 +Hµ

N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2

23We need to take into account that the role of bottom topography is played by the interface deformation, and
we have ζ2 ∈ Hmax{s+4,2+s⋆}(Rd) while b ∈ Wmax{s+4,2+s⋆}(Rd). We could ask more regularity on the data and
use the continuous Sobolev embedding Hσ+s⋆ (Rd) ⊂ Wσ(Rd) for σ ≥ 0, but in fact we claim that the announced
result holds without asking more regularity on the data, adapting the proof of Proposition 4.10 by using exclusively
product and commutator estimates in Appendix II.2 in place of the ones in Appendix II.3.
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By Proposition 4.18 with n = 1 and k = s + 2 (and the same caveat as in the above footnote) we
have ∣∣Hµ

D[αεζ1, εζ2]φ1 − φ1

∣∣
Hs+2 ≤ C µ

(∣∣αζ1∣∣Hs+4 +
∣∣ζ2∣∣Hs+4 +

∣∣∇ψ∣∣
Hs+3

)
.

By Proposition 4.25 with n = 0 and k = s+2 in conjunction with Proposition 4.10 with n = 0 and
k ∈ {s+ 3, 2 + s⋆}, we obtain as above∣∣Hµ

N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2

∣∣
Hs+2 ≤ C µ

(∣∣αζ1∣∣Hs+4 +
∣∣ζ2∣∣Hs+4 +

∣∣∇ψ2

∣∣
Hs+3

)
.

and the first statement follows.

The second statement then follows from the identities

ψ2 = (ψ2 − γψ1) + γφ1 + γ(ψ1 − φ1) and ψ1 = φ1 + (ψ1 − φ1)

from which we infer

r̃1 = r1 + γ∇ ·
(
h2r5

)
, r̃2 = r2 + γ∇ ·

(
h2r5

)
, r̃3 = ∇r3,

r̃4 = ∇(r4 + γr3) +
ε

2
∇ ((γ∇r5) · ((γ − 1)∇r5 + 2∇(ψ2 − γψ1 + (γ − 1)φ1))) .

We can then apply previously obtained estimates and product estimates to control each component
as required.

Remark 6.3. Notice the size of ψ1 does not enter the estimates; it can be devised from its definition
and Propositions used in the proof. The second statement allows to obtain—withdrawing remainder
terms—a closed set of evolution equations for the unknowns ζ1, ζ2, φ1, ψ2 − γψ1. It is possible to
simply replace ψ1 with φ1 in the fourth equation of the first statement, yet in this case the residual
r4 must be modified to take into account the control of ∂t(φ1 − ψ1), which can be devised provided
that we have an a priori control on the time derivative of the data; see Remark 5.2 and [152] for
the rigorous analysis.

In the same spirit, we could justify the equations eq. (6.2), with uℓ = uℓ (ℓ ∈ {1, 2}) the layer-
averaged velocities, in which case the first two (mass conservation) equations hold exactly; see again
Remark 5.2 and [152].

Finally, if we were to study the limit γ ↘ 0, it would be necessary to refine the estimate for r3
and r̃3 as depending on (γ1/2φ1, γ

1/2ψ1), which arise naturally in energy functionals of the system.

Let us now turn to the justification of the bilayer hydrostatic equations, eq. (6.3), in the stronger
sense including the well-posedness of the Cauchy problem, and the convergence analysis. A differ-
ence with respect to the study in Section 5.3 is that the hyperbolic domain of the equations are
not simply the non-cavitation assumptions, but rather require the shear velocity are either suffi-
ciently small or sufficiently large (see Section 6.1.2). Since our nonlinear framework will require
finite-energy solutions, shear necessarily decay to 0 as |x| → ∞, and hence we use a smallness
assumption on the shear velocity as a sufficient—since explicit formula for the hyperbolic domain
are not available—criteria for hyperbolicity, and eventually well-posedness in Sobolev spaces.

Another important difference is that the limit γ ↗ 1 is singular, as coefficients of the equations
diverge in this limit. In order to secure uniform energy estimates—and eventually time of existence—
we must employ techniques akin to singular limits such as the incompressible limit of the Euler
equations. The mathematical analysis of such limits have a rich history that we shall not detail;
the interested reader can refer to [379, 190, 299, 9] for a comprehensive introduction to the theory.
However our system does not readily fits—as far as I know—into a general setting on which ready-
to-use theorems can be applied. The result stated below—as well as the ones in Section 6.2.5—was
proved in [156, 157].
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Theorem 6.4 (Local well-posedness). Let d ∈ {1, 2}, s⋆ > d/2, s ≥ 1 + s⋆, δ⋆ > 0, δ⋆ > 0,
h⋆ > 0, M⋆ > 0. There exist T > 0 and C > 0 such that for any (µ, ε, β, α, δ, γ) ∈ p SW

SW

, any

b ∈W s+1,∞(Rd), and any (ζ0,1, ζ0,2,u0,1,u0,2) ∈ Hs(Rd)2+2d satisfying24

∀x ∈ Rd,

{
h1,0(x)

def
= 1 + αεζ1,0(x)− εζ2,0(x) ≥ h⋆ > 0,

h2,0(x)
def
= δ−1 + εζ2,0(x)− βb(x) ≥ h⋆ +

|u2,0−u1,0|2
δ+γ ,

(6.6)

M0
def
= 1√

1−γ

∣∣αεζ0,1∣∣H1+s⋆
+
∣∣εζ0,2∣∣H1+s⋆

+
∣∣εu0,1

∣∣
H1+s⋆

+
∣∣εu0,2

∣∣
H1+s⋆

+ 1√
1−γ

∣∣βb∣∣
W s+1,∞ ≤M⋆,

there exists a unique (ζ1, ζ2,u1,u2) ∈ C0([0, T/M0];H
s(Rd)2+2d) ∩ C1([0, T/M0];H

s−1(Rd)2+2d)
classical solution to eq. (6.2), with initial data (ζ1, ζ2,u1,u2) |t=0

= (ζ1,0, ζ2,0,u1,0,u2,0); and one
has, for any t ∈ [0, T/M0], eq. (6.6) holds with constant h⋆/2 and∣∣ α√

1−γ ζ1(t, ·)
∣∣
Hs +

∣∣ζ2(t, ·)∣∣Hs +
∣∣u1(t, ·)

∣∣
Hs +

∣∣u2(t, ·)
∣∣
Hs

≤ C ×
(∣∣ α√

1−γ ζ0,1
∣∣
Hs +

∣∣ζ0,2∣∣Hs +
∣∣u0,1

∣∣
Hs +

∣∣u0,2

∣∣
Hs

)
.

Proof. A first result follows, as for Theorem 5.3, from the standard theory on symmetrizable quasi-
linear systems. Indeed, if we denote U = ( α√ϱζ1, ζ2,u1,u2)

⊤ = ( α√ϱζ1, ζ2, u1,x1 , u2,x2)
⊤ with

ϱ
def
=

1− γ

δ + γ

then eq. (6.2) reads in dimension d = 2 (modifications are straightforward when d = 1)

∂tU +A1(εU , βb)∂x1
U +A2(εU , βb)∂x2

U = F (εU , βb)

with F (U , βb)
def
=
(
β∇b·u2√

ϱ , β∇b · u2, 0, 0, 0, 0
)⊤

and

A1(εU , βb)
def
=



εu1,x1

ε√
ϱ (u2,x1

− u1,x1
) 1√

ϱh1 0 1√
ϱh2 0

0 εu2,x1 0 0 h2 0
1√
ϱ 0 εu1,x1

0 0 0

0 0 0 εu1,x1 0 0
γ√
ϱ δ + γ 0 0 εu2,x2

0

0 0 0 0 0 εu2,x2


with h1

def
= 1 + εαζ1 − εζ2, h2

def
= δ−1 + εζ2 − βb and where (as noticed in [329]) by the rotational

invariance property of the system, the symbol of the system reads

A(εU , βb, ξ)
def
= A1(εU , βb)ξ1 +A2(εU , βb)ξ2 = Q(ξ)⊤A1(εQ(ξ)U , βb)Q(ξ)|ξ|

with

Q(ξ)
def
=

1

|ξ|


|ξ|

|ξ|
ξ1 ξ2
−ξ2 ξ1

ξ1 ξ2
−ξ2 ξ1

 .

24This criterion is not sharp. In particular it does not correspond to the explicit conditions for hyperbolicity given
in Section 6.1.2 as γ ↗ 1 or γ ↘ 0.
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This allows to infer (either by direct inspection, or using the fact that the Hessian of the total
energy provides a symmetrizer of the unidimensional system) a symbolic symmetrizer of the system
of the form

S(εU , βb, ξ) def
= Q(ξ)⊤S1(εQ(ξ)U , βb)Q(ξ)|ξ|

with

S1(εU , βb)
def
=


γ

δ + γ ε(u2,x1
− u1,x1

)
γh1

γh1
ε(u2,x1

− u1,x1
) h2

h2

 .

Yet, due to the ϱ−1/2 prefactor in coefficients of the system, directly applying the standard theory
on symmetrizable quasilinear systems (see [310] for instance) yields a disappointing time of existence
of the form T̃ ≳ ϱ1/2T/M0. Let us explain now explain why the uniform time of existence holds.

The first remark is that when using V = ( α√ϱζ1, ζ2,u2−γu1, h1u1+h2u2)
⊤ as unknowns, then

the system has the form

∂tV + ϱ−1/2LV + B1(εV , βb)∂x1V + B2(εV , βb)∂x2V = G(εV , βb)

where L is constant-coefficients and coefficients in B1 and B2 are smooth with respect to their
variables and uniformly bounded with respect to ϱ ∈ (0, 1]. The second remark is that the sym-
metrizer of the system inferred by the one exhibited above and the change of variables, specifically

T (εV , βb, ξ)
def
= F [V ]⊤S(F (εV ), βb, ξ)F [V ] where F [V ] is the Jacobian of the change of variables

U = F (V ), satisfies

T (εV , βb, ξ) = T+ T (εΠV , βb, ξ)Π+ ϱ1/2T̃ (εV , βb, ξ)

where T is constant-coefficients, coefficients in T, T and T̃ are uniformly bounded with respect to
ϱ ∈ (0, 1], and Π denotes the orthogonal projection onto ker L. A close look at the energy estimates
in the a priori control of the Sobolev norm of solutions shows that it involves only terms which are
uniformly bounded with respect to ϱ ∈ (0, 1] since ϱ−1/2T(D)L(D) is self-adjoint and commutes with
space derivatives and Fourier multipliers, and

∥∥∂t(T (εV , βb, ξ)
)∥∥ ≲

∥∥Π∂tV ∥∥ +√
ϱ
∥∥∂tV ∥∥ = O(1).

From this one deduces the existence and control of the solution as stated in Theorem 6.4.

Remark 6.5. As discussed in the proof, the limit of weak density contrast, that is γ ↗ 1, is a singular
limit of the system. Such limit yields formally the Boussinesq approximation; see Section 6.2.1. In
Section 6.2.5 we justify rigorously the Boussinesq approximation in conjunction of the rigid-lid
assumption, in the limit of weak density contrast.

Remark 6.6. The restriction
∣∣αεζ0,1∣∣H1+s⋆

≤
√
1− γM⋆ appearing in Theorem 6.4 is natural as it

balances the contributions of the free-surface deformation and interface deformations in the potential
energy of the system; see Section 6.1.1. If we remove the

√
1− γ prefactor, then the time of existence

and control of the solution is bounded from below by T̃ ≳ T/
√
1− γ, which is the timescale of surface

gravity waves; compare c ′0 defined in Section 3.4 with c0 used in Section 2.4.
The restriction

∣∣βb∣∣
W s+1,∞ ≤

√
1− γM⋆ is less physically motivated, and possibly reveals a

shortcoming of the result.

Remark 6.7. Remark 5.5 (on the maximal time of existence and blowup criterion) and Remark 5.6
(on the continuity of the flow map) apply mutatis mutandis.

Associated with the proof of the well-posedness by the energy method is a stability estimate, as
in Theorem 5.7. We do not write it down and jump to the convergence result which directly follows
from the stability, well-posedness and consistency of the bilayer hydrostatic equations, eq. (6.2).
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Theorem 6.8 (Convergence). Let d ∈ {1, 2}, s ∈ N, s⋆ > d/2, δ⋆ > 0, δ⋆ > 0, h⋆ > 0, and
M⋆ > 0. There exist T > 0 and C > 0 such that for any (µ, ε, β, α, δ, γ) ∈ p SW

SW

and any

b ∈Wmax{s+4,2+s⋆},∞(Rd), (ζ1, ζ2, φ1, ψ2) ∈ L∞(0, T ;Hmax{s+4,3+s⋆}(Rd)2×H̊max{s+4,3+s⋆}(Rd)2)
solution to the interfacial waves equations, eq. (3.14) with ψ1 satisfying the constraint equation

ψ1 = Hµ
D[αεζ1, εζ2]φ1 +Hµ

N[αεζ1, εζ2]G
µ,δ
2 [εζ2, βb]ψ2, and such that

M
def
= sup

t∈[0,T⋆]

(
1√
1−γ

∣∣αεζ1(t, ·)∣∣Hmax{s+1,3+s⋆} +
∣∣εζ2(t, ·)∣∣Hmax{s+1,3+s⋆}

+
∣∣ε∇φ1(t, ·)

∣∣
Hmax{s+1,2+s⋆} +

∣∣ε∇φ1(t, ·)
∣∣
Hmax{s+1,2+s⋆}

)
+ 1√

1−γ

∣∣βb∣∣
Wmax{s+4,3+s⋆},∞ ≤M⋆,

and (αζ1, ζ2,u1,u2)(t, ·) satisfies eq. (6.6) uniformly on [0, T ⋆], where we denote u1 = ∇φ1 and
u2 = ∇(ψ2−γψ1+γφ1), there exists a unique (ζ1,SV, ζ2,SV,u1,SV,u2,SV) ∈ C0([0, T/M ];Hs(Rd)2+2d)
classical solution to eq. (6.2), with initial data (ζ1,SV, ζ2,SV,u1,SV,u2,SV) |t=0 = (ζ1, ζ2,u1,u2) |t=0 ;
and one has for any t ∈ (0,min{T ⋆, T/M}],25∣∣α(ζ1 − ζ1,SV)(t, ·)

∣∣
Hs +

∣∣(ζ2 − ζ2,SV)(t, ·)
∣∣
Hs +

∣∣(u1 − u1,SV)(t, ·)
∣∣
Hs +

∣∣(u2 − u2,SV)(t, ·)
∣∣
Hs

≤ C µ t
(∥∥αζ1∥∥L∞(0,t;Hs+4)

+
∥∥ζ2∥∥L∞(0,t;Hs+4)

+
∥∥∇φ1

∥∥
L∞(0,t;Hs+3)

+
∥∥∇ψ2

∥∥
L∞(0,t;Hs+3)

)
.

Remark 6.9. Contrarily to the homogeneous situation with free surface (see Remark 5.9), the exis-
tence and uniqueness of solutions to the interfacial waves equations for a large class of initial data
(with finite regularity) does not hold, due to the so-called Kelvin–Helmholtz instabilities. This issue
is discussed in more details in Chapter E.

6.2 The rigid-lid approximation

We now consider the bilayer system under the rigid-lid assumption. Hence the upper boundary of
the system is no longer free, but fixed and flat. The full Euler equations are given in eq. (3.5)—or
equivalently eq. (3.8)—using physical variables and eq. (3.15)—or equivalently eq. (3.16)—using
dimensionless variables. By using Proposition 4.10 (and straightforward rescaling) we infer the
approximations

1

µ
Gµ,δ2 [εζ2, βb]ψ2 = −∇ · (h2∇ψ2) +O(µ), h2

def
= δ−1 + εζ2 − βb,

1

µ
Gµ1 [εζ2]ψ1 = ∇ · (h1∇ψ1) +O(µ), h1

def
= 1− εζ2

which, when plugged into eq. (3.15) and withdrawing all terms of size O(µ), yield the system
∂tζ2 = ∇ · (h1∇ψ1) = −∇ · (h2∇ψ2),

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ1|2 = −γ−1pint,

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ2|2 = −pint.

(6.7)

We recall that pint (physically representing the pressure at the interface) is not an unknown but a
Lagrange multiplier associated with the compatibility condition∇·(h1∇ψ1) = −∇·(h2∇ψ2). We can
rewrite the above equivalently as two evolution equations, corresponding to O(µ) approximations
of the formulation eq. (3.16), with{

∂tζ2 +∇ · (h2∇ψ2) = 0,

∂t(ψ2 − γψ1) + (δ + γ)ζ2 +
ε
2 (|∇ψ2|2 − γ|∇ψ1|2) = 0,

(6.8)

25Recall u1 = ∇φ1 and u2 = ∇ψ2 + γ∇(φ1 − ψ1) and hence, by Theorem 6.2,∣∣(∇ψ2 − u2)(t, ·)
∣∣
Hs+1 ≤ C µ

(∣∣αζ1(t, ·)∣∣Hs+4 +
∣∣ζ2(t, ·)∣∣Hs+4 +

∣∣∇φ1(t, ·)
∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
.
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where ψ1 is determined (up to a harmless constant) from (ψ2, ζ2, b) after solving the elliptic equation

∇ · (h1∇ψ1) = −∇ · (h2∇ψ2).

Using velocity variables uℓ = ∇ψℓ or uℓ = uℓ (ℓ ∈ {1, 2}) as in Section 6.1, we find respectively
∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),

∂tu1 +
δ+γ
1−γ∇ζ2 + ε(u1 · ∇)u1 = −γ−1∇pint,

∂tu2 +
δ+γ
1−γ∇ζ2 + ε(u2 · ∇)u2 = −∇pint,

(6.9)

and, denoting v
def
= u2 − γu1,{

∂tζ2 +∇ · (h2u2) = 0,

∂tv + (δ + γ)∇ζ2 + ε
2∇(|u2|2 − γ|u1|2) = 0,

(6.10)

where u1 and u2 are uniquely determined from v by solving

∇ ·
(
(h1 + γh2)u1

)
= −∇ · (h2v), ∇ ·

(
(h1 + γh2)u2

)
= ∇ · (h1v)

in the space of gradient vector fields. Hence a nonlocal operator is involved, which was put forward
in [54] (see also [209, 163]). Only when d = 1 can we simply put u1 = −h2v

h1+γh2
and u2 = h1v

h1+γh2
and

infer  ∂tζ2 + ∂x
(

h1h2

h1+γh2
v
)
= 0,

∂tv + (δ + γ)∂xζ2 +
ε
2∂x
( h2

1−γh
2
2

(h1+γh2)2
v2) = 0.

(6.11)

Physical variables Using physical variables (recall Section 3.4) yields
∂th1 +∇ · (h1u1) = 0

∂th2 +∇ · (h2u2) = 0,

ρ1∂tu1 + gρ1∇(h2 + b) + ρ1(u1 · ∇)u1 = −∇pint,
ρ2∂tu2 + gρ2∇(h2 + b) + ρ2(u2 · ∇)u2 = −∇pint,

(6.12)

with h1(t, x)
def
= d1 − ζ2(t, x) and h2(t, x)

def
= d2 + ζ2(t, x)− b(x) and{

∂th2 +∇ · (h2u2) = 0,

ρ2∂tv + g(ρ2 − ρ1)∇(h2 + b) + ρ2(u2 · ∇)u2 − ρ1(u1 · ∇)u1 = 0,
(6.13)

where u1 and u2 are uniquely determined from v by solving

∇ ·
(
(ρ2h1 + ρ1h2)u1

)
= −ρ2∇ · (h2v), ∇ ·

(
(ρ2h1 + ρ1h2)u2

)
= ρ2∇ · (h1v)

in the space of gradient vector fields.

6.2.1 The Boussinesq approximation

As mentioned in Section 3.1.2, a standard approximation in oceanography is the so-called Boussinesq
approximation, which consists in neglecting the density difference in all but buoyancy terms. This
yields the following systems corresponding to eq. (6.7)–(6.13).

∂tζ2 = ∇ · (h1∇ψ1) = −∇ · (h2∇ψ2),

∂tψ1 + γ δ+γ1−γ ζ2 +
ε
2 |∇ψ1|2 = −pint,

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ2|2 = −pint

(6.7’)
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and, equivalently, {
∂tζ2 +∇ · (h2∇ψ2) = 0,

∂t(ψ2 − ψ1) + (δ + γ)ζ2 +
ε
2 (|∇ψ2|2 − |∇ψ1|2) = 0.

(6.8’)

where ψ1 is determined (up to a harmless constant) from (ψ2, ζ2, b) after solving the elliptic equation

∇ · (h1∇ψ1) = −∇ · (h2∇ψ2).

Using velocity variables, 
∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),

∂tu1 + γ δ+γ1−γ∇ζ2 + ε(u1 · ∇)u1 = −∇pint,

∂tu2 +
δ+γ
1−γ∇ζ2 + ε(u2 · ∇)u2 = −∇pint,

(6.9’)

and, denoting v
def
= u2 − u1,{

∂tζ2 +∇ · (h2u2) = 0,

∂tv + (δ + γ)∇ζ2 + ε
2∇(|u2|2 − |u1|2) = 0,

(6.10’)

where u1 and u2 are uniquely determined from v by solving

∇ ·
(
(h1 + h2)u1

)
= −∇ · (h2v), ∇ ·

(
(h1 + h2)u2

)
= ∇ · (h1v)

in the space of gradient vector fields. When d = 1, the above reduces to ∂tζ2 + ∂x
(
h1h2

h1+h2
v
)
= 0,

∂tv + (δ + γ)∂xζ2 +
ε
2∂x
( h2

1−h
2
2

(h1+h2)2
v2) = 0.

(6.11’)

Physical variables Using physical variables, we obtain
∂th2 = ∇ · (h1u1) = −∇ · (h2u2),
∂tu1 + g

ρ1
ρ0
∇(h2 + b) + (u1 · ∇)u1 = − 1

ρ0
∇pint,

∂tu2 + g
(
ρ2−ρ1
ρ2

+ ρ1
ρ0
)∇(h2 + b) + (u2 · ∇)u2 = − 1

ρ0
∇pint,

(6.12’)

where ρ0 is a reference density (which plays a role uniquely for the definition of pint) and{
∂th2 +∇ · (h2u2) = 0,

ρ2∂tv + g(ρ2 − ρ1)∇(h2 + b) + ρ2(u2 · ∇)u2 − ρ2(u1 · ∇)u1 = 0,
(6.13’)

where u1 and u2 are uniquely determined from v by solving

∇ ·
(
(h1 + h2)u1

)
= −∇ · (h2v), ∇ ·

(
(h1 + h2)u2

)
= ∇ · (h1v)

in the space of gradient vector fields.

Riemann invariants A nice outcome of the Boussinesq approximation for the bilayer hydrostatic
system with rigid lid in dimension d = 1, eq. (6.11’), is that one can obtain explicit formula for
Riemann invariants, similar to the ones presented for the Saint-Venant system in Section iii, as func-
tions of h = h2−h1 and v = u2−u1. Even more striking is the fact that, after appropriate scaling,
the corresponding equations for the Riemann invariants is exactly eq. (iv). As a consequence, there
is a one-to-one correspondence between solutions to the Saint-Venant system (in dimension d = 1)
satisfying the non-cavitation assumption and solutions to eq. (6.11’) satisfying
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i. the non-cavitation assumptions h1 > 0 and h2 > 0;

ii. the hyperbolicity condition ε2|v|2 < (h1 + h2)(δ + γ).

In particular, one deduces that solutions to eq. (6.11’) cannot leave the hyperbolicity domain defined
by i. and ii. as long as they remain regular. Coupled with the standard blowup criterion for
quasilinear systems [132, Theorem 7.8.1], the finite-time breakdown of classical solutions may only
occur as a gradient catastrophe, i.e.

∣∣∂xζ(t, ·)∣∣L∞ +
∣∣∂xv(t, ·)∣∣L∞ → ∞ as t↗ T⋆ <∞.

Without the Boussinesq approximation, the system still possesses Riemann invariants (as any
hyperbolic system of two conservation laws). Yet explicit formulae appear out of reach, and the
hyperbolicity domain is no longer flow-invariant, although it is possible to exhibit a subdomain
which enjoys this property; see [317, 103, 57] for more details.

6.2.2 Hamiltonian structure

The bilayer hydrostatic system, eq. (6.8), enjoys a canonical formulation which is directly inherited
from the corresponding one of the interfacial waves system described in Section 3.2. Introducing

Hhydro
def
=

1

2

∫
Rd

(δ + γ)ζ22 + γh1|∇ψ1|2 + h2|∇ψ2|2 dx

with h1 = 1− εζ2 and h2 = δ−1 + εζ2 and viewing Hhydro as a functional for (ζ2, ξ2
def
= ψ2 − γψ1)

and using the constraint

∇ · (h1∇ψ1) = −∇ · (h2∇ψ2),

one can check that eq. (6.8) reads

∂t

(
ζ2
ξ2

)
=

(
δξ2Hhydro

−δζ2Hhydro

)
.

Associated with the Hamiltonian formulation and natural symmetry groups of the system are
preserved quantities (invariants). Related to the variation of base level for the velocity potentials
are the obvious conservation of the excess of mass:

d

dt
Z = 0, Z

def
=

∫
Rd

ζ2 dx.

From horizontal translation invariance (in the flat bottom case) we obtain the conservation of the
horizontal impulse

d

dt
I = 0, I

def
=

∫
Rd

ζ2∇(ψ2 − γψ1) dx (if βb ≡ 0)

and hence the horizontal momentum (using h1 + h2 ≡ 1 + δ−1) which under the hydrostatic as-
sumption reads

d

dt
Mhydro = 0, Mhydro

def
=

∫
Rd

γh1∇ψ1 + h2∇ψ2 dx (if βb ≡ 0).

From time translation invariance we obtain the conservation of the energy

d

dt
Hhydro = 0.
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6.2.3 Hyperbolicity

In contrast with the free-surface setting, the bilayer hydrostatic system in the rigid-lid case cannot
be written as a quasilinear system of first-order evolution equations, as nonlocal effects arise from
either the presence of a Lagrange multiplier or the projection onto gradient vector fields, except in
the case of horizontal dimension d = 1 or very specific cases (for instance, if γ = 0, we recover the
original Saint-Venant system, that is the one-layer free-surface case). Consistently, the hyperbolicity
analysis of this section is restricted to eq. (6.11) which can be written (in the flat bottom situation)
as

∂tU +A(U)∂xU = 0, U
def
=

(
ζ2
v

)
, A(U) =

(
ε

h2
1−γh

2
2

(h1+γh2)2
v h1h2

h1+γh2

(δ + γ)− γε2 (h1+h2)
2

(h1+γh2)3
v2 ε

h2
1−γh

2
2

(h1+γh2)2
v

)
.

One sees immediately that A(U) has two distinct real eigenvalues,

λ±
def
= ε

h21 − γh22
(h1 + γh2)2

v ±

√
h1h2

h1 + γh2

(
(δ + γ)− γε2

(h1 + h2)2

(h1 + γh2)3
v2
)

if and only if, in addition to the non-cavitation assumption h1 > 0, h2 > 0, the following hyperbol-
icity condition holds:

(δ + γ) − γε2
(h1 + h2)

2

(h1 + γh2)3
v2 > 0,

which in view of the identities u1 = −h2v
h1+γh2

and u2 = h1v
h1+γh2

, reads simply

(δ + γ) − ε2
γ

h1 + γh2
(u2 − u1)

2 > 0.

This should be compared with the analysis of Section 6.1.2. In the rigid-lid framework we obtain
that hyperbolicity holds only for sufficiently small shear velocities, with an explicit criterion. Notice
everything agrees in the limit of weak density contrast: setting γ = 1 above—which corresponds
to using the Boussinesq approximation—we recover the free-surface criterion in the limit γ ↗ 1.
This is an agreement to the analysis in Section 6.2.5 below which suggests that the Boussinesq
approximation and the rigid-lid assumption are two sides of the same coin.

Incidentally, setting γ = 0, we obtain as in the one-layer Saint-Venant system that strict hyper-
bolicity holds as soon as the non-cavitation assumption holds.

6.2.4 Rigorous justification

In this section we rigorously justify the bilayer hydrostatic equations, eq. (6.12), as an asymptotic
model for the interfacial waves system with the rigid-lid assumption, eq. (3.8), in direct analogy
with the results obtained in the free-surface framework in Section 6.1.3.

In this section we denote, given µ⋆ > 0, δ⋆ > 0 and δ⋆ > 0:

p SW

SW

def
=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

Theorem 6.10 (Consistency). Let d ∈ N⋆, s ∈ N, s⋆ > d/2, µ⋆ > 0, δ⋆ > 0, δ⋆ > 0, h⋆ > 0 and
M⋆ ≥ 0. There exists C > 0 such that for any (µ, ε, β, δ, γ) ∈ p SW

SW

, any b ∈ Wmax{s+4,2+s⋆}(Rd),

any T > 0 and any (ζ, ψ1, ψ2) ∈ L∞(0, T ;Hmax{s+4,2+s⋆}(Rd) × H̊max{s+4,2+s⋆}(Rd)2) solution to
the interfacial waves equations, eq. (3.15), satisfying

∀t ∈ [0, T ], ∀x ∈ Rd,

{
h1(t,x)

def
= 1− εζ(t,x) ≥ h⋆ > 0,

h2(t,x)
def
= δ−1 + εζ(t,x)− βb(x) ≥ h⋆ > 0,
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and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣ε∇ψ2(t, ·)

∣∣
H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+4,2+s⋆},∞ ≤M⋆,

one has 
∂tζ2 −∇ · (h1∇ψ1) = r1,

∂tζ2 +∇ · (h2∇ψ2) = r2,

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ1|2 = −γ−1pint + r3,

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |∇ψ2|2 = −pint + r4,

and one has for almost every t ∈ (0, T )∣∣(r1(t, ·), r2(t, ·))∣∣(Hs)2
≤ C µ

(∣∣ζ(t, ·)∣∣
Hs+4 +

∣∣∇ψ1(t, ·)
∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,∣∣(r3(t, ·), r4(t, ·))∣∣(Hs+1)2

≤ C µεM
(∣∣ζ(t, ·)∣∣

Hs+4 +
∣∣∇ψ1(t, ·)

∣∣
Hs+3 +

∣∣∇ψ2(t, ·)
∣∣
Hs+3

)
,

with M
def
=
∣∣∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H1+s⋆

.

Proof. The proof is exactly the same as the one of Theorem 5.1—that is a direct consequence of
Proposition 4.10 and estimates in Sobolev spaces—once we remark the identities

1

µ
Gµ1 [εζ2]ψ1 = − 1

µ
Gµ[−εζ2, 0]ψ1,

1

µ
Gµ,δ2 [εζ2, βb]ψ2 =

δ

µ
Gµ/δ

2

[εδζ, βδb]ψ2.

Notice that the functional spaces for pint and time derivatives have not been described but are
immaterial at this stage.

Remark 6.11. Our consistency result is lazy as we allow to satisfy the mass conservation equations
up to a small remainder term. It is possible but more complicated to justify the equations eq. (6.9)
with uℓ = uℓ (ℓ ∈ {1, 2}) the layer-averaged velocities, in which case the mass conservation identities
hold exactly; see Remark 5.2 and [163] for the rigorous analysis.

The well-posedness of the initial-value problem for the bilayer hydrostatic system with the
rigid-lid assumption, eq. (6.12), has been studied26 in [209] and then improved in [63] (it is also
a particular case of the result of [159], stated in Theorem 15.9). The work [209] is restricted to
irrotational velocity fields—which is not problematic in our context since the equations do stem from
potential flows—and the criterion on the initial data to secure the well-posedness of the initial-value
problem is sharper in [63]. Both works are restricted to the flat bottom situation, although variable
bottoms could be handled by their method (and [159] does allow variable bottoms). We reproduce
below their result.

Theorem 6.12 (Local well-posedness). Let d ∈ {1, 2}, s > 1 + d/2, δ⋆ > 0, δ⋆ > 0, h⋆ > 0 , a⋆ > 0
and M⋆ > 0. There exist T > 0 and C > 0 such that for any (µ, ε, β, α, δ, γ) ∈ p SW

SW

and any

(ζ0,2,u0,1,u0,2) ∈ Hs(Rd)1+2d satisfying the non-cavitation assumptions

∀x ∈ Rd,

{
h1,0(x)

def
= 1− εζ2,0(x) ≥ h⋆ > 0,

h2,0(x)
def
= δ−1 + εζ2,0(x) ≥ h⋆ > 0,

(6.14)

the additional hyperbolicity assumption

∀x ∈ Rd, (δ + γ)− γε2
1

h1,0(x) + γh2,0(x)
|u2,0(x)− u1,0(x)|2 ≥ a⋆ > 0 (6.15)

26In the dimension d = 2. When d = 1 the system reduces to a (symmetrizable) quasilinear hyperbolic system of
order one which can be treated by standard methods, as for the Saint–Venant system in Section 5.3.
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the rigid-lid constraint

∀x ∈ Rd, ∇ ·
(
h1,0u1,0 + h2,0u2,0

)
(x) = 0, (6.16)

and

M0
def
=
∣∣εζ0,2∣∣Hs +

∣∣εu0,1

∣∣
Hs +

∣∣εu0,2

∣∣
Hs ≤M⋆,

there exists a unique (ζ2,u1,u2) ∈ C0([0, T/M0];H
s(Rd)1+2d) (and a corresponding pressure, pint)

solution to eq. (6.9) with βb ≡ 0 and initial data (ζ2,u1,u2) |t=0 = (ζ2,0,u1,0,u2,0); and one has
for any t ∈ [0, T/M0]∣∣ζ2(t, ·)∣∣Hs +

∣∣u1(t, ·)
∣∣
Hs +

∣∣u2(t, ·)
∣∣
Hs ≤ C ×

(∣∣ζ0,2∣∣Hs +
∣∣u0,1

∣∣
Hs +

∣∣u0,2

∣∣
Hs

)
and eq. (6.14) (resp. (6.15)) holds with constant h⋆/2 (resp. a⋆/2).

Remark 6.13. The result holds—setting γ = 1 in the left-hand side of eq. (6.15)—for the system
with Boussinesq approximation, eq. (6.9’), with straightforward adjustments of the proof.

Neither in [209]—whose proof is based on the energy method—or in [63]—whose proof is based
on an abstract result of [217] relying on the semigroup theory of evolution equations—can be found
a stability result from which a convergence result analogous to Theorem 6.8 would be deduced.
While there is no doubt that such result indeed holds, we conclude here this section, and provide in
the next one a justification of eq. (6.12) (or rather eq. (6.12’) since the Boussinesq approximation
arise) from the free-surface hydrostatic equations, eq. (6.3), in the limit of weak density contrast.

6.2.5 The weak density contrast limit

In this section we motivate the use of the rigid-lid assumption—at least in the hydrostatic setting—
by showing that solutions to the system in the physically relevant free-surface framework can indeed
be approximated by solutions in rigid-lid framework (and using the Boussinesq approximation), in
the weak density contrast situation where 1 − γ ≪ 1. Shortly put, we draw the lower arrow in
Figure 6.2. The results in this section are taken from [156, 157]. They are analogous to standard
results in the theory of singular limits, and in particular weakly incompressible flows. The reader
can refer to [379, 190, 299, 9] for an introduction to the standard and not-so-standard results in
this field.

rigorous asymptotic formal asymptotic

interfacial waves
with free surface

eq. (3.1)

hydrostatic equations
with free surface

eq. (6.3)

interfacial waves
with rigid lid and Boussinesq

eq. (3.5’)

hydrostatic equations
with rigid lid and Boussinesq

eq. (6.12’)

weak density contrast, γ → 1

weak density contrast, γ → 1

shallow water,

µ≪ 1
shallow water,

µ≪ 1

Figure 6.2: The hydrostatic and weak density contrast limits.
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Theorem 6.14 (Weak convergence). Under the assumptions of Theorem 6.4 with α = β =
√
1− γ,

denote Uγ = (ζγ1 , ζ
γ
2 ,u

γ
1 ,u

γ
2) ∈ C0([0, T/M0];H

s(Rd)2+2d) ∩ C1([0, T/M0];H
s−1(Rd)2+2d) the clas-

sical solutions to eq. (6.2) indexed by γ ∈ (0, 1). Then for any sequence (γn)n∈N with γn ↗ 1,
the sequence Uγn converges weakly (in the sense of distributions and up to a subsequence) towards
URL = (ζRL

1 , ζRL
2 ,uRL

1 ,uRL
2 ) ∈ L∞(0, T/M0;H

s(Rd))2+2d satisfying
∇ · (hRL

1 uRL
1 ) +∇ · (hRL

2 uRL
2 ) = 0,

∂tζ
RL
2 +∇ · (hRL

2 uRL
2 ) = 0,

∂tu
RL
1 + ε(uRL

1 · ∇)uRL
1 = −∇pRL,

∂tu
RL
2 + (δ + 1)∇ζRL

2 + ε(uRL
2 · ∇)uRL

2 = −∇pRL,

(6.9”)

where hRL
1 = 1− εζRL

2 and hRL
2 = δ−1 + εζRL

2 .

Proof. The strategy is fairly standard; see e.g. [373, §2.2]. The existence of a weakly converging
subsequence (still denoted Uγn), Uγn ⇀ URL, with URL ∈ L∞([0, T/M0];H

s(Rd))2+2d is a con-
sequence of the uniform control on the solutions provided by Theorem 6.4, and Banach—Alaoglu
theorem.

Then notice that, by eq. (6.2), (∂tζ
γ
2 , ∂t(u

γ
2 − uγ1)) ∈ L∞(0, T/M0;H

s−1(Rd))1+d is uniformly
bounded with respect to γ ∈ (0, 1). This, using the Aubin–Lions Lemma and the fact that the
embedding Hs(Rd) ⊂ Hs′(Rd) is locally compact, implies strong convergence for a subsequence
(ζγn2 ,uγn2 −uγn1 ) → (ζRL

2 ,uRL2 −uRL1 ) in C0([0, T/M0];H
s′

loc(Rd)1+d) for any s−1 < s′ < s. Further-
more we have, for ℓ ∈ {1, 2}, the same result on (Id−∇∆−1∇·)(uγℓ ) and, after some manipulations,

we may infer that a subsequence uγnℓ −∇∆−1∇· h
γn
1 uγn

1 +hγn
2 uγn

2

1+δ−1 → uRL
ℓ in C0([0, T/M0];H

s′

loc(Rd)d).
By the standard Sobolev embedding, choosing 1 + d

2 < s′ < s and using a Cantor diagonal

process, convergence in C0([0, T/M0];H
s′

loc(Rd)) yields pointwise convergence (of a subsequence) for
the functions and their derivatives in [0, T/M0] × Rd, which allows to pass to the limit on every
nonlinear contributions to eq. (6.2) and eventually infer that the limit U does satisfy eq. (6.9”),
where −∇pRL therein is defined by the left-hand side, which is proved to be potential and equal for
both equations.

Remark 6.15. Notice that eq. (6.9”) coincides with the rigid-lid system with Boussinesq approxima-
tion, (6.9’), up to setting ∇pint + γ δ+γ1−γ∇ζ

RL
2 = ∇pRL and harmlessly scaling the time variable and

velocities to replace δ+1 with δ+γ. In particular, we can use Theorem 6.12 (see also Remark 6.13)
and time reversibility of the equations and infer that (ζRL

2 ,uRL
1 ,uRL

2 ) ∈ C0([0, T/M0];H
s(Rd))1+2d.

In particular, the trace at time t = 0 is well-defined and satisfies ∇ · (hRL
1 uRL

1 + hRL
2 uRL

2 ) |
t=0

= 0.

It is important to stress out that the convergence in the above theorem is weak. Such results
are not fully satisfactory as they allow undetectable wild behavior, such as asymptotically rapid
oscillations (in time) as γ ↗ 1. In particular, the initial data for the limit does not, in general,
coincide with the original initial data. This phenomenon of boundary layer in time is already
apparent in the proof and in the above remark, and made even clearer in the following theorem.

Theorem 6.16 (Strong convergence). Under the assumptions of Theorem 6.4 with α = β =
√
1− γ,

denote Uγ def
= (ζγ1 , ζ

γ
2 ,u

γ
1 ,u

γ
2)

def
= (ζγ1 , Ũ

γ) ∈ C0([0, T/M0];H
s(Rd)2+2d) the solution to eq. (6.2),

indexed by γ ∈ (0, 1), and hγ1
def
= 1− εζγ2 , h

γ
2

def
= δ−1 + εζγ2 .

i. If one has

ζγ1 |t=0 and ∇ · (hγ1u
γ
1 + hγ2u

γ
2) |t=0 (6.17)

then, denoting URL def
= (ζRL

2 ,uRL
1 ,uRL

2 ) ∈ C0([0, T/M0];H
s−1(Rd)1+2d) the solution to eq. (6.9”)

with corresponding initial data URL |
t=0

= Ũγ |
t=0

and pRL ∈ C0([0, T/M0];H
s(Rd)) the cor-



6. The bilayer hydrostatic systems 70

responding pressure, we have for any t ∈ [0, T/M0],

1√
1− γ

∣∣αζγ1 − 1−γ
δ+γ p

RL
∣∣
Hs−1 +

∣∣(Ũγ −URL)(t, ·)
∣∣
Hs−1

≤ C(1 + t)
√
1− γ

(∣∣ζ0,2∣∣Hs +
∣∣u0,1

∣∣
Hs +

∣∣u0,2

∣∣
Hs

)
,

where C depends uniquely on s⋆ > d/2, s ≥ 1 + s⋆, δ⋆ > 0, δ⋆ > 0, h⋆ > 0, M⋆ > 0.

ii. If d = 2 then, denoting URL def
= (ζRL

2 ,uRL
1 ,uRL

2 ) ∈ C0([0, T/M0];H
s(Rd)1+2d) the classical

solution to eq. (6.9”) with initial data

ζRL
2 |t=0 = ζγ2 |t=0 , uRL

ℓ |t=0 = uγℓ |t=0 −∇∆−1∇ ·w0, (ℓ ∈ {1, 2})

where w0 =
(hγ

1u
γ
1+h

γ
2u

γ
2 )|t=0

1+δ−1 and pRL ∈ C0([0, T/M0];H
s(Rd)) the corresponding pressure;

and (ζac1 ,w
ac) ∈ C0(R;Hs(Rd))1+d the solution to the acoustic wave equations

∂tζ
ac
1 +∇ ·wac = 0, ∂tw

ac +
1

1− γ
∇ζac = 0, (6.18)

with initial data (ζac1 ,w
ac) |

t=0
= (ζγ1 |

t=0
,∇∆−1∇ ·w0). Then for any 0 ≤ s′ < s, one has

sup
t∈[0,T/M0]

( 1√
1− γ

∣∣(ζγ1 − 1−γ
δ+γ p

RL − ζac1 )(t, ·)
∣∣
Hs′ +

∣∣(ζγ2 − ζRL
2 )(t, ·)

∣∣
Hs′

+
∣∣(uγ1 − uRL

1 −wac)(t, ·)
∣∣
Hs′ +

∣∣(uγ2 − uRL
2 −wac)(t, ·)

∣∣
Hs′

)
→ 0 (as γ ↗ 1).

Proof. First we remark that for T ′ sufficiently small, URL ∈ C1([0, T ′];Hs−1(Rd)1+2d) is well-
defined by Theorem 6.12 (see also Remark 6.13), and the fact that pRL ∈ C1([0, T ′];Hs−1(Rd)) is
defined from (ζRL

2 ,uRL
1 ,uRL

2 ) through the Poisson equation stemming from the rigid-lid constraint,
∇ · (hRL

1 uRL
1 + hRL

2 uRL
2 ) = 0, that is27

∇ ·
(
(hRL

1 + hRL
2 )∇pRL

)
= −∇ ·

(
(δ+1)hRL

2 ∇ζRL
2 + ε∇ · (hRL

1 uRL
1 ⊗uRL

1 + hRL
2 uRL

2 ⊗uRL
2

)
. (6.19)

Because—see the proof of Theorem 6.14—there exists a sequence {Uγn}n∈N such that Ũγn converges

(strongly) in C0([0, T/M0];H
s′

loc(Rd)1+d) to URL a solution to eq. (6.9”) satisfying Ũγ = URL |
t=0

,
we find that (ζRL

2 ,uRL
1 ,uRL

2 ) can be extended at least to the time T ′ = T/M0. It is then an easy task

to show that ŨRL def
= ( 1−γδ+γ p

RL,URL) satisfies eq. (6.2) up to an additive remainder term scaling

as
√
1− γ as γ ↗ 1 (in the anisotropic energy functional, that is applying a 1√

1−γ prefactor to the

first component). Then applying the uniform energy estimates from the proof of Theorem 6.4 to

the equation satisfied by the difference Uγ − ŨRL, the claimed estimate follows.
In the second part of the statement, the construction and estimates on the rigid-lid contribution,

still denoted URL, is obtained exactly as above since URL satisfies the desired initial conditions.
The solutions to the acoustic wave equations are well-known; see [34] for instance. We have in
particular (ζac1 ,w

ac) ∈ C0(R;Hs(Rd))1+d , (Id−∇∆−1∇·)wac = (Id−∇∆−1∇·)w0 = 0,

1

1− γ

∣∣ζac1 (t, ·)
∣∣2
Hs + (1 + δ−1)

∣∣w(t, ·)
∣∣2
Hs =

1

1− γ

∣∣ζγ1 |
t=0

∣∣2
Hs + (1 + δ−1)

∣∣w0

∣∣2
Hs

27Notice that the fact that we can set pRL with finite energy from ∇pRL ∈ C0([0, T ′];Hs−1(Rd)) stems from
the Boussinesq approximation; since in eq. (6.19) hRL

1 + hRL
2 is constant and the right-hand side is the action of

differential operators with symbol homogeneous of degree 2 acting on functions in L2(Rd). It is shown in [70, 71]
that, without the Boussinesq approximation, initial conditions do generate horizontal pressure imbalances which in
turn yield an apparently paradoxical evolution in time of the total horizontal momentum.
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for any t ∈ R; and, since d = 2 and using time rescaling, the Strichartz estimates∥∥ 1√
1−γ ζ

ac
1

∥∥
Lp(R;Lq(Rd))

+
∥∥√1 + δ−1wac

∥∥
Lp(R;Lq(Rd))

≲
(√

1−γ
1+δ−1

)1/p(∣∣ 1√
1−γ ζ

γ
1 |t=0

∣∣2
Hσ +

∣∣√1 + δ−1w0

∣∣
Hσ

)
where p, q satisfy 2 < p, q < ∞ and 1

p + d
q = d

2 − σ and 2
p + d−1

q = d−1
2 ; say p = q = 6 and σ = 1

2 .

These estimates allow to control quadratic contributions as follows: let f ∈ L∞(0, T ;Hs(Rd)) with
s > 1

6 and g ∈ L6(0, T ;L6(Rd)). Then by Hölder inequality (Lemma II.1) and continuous Sobolev
embedding (Lemma II.4), we have∥∥fg∥∥

L1(0,T ;L2(Rd))
≲
∥∥f∥∥

L6(0,T ;L6(Rd))

∥∥g∥∥
L6(0,T ;L6(Rd))

≲ T 1/6
∥∥f∥∥

L∞(0,T ;Hs(Rd))

∥∥g∥∥
L6(0,T ;L6(Rd))

.

Such estimates allow to infer that

Uapp def
= ( 1−γδ+γ p

RL + ζac1 , ζ
RL
2 ,uRL

1 +wac,uRL
2 +wac)

satisfies the free-surface equations, eq. (6.2), up to an additional term R such that∥∥R∥∥
L1(0,T ;L2(Rd))

→ 0 (as γ ↗ 1).

(in the anisotropic energy functional, that is applying a 1√
1−γ prefactor to the first component)

with plenty of room to spare. Using the uniform energy estimates from the proof of Theorem 6.4 to
the equation satisfied by the difference Uγ −Uapp, we obtain the claimed limit when s′ = 0. The
case 0 ≤ s′ < s follows from the logarithmic convexity of Sobolev norms; Lemma II.3.

Remark 6.17. In the first scenario of Theorem 6.16, eq. (6.17) is an assumption of well-prepared
initial data. It allows to suppress (at first order) the contribution of the “fast mode”28 appearing
in the second scenario, and which is responsible for the aforementioned boundary layer in time. It
could easily be relaxed to

∣∣αζγ1 |t=0

∣∣
Hs = O(1− γ) and

∣∣∇ · (hγ1u
γ
1 + hγ2u

γ
2) |t=0

∣∣
Hs = O(

√
1− γ).

In the second scenario we construct an approximate solution as the superposition of the “fast
mode” and the “slow mode”.29 The condition d = 2 is essential to ensure, thanks to the (asymptot-
ically rapid) decreasing of the amplitude of the fast mode which follows from dispersive estimates,
that the interaction between the fast and slow modes, as well as the nonlinear self-interactions of
the fast mode, vanish in the limit γ ↗ 1. One could provide an explicit rate of convergence, yet
much weaker than the one for well-prepared initial data.

When d = 2, an assumption of spatial localization can replace the dispersive estimates to prove
that the fast and slow modes do not interact; see [156, Proposition 4.4] and [157, Remark 1.6].

6.3 The multilayer case

The bilayer hydrostatic systems presented in Section 6.1 and Section 6.2 can naturally be extended
to a framework with an arbitrary number (denoted N) of homogeneous layers; see Figure 6.3. Let
us write the multilayer hydrostatic equations with a free surface, using physical variables (see,
for instance, [35]).

∂thℓ +∇ ·
(
hℓuℓ

)
= 0 (ℓ ∈ {1, . . . , N}),

ρℓ∂tuℓ + g
∑

1≤ℓ′<ℓ

ρℓ′∇hℓ′ + gρℓ∇ζℓ + ρℓ(uℓ · ∇)uℓ = 0 (ℓ ∈ {1, . . . , N}), (6.20)

28the “acoustic component” in the context of weakly compressible flows, the “barotropic mode” in our context.
29the“incompressible component” in the context of weakly compressible flows, the“baroclinic mode” in our context.
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Figure 6.3: Sketch of the domain and notations in the multilayer framework.

where ζℓ denotes the deformation of the ℓth interface (with ζ1 the free surface and, by convention,

ζN+1 = b the fixed bottom), h
def
= dℓ + ζℓ − ζℓ+1 the depth of the ℓth layer and uℓ a horizontal

velocity (say, layer-averaged) associated with the layer ℓth layer. Notice ∇ζℓ =
∑
ℓ≤ℓ′≤N ∇hℓ +∇b

so the above system is a closed set of equations. Of course, ρℓ is the constant density of the ℓth layer
and dℓ its depth at rest, while as always g represents the constant vertical gravity acceleration.

Rigid lid In the rigid-lid framework these equations reduce to
∂thℓ +∇ ·

(
hℓuℓ

)
= 0 (ℓ ∈ {1, . . . , N}),

ρℓ∂tuℓ + g
∑

1≤ℓ′<ℓ

ρℓ′∇hℓ′ + gρℓ∇ζℓ + ρℓ(uℓ · ∇)uℓ = −∇plid (ℓ ∈ {1, . . . , N}), (6.21)

where we set ζ1
def
=
∑N
ℓ=1(hℓ − dℓ) + b = 0, and plid represents the pressure at the rigid lid and is

the Lagrange multiplier associated with the constraint

N∑
ℓ=1

∇ ·
(
hℓuℓ

)
= 0.

Applying the Boussinesq approximation yields
∂thℓ +∇ ·

(
hℓuℓ

)
= 0 (ℓ ∈ {1, . . . , N}),

ρ0∂tuℓ + g
∑

1≤ℓ′<ℓ

ρℓ′∇hℓ′ + gρℓ∇ζℓ + ρ0(uℓ · ∇)uℓ = −∇plid (ℓ ∈ {1, . . . , N}), (6.21’)

where ρ0 is a reference density, say ρ0 = ρ1.

Remark 6.18. The convention for Boussinesq approximation here is different from the one used in
Section 6.2.1, and in particular eq. (6.12’), unless we choose above ρ0 = ρ2 as a reference density
(and, of course, N = 2). The convention in the bilayer setting is convenient because the resulting
system does not depend on the choice of the reference density, except for the harmless physical
interpretation of the Lagrange multiplier. However, when N ≥ 3 layers are involved, our choice of
Boussinesq approximation provides stronger simplifications (see e.g. [102]). Moreover, in the limit
of continuous stratification presented in Section 6.3.3, we recover the hydrostatic equations with
rigid-lid and Boussinesq approximation in Eulerian coordinates, that is eq. (7.4)-(7.4b’) (following
the computations in Section 7.2).
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6.3.1 Hyperbolicity

Systems (6.20) as well as eq. (6.21)—and eq. (6.21’) if d = 1 are first-order quasilinear system. Yet
starting with three layers, it becomes impossible to gather precise information on the domain of
hyperbolicity of these systems, except in very specific situations (see [103, 188, 391]). Thanks to
a perturbative analysis, we are however able to state the important fact that, for any number of
layer, N , eq. (6.20) is hyperbolic provided that

• the non-cavitation assumption holds: infhℓ > 0 for any ℓ ∈ {1, . . . , N},

• the density stratification is stable: ρ1 < ρ2 < · · · < ρN ,

• the shear velocities, |uℓ+1 − uℓ| for ℓ ∈ {1, . . . , N − 1}, are sufficiently small.

This follows from a perturbative analysis. Indeed, if we set u1 = · · · = uN
def
= u and restrict to the

dimension d = 1 and the flat bottom situation, then writing eq. (6.20) in compact form as

∂tU +A(U)∂xU = 0, U
def
= (h1, h2 . . . , hN , u1, u2, . . . , uN )⊤

then the (2N)× (2N) square matrix A(U) has 2N distinct real eigenvalues:

λ±ℓ = u ± µℓ (ℓ ∈ {1, . . . , N}), 0 < µN < · · · < µ2 < µ1.

This comes from the fact that the eigenvalue problem for A can be rewritten as the eigenvalue
problem for a real, symmetric tridiagonal matrix with non-zero (positive) off-diagonals entries,
that is a discrete Sturm–Liouville problem; see e.g. [48, 35, 154]. The hyperbolicity of the full
problem, that is with bottom topography, dimension d = 2 and including (sufficiently small) shear
velocities follows from the fact that bottom contributions are order-zero, the rotational invariance
property described in the proof of Theorem 6.4, and a perturbative analysis, respectively; see [157,
Appendix B].

Figure 6.4: Sketch of eigenvalues and eigenvectors with N = 4.

A nice outcome of the Sturm–Liouville theory [388] is the fact that the eigenvalues are ordered
following the number of sign changes of the eigenvectors; see Figure 6.4. This allows to characterize
the modes of propagation in a multilayer system. The fastest mode is the barotropic mode, and
surface and interface deformations are either all elevation, or all depression. Then polarity changes
increase by one in baroclinic modes with decreasing velocities. See for instance [420] for observations
in the South China Sea, and references therein for theoretical investigations, laboratory experiments,
numerical analyses and field observations.

6.3.2 The weak density contrast limit

As in the bilayer case, we observe a strong separation between the barotropic mode and the baro-
clinic modes in the limit of weak density contrast, that is

ρℓ+1 − ρℓ
ρN

≪ 1, (ℓ ∈ {1, 2, . . . , N − 1}).
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In fact the analysis presented in Section 6.2.5 can be extended mutatis mutandis, and in [157] it
is shown that we can rigorously approximate solutions to the free-surface system, eq. (6.20) with
solutions to the rigid-lid system with Boussinesq approximation, eq. (6.21’), and superposing the
solution of an acoustic wave equation, eq. (6.18), in the foregoing limit and for sufficiently small
initial surface perturbations. The main—and important—difference with the bilayer framework is
that the condition of “sufficiently small shear velocities”, that is eq. (6.6) when N = 2, is no longer
explicit. In particular, there is no reason to believe that it should be uniform with respect to the
number of layers, N ; see discussions in [157] and in [328]. Indeed, as N grows, the eigenvalues
of the problem without shear velocities described above accumulate around the given value of
the horizontal velocity, and the aforementioned perturbative analysis depends extensively on (the
inverse of) the shrinking spectral gaps.

6.3.3 The continuous stratification limit

The main interest in considering multilayer systems is that we hope it describes accurately, if the
number of layers N is large, the situation of continuous stratification.30 Simply put, we approximate
the continuous density by a step function (in addition to the hydrostatic assumption, here). Despite
the fact that we have no explicit or uniform-in-N criterion for hyperbolicity (or“nonlinear stability”,
or well-posedness) for the multilayer hydrostatic systems (see [1, 215, 365, 102] and the discussion
above), we shall formally investigate this continuous stratification limit in this section. To this aim

we consider eq. (6.20) with N arbitrary and d
(N)
ℓ , ρ

(N)
ℓ (ℓ ∈ {1, . . . , N}) satisfying

d
(N)
ℓ /N = h(ℓ/N), ρ

(N)
ℓ = ρ(ℓ/N), ℓ ∈ {1, . . . , N},

with h, ρ : [0, 1] → R two continuous functions. Denoting (assuming the limits exist)

η(t, x , r) = lim
ℓ=⌊rN⌋

ζ
(N)
ℓ+1(t, x)− ζ

(N)
ℓ (t, x)

N
, u(t, x , r) = lim

ℓ=⌊rN⌋
u
(N)
ℓ (t, x), r ∈ (0, 1)

we find, formally passing to the limit in eq. (6.20),
∂tη +∇x ·

(
(h + η)u

)
= 0,

ρ∂tu + g

∫ r

0

ρ∇xη dr ′ + gρ
(
∇xb +

∫ 1

r

∇xη dr ′
)
+ ρ(u · ∇x )u = 0.

(6.22)

Here the variable r ∈ (0, 1) is the isopycnal coordinate. At any time t, we can identify a location
in physical space (x , z) ∈ Ωt to (x , r) ∈ Rd × (0, 1) through the identity

ρ(t, x , z) = ρ(r),

provided that ρ (which we can choose without loss of generality) is strictly monotonic and contin-
uous, and ρ(t, x , ·) : (−d + b(x), ζ(t, x)) → (ρ(0), ρ(1)) is one-to-one and onto. In the following,
we always consider ρ increasing and ρ(t, x , ·) decreasing. Then u(t, x , r) represents the horizontal

velocity at (t, x , z) and
∫ r
0
h(r ′) + η(t, x , r ′) dr ′ = ζ(t, x) − z (from which we infer the necessary

conditions
∫ r
0
h(r ′) dr ′ = d and h + η > 0). We give more precisions on the relationship between

Eulerian and isopycnal coordinates, starting directly from the continuous framework, in Section 7.2.

30The only rigorous result on this limit to my knowledge is [89] for traveling waves in the non-hydrostatic framework.
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Rigid lid The rigid-lid counterpart can of eq. (6.22) can be derived in the same way from eq. (6.21),
and we infer

∂tη +∇x ·
(
(h + η)u

)
= 0,

b +
∫ 1

0
η dr = d ,

ρ∂tu + g

∫ r

0

ρ∇xη dr ′ + gρ
(
∇xb +

∫ 1

r

∇xη dr ′
)
+ ρ(u · ∇x )u = −∇xplid,

(6.23)

where plid represents the pressure at the rigid lid and is the Lagrange multiplier associated with
the constraint of the second equation. Using the Boussinesq approximation yields

∂tη +∇x ·
(
(h + η)u

)
= 0,

b +
∫ 1

0
η dr = d ,

ρ∂tu + g

∫ r

0

ρ∇xη dr ′ + gρ
(
∇xb +

∫ 1

r

∇xη dr ′
)
+ ρ(u · ∇x )u = −

ρ

ρ0
∇xplid,

(6.23’)

where ρ0 is a reference density, say ρ0 = ρ1.

Hyperbolicity It is informative to try to extend the discussion on the hyperbolicity and mode
decomposition of the bilayer system (Section 6.3.1) to the continuous density framework. For
simplicity, let us restrict to the case of dimension d = 1 and flat bottom. Then eq. (6.22) can be
written as

∂t

(
η
u

)
+A(η, u)∂x

(
η
u

)
= 0, A(η, u)

def
=

(
u h + η
gM u

)
with M : L1(0, 1) → C1(0, 1) is the operator defined by

(Mζ)(r)
def
=

∫ r

0

ρ(r ′)ζ(r ′) dr ′ + ρ(r)

∫ 1

r

ζ(r ′) dr ′

=

∫ r

0

ρ′(r ′)

∫ 1

r

ζ(r ′′) dr ′′ dr ′ + ρ(0)

∫ 1

0

ζ(r ′) dr ′,

and is related to the Montgomery potential; see Section 7.2. If we neglect shear velocities and
consider u ≡ u⋆, then

A(η, u⋆)

(
s
f

)
= λ

(
s
f

)
⇐⇒

{
(λ− u⋆)

2s = g(h + η)Ms,

(h + η)f = (λ− u⋆)s.

The first line of the right-hand side is a Sturm–Liouville problem [395]. Indeed, defining

S(r)
def
=

∫ 1

r

s(r ′) dr ′,

we obtain

(λ− u⋆)2s = g(h + η)Ms ⇐⇒ − d

dr

( 1

g(h + η)

d

dr
S
)
=

ρ′

(λ− u⋆)2
S.

From this we infer that provided that inf r h + η > 0 and inf r ρ
′ > 0 (we recognize here the non-

cavitation and stable density stratification assumptions introduced in the multilayer system), there
exists an countable infinite number of real eigenvalues

λ±ℓ = u⋆ ± µℓ (ℓ ∈ N), 0 < · · · < µℓ < · · · < µ2 < µ1,
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and the aforementioned oscillation (or polarity change) property holds for S which represents the
deformation from rest of the isopycnals, i.e. sheets of fluid particles with given density.

Hence the discussion of hyperbolicity and mode separation of Section 6.3.1 does extend to the
setting of continuous density stratification in the absence of shear velocities. However one cannot
use perturbative arguments (see [248]) to extend the analysis to non-zero shear velocities, due to the
fact that eigenvalues accumulate at u⋆. This certainly explains why even second baroclinic modes
(that is with two polarity changes) are rarely observed [420]. Yet the celebrated result of Miles [315]
and Howard [216] applies in the hydrostatic framework in particular and shows that, in dimension
d = 1 (see [191, Remark 1.3] when d = 2), no eigenvalue with non-trivial imaginary part may arise
as soon as shear velocities are sufficiently small, more precisely

∀r ∈ (0, 1),
1

4
|u′|2 ≤ g(h + η)

−ρ′

ρ
.

This shows the spectral stability but this does not imply—by far!—other stability results, such as a
continuous semigroup property on the linearized operator, let alone well-posedness of the nonlinear
initial-value problem. Let me lazily refer to [192] for a detailed discussion on a related problem,
and more generally to [191] for a very nice exposition to hydrodynamic stability theory.

6.4 Discussion and open questions

We have already expressed that Theorem 6.4—and therefore results relying on it—suffers from two
serious shortcomings. The first one is that the conditions on the initial data therein does not meet
the conditions for hyperbolicity described in Section 6.1.2. The second one is that it involves a
stringent smallness condition on the bottom topography as γ ↗ 1. These shortcomings may be
only technical, and require only a closer look at the structure of the system. Recall that in the
one-layer (Saint-Venant) situation, the related questions of large-time existence in weakly nonlinear
situations with strong bottom variations was answered in [62]; see Remark 5.4.

For quasilinear systems such as the bilayer or multilayer hydrostatic systems presented in this
section, one of the main focus is the domain of hyperbolicity. It is quite frustrating that so little is
known despite quite a lot of works in this direction. Summarizing what has been discussed above
(see also [408] for a review and more references), and restricting the discussion to dimension d = 1:

• we know explicitly the hyperbolicity domain and Riemann invariants for the system with
N = 2 layers, rigid lid and Boussinesq approximation;

• we know explicitly the hyperbolicity domain for the system with N = 2 layers and rigid lid;

• we can characterize the hyperbolicity domain for the system with N = 2 layers and free
surface;

• we know that the system with N ≥ 2 layers is strictly hyperbolic for sufficiently small shear
velocities.

Hence outside of the situation of N = 2 (or very specific situations if N = 3, see e.g. [407]), our
knowledge is very limited. In particular the domain of hyperbolicity is expected to be larger than
the domain of strict hyperbolicity and possible scenarios for eigenvalue crossings [104] remain to be
understood.

As a consequence, we have—again, by far—not enough material to study the limit of continuous
stratification described above, despite the fact that it is one of the main motivation behind multilayer
models. It should be noted however that the strategy of crudely approximating a continuous density
by a step function may be too rough, and some works have been dedicated to loosen this premise; see
e.g. [188] and references therein. Also, we assume potential flows in each layer, so that the vorticity
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in the continuous model is approximated by “Dirac” vortex sheets located at interfaces. This again
may be too rough, and the authors in [93] have exhibited the regularizing effect of incorporating
vorticity in multilayer models. Shortly put, the multilayer hydrostatic systems discussed in this
manuscript might not be the best ones to consider for practical purposes. However, for any model
of multilayer type, in order to hope that good stability results hold uniformly with respect to the
number of layers, these should also hold for the (limit) continuously stratified model introduced in
Section 6.3.3 and discussed in more details in Section 7. For this continuous model again results are
sparse despite important efforts and in particular deciding the well-posedness of the initial-value
problem for the latter (in spaces of finite regularity) is, to the author’s opinion, an important open
mathematical challenge.
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7 The continuously stratified hydrostatic systems

Here we introduce hydrostatic equations for continuously stratified incompressible flows. These
equations are often called primitive equations in studies of geophysical flows, although the equa-
tions typically include Coriolis force, more complicated equations of state (including the role of
“tracers”such as temperature and salinity) as well as diffusion and/or viscosity effects (and some
authors use the term primitive equations for non-hydrostatic equations). We will therefore refrain
from using this otherwise engaging terminology. The interested reader may refer to [357] among
many inspiring textbooks on geophysical flows for a mathematically oriented introduction.

7.1 Formal derivation

In this section we formally derive the hydrostatic counterparts of the full Euler equations, eq. (1.1),
with fixed bottom , constant atmospheric pressure, and neglecting surface tension. We first intro-
duce a scaling based on31 Section 2.4. We set

x =
x

λ
; z =

z

d
; t =

√
gd

λ
t

and (notice the different scaling for the horizontal and vertical velocities)

ζ =
ζ

atop
; b =

b

abit
; ρ =

ρ

ρ0
; U =

1√
gd
U ; w =

λ

d
√
gd
w ; P =

1

ρ0gd
P .

In addition to the typical horizontal wavelength denoted λ, the depth of the layer at rest d , the
typical amplitude of surface waves atop, the typical amplitude of bottom deformations abot, we
introduced ρ0 the typical mass density. With this scaling and recalling the dimensionless parameters

ε =
atop
d

; β =
abot
d

; µ =
d2

λ2

we have

∂tρ+∇x · (ρU) + ∂z(ρw) = 0 in Ωt, (7.1a)

ρ∂tU + ρ(U · ∇x + w∂z)U = −∇xP in Ωt, (7.1b)

µ
(
ρ∂tw + ρ(U · ∇x + w∂z)w

)
= −∂zP − ρ in Ωt, (7.1c)

∇x · U + ∂zw = 0 in Ωt, (7.1d)

ε∂tζ = w − (ε∇ζ) · U on Γtop, (7.1e)

w = (β∇b) · U on Γbot, (7.1f)

P = patm on Γtop. (7.1g)

where Ωt
def
= {(x, z) ∈ Rd+1 : −1 + βb(x) < z < εζ(t,x)}, Γtop

def
= {(x, z) ∈ Rd+1 : z = εζ(t,x)},

and Γbot
def
= {(x, z) ∈ Rd+1 : z = −1 + βb(x)}. The hydrostatic equations now stem from setting

µ = 0 in eq. (7.1c), so that we infer

P (t,x, z) ≈ P (t,x, εζ(t,x)) +

∫ εζ

z

ρ(t,x, z′) dz′,

31yet slightly different, as we wish the nonlinearity parameter ε to measure the deviation to non-trivial shear flows:

ρ(t,x, z) = ρ(z) + ερ̃(t,x, z), U(t,x, z) = U(z) + εŨ(t,x, z), w(t,x, z) = εw̃(t,x, z).
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and plugging this approximation in eq. (7.1b). While we lost the evolution equation for w,32 we
can use the incompressibility condition, eq. (7.1e), and the boundary condition, eq. (7.1f), to infer

w(t,x, z) = (β∇b(x)) · U(t,x,−1 + βb(x))−
∫ z

−1+βb(x)

(∇x · U)(t,x, z′) dz′.

After an obvious algebra on eq. (7.1f), the system of equations eq. (7.1) then becomes

∂tρ+ U · ∇xρ+ w∂zρ = 0 in Ωt, (7.2a)

ρ∂tU + ρ(U · ∇x + w∂z)U = −∇xP in Ωt, (7.2b)

ε∂tζ +∇ ·
(∫ εζ

−1+βb

U(·, z) dz
)
= 0 on Rd, (7.2c)

P (·,x, z) = patm +

∫ εζ

z

ρ(·,x, z′) dz′ in Ωt, (7.2d)

w(·,x, z) = (β∇b(x)) · U(·,x,−1 + βb(x))−
∫ z

−1+βb(x)

(∇x · U)(·,x, z′) dz′ in Ωt. (7.2e)

Physical variables Scaling back to physical variables we get the hydrostatic Euler equations

∂tρ+ U · ∇xρ+ w∂zρ = 0 in Ωt , (7.3a)

ρ∂tU + ρ(U · ∇x + w∂z )U = −∇xP in Ωt , (7.3b)

∂tζ +∇ ·
(∫ ζ

−d+b
U(·, z) dz

)
= 0 on Rd, (7.3c)

P (·, x , z) = patm + g

∫ ζ

z

ρ(·, x , z ′) dz ′ in Ωt , (7.3d)

w(·, x , z) = ∇b(x) · U(·, x ,−d + b(x))−
∫ z

−d+b(x)
(∇x · U)(·, x , z ′) dz ′ in Ωt . (7.3e)

Remark 7.1 (Homogeneous setting). As in the full Euler equations, if we assume that the density
is constant at a given time, then this property propagates in time, by the conservation of mass,
eq. (7.3a). In this case, we obtain the so-called Benney system [47],33 which consists in replacing
−∇xP

ρ
with −g∇ζ in eq. (7.3b), coupled with eq. (7.3c) and eq. (7.3e). Notice this is not the

Saint-Venant system introduced in Section 5. However, if we assume additionally that ∂zU ≡ 0
(i.e. columnar motion) at a given time, this property propagates in time and the system reduces to
the Saint-Venant system, eq. (5.4). Hence we have the diagram in Figure 7.1.

32It is said the variable w is no longer prognostic but diagnostic.
33Incidentally, the Benney system has a quite striking connection with kinetic equations. By using a Lagrangian

formulation akin to the isopycnal coordinates described later on [425], the equations turn out to be a representation
of the Vlasov—Poisson equation, where the “Coulomb potential” is replaced by the Dirac mass; see [37, 38]. The
system is not only Hamiltonian, but also “quasi-integrable”; see aforementioned references.
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specific case rigorous asymptotic formal asymptotic

full Euler
eq. (1.1)

hydrostatic
eq. (7.3)

water waves
eq. (2.2)

Benney
Saint-Venant

eq. (6.3)

homogeneous, potential flows

shallow water,

µ≪ 1

homog. columnar

shallow water,

µ≪ 1

Figure 7.1: Some hydrostatic models.

Rigid-lid As we did in Section 6, we can introduce a version of the above systems in the rigid-lid
framework. The rigid-lid counterpart to eq. (7.2) is

∂tρ+ U · ∇xρ+ w∂zρ = 0 in Rd × (−1, 0), (7.4a)

ρ∂tU + ρ(U · ∇x + w∂z)U = −∇xP in Rd × (−1, 0), (7.4b)

w |z=0 = 0 on Rd, (7.4c)

P (·,x, z) = plid(·,x) +
∫ 0

z

ρ(·,x, z′) dz′ in Rd × (−1, 0), (7.4d)

w(·,x, z) = β∇b(x) · U(·,x,−1 + βb(x))−
∫ z

−1+βb(x)

(∇x · U)(·,x, z′) dz′ in Rd × (−1, 0). (7.4e)

where plid represents the pressure at the rigid lid and is the Lagrange multiplier associated with
the constraint w |

z=0
= 0. Scaling back to physical variables, we get

∂tρ+ U · ∇xρ+ w∂zρ = 0 in Rd × (−d , 0), (7.5a)

ρ∂tU + ρ(U · ∇x + w∂z )U = −∇xP in Rd × (−d , 0), (7.5b)

w |
z=0

= 0 on Rd, (7.5c)

P (·, x , z) = gplid(·, x) + g
∫ 0

z

ρ(·, x , z ′) dz ′ in Rd × (−d , 0), (7.5d)

w(·, x , z) = (∇b(x)) · U(·, x ,−d + b(x))−
∫ z

−d+b(x)
(∇x · U)(·, x , z ′) dz ′ in Rd × (−d , 0). (7.5e)

Applying the Boussinesq approximation consists in replacing eq. (7.4b) with

∂tU + (U · ∇x + w∂z)U = −∇xP in Rd × (−1, 0), (7.4b’)

or eq. (7.5b) with

∂tU + (U · ∇x + w∂z )U = − 1

ρ0
∇xP in Rd × (−d , 0), (7.5b’)

where ρ0 is a constant reference density.
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specific case rigorous asymptotic formal asymptotic

full Euler
(stably stratified)

eq. (1.1)

hydrostatic equations
eq. (7.3) = eq. (7.10) = eq. (6.22)

multilayer
water waves

multilayer hydrostatic
eq. (6.20)

multilayer framework

N → ∞

shallow water,

µ≪ 1
shallow water,

µ≪ 1

Figure 7.2: Hydrostatic limits and stratification.

7.2 Isopycnal coordinates

In this section we (formally) show that eq. (6.22), obtained as the limit of multilayer hydrostatic sys-
tems, is nothing but our hydrostatic system (7.3) written in isopycnal coordinates. This completes
the diagram in Figure 7.2.

We follow closely the exposition in [215]. First we assume that at any (t, x), the density distri-
bution ρ(t, x , ·) is invertible, and that the density varies (continuously) between prescribed values
at the bottom and at the surface. We denote H(t, x , ·) its inverse, representing the vertical height
of the particle densities with prescribed density (given by the last variable) at time t and horizontal
position x . By chain rule and (7.3d), one has

∂ϱ
(
P (t, x ,H(t, x , ϱ))

)
= (∂zP )(t, x ,H(t, x , ϱ))× ∂ϱH(t, x , ϱ) = −gϱ∂ϱH(t, x , ϱ).

Thus defining the Montgomery potential

Ψ(t, x , ϱ)
def
= P (t, x ,H(t, x , ϱ)) + gϱH(t, x , ϱ),

one has

∂ϱΨ(t, x , ϱ) = gH(t, x , ϱ). (7.6)

In the same way, we infer from chain rule

∇xP (t, x , z) + gz∇xρ(t, x , z) = ∇x
(
Ψ(t, x , ρ(t, x , z))

)
= (∇xΨ)(t, x , ρ(t, x , z)) + gH(t, x , ρ(t, x , z))∇xρ(t, x , z),

and hence

∇xP (t, x , z) = (∇xΨ)(t, x , ρ(t, x , z)).

Next, we define

u(t, x , ϱ)
def
= U(t, x ,H(t, x , ϱ))

and we infer from the identity U(t, x , z) = u(t, x , ρ(t, x , z)) and chain rule

∂tU(t, x , z) = (∂tu)(t, x , ρ(t, x , z)) + (∂tρ(t, x , z))(∂ϱu)(t, x , ρ(t, x , z))(
(U · ∇x )U

)
(t, x , z) =

(
(u · ∇x )u

)
(t, x , ρ(t, x , z)) +

(
(∂ϱu)u

)
(t, x , ρ(t, x , z)) · ∇xρ(t, x , z)(

w∂zU
)
(t, x , z) =

(
w∂zρ

)
(t, x , z)

(
∂ϱu
)
(t, x , ρ(t, x , z))
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Plugging these expression in eq. (7.3b) and using eq. (7.3a) yields

ϱ
(
∂tu + (u · ∇x )u

)
+∇xΨ = 0. (7.7)

Next we concentrate on the mass conservation equation. From the identity ρ(t, x ,H(t, x , ϱ)) = ϱ
we gather

∂tρ(t, x , z) + ∂zρ(t, x , z)
(
∂tH

)
(t, x , ρ(t, x , z)) = 0,

∇xρ(t, x , z) + ∂zρ(t, x , z)
(
∇xH

)
(t, x , ρ(t, x , z)) = 0,

∂zρ(t, x , z)
(
∂ϱH

)
(t, x , ρ(t, x , z)) = 1.

Plugging into eq. (7.3a) yields

∂tH(·, ϱ) +
(
u · ∇xH

)
(·, ϱ)− w(·,H(·, ϱ)) = 0.

Differentiating the above with respect to ϱ and denoting

h(t, x , ϱ)
def
= −∂ϱH(t, x , ϱ) (7.8)

yields

∂th(·, ϱ) +
(
u · ∇xh

)
(·, ϱ)−

(
(∂ϱu) · ∇xH

)
(·, ϱ) +

(
∂ϱH

)
(·, ϱ)

(
∂zw

)
(·,H(·, ϱ)) = 0.

Finally, using the incompressibility constraint, ∂zw = −∇ · U and chain rule, we infer

∂th +∇x · (hu) = 0. (7.9)

Collecting eq. (7.6),(7.7),(7.8),(7.9), we find
∂th +∇x · (hu) = 0,

ϱ
(
∂tu + (u · ∇x )u

)
+∇xΨ = 0,

∂ϱΨ = gH(t, x , ϱ), h = −∂ϱH.
(7.10)

In the situation where the density is equal to ρ0 at the surface and ρ1 at the bottom, we have by
definition H(t, x , ρ1) = −d+b(x) and Ψ(t, x , ρ0) = patm+gρ0H(t, x , ρ0) so that for any ϱ ∈ (ρ0, ρ1),

∇xΨ(t, x , ϱ) = gρ0∇xH(t, x , ρ0) + g
∫ ϱ

ρ0

∇xH(t, x , ϱ′) dϱ′

= gϱ∇b(x) + gρ0
∫ ρ1

ρ0

∇xh(t, x , ϱ′) dϱ′ + g
∫ ϱ

ρ0

∫ ρ1

ϱ′
∇xh(t, x , ϱ′′) dϱ′′ dϱ′

= gϱ∇b(x) + g
∫ ϱ

ρ0

ϱ′∇xh(t, x , ϱ′) dϱ′ + gϱ
∫ ρ1

ϱ

∇xh(t, x , ϱ′) dϱ′.

Plugging this formula in eq. (7.10), the first two equations provide a closed system of evolution
equations for the variables (h, u), which are the continuously stratified hydrostatic Euler
equations in isopycnal coordinates.

Remark 7.2. Applying the change of coordinate ϱ = ρ0 + r(ρ1 − ρ0) in eq. (7.10), we recognize
eq. (6.22) with ρ(r) = ρ0 + r(ρ1 − ρ0) and (h + η)(·, r) = (ρ1 − ρ0)h(·, ρ0 + r(ρ1 − ρ0)).

In the rigid-lid framework, we have the same equations, eq. (7.10), yet with boundary conditions
H(t, x , ρ1) = −d + b(x), H(t, x , ρ0) = 0 and Ψ(t, x , ρ0) = plid, where plid can be seen as a Lagrange
multiplier associated with the constraint stemming from the rigid-lid assumption:∫ ρ1

ρ0

(
∇ · (hu)

)
(·, ϱ) dϱ = −∂t

∫ ρ1

ρ0

h(·, ϱ) dϱ = ∂t
(
H(t, x , ρ1)−H(t, x , ρ0)

)
= 0, (7.11)
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and thus we have for any ϱ ∈ (ρ0, ρ1),

∇xΨ(t, x , ϱ) = ∇plid + g

∫ ϱ

ρ0

∇xH(t, x , ϱ′) dϱ′

= ∇plid + gϱ∇b(x) + gρ0
∫ ρ1

ρ0

∇xh(t, x , ϱ′) dϱ′ + g
∫ ϱ

ρ0

∫ ρ1

ϱ′
∇xh(t, x , ϱ′′) dϱ′′ dϱ′

= ∇plid + gϱ∇b(x) + g
∫ ϱ

ρ0

ϱ′∇xh(t, x , ϱ′) dϱ′ + gϱ
∫ ρ1

ϱ

∇xh(t, x , ϱ′) dϱ′.

Plugging this formula in eq. (7.10), and adding the constraint eq. (7.11), provides a closed system
of evolution equations for the variables (h, u).

7.3 Discussion and open questions

As we mentioned in Section 6.3.3 and Section 6.4, our knowledge on the hydrostatic equations,
eq. (7.3) or eq. (7.10), is very limited. In particular, the well-posedness of the initial-value problem
in functional spaces of finite regularity (see [264] in for analytic data) and in the inhomogeneous case
(say with stable stratification, ∂zρ < 0) is completely open. In order to understand the structure
of the equations it is interesting to try out the standard energy method on the equations and see
where it fails. As a second step this will motivate us to consider physically-grounded additional
terms with regularizing effects.

Demise of the energy method in Eulerian coordinates Let us first consider the equations in Eule-
rian coordinates, using the rigid-lid assumption and flat bottom case for simplicity (we could also
consider the free-surface case and general topography with simple modifications of the argument),
that is eq. (7.5). A natural functional space for this system is

ρ(t, x , z)
def
= ρ(z) + ρ̃(t, x , z), U(t, x , z)

def
= U(z) + Ũ(t, x , z)

with (ρ,U) ∈ W s,∞((−d , 0))1+d given and unknowns (ρ̃(t, ·), Ũ(t, ·)) ∈ Hs(Rd × (−d , 0))1+d with

s ∈ N sufficiently large. If we consider the equations for ρ̃(t, ·), Ũ(t, ·) and apply the differential
operator ∂k for a multi-index k = (kx ,kz ) ∈ Nd+1 with 0 ≤ |k| ≤ s we find that smooth solutions
to eq. (7.5) must satisfy

∂t∂
kρ̃+

(
(U + Ũ) · ∇x + w̃∂z

)
∂kρ− (ρ′ + ∂z ρ̃)

∫ z
−d(∇x · ∂

kŨ)(·, z ′) dz ′ = rk,

∂t∂
kŨ +

(
(U + Ũ) · ∇x + w̃∂z

)
∂kŨ − (U′ + ∂z Ũ)

∫ z
−d(∇x · ∂

kŨ)(·, z ′) dz ′

+ 1
ρ+ρ̃∇∂

kplid + g
ρ+ρ̃

∫ 0

z
∂k∇x ρ̃(·, z ′) dz ′ = Rk,∫ 0

−d(∇x · ∂
kŨ)(·, z) dz = 0,

where w̃ = −
∫ z
−d(∇x · Ũ)(·, z)

′ dz ′ and (rk,Rk) ∈ L2((Rd × (−d , 0))1+d. In the first two terms
of the first two equations we recognize the advection along the flow, and these will typically be
harmless contributions. Then we observe the unbounded contributions from the pressure terms, as
well as the key contributions stemming from the fact that w̃ is a diagnostic variable, so that w̃ /∈
Hs(Rd×(−d , 0))1+d. It turns out that when testing the first equation with respect to −g

ρ′+∂z ρ̃
∂kρ̃ and

the second one with respect to (ρ+ ρ̃)∂kŨ, we observe a compensation (after integrating by parts)
between the contributions from two among the three terms. Since the contribution of the rigid-lid
pressure vanishes identically thanks to the rigid-lid constraint34 the remaining term on the second

34It should be pointed out that the remainder term Rk contains—outside of the Boussinesq approximation
framework—contributions from plid ∈ H̊s(Rd) which are bounded through elliptic estimates on the Poisson equation

∇x ·
((∫ 0

−d

1

ρ+ ρ̃
dz
)
∇plid

)
= −

∫ 0

−d
∇x ·

((
(U + Ũ) · ∇x + w̃∂z

)
(U + Ũ) +

g

ρ+ ρ̃

∫ 0

z

∇x ρ̃(·, z ′) dz ′
)

dz .
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equation can be singled out as sole responsible for the failure of energy estimates. More precisely
we have, after integration by parts and using the boundary conditions w̃

∣∣
z=−d

= w̃ |
z=0

= 0,

E ′(t) ≤ C E(t) +
∫∫

Rd×(−d,0)
(ρ+ ρ̃)(U′ + ∂z Ũ) · (∂kŨ)

(∫ z

−d
(∇x · ∂kŨ)(·, z ′) dz ′

)
dx dz ,

where C depends on d, s, d , g,M, M̃ and m⋆ with∣∣ρ∣∣
W s,∞((−d,0)) +

∣∣U∣∣
W s,∞((−d,0)) ≤ M,

∣∣ρ̃∣∣
Hs(Rd×(−d,0)) +

∣∣Ũ∣∣
Hs(Rd×(−d,0)) ≤ M̃,

inf
(0,t)×Rd×(−d,0)

({
ρ+ ρ̃,−ρ′ − ∂z ρ̃

})
≥ m⋆ > 0,

and we define

E(t) def
=

1

2

s∑
|k|=0

∫∫
Rd×(−d,0)

−g
(
∂kρ̃)2

ρ′ + ∂z ρ̃
+ (ρ+ ρ̃)

∣∣∂kŨ|2 dx dz ≈
∥∥ρ̃(t, ·)∥∥2

Hs +
∥∥Ũ(t, ·)∥∥2

Hs .

Because the operator (which incidentally also plays an essential role in the inviscid Prandtl equations
as the equations are the same but only boundary conditions differ; see e.g. [299])

L : U 7→
∫ z

−d
∇x · U

is neither bounded nor skew-symmetric in L2(Rd × (−d , 0))), we cannot infer a control of the last
term in the above differential inequality, and the energy methods fails at this point.

A few comments are in order. Obviously the fact that we did not succeed to make the energy
method work does not mean that it cannot work (modifying the functional space, choice of un-
knowns, symmetrizer, or looking for clever nonlinear cancellations). In particular, Masmoudi and
Wong exhibit in [300] a key cancellation for the homogeneous hydrostatic equations (in dimension
d = 1) from which they deduce a local well-posedness result for the initial-value problem in Sobolev
space Hs(Rd × (−d , 0)). Their result holds under the local Rayleigh condition

∂2z (U + Ũ) ≥ m⋆ > 0,

which in turns coincide (with non-strict inequality) with the stability criteria for the linearized
equations about shear flows; see in particular [363] for an ill-posedness result when this criteria is
violated. For comparison, let us recall that the celebrated result of Miles [315] and Howard [216]
shows that, in dimension d = 1 (see [191, Remark 1.3] when d = 2), no unstable mode of the
linearized system about a shear velocity may arise as soon as the local Richardson number is
greater than 1/4 everywhere, that is

∀z ∈ (−d , 0), 1

4
|U′(z)|2 ≤ g

−ρ′(z)
ρ(z)

.

This gives hope for a well-posedness of the initial value problem of the (linearized or nonlinear)
equations under such assumption, but again no result is known in that respect. Finally, as men-
tioned above, the failure of the energy estimate can be tracked back to the fact that w̃ is a diagnostic
variable rather than a prognostic variable. In the non-hydrostatic equations, one obtains by stan-
dard methods a control of the unknowns (ρ̃, Ũ, w̃) ∈ Hs(Rd × (−1, 0))1+d+1, using integration by
parts to deal with advection terms and elliptic estimates on the Poisson equation satisfied by the
pressure; see [138]. Of course, the latter estimates are not uniform with respect to the shallow water
parameter, µ, and hence solutions to the (non-hydrostatic) inhomogeneous Euler equations provide
no result on the hydrostatic problem.
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Demise of the energy method in isopycnal coordinates It is interesting to compare the result of
the energy method on the formulation using Eulerian coordinates, and the one using isopycnal
coordinates. Let us consider eq. (7.10) in the flat bottom situation, and set

H(t, x , ϱ) =

∫ ρ1

ϱ

h(t, x , ϱ′) dϱ′
def
=

∫ ρ1

ϱ

h(ϱ′) dϱ′ +H(t, x , ϱ), u(t, x , ϱ)
def
= u(ϱ) + ũ(t, x , ϱ),

with given (h, u) ∈ W s,∞((ρ0, ρ1))
1+d and unknowns (H̃(t, ·), ũ(t, ·)) ∈ Hs(Rd × (ρ0, ρ1))

1+d with

s ∈ N sufficiently large. If we consider the equations for H̃(t, ·), Ũ(t, ·) (hence integrating the first
equation) and apply the operator ∂k for a multi-index k = (kx ,kz ) ∈ Nd+1 with 0 ≤ |k| ≤ s we
find that smooth solutions to eq. (7.10) must satisfy{

∂t∂
kH̃ +

∫ ρ1
ϱ

(
(u + ũ) · ∇x∂kh

)
(·, ϱ′) dϱ′ +

∫ ρ1
ϱ

(
h(∇x · ∂kũ)

)
(·, ϱ′) dϱ′ = rk,

∂t∂
kũ +

(
(u + ũ) · ∇x

)
∂kũ + 1

ϱ∇∂
kplid + g

ϱ

∫ ϱ
ρ0
∂k∇x H̃(·, ϱ′) dϱ′ = Rk,

where h = −∂ϱH = h − ∂ϱH̃ and (rk,Rk) ∈ L2(Rd × (ρ0, ρ1))
1+d. Once again we recognize a

compensation between the last two terms of the right-hand side provided that we test the first
equation with respect to g∂kH̃ and the second one with ϱh∂kũ. Using integration by parts to deal
with the aforementioned and advection terms and the identity∫ ρ1

ϱ

(
(u + ũ) · ∇x∂kh

)
(·, ϱ′) dϱ′ = (u + ũ) · ∇x∂kH +

∫ ρ1

ϱ

(
(u′ + ∂ϱũ) · ∇x∂kH

)
(·, ϱ′) dϱ′,

as well as the control of plid ∈ H̊s(Rd)35 we infer

E ′(t) ≤ C E(t)−
∫∫

Rd×(ρ0,ρ1)

g
(
∂kH̃

)(∫ ρ1

ϱ

(
(u′ + ∂ϱũ) · ∇x∂kH

)
(·, ϱ′) dϱ′

)
dx dϱ

−
∫
Rd

g
(
∂kplid

)(∫ ρ1

ρ0

(
(u′ + ∂ϱũ) · ∇x∂kH

)
(·, ϱ) dϱ

)
dx

where C depends on d, s, ρ0, ρ1, g,M, M̃ and m⋆ with∣∣h∣∣
W s,∞((ρ0,ρ1))

+
∣∣u∣∣

W s,∞((ρ0,ρ1))
≤ M,

∣∣H̃∣∣
Hs(Rd×(ρ0,ρ1))

+
∣∣ũ∣∣

Hs(Rd×(ρ0,ρ1))
≤ M̃,

inf
(0,t)×Rd×(ρ0,ρ1)

(
h − ∂ϱH

)
≥ m⋆ > 0,

(the latter “non-cavitation” assumption accounting for the stable stratification, −∂zϱ > 0) and

E(t) def
=

1

2

s∑
|k|=0

∫∫
Rd×(ρ0,ρ1)

g
(
∂kH̃)2 + (h − ∂ϱH̃)

∣∣∂kũ|2 dx dϱ ≈
∥∥H̃(t, ·)∥∥2

Hs +
∥∥ũ(t, ·)∥∥2

Hs .

Again we see that some contributions cannot be bounded by E(t), and the energy method fails.
It is however interesting to notice that, as with Eulerian coordinates, the additional terms stem
from the contribution of shear velocities36, but in contrast with Eulerian coordinates the loss of
derivative applies to H (and hence ϱ) rather than U. This motivates the following discussion.

35by elliptic estimates on the Poisson equation stemming from eq. (7.11):

∇ ·
(∫ ρ1

ρ0

h(·, ϱ)
ϱ

dϱ∇plid
)

= −
∫ ρ1

ρ0

∇x ·
((
h(u + ũ) · ∇x

)
ũ +

gh

ϱ

∫ ϱ

ρ0

∇x H̃(·, ϱ′) dϱ′
)
dϱ.

36in both cases one can solve the linearized equations about no-shear flows: U′(z) ≡ 0 or u′(ϱ) ≡ 0; see the
discussion in Section 6.3.3. In particular, recall the above Miles–Howard criterion reads in isopycnal coordinates

∀ϱ ∈ (ρ0, ρ1),
1

4
|u′(ϱ)|2 ≤

gh(ϱ)

ϱ
.
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Some natural regularizations Arguably the most natural way37 to regularize the hydrostatic sys-
tem is the parabolic approach which we use for instance in the proof of Theorem 8.3 in Section 8.6.
By looking at the above analysis on the system in Eulerian coordinates, one realizes that it is
sufficient to add the parabolic regularization on the momentum conservation equation of eq. (7.3),
and that this regularization may occur only on the horizontal space variable. Specifically, one may
replace eq. (7.3b) with

ρ∂tU + ρ(U · ∇x + w∂z )U +∇xP = νρ∆xU

with ν > 0 a positive constant. For this system with partial viscosity (in the rigid-lid framework
with Boussinesq approximation), Cao, Li and Titi [75, 76] proved local-in-time existence and unique-
ness of strong solutions for initial data in H1(Td × (−d , 0)) (with extra boundary conditions) and
global existence assuming slightly more regularity. This is part of a line of research of the authors
where many other situations were studied; see the review [280] for discussion and many important
references.

It should be noticed that considering partial (horizontal) viscosity bares physical significance.
Obviously we cannot relate the viscosity to molecular viscosity, considering Navier–Stokes equations
rather than Euler equations as master equations: firstly because the parameter measuring the
effect of molecular viscosity (basically the inverse of the Reynolds number) is ridiculously small in
oceanographic scales, and secondly because in the hydrostatic limit (µ ↘ 0) originally isotropic
viscosity become predominant in the vertical rather than horizontal direction. Yet anisotropic
horizontal viscosity is often considered as a good design for eddy viscosity modeling the large-scale
dissipative effects from small-scale turbulence. This is due to the observation that (quoting Gent and
McWilliams [198] when describing the conclusions of Iselin [231] and Montgomery [331]) “mixing
of material properties by eddies in the stably stratified parts of the oceans occurs mostly along
surfaces of constant density or isopycnal coordinates”, and hence horizontal viscosity approximates
isopycnal dissipation effects.

In their seminal work, Gent and McWilliams [198] (see also [199, 254]) proposed a parameteri-
zation of eddies through isopycnal diffusivity. In the Eulerian coordinates, this consists in replacing
eq. (7.3a)–(7.3b)

∂tρ+ (U + U⋆) · ∇xρ+ (w + w⋆)∂zρ = 0 in Ωt ,

ρ∂tU + ρ((U + U⋆) · ∇x + (w + w⋆)∂z )U = −∇xP in Ωt ,

where (in the simplest situation where the diffusivity coefficient, κ, is assumed constant)

U⋆
def
= κ∂z

(
∇xρ
∂zρ

)
and w⋆

def
= −κ∇x ·

(
∇xρ
∂zρ

)
.

Yet the effect of such diffusivity is—unsurprisingly—clearer in isopycnal coordinates: one replaces
eq. (7.10) with 

∂th +∇x · (h(u + u⋆)) = 0,

ϱ
(
∂tu + ((u + u⋆) · ∇x )u

)
+∇xΨ = 0,

∂ϱΨ = gH(t, x , ϱ), h = −∂ϱH,

where

u⋆
def
= −κ∇xh

h
.

Hence we see that diffusivity appears as a parabolic contribution on the first equation, whose
regularizing effects act on the variable h (and hence H), as demanded by the above analysis of the
energy method on the formulation with isopycnal coordinates.

37Other possibilities include the Leray-α and LANS-α models; see [298, 200, 212] and references therein.



CHAPTER C

Weakly dispersive models

parce que, [les Anciens] s’étant élevés jusqu’à un
certain degré où ils nous ont portés, le moindre effort
nous fait monter plus haut, et avec moins de peine
et moins de gloire nous nous trouvons au-dessus
d’eux. C’est de là que nous pouvons découvrir des
choses qu’il leur était impossible d’apercevoir.

— Blaise Pascal, traité du vide
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Foreword

This chapter is devoted to the derivation and analysis of weakly dispersive models. These models
refine the hydrostatic equations studied in Chapter B (in fact, more precisely, the Saint-Venant
equations since here we restrict the analysis to the water waves framework; see Chapter E for an
extension to the bilayer framework) by introducing dispersive effects at first order. More refined
models are presented in Chapter D.

Section 8 has been meant as a showcase for a thorough study of water waves models. Here we
introduce and analyze in much details the so-called (Serre–)Green–Naghdi model. Firstly the
model is quickly derived as an asymptotic model from the expansion of the Dirichlet-to-Neumann
operator obtained in Section 4—and more precisely Proposition 4.10. Yet the result which follows
(namely the consistency of the model) is far from being sufficient to validate the Green–Naghdi
equations as a good model for water waves. Firstly, its rigorous justification must be completed by
well-posedness, stability and convergence results, which are expressed in Section 8.5. They follow
from careful energy estimates in suitable functional spaces carried on in Section 8.6. In a looser
way, we also expect “good” models to retain important properties of the master equations (here
the water waves system). Here we focus mostly on the variational structure of the equations: we
observe in Section 8.1 that the Green–Naghdi equations not only preserve Zakharov’s canonical
Hamiltonian structure of the water waves system, but it also enjoys a deeper Lagrangian formalism
which embeds the system inside a natural family of conservation laws, which can be interpreted as
equations for compressible fluids with inertia effects. Hence the structure of the equations becomes
richer as we simplify the equations from the water waves system to the Green–Naghdi equations (and
then from the Green–Naghdi equations to the Saint-Venant system). This explains in my opinion
why the Green–Naghdi equations, among many other loosely equivalent models, has attracted so
much attention from diverse communities. We review some basic properties of the Green–Naghdi
equations: preserved quantities (Section 8.2), modal analysis and dispersion relation (Section 8.3),
solitary wave solutions (Section 8.4). Finally, some open questions are discussed in Section 8.7.

Of course I do not claim that the Green–Naghdi model is perfect! One of its main drawback is
certainly that numerically approximating the equations turns out to be quite costly. In Section 9
we explore some equations which have been proposed by Favrie and Gavrilyuk [181] to circumvent
this issue. The equations are constructed using the aforementioned Lagrangian formalism, using
a strategy akin to relaxation limits. Hence the system contains additional unknowns as well as
a (large) parameter which is expected to measure the precision of solutions to the augmented
equations with respect to solutions to the original Green–Naghdi equations, at least when initial
data are well-prepared. The rigorous study of this singular limit is described in Section 9.5 and
Section 9.6, based on [158]. Again, the Section is concluded by perspectives and open questions.

In Section 10 we introduce a fully dispersive analogue of the Green–Naghdi system, which
we name Whitham–Green–Naghdi. When linearized about trivial equilibrium solutions, fully
dispersive models coincide with the corresponding (Airy) linearized water waves equations, as in-
troduced in Section ii and Section 2.3. Interest in such fully dispersive models in the context of
long water waves started with the work of Whitham, which proposed eq. (x) and eq. (ix) as suitable
modifications of the standard Korteweg-de Vries equation, eq. (viii), with the view of reproducing
at least qualitatively important features of water waves such as wavebreaking and peaked travel-
ing waves. Much more recently, the interest was renewed as Whitham’s predictions were proved
to be valid [219, 173, 402, 374]. Yet the question of validating fully dispersive models as asymp-
totic models with improved accuracy with respect to their standard counterparts was mostly left
aside. The precision of the Whitham–Green–Naghdi model (respectively Whitham–Boussinesq)
we introduce in Section 10 (respectively Section 10.6) significantly improves the precision of the
Green–Naghdi (respectively Boussinesq) model for weak nonlinearities and mild bottom variations
(see Appendix I.5 for numerical illustrations) with the important price to pay that nonlocal opera-
tors (Fourier multipliers) are involved. These models also allow to rigorously justify the Whitham
equations and observe a similar improvement with respect to the Korteweg–de Vries equation [178].
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8 The Green–Naghdi system

We introduce a weakly dispersive fully nonlinear shallow water model, known in the literature as
the (Serre–)Green–Naghdi system. To this aim we use the second-order approximation stemming
from Proposition 4.10:38

1

µ
Gµ[εζ, βb]ψ = −∇ · (h(Id+µT [h, β∇b])−1∇ψ) +O(µ2), (8.1)

where we recall the notations h = 1 + εζ − βb and

T [h, β∇b]u def
=

−1

3h
∇(h3∇ · u) + 1

2h

(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ (β∇b · u)(β∇b).

Plugging this expansion into eq. (2.7) and withdrawing O(µ2) terms yields{
∂tζ +∇ · (hu) = 0,

∂tψ + ζ + ε
2 |u|

2 = µεR[h, β∇b,u],
(8.2)

where

R[h, β∇b,u] def= u

3h
· ∇(h3∇ · u) + 1

2
h2(∇ · u)2

− 1

2

(u
h
· ∇
(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u+ (β∇b · u)2

)
and u is deduced from (ζ, ψ) after solving the equation 39

h∇ψ = hu+ µhT [h, β∇b]u def
= Tµ[h, β∇b]u. (8.5)

38It would be tempting to rather use directly the approximation

1

µ
Gµ[εζ, βb]ψ = −∇ · (h∇ψ) + µ∇ ·

(
hT [h, β∇b]∇ψ

)
+O(µ2).

However, due to the fact that the operator u 7→ hu − µhT [h, β∇b]u is not positive definite, the resulting system
suffers from strong instabilities at high frequencies in the sense that the linearized system about the trivial solution
(ζ = 0, ψ = 0), explicitly solvable in Fourier space in the flat-bottom setting, exhibits unstable modes whose
amplitude grows exponentially and arbitrarily rapidly for large wavenumbers. We shall not write down this system,
but the interested reader may find it in [412, (10)-(11)] and [119, (14)-(15)] (in the one-dimensional and flat bottom
situation). As pointed out in [314, (1.8a),(1.8b)], this system reduces to the original (also ill-posed) Boussinesq (or
Kaup) system when the amplitude is small, that is withdrawing O(µ(ε+ β)) terms.

39Notice that by Proposition 4.9, we have

u = u+O(µ2), u =
1

h

∫ εζ

−1+βb
∇xΦ(·, z) dz, (8.3)

where Φ is the unique solution to eq. (4.1). This allows to recognize the first equation as the conservation of mass.
As for the second equation, we notice that denoting

w
def
= (β∇b) · u− h∇ · u,

eq. (8.2) can be written as {
∂tζ +∇ · (hu) = 0,

∂tψ + ζ + εu · ∇ψ − ε
2
u · u− εµ

2
w2 = 0.

(8.4)

This formulation echoes the formulation of the water waves equations displayed in eq. (2.7’). Indeed, using Lemma 4.6
and chain rule, one has

(∇xΦ)
∣∣∣z=1+εζ = ∇ψ − (ε∇ζ)(∂zΦ)

∣∣∣z=1+εζ and µ−1(∂zΦ)
∣∣∣z=1+εζ = (ε∇ζ) · (∇xΦ)

∣∣∣z=1+εζ −∇ · (hu),

and we deduce from Proposition 4.9

u = ∇ψ +O(µ) = (∇xΦ)
∣∣∣z=1+εζ +O(µ) and w = µ−1(∂zΦ)

∣∣∣z=1+εζ +O(µ),

from which the consistency of eq. (8.4) with eq. (2.7’) (after non-dimensionalizing) is easily checked.
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Taking the gradient of the second equation, one can check (see [162] for details) that the system
can be written with only differential operators in terms of the unknowns ζ and u, namely{

∂tζ +∇ · (hu) = 0,(
Id+µT [h, β∇b]

)
∂tu+∇ζ + ε(u · ∇)u+ µεQ[h, β∇b,u] = 0,

(8.6)

where

Q[h, β∇b,u] def= −1

3h
∇
(
h3
(
(u · ∇)(∇ · u)− (∇ · u)2

))
+

β

2h

(
∇
(
h2(u · ∇)2b

)
− h2

(
(u · ∇)(∇ · u)− (∇ · u)2

)
∇b
)
+ β

(
(u · ∇)2b

)
(β∇b).

An even more compact formulation, if one removes the constraint of considering first order (in time)
evolution equations, is the following:{

∂th+ ε∇ · (hu) = 0,

ε∂tu+∇(h+ βb) + ε2(u · ∇)u+ µP[h, βb, εu] = 0,
(8.7)

where

P[h, βb, εu]
def
=

1

h
∇
(
h2
( ḧ
3
+
βb̈

2

))
+
( ḧ
2
+ βb̈

)
(β∇b)

and where we denote ḣ = ∂th + εu · ∇h, ḧ = ∂tḣ + εu · ∇ḣ, and similarly ḃ, b̈. The above formu-
lation remains valid when the bottom has a prescribed but non-trivial time-dependent evolution;
see [182, 189]. It may equivalently be written equivalently as follows [65, 184, 8, 180] (see also [206,
Lemma 3.1] for a similar-looking yet different reformulation):

∂th+ ε∇ · (hu) = 0,

ε∂tu+∇(h+ βb) + ε2(u · ∇)u+ µ
h∇(hq) + µ

h (β∇b)qb = 0,

∂tv + εu · ∇v = q
h , ∂tvb + εu · ∇vb = qb

h ,

v =
ḣ

3
+
βḃ

2
, vb =

ḣ

2
+ βḃ.

(8.8)

Here, q and qb are not unknowns but may be thought as the Lagrange multipliers associated with

the constraints v = ḣ
3 + βḃ

2 and vb = ḣ
2 + βḃ. Physically speaking, they respectively represent the

first order non-hydrostatic correction to layer-averaged pressure and the pressure at the bottom;
see e.g. [184]. See also eq. (8.13), below, for a generalization of eq. (8.2)—or rather eq. (8.10)—to
time-dependent topographies.

Using physical variables (recall Section 2.4), (8.7) yields the (Serre–)Green–Naghdi system{
∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u + P[h, b, u] = 0.
(8.9)

with h = d + ζ − b.
The Green–Naghdi system with its many formulations has been derived and studied numerous

times, including in [383, 396, 202, 314, 42, 382, 371, 410, 73, 255, 40, 270, 107, 230, 182, 195]. Its
rigorous justification as an asymptotic model in the shallow water limit in the sense provided in
Section 8.5 has been obtained in [296, 284, 234, 15, 189, 162]. We provide a self-contained proof in
Section 8.5 and Section 8.6, based on [189].
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8.1 Variational structure

8.1.1 Hamiltonian structure

As the Saint-Venant system, eq. (8.2) inherits a canonical Hamiltonian structure from the water
waves equations: Hamilton’s principle on∫ t2

t1

∫
Rd

ζ∂tψ dx+ HGN dt.

where HGN is the approximate Hamiltonian obtained when plugging the approximation eq. (8.1)
into the Hamiltonian functional of the water waves equations (see Section 2.2), that is

HGN(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + (h∇ψ) · Tµ[h, β∇b]−1(h∇ψ) dx

yields

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζHGN

δψHGN

)
,

which corresponds to eq. (8.2). We may hence follow the discussion of Section 2.2.
We can check that, written with the velocity variable v = ∇ψ, eq. (8.2) still enjoys a (non-

canonical) symplectic form. Indeed, the system is easily seen to be equivalent to{
∂tζ +∇ · (hu) = 0,(
∂t + εu⊥ curl

)
v +∇ζ + ε

2∇(|u|2) = µε∇R[h, β∇b,u],
(8.10)

where we recall hv = Tµ[h, β∇b]u, curlv def
= ∂xvy − ∂yvx and u⊥ def

= (−uy, ux). Notice that the
term εu⊥ curlv is artificial (in dimension d = 1, this term should be dropped) since v = ∇ψ, and
contrarily to the Saint-Venant case, we do not expect that the system is still relevant outside of
the irrotational setting. Yet it allows to obtain the exact same symplectic form as the Saint-Venant
system, and the conclusions still apply. In dimension d = 2, one has

∂t

 ζ
vx
vy

 = −

 0 ∂x ∂y
∂x 0 −q
∂y q 0

 δζH
δvxH
δvyH

 .

where q = ε curlvh = ε
∂xvy−∂yvx
1+εζ−βb and (misusing notations)

HGN(ζ,v)
def
=

1

2

∫
Rd

ζ2 + (hv) · Tµ[h, β∇b]−1(hv) dx

Within this formalism, one can check that the space and time invariance of the Hamiltonian yield
the conservation of horizontal impulse (in the flat bottom case) and of total energy,

d

dt

∫
Rd

ζv dx = 0 if βb ≡ 0,
d

dt
HGN = 0.

while Casimir invariants are, for any function C,

d

dt

∫
Rd

hC(q) dx,

which yields the conservation of mass—with C(q) = 1—and circulation—with C(q) = q—as special
cases.

This variational structure is equivalent to the one pointed out in [214, 283] expressed with
different variables.
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8.1.2 A Lagrangian structure

In [109] (see also [107]), Clamond, Dutykh and Mitsotakis derive the Green–Naghdi in a formal but
very efficient way, based on the Lagrangian structure of the water waves equations. This derivation
is very close in spirit to the one of the preceding section, and we reproduce it here for the sake of
completeness. Recall the Lagrangian of the water waves equations (see Section 2.2) is

L =

∫ t1

t0

∫
Rd

1

2µ
ψGµ[εζ, βb]ψ − 1

2
ζ2 + φ(∂tζ −

1

µ
Gµ[εζ, βb]ψ) dx dt.

Using above the eq. (8.1), eq. (8.5) and withdrawing O(µ2) terms yields

LGN =

∫ t1

t0

∫
Rd

1

2
u · Tµ[h, β∇b]u− 1

2
ζ2 + φ(∂tζ +∇ · (hu)) dx dt

=
1

2

∫ t1

t0

∫
Rd

h|u|2 + µ

3
h(h∇ · u)2 − µh2(β∇b · u)∇ · u+ µh(β∇b · u)2 − ζ2 dx dt

+

∫ t1

t0

∫
Rd

φ(∂tζ +∇ · (hu)) dx dt.

Following Hamilton’s principle, we obtain

0 = δφLGN = ∂tζ +∇ · (hu),

which is the equation of conservation of mass;

0 = δuLGN = Tµ[h, β∇b]u− h∇φ,

from which we deduce ∇φ = u− 1
3h∇(h3∇ · u); and

0 = δζLGN =
ε

2
|u|2 + µε

2
h2(∇ · u)2 − µεh(β∇b · u)∇ · u+

µε

2
(β∇b · u)2 − ζ − ∂tφ− εu · ∇φ.

We indeed recognize eq. (8.2), or more precisely eq. (8.4).

8.1.3 Another Lagrangian structure

Interestingly, the Green–Naghdi system falls into another Lagrangian formalism which is not directly
related to a corresponding one on the water waves equations, but rather includes the Green–Naghdi
system inside a family of equations for compressible fluids with inertia effects. Indeed, define a
Lagrangian action

L =

∫ t1

t0

∫
Rd

L(h, u, ḣ, ḃ, b) dx dt

where h, u are unknowns b is given (and ḣ
def
= ∂th + u · ∇h, ḃ

def
= ∂tb + u · ∇b).

Then one can infer (by Hamilton’s principle along virtual displacements, see [194, 197, 193])
that the critical points of the above Lagrangian submitted to the constraint of mass conservation

∂th +∇ · (hu) = 0

satisfies the following equation:

∂t(δuL ) +∇ · (u ⊗ δuL ) +
(∂u
∂x

)⊤
δuL − h∇δhL = 0.

Denoting δuL
def
= hK, using the conservation of mass and some algebra, we infer in dimension d = 2

∂tK + u⊥ curlK +∇
(
K · u − δhL

)
= 0 (8.11)
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(in dimension d = 1, we simply have ∂tK + ∂x
(
Ku − δhL

)
= 0).

Using the specific choice

L(h, u) = h
(1
2
|u|2 − e(h)

)
in eq. (8.11) yields the isentropic compressible Euler equations, where h denotes the density and
e(h) is the internal energy, and the pressure p(h) = h2e′(h). In particular, if e(h) = 1

2h, we recover
the Saint-Venant system with flat bottom; see eq. (5.4).

The Green–Naghdi system is obtained using the specific choice (using dimensional variables, the
corresponding dimensionless Lagrangian is easily deduced)

L(h, u, ḣ, ḃ, b) = h

2

(
|u|2 + 1

3
(ḣ +

3

2
ḃ)2 +

1

4
ḃ2
)
− g

2
(h + b)2. (8.12)

Indeed, we have

δhL = ∂hL − ∂t(∂ḣL)−∇ · ((∂ḣL)u)

=
1

2

(
|u|2 + 1

3
(ḣ +

3

2
ḃ)2 +

1

4
ḃ2
)
− g(h + b)− ∂t

(
h(
ḣ

3
+
ḃ

2
)
)
−∇ ·

(
h(
ḣ

3
+
ḃ

2
)u
)
,

and

hK = δuL = ∂uL+ (∂ḣL)∇h + (∂ḃL)∇b

= hu + h(
ḣ

3
+
ḃ

2
)∇h + h( ḣ

2
+ ḃ)∇b.

Introducing

v = K +∇

(
h(
ḣ

3
+
ḃ

2
)

)
= u +

1

h
∇
(
h2(

1

3
ḣ +

1

2
ḃ)
)
+
(1
2
ḣ + ḃ

)
∇b

and using the above identities, eq. (8.11) reads

∂tv + u
⊥ curl v +∇

(
v · u − 1

2
|u|2 − 1

2
(ḣ + ḃ)2 + g(h + b)

)
= 0. (8.13)

When ∂tb = 0, and using that ḣ = −h∇ · u by the mass conservation, we recognize immediately
eq. (8.10) (up to the non-dimensionalization scaling), with v = ∇ψ. In the general setting, one can
recover eq. (8.9) after tedious algebra.

8.2 Group symmetries and preserved quantities

Thanks to the Hamiltonian structure of the Green–Naghdi system, and following the study concern-
ing the water waves system in Section 2.2, Noether’s theorem relate group symmetries and conserved
quantities of the system. The physically relevant ones are listed below (see for instance [148, 246]
for more detailed accounts).

Group symmetries If (ζ, ψ) is a solution to eq. (8.2), then for any θ ∈ R, (ζθ, ψθ) also satisfies
eq. (8.2), where

• Variation of base level for the velocity potential:(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ + θ

)
(t,x).
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• Horizontal translation along the direction e ∈ Rd (in the flat bottom case)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t,x− θe).

• Time translation (
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t− θ,x).

• Galilean boost along the direction e ∈ Rd (in the flat bottom case)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ + θe · x

)
(t,x− θet).

• Horizontal rotation (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t, Rθx)

where Rθ is the rotation matrix of angle θ.

Preserved quantities We have the following corresponding preserved quantities.

• Excess of mass

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx.

• Horizontal impulse (in the flat bottom case)

d

dt
I = 0, I

def
=

∫
Rd

ζ∇ψ dx (if βb ≡ 0).

• Total energy

d

dt
HGN = 0, HGN

def
=

1

2

∫
Rd

ζ2 + (h∇ψ) · udx.

• Horizontal coordinate of mass centroid times mass (in the flat bottom case)

d

dt
C =

∫
Rd

ζ∇ψ dx, C
def
=

∫
Rd

ζx dx (if βb ≡ 0).

• Angular impulse (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)

d

dt
A = 0, A

def
=

∫
Rd

ζx⊥ · ∇ψ dx.

where (x, y)⊥
def
= (−y, x).

Notice also the following conserved quantity which is seemingly trivial in the formulation (8.2) but
not in the formulation (8.6):

d

dt
V = 0, V

def
=

∫
Rd

∇ψ dx =

∫
Rd

u+ µT [h, β∇b]udx.

See [195] for a detailed discussion. Moreover, in the flat bottom case, we deduce from the above
the conservation of a quantity corresponding to the horizontal momentum (recall eq. (8.3))

d

dt
MGN = 0, MGN

def
=

∫
Rd

hudx =

∫
Rd

h∇ψ dx+
µ

3
∇(h3∇ · u) dx = V + I + 0.

The quantities presented here are preserved in a stronger sense: their integrand satisfies a conser-
vation law, which we do not write out explicitly. We let the reader refer to [195, 148] for a more
thorough account.
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8.3 Modal analysis

The dispersion relation associated with eq. (8.9) (in the flat bottom case, b ≡ 0) when linearized
about the trivial rest solution is

ω(ξ)
(
ω(ξ)2 − gd |ξ|2

1 + 1
3d

2|ξ|2
)
= 0.

The solution ω(ξ) = 0 corresponds to the propagation of the “vorticity”, curl(u + T [h,∇b]u), and
is irrelevant to potential flows as the vorticity vanishes. The remaining modes approximate the
ones of the water waves equations when d |ξ| ≪ 1 (see Figure 8.1), although the small-wavelength
behavior (d |ξ| ≫ 1) is different. Notice the large-time behavior discussion of Section ii and dispersive
estimates of Section 2.3 apply, mutatis mutandis.

Using dimensionless variables such as in eq. (8.6), the above becomes

ωGN(ξ)
(
ωGN(ξ)

2 − |ξ|2

1 + µ
3 |ξ|2

)
= 0,

which should be compared with the corresponding dispersion relation of the dimensionless water
waves system, eq. (2.7), linearized about the rest solution, that is

ωww(ξ)
2 =

1
√
µ
|ξ| tanh(√µ|ξ|).

0.0 2.5 5.0 7.5 10.0
d| |

0

1

2

3

|
|/

g/
d

water waves
Green-Naghdi

Figure 8.1: Non-trivial wave frequencies, |ω|(|ξ|), solutions to the dispersion relation
corresponding to the (linearized about rest) water waves and Green–Naghdi systems.
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8.4 Solitary waves

In the unidimensional (d = 1) and flat bottom (b ≡ 0) framework, the Green–Naghdi system,
eq. (8.2), enjoys an explicit family of solitary wave solutions,40 that is satisfying

(ζ, ψ)(t, x) = (ζc, ψc)(x− ct), lim
|x|→∞

|(ζc, ψ′
c)|(x) = 0.

Denoting hc = 1+εζc and ψ
′
c = uc− µ

3hc

(
h3cu

′
c

)′
and plugging the above Ansatz into eq. (8.2) yields −cζ ′c + (hcuc)

′ = 0,

−c
(
uc − µ

3hc

(
h3cu

′
c

)′)′
+ ζ ′c +

ε
2 (u

2
c)

′ = µε
(
uc

3hc
(h3cu

′
c)

′ + 1
2 (h

2
cu

′
c)

2
)′
.

We may now integrate and, using the vanishing condition at infinity to set the integration constant,
we deduce from the first equation

−cζc + hcuc = 0

and using this identity into the second equation yields

hc − 1− c2

2

h2c − 1

h2c
= µc2

( −1

3h2c
(hch

′
c)

′ +
1

2h2c
(h′c)

2
)
.

Multiplying with h′c and once again integrating yields

(hc − 1)2(c2 − hc) =
µc2

3
(h′c)

2.

Since hc → 1 as |x| → ∞, the differential equation has a real solution only if c > 1, in which case
there exists a unique (up to translations) solution given by

hc(x) = 1 + (c2 − 1) sech2

(√
3(c2 − 1)

4c2
x− x⋆√

µ

)
, εζc = hc − 1, εuc =

c(hc − 1)

h
(8.14)

This explicit solution was provided as early as in [383]. It should be compared with the infamous
solitary wave solutions to the (right-going) Korteweg-de Vries equation

∂tζKdV + ∂xζKdV +
3ε

4
∂x
(
ζ2KdV

)
+
µ

6
∂3xζKdV,

namely ζKdV(t, x) = ζc,KdV(x− ct) with

ε ζc,KdV(x) = 2(c− 1) sech2

(√
6(c− 1)

4

x− x⋆√
µ

)
.

By Theorem 8.7 the above solutions provide good approximations of the traveling waves of the
exact water waves equations, eq. (2.7), when c − 1 ≈ ε ≈ µ ≪ 1, that is in the long wave regime
(see Definition III.3). See Figure 8.2 for a comparison of the solitary waves at a given velocity.

8.5 Rigorous justification

In this section we provide a complete rigorous justification of the Green–Naghdi system, eq. (8.2)
and hence equivalently eq. (8.6), as an asymptotic model for the water waves system, eq. (2.7), in
the shallow water regime (Definition III.2) that is for parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

40The following discussion can be extended to construct cnoidal (i.e. periodic) traveling waves; see e.g. [79, 196].
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(a) Rescaled solitary waves for c = 1.025, 1.01, 1.002.
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Figure 8.2: Comparison of the solutions of the KdV and Green–Naghdi models and the water
waves system (the latter is numerically computed), taken from [165]. The waves are rescaled so
that the Korteweg-de Vries solution does not depend on c. Consistently, we set ε = µ = 1. The

“improved” Green–Naghdi system is the Whitham–Green–Naghdi system presented in Section 10
and cannot be distinguished from the water waves solution.

The complete justification follows from several results: (i) a consistency result stating that exact
solutions to the water waves system satisfy approximately the Green–Naghdi equations; (ii) a (local)
well-posedness result on the initial-value problem for the Green–Naghdi equations which should be
uniform in the shallow water regime; and (iii) a stability result controlling the difference between
an approximate and an exact solution to the Green–Naghdi equations. Altogether, this yields
the target convergence result which estimates the difference between solutions to the water waves
system—which exist on the relevant timescale and satisfy the required bounds by Theorem 2.9—and
the corresponding solutions to the Green–Naghdi model.

In order for eq. (8.2) to make sense as evolution equations, one needs first to ensure that Tµ

is invertible. As a matter of fact, robust and quantitative information on the operator, Tµ, and
its inverse, will be crucial in our proofs. To this aim, we first introduce some relevant functional
spaces. For s ∈ N we denote

Xs
µ

def
= {u ∈ L2(Rd)d :

∣∣u∣∣2
Xs

µ

def
=

s∑
|k|=0

∣∣∂ku∣∣2
L2 + µ

∣∣∂k∇ · u
∣∣2
L2 <∞},

Y sµ
def
= {v ∈ (X0

µ)
′ :

∣∣v∣∣2
Y s
µ

def
=

s∑
|k|=0

∣∣∂kv∣∣2
(X0

µ)
′ <∞}.

It turns out—see Lemma 8.9 and Lemma 8.10—that the operator Tµ[h, β∇b] : Xs
µ → Y sµ is well-

defined, one-to-one and onto provided that ζ, b are sufficiently regular and the non-cavitation as-
sumption holds:

Assumption 8.1. We have ζ, b ∈W 1,∞(Rd) and satisfy

∀x ∈ Rd, h(x)
def
= 1 + εζ(x)− βb(x) ≥ h⋆ > 0.

Theorem 8.2 (Consistency). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0. Let s ∈ N and M⋆ ≥ 0. There
exists C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈ Wmax{s+6,2+s⋆}(Rd), any T > 0 and any
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(ζ, ψ) ∈ L∞(0, T ;Hmax{s+6,2+s⋆}(Rd) × H̊max{s+6,2+s⋆}(Rd)) classical solution to the water waves
equations, eq. (2.7), satisfying Assumption 8.1 uniformly for t ∈ (0, T ) and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ(t, ·)∣∣

H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

one has {
∂tζ +∇ · (hu) = r1,

∂tψ + ζ + ε
2 |u|

2 − µεR[h, β∇b,u] = r2,

where we denote h = 1+ εζ − βb, u = Tµ[h, β∇b]−1(h∇ψ), and one has for almost every t ∈ (0, T )∣∣r1(t, ·)∣∣Hs ≤ C µ2
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ(t, ·)∣∣

Hs+5

)
,∣∣r2(t, ·)∣∣Hs+1 ≤ C µ2ε

∣∣∇ψ(t, ·)∣∣
H1+s⋆

(∣∣ζ(t, ·)∣∣
Hs+6 +

∣∣∇ψ(t, ·)∣∣
Hs+5

)
.

Proof. The control of r1 is a obtained noticing that∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
hTµ[h, β∇b]−1(h∇ψ)

)∣∣
Hs

≤
∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
h(Id−µT [h, β∇b])∇ψ

)∣∣
Hs

+ µ2
∣∣∇ ·

(
hT [h, β∇b]T [h, β∇b]Tµ[h, β∇b]−1(h∇ψ)

)∣∣
Hs .

The first term is estimated by Proposition 4.10 (with n = 2 and k = s + 1), and we can use
Lemma 8.10 to estimate the second term. The control of r2 is obtained in the same way, using
Proposition 4.10 with n = 1 and k = s + 2 as well as k = 1 + s⋆, together with Lemma 8.10 and
the product and composition estimates in Appendix II.

The local well-posedness of system (8.2) (or, equivalently, system (8.6)) has been proved in [284,
228] (dimension d = 1, flat bottom), [234, 229] (dimension d = 1), [15] (existence and uniqueness of
a solution “with loss of derivatives” through a Nash–Moser scheme), and [189, 162] (general case).
We provide a detailed proof based on [189] in Section 8.6.

Theorem 8.3 (Local well-posedness). Let d ∈ N⋆, s⋆ > d/2 and s ∈ N, s ≥ 1 + s⋆, h⋆ > 0,
µ⋆ > 0, and M⋆ ≥ 0. There exist T > 0 and C > 0 such that the for any (µ, ε, β) ∈ pSW, any
b ∈W s+1,∞(Rd), and any (ζ0,u0) ∈ Hs(Rd)×Xs

µ satisfying Assumption 8.1 and

M0
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣εu0

∣∣
X1+s⋆

µ
+
∣∣βb∣∣

W s+1,∞ ≤M⋆,

there exists a unique (ζ,u) ∈ C0([0, T/M0];H
s(Rd)×Xs

µ)∩C1([0, T/M0];H
s−1(Rd)×Xs−1

µ ) classical
solution to the Green–Naghdi system, eq. (8.6), with initial data (ζ,u) |t=0 = (ζ0,u0); and we have
for any t ∈ [0, T/M0] ∣∣ζ(t, ·)∣∣

Hs +
∣∣u(t, ·)∣∣

Xs
µ
≤ C ×

(∣∣ζ0∣∣Hs +
∣∣u0

∣∣
Xs

µ

)
and infx∈Rd 1 + εζ(t,x)− βb(x) ≥ h⋆/2.

Moreover, denoting v = h−1Tµ[h, β∇b]u with h = 1 + εζ − βb and Tµ defined in eq. (8.5),
we have that (ζ,v) ∈ C0([0, T/M0];H

s(Rd) × Y sµ ) ∩ C1([0, T/M0];H
s−1(Rd) × Y s−1

µ ) is a classical
solution to eq. (8.2) (applying the gradient to the second equation).

Remark 8.4. Uniqueness in Theorem 8.3 allows to define Tmax the supremum of T > 0 such that
the Cauchy problem has a solution (ζ,u) ∈ C0([0, T ];Hs(Rd)×Xs

µ)∩ C1([0, T ];Hs−1(Rd)×Xs−1
µ ).

We also have the blowup criterion

Tmax <∞ =⇒ lim
t↗Tmax

(∥∥ζ∥∥
L∞(0,t;H1+s⋆ )

+
∥∥u∥∥

L∞(0,t;X1+s⋆
µ )

)
→ ∞,
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since the hyperbolicity criterion remains satisfied as a consequence of the conservation of mass; see
footnote 6 page vii. In particular, for given initial data, Tmax and the maximal solution do not
depend on the choice of the regularity index, s > 1 + d/2.

Remark 8.5. The continuity of the flow map (and hence well-posedness in the sense of Hadamard)

φt : (ζ0,u0) ∈ Hs(Rd)×Xs
µ 7→ (ζ(t, ·),u(t, ·)) ∈ Hs(Rd)×Xs

µ

does hold, and can be obtained using the so-called Bona–Smith technique [55]. As stated earlier, it
is not significant for our purposes, where we are happy to ask an extra derivative on the initial data
to ensure that the flow map is Lipschitz. This result is a particular case of the stability property,
Theorem 8.6, below.

Theorem 8.6 (Stability). Let d ∈ N⋆, s ∈ N, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, and M⋆ ≥ 0, and denote

n0
def
= max{s, 1+s⋆}, n

def
= max{s+1, 1+s⋆}. There exists C > 0 such that for any (µ, ε, β) ∈ pSW,

any b ∈ Wn,∞(Rd), any T ⋆ > 0 and (ζ0,u0) ∈ C0([0, T ⋆];Hn0(Rd) × Xn0
µ ) satisfying the Green–

Naghdi system, eq. (8.6), and any (ζ,u) ∈ L∞(0, T ⋆;Hn(Rd)×Xn
µ ) satisfying{

∂tζ +∇ · (hu) = r,(
Id+µT [h, β∇b]

)
∂tu+∇ζ + ε(u · ∇)u+ µεQ[h, β∇b,u] = r,

(8.15)

with (r, r) ∈ L1(0, T ⋆;Hs(Rd) × Y sµ ), and assuming that h = 1 + εζ − βb and h0 = 1 + εζ0 − βb
satisfy Assumption 8.1 uniformly for t ∈ [0, T ⋆] and

M
def
= ess sup

t∈[0,T⋆]

(∣∣(εζ, εu)(t, ·)∣∣
Hn×Xn

µ
+
∣∣(εζ0, εu0)(t, ·)

∣∣
Hn0×Xn0

µ

)
+
∣∣βb∣∣

Wn,∞ ≤M⋆,

then one has for any t ∈ [0, T ⋆],

∣∣(ζ − ζ0)(t, ·)
∣∣
Hs +

∣∣(u− u0)(t, ·)
∣∣
Xs

µ
≤ CeCMt

(∣∣(ζ − ζ0)(t = 0, ·)
∣∣
Hs +

∣∣(u− u0)(t = 0, ·)
∣∣
Xs

µ

)
+ C

∫ t

0

eCM(t−τ) (∣∣r(τ, ·)∣∣
Hs +

∣∣r(τ, ·)∣∣
Y s
µ

)
dτ .

The following result is a direct consequence of Theorem 8.2, Theorem 8.3 and Theorem 8.6.

Theorem 8.7 (Convergence). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, s ∈ N and M⋆ ≥ 0. There exist
T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈ Wmax{s+6,2+s⋆},∞(Rd), any T ⋆ > 0
and any (ζ, ψ) ∈ C0([0, T ⋆];Hmax{s+6,2+s⋆} × H̊max{s+6,2+s⋆}(Rd)) solution to the water waves
equations (2.7) and such that h = 1+ εζ−βb satisfies Assumption 8.1 uniformly for t ∈ [0, T ⋆] and

M
def
= sup

t∈[0,T⋆]

(∣∣εζ(t, ·)∣∣
Hmax{s+1,2+s⋆} +

∣∣ε∇ψ(t, ·)∣∣
Hmax{s+1,1+s⋆}

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

there exists a unique (ζGN,uGN) ∈ C0([0, T/M ];Hmax{s,1+s⋆}(Rd) ×X
max{s,1+s⋆}
µ ) strong solution

to the Green–Naghdi system (8.6) with initial data
(
ζGN,uGN

)
|
t=0

=
(
ζ,Tµ[h, β∇b]−1(h∇ψ)

)
|
t=0

(see eq. (8.5)); and one has for any t ∈ (0,min{T ⋆, T/M}],∣∣(ζ − ζGN)(t, ·)
∣∣
Hs +

∣∣(∇ψ − vGN)(t, ·)
∣∣
Y s
µ
≤ C µ2 t

( ∥∥ζ∥∥
L∞(0,t;Hs+6)

+
∥∥∇ψ∥∥

L∞(0,t;Hs+5)

)
,

where we denote vGN = h−1
GNT

µ[hGN, β∇b]uGN and hGN = 1 + εζGN − βb.
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8.6 Well-posedness

In this section we provide a proof of Theorem 8.3, and hence complete the analysis of Section 8.5.
The strategy mimics the standard“energy method”for hyperbolic first-order quasilinear systems [13,
49, 310], with specific adjustments due to the presence of high order differential operators. In
particular, we shall not use dispersive techniques such as Strichartz estimates (see for instance [397]),
because we aim at results uniform with respect to µ ∈ (0, µ⋆). This strategy is typical in the study
of shallow water or long wave models for the water waves system, and even the study of the water
waves system in the shallow water regime, Definition III.2; see [224, 268].

Let us very roughly sketch a typical strategy concerning hyperbolic symmetrizable first-order
quasilinear systems (such as the Saint-Venant system; see Section 5). Consider a system of the form

S(U)∂tU + Sx(U)∂xU + Sy(U)∂yU = 0

where U(t, x, y) ∈ Rn and S,Sx,Sy are smooth functions with values into n×n symmetric matrices.
The Picard iteration scheme consists in proving that we can define a sequence Un by solving
inductively the linearized system:

S(Un)∂tUn+1 + Sx(Un)∂xUn+1 + Sy(Un)∂yUn+1 = 0,

and that the sequence converges (up to taking a subsequence) towards the desired solution of the
nonlinear equation. Both the well-posedness of the Cauchy problem associated with the linearized
system and the convergence result rely on robust a priori estimates, which can be derived as follows.
Consider sufficiently smooth and decaying solutions of the system

S(U)∂tU + Sx(U)∂xU + Sy(U)∂yU = 0.

Testing the equation against U , integrating by parts and using the symmetry properties, we find

1

2

d

dt

(
S(U)U , U

)
L2 ≤ C(

∣∣U ∣∣
W 1,∞ ,

∣∣∂tU ∣∣L∞)
∣∣U ∣∣2

L2 .

In order to control higher order derivatives, we may differentiate the system k times (where k ∈ Nd
is a multiindex) and test against ∂kU . Using the gain of one derivative from commutator estimates
(see Proposition II.9), we deduce

1

2

d

dt

(
S(U) ∂kU , ∂kU

)
L2 ≤ C(

∣∣U ∣∣
Hmax{|k|,1+s⋆} ,

∣∣∂tU ∣∣Hmax{|k|−1,s⋆})
∣∣U ∣∣2

H|k|

where s⋆ > d/2. By considering the above with any k ∈ Nd such that |k| ∈ {0, . . . , s} where s ∈ N,
s ≥ 1 + s⋆ > 1 + d/2, and provided that S(U) is uniformly positive definite, we deduce a control
of U ∈ L∞(0, T ;Hs) (by Gronwall’s estimate) and hence ∂tU ∈ L∞(0, T ;Hs−1) (using the system
of equations). This is our desired a priori energy estimate which, thanks to a regularization and
a limiting procedure, eventually yield the well-posedness of the Cauchy problem for the linearized
system. Because the control asked on the reference state U is the same as the control we provide
on the solution, U , we may expect that the Picard iteration scheme converges, towards a solution
of the nonlinear system.

When trying to adapt the strategy to the Green–Naghdi system, eq. (8.6), the main objection to
robust energy estimates stem from the presence of nonlinear high order differential operators, as the
gain of one derivative due to commutator estimates is in principle insufficient to treat commutators
as order-zero remainder terms. This problem is however only apparent, and a careful study of these
high order operators reveal that they are in fact of order one when considering the correct functional
spaces, Xn

µ and Y nµ .
In Proposition 8.11, we extract the quasilinear structure of the Green–Naghdi system, which

in this case is nothing but the linearized system about constant states, just as with hyperbolic
systems. We then provide in Proposition 8.12 the key a priori energy estimates of the linearized
system. Finally, we detail in Section 8.6.4 the proof, via a parabolic regularization of the equations,
of the (local-in-time) existence and uniqueness of a solution to the Cauchy problem.
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8.6.1 Some technical tools

Let us first introduce some technical tools on the functional spaces Xn
µ , Y

n
µ , and the operator Tµ.

Lemma 8.8. Let s ∈ N. We have the continuous embeddings Hs+1(Rd)d ⊂ Xs
µ ⊂ Hs(Rd)d and

Hs(Rd)d ⊂ Y sµ ⊂ Hs−1(Rd)d. There exists Cs, independent of µ > 0, such that the following
inequalities hold as soon as the right-hand side is finite:∣∣u∣∣

Hs ≤
∣∣u∣∣

Xs
µ
,

∣∣u∣∣
Xs

µ
≤ Cs

∣∣u∣∣
Hs+1 , (8.16)∣∣v∣∣

Hs−1 ≤ Cs
∣∣v∣∣

Y s
µ
,

∣∣v∣∣
Y s
µ
≤
∣∣v∣∣

Hs . (8.17)

We also have the non-uniform continuous embedding∣∣∇f ∣∣
Y s
µ
≤ Cs

1
√
µ

∣∣f ∣∣
Hs ,

∣∣∇ · u
∣∣
Hs ≤ Cs

1
√
µ

∣∣u∣∣
Xs

µ
. (8.18)

Proof. The continuous embeddings H1(Rd)d ⊂ X0
µ ⊂ L2(Rd)d are straightforward, and the corre-

sponding L2(Rd)d ⊂ Y 0
µ ⊂ H−1(Rd)d follow by duality. The estimate (8.18) with n = 0 is easily

checked, as for any u ∈ X0
µ,∣∣⟨∇f,u⟩(X0

µ)
′−X0

µ

∣∣ = |
(
f,∇ · u

)
L2 | ≤

1
√
µ

∣∣f ∣∣
L2

∣∣u∣∣
X0

µ
.

The case s ∈ N⋆ is reduced to the case s = 0 by considering ∂ku, ∂kv, ∂kf with 0 ≤ |k| ≤ s.

Lemma 8.9. Let h⋆ > 0, µ⋆ > 0 and M > 0. Then there exists C > 0 such that for any (ε, β, µ) ∈
PSW, any b ∈W 1,∞ and h ∈ L∞ satisfying Assumption 4.1 and∣∣h∣∣

L∞ +
∣∣β∇b∣∣

L∞ ≤M,

Tµ[h, β∇b] : X0
µ → (X0

µ)
′ is a well-defined topological isomorphism, and one has

∀u1,u2 ∈ X0
µ, ⟨Tµ[h, β∇b]u1,u2⟩(X0

µ)
′−X0

µ
= ⟨Tµ[h, β∇b]u2,u1⟩(X0

µ)
′ ,

∀u ∈ X0
µ,

∣∣Tµ[h, β∇b]∣∣
(X0

µ)
′ ≤ C

∣∣u∣∣
X0

µ
,

∀v ∈ (X0
µ)

′,
∣∣Tµ[h, β∇b]−1v

∣∣
X0

µ
≤ C

∣∣v∣∣
(X0

µ)
′ .

Proof. We establish the estimates for u1,u2,u,v ∈ S(Rd)d so that all the terms are well-defined,
and the ((X0

µ)
′ − X0

µ) duality product coincides with the L2 inner product. The result for less

regular functions is obtained by density of S(Rd)d in X0
µ and continuous linear extension.

By definition of Tµ in (8.5) and after integration by parts, one has

(
Tµ[h, β∇b]u1,u2

)
L2 =

∫
Rd

hu1 · u2 +
µ

3
h3(∇ · u1)(∇ · u2)

− µ

2
h2
(
(∇ · u2)(β∇b · u1) + (β∇b · u2)(∇ · u1)

)
+ µh(β∇b · u1)(β∇b · u2),

from which the symmetry is evident. Applying Cauchy–Schwarz inequality, we have

∀u1,u2 ∈ X0
µ, |⟨Tµ[h, β∇b]u1,u2⟩(X0

µ)
′−X0

µ
| ≤ C(

∣∣h∣∣
L∞ ,

∣∣β∇b∣∣
L∞)

∣∣u1

∣∣
X0

µ

∣∣u2

∣∣
X0

µ
,

and the first estimate follows by duality. The second one is obtained when rewriting(
Tµ[h, β∇b]u,u

)
L2 =

∫
Rd

h|u|2 + µ

12
h3|∇ · u|2 + µ

4
h|h∇ · u− 2β∇b · u|2.
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This shows that Tµ[h, β∇b] : X0
µ → (X0

µ)
′ is continuous and coercive, so that the operator version

of Lax-Milgram theorem ensures that Tµ[h, β∇b] is an isomorphism. The continuity of the inverse
is a consequence of the coercivity of Tµ[h, β∇b]:∣∣u∣∣2

X0
µ
≤ C(h−1

⋆ )|⟨Tµ[h, βb]u,u⟩(X0
µ)

′ | ≤
∣∣Tµ[h, β∇b]u∣∣

(X0
µ)

′

∣∣u∣∣
X0

µ
,

and setting u = Tµ[h, β∇b]−1v above.

Lemma 8.10. Let d ∈ N⋆, s ∈ N⋆, s⋆ > d/2, and h⋆ > 0, M > 0, µ⋆ > 0. There exists C > 0
such that for any (ε, β, µ) ∈ PSW, for any b ∈Wmax{s+1,2+s⋆},∞(Rd) 41 and ζ ∈ Hmax{s,1+s⋆}(Rd)
satisfying Assumption 4.1 and ∣∣εζ∣∣

H1+s⋆
+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

the following holds.

• For any u ∈ Xs
µ, T

µ[h, β∇b]u ∈ Y sµ and∣∣Tµ[h, β∇b]u∣∣
Y s
µ
≤ C ×

(∣∣u∣∣
Xs

µ
+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣u∣∣

Xs⋆
µ

〉
s>s⋆

)
.

• For any v ∈ Y sµ . Then Tµ[h, β∇b]−1v ∈ Xs
µ and∣∣Tµ[h, β∇b]−1v

∣∣
Xs

µ
≤ C ×

(∣∣v∣∣
Y s
µ
+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣v∣∣

Y s⋆
µ

〉
s>1+s⋆

)
.

Proof. Let us denote for simplicity Tµ
def
= Tµ[h, β∇b]. We also introduce k ∈ Nd such that |k| = s.

We have for any u,w ∈ S(Rd)d,

|
(
∂k(Tµu),w

)
L2 | =

(
∂k(hu),w

)
L2 +

µ

3

(
∂k(h3∇ · u),∇ ·w

)
L2

− µ

2

(
∂k(h2(β∇b) · u),∇ ·w

)
L2 −

µ

2

(
∂k(h2(β∇b)∇ · u),w

)
L2

+ µ
(
∂k(h(β∇b)(β∇b) · u),w

)
L2 .

Hence, by product estimates, i.e. Proposition II.7 and Proposition II.14, we have

|
(
∂k(Tµu),w

)
L2 | ≤ C(M)

(∣∣u∣∣
Xs

µ
+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣u∣∣

Xs⋆
µ

〉
s>s⋆

)∣∣w∣∣
X0

µ
.

The first result is deduced by density and continuity arguments. Now, notice

|
([
∂k,Tµ

]
u,w

)
L2 | =

([
∂k, h

]
u,w

)
L2 +

µ

3

([
∂k, h3

]
∇ · u,∇ ·w

)
L2

− µ

2

(
[∂k, h2(β∇b)·]u,∇ ·w

)
L2 −

µ

2

(
[∂k, h2(β∇b)]∇ · u,w

)
L2

+ µ
(
[∂k, h(β∇b)(β∇b)·]u,w

)
L2 .

Using commutator estimates, Proposition II.9 and Proposition II.15, we deduce

|
([
∂k,Tµ

]
u,w

)
L2 | ≤ C(M)

(∣∣u∣∣
Xs−1

µ
+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣u∣∣

Xs⋆
µ

〉
s>1+s⋆

)∣∣w∣∣
X0

µ
.

41the result holds as well assuming instead that b ∈ L∞(Rd) ∩ Hmax{s+1,2+s⋆},∞(Rd), replacing
∣∣βb∣∣

W2+s⋆,∞

with
∣∣β∇b∣∣

H1+s⋆
+
∣∣βb∣∣

L∞ , and
∣∣β∇b∣∣

Ws,∞ with
∣∣β∇b∣∣

Hs .
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By density and continuity arguments, we infer that for any u ∈ Xs−1
µ ,

[
∂k,Tµ

]
u ∈ (X0

µ)
′ and∣∣[∂k,Tµ]u∣∣

(X0
µ)

′ ≤ C(M)
(∣∣u∣∣

Xs−1
µ

+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣u∣∣

Xs⋆
µ

〉
s>1+s⋆

)
.

Now, we make use of the identity[
∂k, (Tµ)−1

]
v = −(Tµ)−1

[
∂k,Tµ

]
(Tµ)−1v.

Combining the above and by Lemma 8.9, we find∣∣∂k((Tµ)−1v)
∣∣
X0

µ
=
∣∣(Tµ)−1∂kv − (Tµ)−1

[
∂k,Tµ

]
(Tµ)−1v

∣∣
X0

µ

≤ C0

∣∣∂kv −
[
∂k,Tµ

]
(Tµ)−1v

∣∣
(X0

µ)
′

≤ C(M)
(∣∣v∣∣

Y s
µ
+
∣∣(Tµ)−1v

∣∣
Xs−1

µ
+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣(Tµ)−1v

∣∣
Xs⋆

µ

〉
s>1+s⋆

)
.

The result follows by induction on s, and by density of S(Rd)d in Y sµ .

8.6.2 The quasilinear structure

Proposition 8.11. Let d ∈ N⋆, s⋆ > d/2, k ∈ Nd \ {0} multi-index and denote n = max{|k|, 1+ s⋆}.
Let µ⋆ > 0, T > 0 and M⋆ ≥ 0. Then there exists C, C̃ > 0 such that the following holds for
any (µ, ε, β) ∈ pSW, any ζ ∈ C0([0, T ];Hn(Rd)) ∩ C1([0, T ];Hn−1(Rd)), b ∈ Wn+1,∞(Rd) such
that Assumption 8.1 holds uniformly on [0, T ] and any u ∈ C0([0, T ];Xn

µ ) ∩ C1([0, T ];Xn−1
µ ) such

that system eq. (8.6) holds and

M
def
=
∥∥εζ∥∥

L∞(0,T ;H1+s⋆ )
+
∥∥εu∥∥

L∞(0,T ;X1+s⋆
µ )

+
∣∣βb∣∣

Wn+1,∞ ≤M⋆.

Then ζ(k)
def
= ∂kζ and u(k) def

= ∂ku satisfy{
∂tζ

(k) + εu · ∇ζ(k) + h∇ · u(k) = r(k),(
Id+µT [h, β∇b]

)
∂tu

(k) +∇ζ(k) + ε(u · ∇)u(k) + µεQ[h, β∇b,u]u(k) = r(k),
(8.19)

with h = 1 + εζ − βb and (abusing notations)

Q[h, β∇b,u]u(k) def
=

−1

3h
∇
(
h3
(
(u · ∇)(∇ · u(k))

))
+

β

2h

(
∇
(
h2(u · ∇)(u(k) · ∇b)

)
− h2

(
(u · ∇)(∇ · u(k))

)
∇b
)
+ β

(
(u · ∇)(u(k) · ∇b)

)
(β∇b),

and where r(k), r(k) enjoy the estimate (discarding the reference to t ∈ [0, T ])∣∣r(k)∣∣L2 +
∣∣r(k)∣∣Y 0

µ
≤ C M

(∣∣ζ∣∣
H|k| +

∣∣u∣∣
X

|k|
µ

)
. (8.20)

Moreover, for any ζ̃, ũ satisfying the same assumptions and denoting r̃(k), r̃(k) the corresponding
residuals, one has∣∣r(k) − r̃(k)

∣∣
L2 +

∣∣r(k) − r̃(k)∣∣Y 0
µ
≤ C̃ M

(∣∣ζ − ζ̃
∣∣
H|k| +

∣∣u− ũ
∣∣
X

|k|
µ

)
+
〈
C̃ Mk

(∣∣ζ − ζ̃
∣∣
Hs⋆

+
∣∣u− ũ

∣∣
Xs⋆

µ

)〉
|k|>1+s⋆

. (8.21)

with Mk
def
=
∣∣εζ∣∣

H|k| +
∣∣εζ̃∣∣

H|k| +
∣∣εu∣∣

X
|k|
µ

+
∣∣εũ∣∣

X
|k|
µ

+ β
∣∣∇b∣∣

Wn,∞ .
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Proof. Within this proof, we use the following convenient notation. We denote

a ∼L2 b ⇐⇒ a− b = r,

a ∼Y 0
µ
b ⇐⇒ a− b = r

with
∣∣r∣∣

L2 and
∣∣r∣∣

Y 0
µ
satisfying (8.20) with C = C(|k|, µ⋆, h−1

⋆ ,M⋆).

First equation. We start by applying the operator ∂k to the first equation of eq. (8.6):

∂tζ
(k) + ∂k(h∇ · u+ u · ∇h) = 0.

By Proposition II.9, Proposition II.15 and using the obvious continuous embedding X0
µ ⊂ L2(Rd)d,

one finds
∂k∇ · (hu) ∼L2 h∇ · ∂ku+ εu · ∇∂kζ

as desired.

Second equation. Here we multiply eq. (8.6)2 with h before applying the operator ∂k. Proceeding
a above and using the dual continuous embedding L2(Rd)d ⊂ Y 0

µ , we have

∂k
(
εh(u · ∇)u

)
∼Y 0

µ
εh(u · ∇)∂ku.

Now we consider the contribution of

µεhQ[h,0,u] =
−µε
3

∇
(
h3
(
(u · ∇)(∇ · u)− (∇ · u)2

))
,

Thanks to the µ prefactor and using the non-uniform embeddings of Lemma 8.8, the second term
gives no contribution, and the first one satisfies

−µε
3
∂k∇

(
h3
(
(u · ∇)(∇ · u)

)
∼Y 0

µ

−µε
3

∇
(
h3
(
(u · ∇)(∂k∇ · u)

))
.

We proceed similarly with the contribution of

µεhQb[h, β∇b,u]
def
=

µεβ

2

(
∇
(
h2(u ·∇)2b

)
−h2

(
(u ·∇)(∇·u)−(∇·u)2

)
∇b
)
+µεβh

(
(u ·∇)2b

)
(β∇b)

and deduce

µε∂k
(
hQb[h, β∇b,u]

)
∼Y 0

µ

µεβ

2

(
∇
(
h2(u · ∇)(∂ku · ∇b)

)
− h2

(
(u · ∇)(∂k∇ · u)

)
∇b
)

+ µεβh
(
(u · ∇)(∂ku · ∇b)

)
(β∇b).

There remains the contribution of

h
(
Id+µT [h, β∇b]

)
∂tu = h∂tu− µ

3
∇(h3∇ · ∂tu) +

µ

2

(
∇
(
h2(β∇b) · ∂tu

)
− h2(β∇b)∇ · ∂tu

)
+ µhβ(∇b · ∂tu)(β∇b).

Let us first notice that we have ∂tu ∈ Xj
µ for any j ∈ {0, . . . ,max{s⋆, k − 1}} by using eq. (8.6)2.

Indeed, applying the operator Tµ[h, β∇b]−1 =
(
h
(
Id+µT [h, β∇b]

))−1
, we have, by Lemma 8.10,∣∣∂tu∣∣Xj

µ
≤ C(|k|, µ⋆, h−1

⋆ ,M⋆)
(∣∣ζ∣∣

Hj+1 +
∣∣u∣∣

Xj+1
µ

)
.

We may then proceed as above to prove that

∂k
(
h
(
Id+µT [h, β∇b]

)
∂tu
)
∼Y 0

µ
h
(
Id+µT [h, β∇b]

)
∂k∂tu.

This concludes the proof of eq. (8.20). The proof of eq. (8.21) is obtained in the exact same way.
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8.6.3 A priori energy estimates

Proposition 8.12. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0, T > 0 and M > 0. Then there exists C > 0 such
that for any (µ, ε, β) ∈ pSW, any (ζ,u) ∈ L∞(0, T ;W 1,∞(Rd)1+d) ∩W 1,∞(0, T ;L∞(Rd)1+d) and

b ∈W 1,∞(Rd) such that h = 1 + εζ − βb, satisfies Assumption 8.1 uniformly for t ∈ (0, T ) and∥∥εζ∥∥
L∞(0,T ;W 1,∞)

+
∥∥ε∂tζ∥∥L∞(0,T ;L∞)

+
∥∥εu∥∥

L∞(0,T ;W 1,∞)
+
∣∣βb∣∣

W 1,∞ ≤M

as well as any (ζ,u) ∈ L∞(0, T ;H1(Rd)×X1
µ) ∩W 1,∞(0, T ;L2(Rd)×X0

µ) satisfying{
∂tζ + εu · ∇ζ + h∇ · u = r,(
Id+µT [h, β∇b]

)
∂tu+∇ζ + ε(u · ∇)u+ µεQ[h, β∇b,u]u = r,

(8.22)

with

Q[h, β∇b,u]u def
=

−1

3h
∇
(
h3
(
(u · ∇)(∇ ·u)

))
+

β

2h

(
∇
(
h2(u · ∇)(u · ∇b)

)
− h2

(
(u · ∇)(∇ ·u)

)
∇b
)

+ β
(
(u · ∇)(u · ∇b)

)
(β∇b)

and (r, r) ∈ L∞(0, T ;L2(Rd)× Y 0
µ ), the following holds. Denoting

E(t) def
=

1

2

∫
Rd

|ζ|2 + h|u|2 + µhT [h, β∇b]u · udx,

we have
d

dt
E ≤ C M E + C

(∣∣r∣∣
L2 +

∣∣r∣∣
Y 0
µ

)
E1/2,

and as a consequence

E1/2(t) = E1/2(0)eCMt/2 + C

∫ t

0

eCM(t−τ)/2(∣∣r(τ, ·)∣∣
L2 +

∣∣r(τ, ·)∣∣
Y 0
µ

)
dτ.

Proof. We test the first equation of eq. (8.22) against ζ and the second against hu. It follows, after
some algebra,

d

dt
E = I1 + µI2 + µIb + Ir

with

I1 =
1

2

∫
Rd

ε(∇ · u)|ζ|2 + 2(ε∇ζ − β∇b) · uζ + ε
(
∂tζ +∇ · (hu)

)
|u|2 dx,

I2 =
ε

6

∫
Rd

(
3h2∂tζ +∇ · (h3u)

)
(∇ · u)2 dx,

Ib =
ε

2

∫
Rd

−
(
2h∂tζ +∇ · (h2u)

)
(β∇b · u)∇ · u+

(
∂tζ +∇ · (hu)

)
(β∇b · u)2 dx,

Ir =
∫
Rd

rζ + hr · udx.

We deduce immediately, by Cauchy–Schwarz inequality,

ε|I1|+ ε|I2|+ ε|Ib| ≤ C M
(∣∣ζ∣∣2

L2 +
∣∣u∣∣2

X0
µ

)
where C = C(µ⋆,

∣∣ε∂tζ∣∣, ∣∣h∣∣W 1,∞ ,
∣∣εu∣∣

W 1,∞ ,
∣∣β∇b∣∣

L∞). In the same way, one has immediately

|Ir| ≤
∣∣r∣∣

L2

∣∣ζ∣∣
L2 +

∣∣r∣∣
Y 0
µ

∣∣hu∣∣
X0

µ
≤
∣∣r∣∣

L2

∣∣ζ∣∣
L2 + C(µ⋆,

∣∣h∣∣
W 1,∞)

∣∣r∣∣
Y 0
µ

∣∣u∣∣
X0

µ
.

There only remains to use Lemma 8.9 to deduce∣∣ζ∣∣2
L2 +

∣∣u∣∣2
X0

µ
≤ C(h−1

⋆ )E ,

and the result follows.
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8.6.4 Completion of the proof

The well-posedness result of Theorem 8.3 may be deduced, exploiting energy estimates similar to
the ones derived above. Several strategies are known, including the use of regularizing operators as
in [311] or a duality method as in [13, 49]. However both these methods rely on pseudo-differential
tools which we have not introduced in these notes.42 Hence we will follow here the a parabolic
regularization approach as advocated in [189]. The strategy is standard, and similar to that applied
for instance to the Navier–Stokes and Euler equations in [247], as described e.g. in [398].

8.6.4.1 Step 1: local existence for the regularized system. We introduce the regularized system{
∂tζν − ν∆ζν +∇ · (hνuν) = 0

hν
(
Id+µT [hν , β∇b]

)
(∂tuν − ν∆uν) + hν∇ζν + hνε(uν · ∇)uν + µεhνQ[hν , β∇b,uν ] = 0,

where hν
def
= 1+ εζν −βb and ν > 0 is a parameter which will eventually go to zero. By Lemma 8.9,

we may invert the operator Tµ[h, β∇b] = hν
(
Id+µT [hν , β∇b]

)
(for sufficiently regular data) and

write the system under the abstract form

∂t

(
ζν
uν

)
− ν∆

(
ζν
uν

)
= F (ζν ,uν). (8.23)

By Duhamel’s formula, solutions (ζν ,uν) ∈ C0([0, Tν ];H
s(Rd)×Xs

µ)∩C1([0, Tν ];H
s−1(Rd)×Xs−1

µ )
to eq. (8.23) satisfy (

ζν
uν

)
(t) = eνt∆

(
ζν
uν

)
(0) +

∫ t

0

eν(t−τ)∆F (ζν ,uν)(τ) dτ. (8.24)

Here, eνt∆ is the heat flow, defined as the Fourier multiplier (see Definition III.1)

êνt∆f(ξ) = e−νt|ξ|
2

f̂(ξ),

(applied to all components). We have, by Plancherel’s formula for any s ∈ R and t ≥ 0∥∥eνt∆∥∥
Hs→Hs ≤ 1

and for any s′ ≥ s there exists Cs′−s such that for any t > 0∥∥eνt∆∥∥
Hs→Hs′ ≤ Cs′−s

(
1 + (νt)−

s′−s
2

)
.

Here we exhibited the regularizing effect of the heat operator. The estimate above indicates that
we can gain regularity in space by using integrability in time: by Hölder’s inequality, we have∥∥eνt∆∥∥

Lp(0,T ;Hs)→Lp′ (0,T ;Hs′ )
≤ Cs,s′,p,q

for any 1 ≤ p′ < p ≤ ∞ if 0 ≤ s′−s
2 < 1

p′ −
1
p .

Proposition 8.13. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0 and ν > 0. Let (µ, ε, β) ∈ pSW, s ∈ N, s > d/2 + 1
and ζ0 ∈ Hs(Rd) and b ∈ W s+1,∞(Rd) be such that Assumption 8.1 holds, and u0 ∈ Xs

µ. Then

there exists Tν > 0 and (ζν ,uν) ∈ C0([0, Tν ];H
s(Rd)×Xs

µ) ∩ L2(0, Tν ;H
s+1(Rd)×Xs+1

µ ) solution
to (8.24). Moreover, this solution is unique.

42in fact in our framework we only need a generalization of the product and commutator estimates given in
Appendix II for Fourier multipliers such as (Id−ν∆)−1/2, which follow for instance using the Littlewood-Paley
theory, i.e. dyadic decomposition of the frequency space.
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Proof. Here we only need to use the standard Banach fixed point argument on

Φ :

(
ζ0
uν

)
7→ eνt∆

(
ζ0
u0

)
+

∫ t

0

eν(t−τ)∆F (ζν ,uν)(τ) dτ.

Consider ZsTν
= C0([0, Tν ];H

s(Rd)×Xs
µ) ∩ L2(0, Tν ;H

s+1(Rd)×Xs+1
µ ), endowed with the norm∥∥(ζν ,uν)∥∥Zs

Tν

def
=
∥∥(ζν ,uν)∥∥L∞(0,Tν ;Hs×Xs

µ)
+ ν1/2

∥∥(ζν ,uν)∥∥L2(0,Tν ;Hs+1×Xs+1
µ )

.

Given R > 0 and h⋆ > 0, we denote

BR,h⋆
=

{
(ζν ,uν) ∈ ZsTν

:
∥∥(ζν ,uν)∥∥Zs

Tν

≤ R, inf
t∈(0,Tν)

1 + εζν − βb ≥ h⋆

}
.

By product estimates, Proposition II.7, and Lemma 8.10, we have for any (ζν ,uν) ∈ BR,h⋆ ,∥∥F (ζν ,uν)
∥∥
Zs−1

Tν

≤ C(R, h−1
⋆ ).

Thanks to the regularizing properties of the heat operator (using the energy method or by Plancherel’s
formula), there exists C(Tν) such that∥∥(eνt∆ζ0, eνt∆u0)

∥∥
Zs

Tν

≤ C(Tν)
(∣∣ζν(0)∣∣Hs +

∣∣uν(0)∣∣Xs
µ

)
and cν = C(ν, Tν) with cν → 0 as Tν → 0 such that

∥∥∫ t

0

eν(t−τ)∆F (ζν ,uν)(τ) dτ
∥∥
Zs

Tν

≤ cν
∥∥F (ζν ,uν)

∥∥
Zs−1

Tν

.

Moreover, we have∥∥∂teνt∆ζ0∥∥L2(0,T ;L∞)
=
∥∥∆eνt∆ζ0∥∥L2(0,T ;L∞)

≲
∥∥eνt∆ζ0∥∥L2(0,T ;Hs+1)

.

Hence we can choose R sufficiently large and then Tν sufficiently small so that Φ maps BR,h⋆/2

into itself. Using again product estimates, Proposition II.7, and Lemma 8.10, we infer that for any
(ζℓν ,u

ℓ
ν) ∈ BR,h⋆/2 (with ℓ ∈ {1, 2}),∥∥F (ζ1ν ,u

1
ν)− F (ζ2ν ,u

2
ν)
∥∥
Zs−1

Tν

≤ C(R, h−1
⋆ )
∥∥(ζ1ν − ζ2ν ,u

1
ν − u2

ν)
∥∥
Zs

Tν

and in turn that, lowering Tν if necessary, Φ is a contraction mapping. The result follows from
Banach fixed-point theorem.

Proposition 8.14. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0 and ν > 0, s⋆ > d/2. Let (µ, ε, β) ∈ pSW. Let
ζ0 ∈ H∞(Rd) and b ∈ W∞,∞(Rd) be such that Assumption 8.1 holds, and u0 ∈ H∞(Rd)d. Then
there exists a unique Tmax > 0 and a unique (ζν ,uν) ∈ C∞([0, Tmax);H

∞(Rd)1+d) maximal solution
to (8.23). Moreover, if Tmax <∞, then∥∥ζν∥∥L∞(0,T⋆;H1+s⋆ )

+
∥∥uν∥∥L∞(0,T⋆;X1+s⋆

µ )
→ ∞ or inf

Rd
1 + εζν − βb→ 0.

Proof. By iterating Proposition 8.13, we have for any given s ≥ s⋆, the existence and uniqueness of
a maximal Cauchy development, i.e. T ⋆ > 0 and a mild solution (ζν ,uν) ∈ C0([0, T ⋆);Hs(Rd)×Xs

µ)
such that if T⋆ <∞,∥∥ζν∥∥L∞(0,T⋆;Hs)

+
∥∥uν∥∥L∞(0,T⋆;Xs

µ)
→ ∞ or inf

Rd
1 + εζν − βb→ 0.
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By the uniqueness of the mild solution, the solutions do not depend on the regularity index, s, as
long as their domain of existence coincide. In principle, the maximal time of existence, T⋆, may
depend on the regularity index, s, we consider. Such is not the case thanks to the independent
blowup criterion: if T⋆ <∞, then∥∥ζν∥∥L∞(0,T⋆;H1+s⋆ )

+
∥∥uν∥∥L∞(0,T⋆;X1+s⋆

µ )
→ ∞ or inf

Rd
1 + εζν − βb→ 0.

This blowup criterion is obtained by contradiction and using tame product estimates of Proposi-
tion II.7, and Lemma 8.10. Indeed, assuming that the above quantities are bounded (respectively
from above and below), we find, following the steps of Proposition 8.13 that∥∥(ζν ,uν)∥∥Zs

[τ1,τ2]

≤ C1

∣∣(ζν ,uν)(τ1)∣∣Hs×Xs
µ
+ C2ν

−1/2(τ2 − τ1)
1/2
∥∥(ζν ,uν)∥∥L∞(τ1,τ2;Hs×Xs

µ)
,

for any 0 < τ1 < τ2 < T ⋆ and denoting∥∥(ζν ,uν)∥∥Zs
[τ1,τ2]

=
∥∥(ζν ,uν)∥∥L∞(τ1,τ2;Hs×Xs

µ)
+ ν1/2

∥∥(ζν ,uν)∥∥L2(τ1,τ2;Hs+1×Xs+1
µ )

.

We can then choose τ1 sufficiently large to absorb the second term of the right-hand side, and
deduce an estimate on

∥∥(ζν ,uν)∥∥Zs
[τ1,τ2]

, uniform with respect to τ2 ∈ (τ1, T
⋆), from which the

contradiction follows.
There only remains to prove that the solution has the desired regularity (in time). Differentiating

the Duhamel formula with respect to time, we have that (ζν ,uν) satisfies eq. (8.23) in the sense
of spacetime distributions, and hence (ζν ,uν) ∈ C1([0, T ⋆);H∞(Rd)1+d). We may then iterate
eq. (8.23) to obtain the desired regularity.

8.6.4.2 Step 2: local existence for smooth solutions. In order to be able to construct (smooth)
solutions to eq. (8.6) from (smooth) solutions to the parabolic regularization, eq. (8.23), we need
to obtain uniform energy estimates.

Proposition 8.15. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0, s⋆ > d/2, s ∈ N and M⋆ ≥ 0. Then there
exists T > 0 and C > 0 such that for any ν ∈ (0, 1], any (µ, ε, β) ∈ pSW, any ζ0 ∈ H∞(Rd) and
b ∈W∞,∞(Rd) be such that Assumption 8.1 holds, and u0 ∈ H∞(Rd)d such that

M
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣εu0

∣∣
X1+s⋆

µ
+
∣∣βb∣∣

Wmax{s+1,2+s⋆+1}.∞ ≤M⋆,

the unique maximal solution to eq. (8.6) provided by Proposition 8.14 satisfies T ⋆ ≥ T/M and for
any t ∈ [0, T/M ], infx∈Rd(1 + εζ(t,x)− βb(x)) ≥ h⋆/2 and∣∣ζν(t, ·)∣∣Hs +

∣∣uν(t, ·)∣∣Xs
µ
≤ C ×

(∣∣ζ0∣∣Hs +
∣∣u0

∣∣
Xs

µ

)
.

Proof. The estimate (and hence the lower bound on the maximal time of existence by the blowup
criterion) follow from a priori energy estimates similar to Proposition 8.11 and Proposition 8.12.
There are however additional terms to be taken care of. Let us just consider a handful of them.
After testing the contribution

hν
(
Id+µT [hν , β∇b]

)
(∂t∂

kuν − ν∆∂kuν)

against ∂kuν , we have to estimate the additional contributions(
hν
(
Id+µT [hν , β∇b]

)
(∂t∂

kuν − ν∆∂kuν), ∂
kuν

)
L2

Let us discard the terms stemming from the variable topography and concentrate on

−ν
(
hν∆∂

kuν , ∂
kuν

)
L2 −

νµ

3

(
h3ν∇ ·∆∂kuν ,∇ · ∂kuν

)
L2 .
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Now we have, assuming d = 2 and denoting uν = (uν,x,uν,y),

− ν
(
hν∆∂

kuν , ∂
kuν

)
L2 = ν

∫
Rd

hν
(
|∇∂kuν,x|2 + |∇∂kuν,y|2

)
dx

+ ν(∇hν · ∇∂kuν,x, ∂kuν,x)L2 + ν(∇hν · ∇∂kuν,y, ∂kuν,y)L2 ,

and hence

− ν
(
hν∆∂

kuν , ∂
kuν

)
L2 −

ν

2

∫
Rd

h
(
|∇∂kuν,x|2 + |∇∂kuν,y|2

)
dx

≤ ν

2

∫
Rd

h−1
(
|∇h · ∂kuν,x|2 + |∇h · ∂kuν,y|2

)
dx.

The second term is estimated similarly, using that

∇ ·∆Id ∂kuν = ∆∇ · ∂kuν .

Using the boundedness of ν, we may then conclude as in Proposition 8.12. We obtain in fact the
improved differential inequality

E ′
s(t) + νEs+1(t) ≤ C M Es(t)

where

Es(t)
def
=

1

2

∑
|k|≤s

∫
Rd

|∂kζ|2 + h|∂ku|2 + µhT [h, β∇b]∂ku · ∂kudx ≈
∣∣ζν∣∣2Hs +

∣∣uν∣∣2Xs
µ
.

However we need to ensure that infx∈Rd(1 + εζ(t,x)− βb(x)) ≥ h⋆/2 for any t ∈ [0, T/M ]. This is
obtained using the positivity of the heat kernel, so that

|ζ(t,x)− ζ(0,x)| ≤
∣∣∂tζ − ν∆ζ

∣∣
L1(0,T ;L∞(Rd))

≲
∣∣hu∣∣

L1(0,T ;H1+s⋆ (Rd))
.

This concludes the proof.

Proposition 8.16. Let d ∈ N⋆, h⋆ > 0, µ⋆ > 0, s⋆ ∈ N, s⋆ > d/2, s ∈ N and M⋆ ≥ 0. Then there
exists T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any ζ0 ∈ H∞(Rd) and b ∈W∞,∞(Rd) be
such that Assumption 8.1 holds, and u0 ∈ H∞(Rd) such that∣∣εζ0∣∣H1+s⋆

+
∣∣βb∣∣

Wmax{1+s,2+s⋆},∞ +
∣∣βb∣∣

L∞ +
∣∣εu0

∣∣
X1+s⋆

µ
≤M,

there exists (ζ,u) ∈ C∞([0, T/M ];H∞(Rd)1+d) solution to (8.6) and satisfying for any t ∈ [0, T/M ],∣∣ζ(t, ·)∣∣
Hs +

∣∣u(t, ·)∣∣
Xs

µ
≤ C ×

(∣∣ζ0∣∣Hs +
∣∣u0

∣∣
Xs

µ

)
.

and infx∈Rd(1 + εζ(t,x)− βb(x)) ≥ h⋆/2.

Sketch of the proof. We introduce (νn) a sequence such that νn ↘ 0. By Proposition 8.15, there
exists C, T , independent of n and a sequence (ζνn ,uνn) ∈ C∞([0, T/M ];H∞(Rd)1+d), uniformly
bounded and equicontinuous (by Sobolev embedding) and satisfying (as well as an arbitrary number
of derivatives) the desired estimate. By weak compactness, there exists a converging subsequence.
From Arzelá–Ascoli theorem, the convergence holds locally uniformly. Hence we can take limits
and deduce that the limit satisfies (8.6). The desired bound is a direct consequence of the identical
(uniform in n) estimate on (ζνn ,uνn).
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8.6.4.3 Step 3: Existence and uniqueness of classical solutions We are now in position to prove
Theorem 8.3.

Proof of Theorem 8.3. We start with the uniqueness. Let us consider two classical solution to
eq. (8.15), (ζ1,u1) and (ζ̃2, ũ2) ∈ C0([0, T/M0];H

s(Rd) × Xs
µ) ∩ C1([0, T/M0];H

s−1(Rd) × Xs−1
µ ),

with same initial data (ζi,ui) |t=0 = (ζ0,u0). By Proposition 8.11 (with k = 0), we have that the

difference (ζ,u)
def
= (ζ2 − ζ1,u2 − u1) satisfies{
∂tζ + εu2 · ∇ζ + h2∇ · u = r,(
Id+µT [h2, β∇b]

)
∂tu+∇ζ + ε(u2 · ∇)u+ µεQ[h2, β∇b,u2]u = r,

where the right-hand side satisfies, using in particular eq. (8.21),

∀t ∈ (0, T/M0],
∣∣r(t, ·)∣∣

L2 +
∣∣r(t, ·)∣∣

Y 0
µ
≤ C(M)M

(∣∣ζ(t, ·)∣∣
L2 +

∣∣u(t, ·)∣∣
X0

µ

)
,

where

M =
∥∥εζ1∥∥L∞(0,t;Hs⋆ )

+
∥∥εu1

∥∥
L∞(0,t;Xs⋆

µ )
+
∥∥εζ2∥∥L∞(0,t;Hs⋆ )

+
∥∥εu2

∥∥
L∞(0,t;Xs⋆

µ )
+
∣∣β∇b∣∣

H1+s⋆
.

We can now use Proposition 8.12 to deduce that

E(t) def
=

1

2

∫
Rd

|ζ|2 + h2|u|2 + µh2T [h2, β∇b]u · udx,

where h2 = 1 + εζ2 − βb, satisfies43

d

dt
E ≤ C(M) M E ,

and hence, since E(0) = 0, E ≡ 0. By Lemma 8.9, we deduce the uniqueness.
Now for the existence, we shall construct a solution as the limit of a Cauchy sequence of smooth

solutions. The argument is classical and often referred to as the Bona-Smith technique [55] although
it appeared already in the work of Kato [247]. We introduce the one-parameter family of mollifiers:
for any ι > 0,

Jι
def
= χ(ν|D|), χ(ξ) = 1|ξ|≤1.

We shall use the following limits which follow by Plancherel’s theorem and dominated convergence:
for any ζ ∈ Hs(Rd), ∣∣ζ − Jιζ

∣∣
Hs + ι−1

∣∣ζ − Jιζ
∣∣
Hs−1 + ι

∣∣Jιζ∣∣
Hs+1 → 0, (8.25a)

and for any u ∈ Xs
µ, ∣∣u− Jιu

∣∣
Xs

µ
+ ι−1

∣∣u− Jιu
∣∣
Xs−1

µ
+ ι
∣∣Jιu∣∣

Xs+1
µ

→ 0. (8.25b)

By Proposition 8.16 with initial data (ζι0,u
ι
0)

def
= (Jιζ0, J

ιu0) ∈ H∞(Rd)1+d (and assuming at first
that the bottom topography is smooth 44 ), for any s′ ∈ N there exists C0, T > 0, independent of ι,
and (ζι,uι) ∈ C∞([0, T/M0];H

∞(Rd)1+d) solution to (8.6) and satisfying for any t ∈ [0, T/M0]∣∣ζι(t, ·)∣∣Hs′ +
∣∣uι(t, ·)∣∣Xs′

µ
≤ C0

(∣∣Jιζ0∣∣Hs′ +
∣∣Jιu0

∣∣
Xs′

µ

)
(8.26)

43Here we use that the hyperbolicity criterion infx∈Rd h2 > 0 remains satisfied as a consequence of the conservation
of mass; see footnote 6 page vii.

44In order to deal with non-smooth topographies, we may consider the sequence of solutions corresponding to the
mollified topographies

bι
def
= ρι ⋆ b =

∫
Rd

1

ιd
ρ
( · − y

ι

)
b(y) dy,

where ρ is smooth, non-negative with compact support, and
∣∣ρ∣∣

L1 = 1.



8. The Green–Naghdi system 112

and infx∈Rd(1 + εζι(t,x)− βb(x)) ≥ h⋆/2.

We wish to prove that, given a decreasing sequence ιn → 0, the constructed (ζιn ,uιn) is a
Cauchy sequence. Proceeding as above, we may estimate the difference between two solution

(ζm,n,um,n)
def
= (ζιn − ζιm ,uιn − uιm)

by Proposition 8.11 and Proposition 8.12. One gets, for any k ∈ Nd, 0 ≤ |k| ≤ s, and any n > m,

d

dt
Ek ≤ Ck(M)M Ek + Ck(M)E1/2

k

(∣∣ζιm ∣∣H|k|+1 +
∣∣uιm∣∣X|k|+1

µ

)(∣∣ζm,n∣∣Hs⋆
+
∣∣um,n∣∣Xs⋆

µ

)
,

where we denote

M
def
=
∥∥εζιn∥∥L∞(0,t;Hs⋆ )

+
∥∥εuιn∥∥L∞(0,t;Xs⋆

µ )
+
∥∥εζιm∥∥L∞(0,t;Hs⋆ )

+
∥∥εuιm∥∥L∞(0,t;Xs⋆

µ )
+
∣∣β∇b∣∣

W s,∞

and

Ek(t)
def
=

1

2

∫
Rd

|∂kζm,n|2 + hn|∂kum,n|2 + µhn(T [hm, β∇b]∂kum,n) · (∂kum,n) dx,

where hn
def
= 1+ εζιn − βbιn ≥ h⋆/2. As a consequence, using eq. (8.26) with s′ = s and eq. (8.25),

there exists C ′ > 0 such that for any m,n,∣∣ζm,n∣∣Hs−1 +
∣∣um,n∣∣Xs−1

µ
= C ′(∣∣ζm,n∣∣Hs−1 +

∣∣um,n∣∣Xs−1
µ

)
(t = 0)

and in turn∣∣ζm,n∣∣Hs +
∣∣um,n∣∣Xs

µ
= C ′(∣∣ζm,n∣∣Hs +

∣∣um,n∣∣Xs
µ

)
(t = 0)

+ C ′t
(∣∣ζιm∣∣Hs+1 +

∣∣uιm ∣∣Xs+1
µ

)(∣∣ζm,n∣∣Hs−1 +
∣∣um,n∣∣Xs−1

µ

)
(t = 0).

Using eq. (8.26) with s′ = s+ 1 and applying eq. (8.25), we deduce that

lim sup
m,n→∞

(∥∥ζm,n∥∥L∞(0,T/M ;Hs)
+
∥∥um,n∥∥L∞(0,T/M ;Xs

µ)

)
= 0,

and hence the sequence strongly converges in C0([0, T/M ];Hs ×Xs
µ) towards (ζ,u), satisfying the

desired initial condition. We have that (∂tζιn , ∂tuιn) ⇀ (∂tζ, ∂tu) in the sense of distributions,
and hence (ζ,u) is a solution to eq. (8.6) in the sense of distributions. It follows from Lemma 8.10
that (∂tζ, ∂tu) ∈ C0([0, T/M ];Hs−1 ×Xs−1

µ ) and hence we have constructed a classical solution. It
satisfies the desired estimate by eq. (8.26).

In order to be fully complete, we need to check the second assertion, that is that (ζ,v) ∈
C0([0, T/M0];H

s(Rd) × Y sµ ) ∩ C1([0, T/M0];H
s−1(Rd) × Y s−1

µ ) is a classical solution to eq. (8.2)
(applying the gradient to the second equation), where v = h−1Tµ[h, β∇b]u with h = 1 + εζ − βb.
The desired regularity is a direct consequence of Lemma 8.10, and the fact that (ζ,v) satisfies the
desired equations follows from tedious algebra, which are detailed in [162, §6].

8.7 Discussion and open questions

It should acknowledged that, despite numerous works on the Green–Naghdi system, very little is
known concerning the behavior of solutions, except in very particular cases (such as traveling waves).
I give below a list of natural questions which in my opinion would deserve additional investigations.
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Singularity formation, shock-like solutions

The first very natural follow-up interrogation after Theorem 8.3 is whether the time of existence
of solutions stated therein is optimal. In particular, we do not know whether the Green–Naghdi
equations are globally well-posed, even for small initial data. We however have no result on finite-
time (or infinite-time) singularity formations. Numerical investigations have been for now fairly
inconclusive:

• In [151] the authors’ efforts to numerically exhibit singularity formations have been vain;

• In [196] the exhibited “shock-like” structures appear to be smooth.

This question is particularly interesting because the natural Boussinesq (that is, weakly-nonlinear)
system correspond to the Green–Naghdi system (8.6), that is in dimension d = 1 and with flat
bottom {

∂tζ + ∂x(hu) = 0,(
1− µ

3 ∂
2
x

)
∂tu+ ∂xζ + εu∂xu = 0,

(8.27)

is one of the few Boussinesq systems which are known to be globally well-posed, provided that
the non-cavitation assumption infR(1 + εζ) > 0 is initially satisfied, by [380, 21]; see also [327].
This does not prevent the existence of shock-like structures as exhibited for eq. (8.27) in the work
of El, Hoefer and Shearer [175] but only their formation from smooth initial data. Moreover, the
non-cavitation assumption is essential: Bae and Granero-Belinchón showed in [33] that if the non-
cavitation assumption initially fails to hold at one single point and some symmetry assumptions are
enforced, then solutions to eq. (8.6) (or rather an equivalent reformulation when the non-cavitation
assumption holds) preserve these assumptions for positive time and cannot remain smooth globally
in time. Finally, let me point out that in the presence of surface tension, in dimension d = 1
with flat bottom, the existence of global weak solutions (for small data) and solutions exhibiting
finite-time singularity (with non-empty intersection) have been proved by Guelmame in [204, 205].

Stability of traveling waves

In this section we restrict the discussion to the flat bottom situation, and dimension d = 1. We
have seen in Section 8.4 the existence—and in fact explicit formula—of solitary wave solutions to
eq. (8.6), and cnoidal (i.e. periodic) traveling wave solutions could be derived in a similar way. For
these structures to be observable in practice (disregarding all the approximations that have been
made to derive the equations), one should ensure that they satisfy a notion of stability. Roughly
speaking, we ask that for an initial data in the vicinity of traveling wave profile, the solution remains
in the vicinity of the corresponding traveling wave solution. As usual, since the system enjoys a
continuous family of solutions with any supercritical velocity, the notion of stability can only be
orbital, that is up to horizontal translation. In other words we are looking at the stability of profiles.

Based on the Hamiltonian structure of the Green–Naghdi system, we may interpret traveling
waves solutions to (8.6) as critical points to the functional HGN(ζ, v)− cIGN(ζ, v), i.e.

cζ = δvHGN(ζ, v) and cv = δζHGN(ζ, v),

where IGN(ζ, v)
def
=
∫
Rd ζv and v = h−1Tµ[h, 0]u. However these critical points are neither min-

imizers nor maximizers of the functional, and hence give no direct information to the stability of
the solutions. In [165], a constrained minimization problem is introduced which allows to prove the
existence—together with a weak notion of stability—of solitary waves for a larger class of equations,
including (8.6), yet the functionals at stake are not preserved quantities of the system, and hence
even the standard weak “conditional” notion of stability fails to hold by this method.

In [282, 283], Li shows that solitary wave solutions of the eq. (8.6) equations with sufficiently
small supercritical velocity 0 < c − 1 ≪ 1 are (orbitally) linearly stable (see details therein) for
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infinitely small and exponentially decaying perturbations. Later on Carter and Cienfuegos numer-
ically studied in [79] the linear stability of cnoidal waves and found that sufficiently large or steep
cnoidal waves exhibit linear instability, with relatively small growth rate. The results do not pass
to the limit of infinitely long waves, that is solitary waves; see the discussion in [79]. Finally, the
modulational stability of small-amplitude bore solutions is proved in [174]. To my knowledge, no
nonlinear stability result is yet available. The numerical investigation in [151] pleads for the stabil-
ity of solitary waves, even with large velocities, although the latter exhibit a strong sensitivity to
perturbations.

Small-amplitude, large-time dynamics

A very natural question in the oceanographic context concerns the large time asymptotic behavior
of solutions to the Green–Naghdi system for small data. After a straightforward rescaling of (8.6),
the problem is naturally formulated in terms of solutions to the system{

∂tζ +
1
ε∇ · (hu) = 0, h

def
= 1 + εζ − βb,(

Id+µT [h, β∇b]
)
∂tu+ 1

ε∇ζ + (u · ∇)u+ µQ[h, β∇b,u] = 0.
(8.28)

Is the Cauchy problem for (8.28) locally well-posed, uniformly with respect to ε ∈ (0, 1]? Is
it globally well-posed for ε small enough? Can we exhibit “averaged” equations asymptotically
describing a slow coherent evolution of the solution?

This type of singular limit has been widely studied in particular in the context of the low Mach
number limit; see e.g. [190, 9, 379, 299] and references therein (it appears also in the study of the
weak density contrast limit in Section 6.2.5 and in the study of the Favrie–Gavrilyuk approximation
in the subsequent Section 9). As a matter of fact, when β = µ = 0 and horizontal dimension d = 2,
one recognizes the incompressible limit for the isentropic two-dimensional Euler equations, and it
is tempting to elaborate on the analogy. One would then expect the solutions to (8.28) to be
asymptotically described (as ε↘ 0) as the superposition of two components, described thereafter.

i. The “incompressible” component, being defined as the solution to
∇ · ((1− βb)u) = 0,(
Id+µT [1− βb, β∇b]

)
∂tu+ (u · ∇)u

+µQ[1− βb, β∇b,u] = −∇p,
(8.29)

where the “pressure” p in (8.29)2 is the Lagrange multiplier associated to the “incompressibil-
ity” constraint (8.29)1.

ii. The “acoustic” component, being defined as the solution to{
∂tζ +

1
ε∇ · ((1− βb)u) = 0,(

Id+µT [1− βb, β∇b]
)
∂tu+ 1

ε∇ζ = 0,
(8.30)

with initial data satisfying curl(u+ µT [1− βb, β∇b]u) |
t=0

= 0.

System (8.29) was derived in [73, 74], and is usually referred to as the great-lake equations. Its
well-posedness, extending the theory concerning the two-dimensional incompressible Euler equa-
tions, was subsequently provided in [278, 346]. However, we should emphasize that due to the
irrotationality assumption that was used when deriving the Green–Naghdi system, it is natural to
consider initial data satisfying

(u+ µT [1− βb, β∇b]u) |
t=0

= ∇ψ,
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and hence curl(u + µT [1 − βb, β∇b]u) |
t=0

= 0. However, adding this constraint to the additional
constraint (8.29)1 leaves only the trivial solution. In other words, in the irrotational framework
that is the only one—at least so far—for which the Green–Naghdi system is rigorously justified,
the incompressible (or rigid-lid) component vanishes; see also [306] for a similar discussion on the
water waves system. One thus expects that the flow is asymptotically described by (8.30) only, in
the limit ε→ 0 and in the irrotational setting.

However, when trying to adapt the usual strategy for rigorously proving such behavior, one
immediately encounters a serious difficulty in the physically relevant situation of non-trivial topog-
raphy, which transpires in the the fact that our lower bound for the existence time in Theorem 8.3
depends on the size of the bottom variations in addition to the size of the initial data. When tran-
scribed to system (8.28), this means that we are not able to obtain a lower bound on the existence
time of its solutions which is uniform with respect to ε, unless β = O(ε).

For the Saint-Venant system, that is setting µ = 0, Bresch and Métivier [62] have obtained such a
uniform lower bound without any restriction on the amplitude bathymetry. The strategy consists in
estimating first the time derivatives of the solution, and then using the system to deduce estimates
on space derivatives. A related strategy (in the sense that we look for operators commuting with
the singular component of the system) amounts to remark that for any n ∈ N, one can control the
L2-norm of

ζn
def
= (∇ · (1− b)∇)nζ, un

def
= (∇(1− b)∇·)nu

by exhibiting the quasilinear system satisfied by (ζn,un) and applying simple energy estimates.
This allows to control the H2n-norm of ζ,u, provided that the initial data and bottom topography
are sufficiently regular. One expects a similar strategy to work for the water waves system (partial
results have been obtained by the method of time derivatives in [309]), that is to control

ζn
def
= (

1

µ
Gµ[0, βb])nζ, ψn

def
= (

1

µ
Gµ[0, βb])nψ

Since Gµ is an order-one operator, controlling ζn, ψn indeed allows to control higher regularities
on ζ, ψ. The strategy however fails for the Green–Naghdi system, as the corresponding operator,
namely (see eq. (8.1))

1

µ
Gµ[0, βb]• ≈ −∇ ·

(
(1− βb)Tµ[1− βb, β∇b]−1

{
(1− βb)∇ •

})
is of order zero. One could easily propose different systems that do not suffer from such a short-
coming, by adding the effect of surface tension as in [309]—but then the result would depend on
the size of the surface tension parameter—or modifying the system without hurting its consistency
as in [307]—but then the model would presumably lose the variational structure.

In the flat bottom case (β ≡ 0) and in dimension d = 2, the rigorous justification of eq. (8.30)
as a valid approximation (that is the fact that we can neglect quadratic nonlinearities) should
follow from Strichartz estimates (see [34, § 8.3]) as in the work of Ukai [403] and Asano [27] (see
also Theorem 6.16) for the weakly compressible Euler equation (that is when µ = 0), although
our setting is simpler since we do not have to consider the interaction with the “incompressible”
component, which is trivial by the foregoing discussion. Notice finally that a by-product of this
analysis (see the discussion in [190]) would prevent the possibility of a singularity formation in a
time interval uniform with respect to ε for solutions to eq. (8.28) and hence in a time interval of
size O(1/ε) in the original equations, eq. (8.6).
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9 The Favrie–Gavrilyuk approximation

A difficulty arises when one tries to solve numerically the initial-value problem associated with the
Green–Naghdi system, say eq. (8.6), as it is found necessary to invert the elliptic operator

T[h, β∇b] : u 7→ hu− 1

3
∇(h3∇ · u) + 1

2

(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ h(β∇b · u)(β∇b).

This is only a technical difficulty in the proof of the local well-posedness of the Cauchy problem
(see Section 8.6, and in particular Lemma 8.9), but remains a severe issue for practical numerical
simulations, as the cost of inverting this operator at each time step can be prohibitive, especially
in dimension d = 2. We refer to [105, 275, 168, 281, 323, 321, 358, 196, 8, 148, 151, 25] for several
numerical schemes adapted to the Green–Naghdi system. The aforementioned issue is addressed
in particular in [139, 271, 166], where the authors introduce a new class of models which enjoy
the same precision as the original Green–Naghdi system—as an asymptotic model for the water
waves equations—but for which the elliptic operator playing the role of T[h] is independent of time.
However this new model does not enjoy the nice properties of the Green–Naghdi system, and in
particular the conservation of energy. A different direction of investigation is proposed by Favrie
and Gavrilyuk in [181]. They relax the Lagrangian associated with the variational formulation
of the Green–Naghdi system (see Section 8.1.3) by introducing new variables: instead of the one
displayed in eq. (8.12), they consider (here we extend their framework to non-trivial topographies)
the Lagrangian density

Lλ(h, u, ḣ, ḃ, b) = h

2

(
|u|2 + 1

3
(η̇ +

3

2
ḃ)2 +

1

4
ḃ2
)
− g

2
(h + b)2 − λ

6h
(η − h)2. (9.1)

From this they derive the system which we refer to as the Favrie–Gavrilyuk system:
∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u + Pλ[η, h, b, u] = 0,

∂tη + u · ∇η = w − 3
2 ḃ,

∂tw + u · ∇w = − λ
h2

(
η − h

)
,

(9.2)

where

Pλ[η, h, b, u] def= − λ

3h
∇
(η
h

(
η − h

))
− λ

2h2
(
η − h

)
∇b + 1

4
b̈∇b. (9.3)

System (9.2) is a quasilinear system of balance laws with two additional unknowns and a free
parameter, λ, which should be chosen large in order to hope for valuable approximations. Hence
the system has some similarity with the widely studied—both from a theoretical (see references
in Section 9.6) and numerical (see e.g. [259, 377, 304, 333, 334, 135, 236] and references therein)
point of view—Euler system in the low Mach number or weakly compressible limit, and its is hoped
that this purely quasilinear structure can be useful to devise efficient numerical schemes with good
properties; see in particular [249] where Perfectly Matched Layer (PML) boundary conditions are
proposed.

The hope is that in the limit λ → ∞, solutions to eq. (9.2) approach solutions to eq. (8.9).
Indeed we expect, using the fourth and third equations of eq. (9.2):

η = h +O(λ−1) and λ
(
η − h

)
= −h2η̈ = −h2ḧ +O(λ−1),

and we recover eq. (8.9) when plugging the truncated approximations in the second equation. A
rigorous proof to the above formal reasoning is given (in the flat bottom situation) in [158], however
with the important assumption that the initial data should be sufficiently well-prepared. This work
also provides some insights to how large λ should be chosen so that solutions to eq. (9.2) are approx-
imate solutions to the water waves system which are “as good”—or at least “not much worse”—than
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the ones supplied by the Green–Naghdi system. We give precise statements in Section 9.5 and
sketch the proofs in Section 9.6.

In order to provide valuable descriptions of the precision of the solutions to the Favrie-Gavrilyuk
equation as approximate solutions to the Green–Naghdi system, we first need to non-dimensionalize
eq. (9.2). Considering w as a vertical velocity, η as a vertical length and λ as a vertical acceleration
times a vertical length (or the square of a vertical velocity), we obtain

∂th+ ε∇ · (hu) = 0,

ε∂tu+∇(h+ βb) + ε2(u · ∇)u+ µPλ[η, h, βb, εu] = 0,

∂tη + εu · ∇η = εw − 3
2βḃ,

ε∂tw + ε2u · ∇w = − λ
h2

(
η − h

)
,

(9.4)

where Pλ is defined in eq. (9.3). We shall consider the interplay of λ being large and µ being small.

Remark 9.1. A somewhat more standard approach of artificial relaxation45 based on the formulation
eq. (8.8) consists in relaxing the constraint46

v =
ḣ

3
+
ḃ

2

with the following

∂t(hq) +∇ · (hqu) = −λ
(
v − ḣ

3
− ḃ

2

)
This yields the system

∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u + 1
h
∇(hq) + (∇b)( 3

2hq +
1
4 b̈) = 0,

∂tv + u · ∇v = q
h
,

∂t(hq) +∇ · (hqu) = −λ
(
v − ḣ

3 − ḃ
2

)
.

Denoting η = h − 3
λhq and w = 3v , we obtain

∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u − λ
3h∇(η − h) + (∇b)(− λ

2h2 (η − h) +
1
4 b̈) = 0,

∂tη +∇ · (ηu) = w − ḣ − 3
2 ḃ,

∂tw + u · ∇w = − λ
h2

(
η − h

)
.

(9.5)

It turns out that eq. (9.5) is not exactly the Favrie–Gavrilyuk system, eq. (9.2) (despite having the
same conserved energy), but only up to negligible terms in the limit λ → ∞, since we expect (and
prove in Section 9.5) η − h = O(λ−1). All the results in Section 9.5 are easily adapted to eq. (9.5).

45see e.g. [236] for a discussion and several examples of hyperbolic systems with stiff relaxations.
46We do not relax the constraint on vb but simply use vb = 3

2
v + 1

4
ḃ, and hence qb = 3

2
q + 1

4
hb̈ in eq. (8.8). The

authors in [41] relax both constraints simultaneously—henceforth avoiding second-order differential operators acting
on bottom topography contributions—and arrive at a first-order hyperbolic systems of balance laws involving four
additional unknowns instead of two; see also [206] for another relaxation system with three additional unknowns,
and [56, (104)–(106)] for yet another system with two additional unknowns. See also [179, 180, 207] for previous
approaches (with two additional unknowns) where the effect of bottom topography was not fully taken into account.
Interestingly, Richard [364] arrives at a very similar model in the framework of (weakly) compressible flows; there
the velocity of acoustic waves (to the square) plays role of the parameter λ.
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For the sake of completeness, let me introduce yet another relaxation approach, which was brought
up to my attention by D. Bresch. Relaxing differently the constraints in eq. (8.8), we arrive at

∂th +∇ · (hu) = 0,

∂tu + g∇(h + b) + (u · ∇)u − λ
h
∇
(
h(v + h∇·u

3 − ḃ
2 )
)
− λ

h
(∇b)

(
vb + h∇·u

2 − ḃ
)
= 0,

∂t(hv) +∇ · (hvu) = −λ
(
v + h∇·u

3 − ḃ
2

)
,

∂t(hvb) +∇ · (hvbu) = −λ
(
vb + h∇·u

2 − ḃ
)
.

(9.6)

This approach is quite different from the aforementioned ones: the resulting system is of parabolic
type as second-order operators acting on u appear in the second equation. Depending on the point of
view, this feature can be seen as problematic as the approach introduces spurious energy dissipation,
or desirable as the resulting system may damp undesirable high frequency oscillations.

9.1 Variational structure

By construction, the Favrie–Gavrilyuk system, eq. (9.4), enjoys a Lagrangian structure related to
the one of the Green–Naghdi system discussed in Section 8.1.3. One can wonder whether the system
also enjoys variational structures related to the other ones discussed in Section 8.1 and which are
more directly comparable to the ones of the water waves equations; see Section 2.2. The positive
answer is provided below.

9.1.1 Another Lagrangian structure

In the spirit of Section 8.1.2, we can obtain the Favrie–Gavrilyuk system, eq. (9.4), through Hamil-
ton’s principle on the following Lagrangian action function:

LFG =

∫ t1

t0

∫
Rd

1

2
h|εu|2 + µ

6
h(εw)2 +

µ

8
h(βḃ)2 − 1

2

(
(h+ βb)2 − 1

)
− λµ

6h
(η − h)2

+ εφ
(
∂th+ ε∇ · (hu)

)
+ εϑ

(
∂tη + εu · ∇η − εw +

3

2
βḃ
)
dx dt.

Indeed, one recovers obviously the first and third equation from

0 = δφLFG = ∂th+ ε∇ · (hu) ; 0 = δϑLFG = ∂tη + εu · ∇η − εw +
3

2
βḃ.

Now, we have

δwLFG =
µ

3
hε2w − ε2ϑ ; δηLFG = −λµ

3h
(η − h)− ε∂tϑ− ε2∇ · (uϑ),

and hence δwLFG = δηLFG = 0 yields the fourth equation. Finally,

δuLFG = hε2u+
µ

4
εβh∇b(βḃ)− ε2h∇φ+ εϑ(ε∇η + 3

2
β∇b)

δhLFG =
1

2
|εu|2 + µ

6
(εw)2 +

µ

8
(βḃ)2 − (h+ βb) +

λµ

6
(
η2

h2
− 1)− ε∂tφ− ε2u · ∇φ.

Hence we define

ϑ =
µ

3
hw ; ε∇φ = εu+

µ

4
β∇b(βḃ) + µ

3
εw(∇η + 3

2
β∇b) (9.7)

and δuLFG = 0, δhLFG = 0 yields

(∂t + εu⊥ curl)(ε∇φ) + ε2∇(u · ∇φ) = ∇
(
1

2
|εu|2 + µ

6
(εw)2 +

µ

8
(βḃ)2 − (h+ βb) +

λµ

6
(
η2

h2
− 1)

)
.
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This equation can be found to be equivalent to the second equation in eq. (9.4). Notice an irrotation-
ality condition needs to be satisfied in order to define ∇φ, which echoes the physical irrotationality
condition v = ∇ψ that already appeared on the Green–Naghdi system. The above equations pro-
vide a conservative form of the Favrie–Gavrilyuk system, provided this irrotationality condition is
(initially) satisfied.

9.1.2 Hamiltonian structure

Let us now restrict to the time-independent framework, ∂tb = 0. Notice that plugging the identities
(9.7) into the Lagrangian LFG, and after integrating by parts, we find

LFG =

∫ t1

t0

∫
Rd

εφ∂th+ εϑ∂tη dx− HFG dt

where we define

HFG(h, η, εφ, εϑ)
def
=

∫
R

1

2
hε2u·

(
u+

µβ

4
(u·∇b)(β∇b)

)
+
3µ−1

2h
(εϑ)2+

1

2

(
(h+βb)2−1

)
+
λµ

6h
(η−h)2,

and, therein, we denote u[h, η, εφ, εϑ, b] the solution to

u+
µβ

4
(u · ∇b)(β∇b) = ∇φ− ϑ

h
(∇η + 3

2
β∇b).

Hence from Hamilton’s principle we infer the Hamiltonian structure of eq. (9.4):

∂t


h
εφ
η
εϑ

+


−δεφHFG

+δhHFG

−δεϑHFG

+δηHFG

 = 0. (9.8)

This formulation is in some sense the counterpart of the formulation of the Green–Naghdi system
using Zakharov’s canonical variables, that is eq. (8.2).

9.2 Group symmetries and preserved quantities

Recall that thanks to its Hamiltonian structure, by Noether’s theorem, symmetry groups of the
Favrie–Gavrilyuk system relate to conserved quantities of the system. We have in particular the
following group symmetries: using the above notations, if (h, φ, η, ϑ) is a solution to eq. (9.8), then
for any θ ∈ R, (hθ, φθ, ηθ, ϑθ) also satisfies eq. (9.8), where

• Variation of base level for the velocity potential(
hθ, φθ, ηθ, ϑθ

)
(t,x)

def
=
(
h, φ+ θ, η, ϑ

)
(t,x).

• Horizontal translation along the direction e ∈ Rd (in the flat bottom case)(
hθ, φθ, ηθ, ϑθ

)
(t,x)

def
=
(
h, φ, η, ϑ

)
(t,x− θe).

• Time translation (in the fixed-bottom case)(
hθ, φθ, ηθ, ϑθ

)
(t,x)

def
=
(
h, φ, η, ϑ

)
(t− θ,x).

We have the following corresponding preserved quantities of eq. (9.8) (or, equivalently, eq. (9.4))
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• Excess of mass

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx (where h
def
= 1 + εζ − βb).

• Horizontal impulse (in the flat bottom case)

d

dt
IFG = 0, IFG

def
=

∫
Rd

h∇φ+ η∇ϑdx (if βb ≡ 0),

and we note that using eq. (9.7) we have (in the flat bottom case) the following identity:

IFG = εhu+
µε

3
∇(hηw),

hence we see a direct correspondence with respect to the conservation of the horizontal mo-
mentum (in the flat bottom case)

d

dt
M = 0, M

def
=

∫
Rd

hudx (if βb ≡ 0).

• Total energy
d

dt
HFG = 0,

where we recall that

HFG =

∫
R

1

2
hε2u ·

(
u+

µβ

4
(u · ∇b)(β∇b)

)
+

µ

6h
(εhw)2 +

1

2

(
(h+ βb)2 − 1

)
+
λµ

6h
(η − h)2.

The quantities are preserved in a stronger sense: their integrand satisfies a conservation law,
which are written out explicitly in [68, Appendix A] up to O(β2) terms since the contributions of
1
4 ḃ

2 in the definition of Lagrangian, eq. (9.1), are neglected therein.

9.3 Modal analysis

Linearizing eq. (9.2) around the rest state (in the flat bottom situation) yields
∂th + d∇ · u = 0,

∂tu + g∇h − λ
3d∇(η − h) = 0,

∂tη = w ,

∂tw = − λ
d2

(
η − h

)
,

where d is the layer depth at infinity. From this we infer the dispersion relation

(ω(|ξ|)2 − gd |ξ|2)
(
1− ω(|ξ|)2d2

λ

)
+

1

3
d2|ξ|2ω(|ξ|)2 = 0

provided λ ̸= ω(|ξ|)2d2. From this we infer, denoting λ̃ = λ
gd
,

ω±(|ξ|)2

g/d
=

1

2
(d |ξ|)2 + λ̃

2

(
1 +

1

3
(d |ξ|)2

)
± 1

6

√
(3 + λ̃)2(d |ξ|)4 + (6λ̃2 − 18λ̃)(d |ξ|)2 + 9λ̃2.

Hence there are two modes of propagation, corresponding to either ω+ and ω−. Denoting ωGN(ξ)
the wave angular frequency at wave vector ξ associated with the linearized Green–Naghdi system,
that is (see Section 8.3):

ωGN(ξ)
2 =

gd |ξ|2

1 + 1
3d

2|ξ|2
,
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we have for any ξ ̸= 0 and any λ̃ > 0 (see Figure 9.1)

|ω−|(ξ) < |ωGN|(ξ) < |ω+|(ξ) ; |ω−|(ξ) → |ωGN|(ξ)(λ→ ∞) ; ω2
+(ξ) > ω2

+(0) = λ/d2.

Hence the mode of propagation associated with ω− represents the “physical” wave which approach
the solution to the Green–Naghdi system. The mode of propagation associated with ω+ represents
spurious waves. Notice that while they oscillate rapidly, their group velocity vanishes at small
wavenumbers, and hence we may expect a resonant interaction between the two modes at the
nonlinear level. This is an indication that we need to ensure that the spurious mode is small
through appropriate initial conditions so as to ensure good properties at the nonlinear level.

0.0 2.5 5.0 7.5 10.0
d| |

0

5

10

15

|
|/

g/
d

spurious mode
physical mode

(a) Spurious and physical modes.
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|
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d

water waves
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Favrie-Gavrilyuk, = 25
Favrie-Gavrilyuk, = 5

(b) Comparison.

Figure 9.1: Wave frequencies, |ω±|(|ξ|), corresponding to the Favrie–Gavrilyuk system, and
comparison with the water waves and the Green–Naghdi systems.

9.4 Traveling waves

The analysis of the existence of solitary waves to the Favrie–Gavrilyuk system (in the flat bottom
situation) was provided in [249, Annex A], and a numerical comparison with respect to the explicit
ones of the Green–Naghdi system (see Section 8.4) is carried out in [181, 68]. Yet a quantitative
comparison of their profiles and the thorough analysis of the interplay between the parameter λ
and the Froude number (that is the normalized velocity c of the traveling wave; after rescaling, we
can relate the limit c↘ 1 with the long wave limit, ε ≈ µ↘ 0) remains to be accomplished.

9.5 Rigorous justification

In this section we provide a rigorous justification of the Favrie–Gavrilyuk system eq. (9.4), as an
approximate system for the Green–Naghdi model (and hence the water waves equations). The
detailed proof of the results stated below can be found in [158] in the flat bottom framework, the
extension to small but non-flat bottom being straightforward. A sketch of the proofs is presented
in Section 9.6.

Because system (9.4) is a symmetrizable hyperbolic quasilinear system, the well-posedness of
the corresponding initial-value problem is provided by standard theory; see e.g. [49].

Theorem 9.2 (Small-time existence). Let s ∈ R with s > 1 + d/2. Then for any λ, µ, ε, β ∈ (0,∞),
for any b ∈ L∞(R+;Hs(Rd)) and any U0 = (ζ0,u0, ς0, w0) ∈ Hs(Rd)d+3 satisfying the hyperbolicity
condition

h0
def
= 1 + εζ0 − βb |

t=0
≥ h⋆ > 0, (9.9)
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there exists a unique maximal strong solution U = (ζ,u, ς, w) ∈ C0([0, T ⋆);Hs(Rd))d+3 to (9.4) (de-
noting h = 1 + εζ − βb and η = 1 + ες − βb) with U |

t=0
= U0, where T

⋆ > 0 is the maximal time
of existence.

Solutions to the Favrie–Gavrilyuk system are valuable approximations to the Green–Naghdi
system (in the sense of consistency) as long as several space and time derivatives of the solutions
are uniformly bounded, as stated below.

Theorem 9.3 (Consistency). Let s ≥ 2 and h⋆,M
⋆ > 0. There exists C > 0 such that for any

λ, µ, ε, β ∈ (0,∞), T > 0 and U = (ζ,u, ς, w) ∈
⋂2
j=0 Cj([0, T ];Hs−j(Rd))d+3 strong solution

to (9.4) satisfying h
def
= 1 + εζ − βb ≥ h⋆ > 0 and

sup
t∈[0,T ]

(∣∣εU ∣∣
Hs +

∣∣ε∂tU ∣∣Hs−1 +
∣∣ε∂2tU ∣∣Hs−2 +

∣∣βb∣∣
Hs +

∣∣β∂tb∣∣Hs−1 +
∣∣β∂2t b∣∣Hs−2

)
≤M⋆,

the component (ζ,u) satisfies the Green–Naghdi system, eq. (8.7), up to a small remainder, i.e.{
∂th+ ε∇ · (hu) = 0,

ε∂tu+∇(h+ βb) + ε2(u · ∇)u+ µP[h, βb, εu] = εr,
(9.10)

with

ελ−1r =
µ

3h
∇
(
h(η̈ +

3

2
βb̈)(h− η)− h2(ḧ− η̈)

)
+
µ

2
(β∇b)(ḧ− η̈) ∈ C0([0, T ];Hs−3(Rd))

and if one has additionally ∂jtw ∈ L1(0, T ;Hs+1−j(Rd)) for any j ∈ {0, . . . , 3}, then

∣∣r∣∣
Hs−3 ≤ Cµλ−1

3∑
j=0

∣∣∂jtw∣∣Hs+1−j .

Proof. The formula for r comes from straightforward manipulations on eq. (9.2). By Proposition II.7
and Proposition II.11 we infer r ∈ C0([0, T ];Hs−3(Rd)) and

∀t ∈ [0, T ],
∣∣εr(t, ·)∣∣

Hs−3 ≤ C(M⋆)µ

2∑
j=0

∣∣∂jt (η − h)(t, ·)
∣∣
Hs−j .

The desired estimate is deduced, applying Proposition II.7 to the last equation of eq. (9.2).

With this result, we may apply Theorem 8.6 (see [189] for time-dependent topographies) to
prove that the solutions to the Favrie–Gavrilyuk system produce approximate solutions (i.e. at
a distance O(µλ−1) to the exact solution of the Green–Naghdi system with corresponding initial
data) as long as the assumptions of Theorem 9.3 remain valid. Of course, there is no reason to hope
a priori that the maximal solutions to eq. (9.2) with initial data in a given ball of Hs(Rd)d+3—or
continuously embedded normed spaces—satisfy the assumption of Theorem 9.3 on a relevant time
interval uniformly with respect to the parameters λ (large) and µ (small). Our main result is to
prove that, under a very strong restriction on the bottom topography, it is possible to prepare the
initial data (for η and w) so that such property holds.

All our results from now on are restricted to the following set of parameters

Definition (Favrie–Gavrilyuk asymptotic regime). Given ν⋆ > 0, we let

pFG =
{
(λ, µ, ε, β) ∈ [0,∞)2 × [0, 1]2 : µ+ λ−1 + (λµ)−1 ≤ ν⋆

}
.
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Above ν⋆ should be thought as a prescribed constant of order of magnitude one. The results are
valid for any choice of ν⋆ > 0, but of course not uniformly as ν⋆ → ∞. The first two restrictions in
pFG on µ and λ−1 are harmless in the shallow water regime (Definition III.2) and since we can—
and want to—choose λ large. The assumption on λµ hints at a possibly non-uniform behavior with
respect to small values of µ. Our statements include however another very restrictive assumption
which is essentially an upper bound on λ1/2β, and basically amounts in restricting our framework
to the flat bottom situation for λ large. For simplicity and consistently with our assumptions so
far, we also restrict ourselves later on to the time-independent situation.

In order to state the main result, we further prepare the Favrie–Gavrilyuk system through
a change of variables which allows to balance singular terms. Recalling h = 1 + εζ − βb and
η = 1 + ες − βb and denoting

ι
def
= ε−1(µλ)1/2(η − h) ; κ

def
= µ1/2h−1w, (9.11)

we see that (9.4) is equivalent to

∂tζ +∇ · (hu) = −ε−1β∂tb,

∂tu+ ε(u · ∇)u+∇ζ − 1
3h∇

(
(µλ)1/2ι+ ε ι

2

h

)
=
(

1
2h2 (µλ)

1/2ι− βµ
4ε b̈
)
(β∇b),

∂tι+ εu · ∇ι− λ1/2(hκ+ µ1/2h∇ · u) = − 3
2 (λµ)

1/2ε−1βḃ,

∂t(hκ) + εu · ∇(hκ) + λ1/2h−2ι = 0.

(9.12)

The following result shows that one can control solutions to eq. (9.12) on a time interval uniform
with respect to λ (sufficiently large) and µ provided that the initial data is well-prepared, and the
bottom topography sufficiently small.

Theorem 9.4 (Large-time existence). Let m, s ∈ N with s > 1+d/2, 1 ≤ m ≤ s, and h⋆,M
⋆
0 , ν

⋆ > 0.
Set also δ⋆ ∈ (0, 1) if m = s. There exist ν⋆, T, C0 > 0 such that for any (λ, µ, ε, β) ∈ pFG satisfying
λµ ≥ ν⋆, any λ̃ ∈ [1, λµ], for any (time independent) b ∈ Hs+1(Rd), then any maximal strong
solution (provided by Theorem 9.2) V = (ζ,u, ι, κ) ∈ C0([0, T ⋆);Hs(Rd))d+3 to eq. (9.12) with
initial data satisfying h |

t=0
= 1 + εζ − βb |

t=0
≥ h⋆ and, additionally,

M0
def
= ε

m∑
j=0

∣∣∂jtV (0, ·)
∣∣
Hs−j + ε

s∑
j=m+1

λ̃
m−j

2

∣∣∂jtV (0, ·)
∣∣
Hs−j + λ1/2β

∣∣b∣∣
Hs + (λµ)1/2β

∣∣b∣∣
Hs+1 ≤M⋆

0 ,

(9.13)
one has T ⋆ > (M0T )

−1 and for any t ∈ [0, (M0T )
−1],

ε

m∑
j=0

∣∣∂jtV (t, ·)
∣∣
Hs−j + ε

s∑
j=m+1

λ̃
m−j

2

∣∣∂jtV (t, ·)
∣∣
Hs−j ≤ C0M0.

If m = s, we can withdraw the condition λµ ≥ ν⋆ and replace it with the sharper

(1− δ⋆)(λµ)
1/2 ≥ max

{
|(εκh) |t=0 |, 1

2
|(ειh−1) |t=0 |

}
.

It is important to notice that the above result holds with any λ̃ ∈ [1, λµ] but not with λ̃ = λ
uniformly with respect to µ small. If it were the case, then the initial assumption on the high order
time derivatives of the unknown (j ≥ m+ 1 in eq. (9.13)) would be irrelevant as, using the system
of equations eq. (9.12) and product estimates (see Proposition II.7), we can estimate high order
time derivatives of V from lower-order time derivatives, with a cost of powers of λ1/2:

s∑
j=m+1

λ
m−j

2

∣∣∂jtV ∣∣Hs−j ≤ C
(
h−1
⋆ , ν⋆, ε

m∑
j=0

∣∣∂jtV ∣∣Hs−j , λ
1/2β

∣∣b∣∣
Hs , (λµ)

1/2β
∣∣b∣∣

Hs+1

)
×

m∑
j=0

∣∣∂jtV ∣∣Hs−j .
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In particular, in the strong dispersion regime (µ ≈ 1), the explicit condition

ε
∣∣V |

t=0

∣∣
Hs+ελ

1/2
∣∣ι |

t=0

∣∣
Hs−1+ελ

1/2
∣∣κ |

t=0
+µ1/2∇·u |

t=0

∣∣
Hs−1+λ

1/2β
∣∣b∣∣

Hs+(λµ)1/2β
∣∣b∣∣

Hs+1 ≤M⋆
0

is sufficient (applying Theorem 9.4 with λ̃ = λµ ≈ λ and m = 1) to guarantee the existence and
uniform control of the corresponding solution—but not its time derivatives—on a time interval
uniform with respect to λ sufficiently large. In the weak dispersion regime (µ≪ 1), the assumption
eq. (9.13) is a strong constraint on the initial behavior of the solution, and it is natural to ask
whether it is possible, for a given initial physical state defined by ζ |t=0 ,u |t=0 and (ε, β, µ) ∈ pSW
(see Definition III.2), to provide initial data for the additional components η |

t=0
and w |

t=0
such

that the corresponding solution to eq. (9.4) satisfies eq. (9.13) uniformly with respect to large λ
and small µ. We answer positively below.

Theorem 9.5 (Preparation of the initial data). Let s,m ∈ N, s > d/2+1, s ≥ m+1 and h⋆,M
⋆
0 , ν

⋆ >
0. There exists Cm, C

′
m > 0 such that for any (λ, µ, ε, β) ∈ pFG, for any b ∈ Hs+1(Rd) (time

independent), and for any (ζ0,u0) ∈ Hs(Rd)1+d such that h0 = 1 + εζ0 − βb ≥ h⋆ > 0 and

M0
def
= ε

∣∣ζ0∣∣Hs + ε
∣∣u0

∣∣
Hs + λ1/2β

∣∣b∣∣
Hs + (λµ)1/2β

∣∣b∣∣
Hs+1 ≤M⋆

0 ,

the following holds. There exists c(j) ∈ Hs(Rd) for j ∈ {1, · · · ,m} such that the strong solution to

eq. (9.4) with initial data U (m) |
t=0

= (ζ0,u0, η
(m)
0 , w

(m)
0 ) where

w
(m)
0 =

∑
j odd

1≤j≤m

λ−(j−1)/2c(j) and η
(m)
0 = h0 + ε

∑
j even
2≤j≤m

λ−j/2c(j) (9.14)

satisfies
m+1∑
j=0

ε
∣∣∂jtU (m)(0, ·)

∣∣
Hs−j + λε

m∑
j=0

∣∣∂jt (η(m) − h(m))(0, ·)
∣∣
Hs−j ≤ CmM0. (9.15)

Moreover, we have for any j ∈ {1, · · · ,m}{
ε
∣∣c(j)∣∣

Hs−j + εµj/2
∣∣c(j)∣∣

Hs ≤ C ′
mM0, if j is even,

ε
∣∣c(j)∣∣

Hs−j + εµ(j−1)/2
∣∣c(j)∣∣

Hs−1 ≤ C ′
mM0, if j is odd.

(9.16)

We can choose c(1) = −h0∇ · u0 +
3
2βu0 · ∇b and c(2) the unique solution to

εt[h0, β∇b]c(2) = −∇ ·
(
I(β∇b)a

)
+ ε2u0 · ∇(∇ · u0)− ε2(∇ · u0)

2

+
3

2h0
β∇b · I(β∇b)a− 3

2h0
(εu0 · ∇)2(βb) (9.17)

where I(β∇b) def
=
(
Id+µ

4 (β∇b)(β∇b)
⊤)−1

, a
def
= ∇(h+βb)+ (εu0 ·∇)(εu0)+

1
4 (β(εu ·∇)2b)(β∇b)

and

t[h, β∇b]ψ def
= h−3ψ − µ

3
∇ ·
(
h−1I(β∇b)∇ψ

)
− µ

2
∇ ·
(
h−2(I(β∇b)(β∇b))ψ

)
+
µ

2
h−2(β∇b) · (I(β∇b)∇ψ) + 3µ

4
h−3(β∇b) · (I(β∇b)(β∇b))ψ. (9.18)

Remark 9.6. The expression for c(2) emerges when solving

(h2ḧ− h2η̈) |
t=0

=
(
λ(η − h) + h2(ḧ+

3

2
βb̈)
)
|
t=0

= O(λ−1).

The operator t[h, β∇b] is one-to-one and onto if inf h > 0 and is in some sense conjugate to Tµ

defined in eq. (8.5), as at least in the flat bottom case, we have for any sufficiently regular (h, ψ,u)

Tµ[h,0](h−1∇ψ) = ∇(h3t[h,0]ψ) and ∇ · (h−1Tµ[h,0]u) = t[h,0](h3∇ · u).
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Remark 9.7. A direct application of Theorem 9.4 and Theorem 9.5 shows that—at least in the
flat bottom framework—for any regular initial data (ζ0,u0) satisfying the non-cavitation assump-
tion, eq. (9.9), one may associate a solution to eq. (9.4) satisfying the estimates of Theorem 9.3
uniformly with respect to µ possibly small and λ sufficiently large, on the quadratic time scale
(i.e. inversely proportional to the size of the initial data). Henceforth we produce (ζ,u) satisfying
the Green–Naghdi system up to a residual of size O(λ−1µ), i.e. approximate solutions in the sense
of consistency. By Theorem 8.6, we deduce that the difference between such solution and the exact
solution to the Green–Naghdi system, eq. (8.6) with the same initial data is of size O(λ−1µt) on
the quadratic time scale. This should be compared with Theorem 8.7 stating that the solution to the
Green–Naghdi system is at a distance O(µ2t) to the solution of the full water waves equations with
corresponding initial data on the same time scale. Hence the Favrie–Gavrilyuk system produces as
precise approximate solutions for long gravity waves as the Green–Naghdi system itself as soon as
λ ≳ µ−1 and the initial data for (η, w) is suitably chosen.

9.6 Sketch of the proof

9.6.1 A three-scale singular limit

The main tool for proving Theorem 9.4 the above results are a priori estimates, which should hold
uniformly with respect to the parameters (λ, µ, ε, β) ∈ pFG. In order to obtain these estimates, we
make use of a symmetric structure which is fairly easily deduced from the formulation (9.12): the
system—when ∂tb = 0 and d = 2—can be written as

St(V )∂tV + Sx(V )∂xV + Sy(V )∂yV = λ1/2JµV +G(V ),

where St,Sx,Sy are smooth functions of V with values into symmetric matrices (and uniform with
respect to λ, µ), Jµ is a skew-symmetric constant-coefficient differential operator, and G is a smooth
function (uniform with respect to λ, µ). Moreover St is positive definite in a hyperbolicity domain
containing a neighborhood of the origin.

We are looking at a singular limit problem. Such problems, and in particular incompressible or
low Mach number limits in the context of fluid mechanics, have a very rich history, which we shall
not recall but we let the interested reader refer to, e.g. , [379, 190, 299, 9] for comprehensive reviews.
Due to the non-trivial symmetrizer in front of the time derivative, the linearized system does not
appear to be uniformly well-posed in Sobolev spaces as λ → ∞ since small perturbations of the
initial data might cause large changes in solutions. This is a noteworthy feature of the incompressible
limit of the non-isentropic Euler equations, as studied in particular in [312]. However, our problem
is different in nature as we do not wish to deal with large oscillations in time but rather aim at
discarding them as spurious products of the approximation procedure. Hence we willingly restrict
our study to well-prepared initial data, and as such our work is more directly related to pioneering
works of Browning and Kreiss [66], Klainerman and Majda [257], and Schochet [378]. In fact our
proof of Theorem 9.4 closely follows the one of [378]; while the proof of Theorem 9.5 is strongly
inspired by [66]. However in both cases the proof requires significant adaptations in order to take
into account the fact that the singular operator, Jµ, is not homogeneous of order one. More precisely,
we have

Jµ =


0 0⊤ 0 0
0 Od µ1/2∇ 0
0 µ1/2∇⊤ 0 1
0 0⊤ −1 0

 . (9.19)

The most serious novel difficulty stems from the fact that the contribution from order-zero terms
in Jµ are less well-behaved than order-one contributions, and that the latter are multiplied by a
vanishing prefactor as µ→ 0. Hence the problem—as in [91] for instance— involves three different
time scales, which is the origin of the shortcoming described below Theorem 9.4. I would like to
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explain now this discrepancy with the more standard setting—studied in the previously mentioned
references—where J is homogeneous of order one. A toy model for the latter situation could be the
following:

∂tu =
1

ϵ
h∂xu ; ∂th = 0. (9.20)

Here u is the singular variable while h is a regular variable, given and independent of time. The
problem is reduced to a linear problem with variable coefficients, which is readily solvable by the
methods of characteristics if we assume for instance that h, u are initially regular and for any x ∈ R,
0 < h⋆ ≤ h(x) ≤ h⋆ < ∞. We see that variations of size δ in h produce variations of size 1 on
u at time t = ϵ/δ. However, the solution and its space-derivatives remain controlled for all times,
uniformly with respect to ϵ small. This behavior is not shared for the toy model corresponding to
J homogeneous of order zero, namely

∂tu = i
1

ϵ
hu ; ∂th = 0. (9.21)

The problem is now an ordinary differential equation in time where the space variable is a parameter.
The solution u(t, x) = u0(x) exp(ith(x)/ϵ) strongly oscillates with a different rate as h(x) takes
different values. Hence for positive times, the solution exhibits small scale oscillations, and space-
derivatives are not uniformly controlled with respect to the parameter ϵ small. If variations of h
are of size δ, it is necessary to prepare the initial data u |t=0 = O(ϵm) in order to control m space
derivatives of the solution at time t = 1/δ. Our situation is roughly speaking a combination of
the above where the size of µ measures the relative strength of the two influences. Based on the
properties satisfied by Jµ a toy model could be

∂tu = i
1

ϵ
h
√
1− µ∂2x u ; ∂th = 0.

Consistently with Theorem 9.4—and following the lines of its proof—preparing the initial data
as u |

t=0
= O(µm/2) is sufficient to control m space derivatives of the solution at time t = 1/δ,

uniformly with respect to ϵ small. Figure 9.2 illustrates of the above discussion.

(a) Homogeneous of order one, eq. (9.20). (b) Homogeneous of order zero, eq. (9.21).

Figure 9.2: Behavior of solutions to “toy” singular problems.
Here, ϵ = 0.1, u |t=0 (x) = exp(−x2), h(x) = 1 + 1

2 exp(−4x2), and final time is t = 5.
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9.6.2 A priori energy estimates

Let us explain how we can provide uniform estimates satisfied by well-prepared strong solutions of
the Favrie–Gavrilyuk system (9.12), which yield the large time well-posedness result of Theorem 9.4.
In the spirit of [378], we define for m, s ∈ N, 1 ≤ m ≤ s, λ̃ ∈ (0,+∞) and sufficiently regular
functions V :47

∥∥V ∥∥2
s,m,λ̃

def
=

m∑
j=0

∣∣∂jtV ∣∣2Hs−j +

s∑
j=m+1

λ̃m−j∣∣∂jtV ∣∣2Hs−j , (9.22)

∥∥V ∥∥2
s,m,λ̃,(1)

def
=

m−1∑
j=0

s−j∑
|k|=0

(
St(V )∂jt ∂

kV , ∂jt ∂
kV
)
L2

+

s∑
j=m

λ̃m−j(St(V )∂jtV , ∂
j
tV
)
L2 , (9.23)

∥∥V ∥∥2
s,m,λ̃,(2)

def
=

s−1∑
j=m

s−j∑
|k|=1

λ̃m−j∣∣∂jt ∂kV ∣∣2L2 . (9.24)

By convention
∥∥V ∥∥

s,m,λ̃,(2)
= 0 if m = s. By Theorem 9.2 we define V ∈ C0([0, T ];Hs(Rd)d+3)

strong solutions to eq. (9.12); and iterating the equation, we have V ∈
⋂s
j=0 Cj([0, T ];Hs−j(Rd)d+3),

hence the above is well-defined and finite.
We want to prove that any sufficiently regular solutions to eq. (9.12) satisfying reasonable

hyperbolicity-type conditions enjoy, uniformly with respect to (λ, µ, ε, β) ∈ pFG, the following esti-
mates:

d

dt

∥∥V ∥∥2
s,m,λ̃,(1)

≤ C(
∥∥V ∥∥

s,m,λ̃
)
∥∥V ∥∥3

s,m,λ̃
(9.25)

with ∥∥V ∥∥
s,m,λ̃

≈
∥∥V ∥∥

s,m,λ̃,(1)
+
∥∥V ∥∥

s,m,λ̃,(2)
, (9.26)

and ∥∥V ∥∥
s,m,λ̃,(2)

≤ C(
∥∥V ∥∥

s,m,λ̃,(1)
)
∥∥V ∥∥

s,m,λ̃,(1)
. (9.27)

By Gronwall’s Lemma, one immediately deduces an a priori control on
∥∥V ∥∥

s,m,λ̃
on the quadratic

time scale provided that such control is satisfied at initial time. Unfortunately, eq. (9.27) holds only
for λ̃ ≤ λµ (we also need λ̃ ≥ ν⋆ with ν⋆ = C(

∥∥V ∥∥
s,m,λ̃

)), which is the reason for the corresponding

assumption on Theorem 9.4 and as a consequence the need for finely prepared initial data.
The equivalence estimate, eq. (9.26) is obvious to check; let us explain how the other estimates

can be derived. Recall that our system takes the form

St(V )∂tV + Sx(V )∂xV + Sy(V )∂yV = λ1/2JµV +G(V ), (9.28)

where St,Sx,Sy are smooth functions of V with values into symmetric matrices, Jµ is constant-
coefficient and skew-symmetric, and G is a smooth function. The main difference with the frame-
work of [378] is that in our case, Jµ is not homogeneous of order one, but contains an order-zero
additional component, and depends on the second parameter µ.

Following the standard strategy for hyperbolic quasilinear systems (which eventually yields
Theorem 9.2), we first seek a differential inequality for the “energy” of the system, which after
integration in time yields a control of the energy for positive times. Thanks to the symmetric
structure of the equation, it is immediate to obtain such an estimate, uniformly with respect to the
parameters (λ, µ, ε, β) ∈ pFG, by testing the system against V . However this estimate relies on the

47Of course the notation in (9.23) and (9.24) is abusive as the right-hand side does not define a norm.
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a priori control of the solution itself in L∞ norm, as well as one derivative, with respect to space
or time. In other words we have

d

dt

(
St(V )V ,V

)
L2 ≤ C(

∣∣V ∣∣
L∞)

(∣∣∂tV ∣∣L∞ +
∣∣∂xV ∣∣L∞ +

∣∣∂yV ∣∣L∞

)∣∣V ∣∣2
L2 .

In view of obtaining a self-contained energy estimate, the standard strategy consists in differentiating
the system with respect to space, and testing against derivatives of the unknown. Thanks to the
regularizing properties of commutators, and using the fact that Jµ commutes with space derivatives,
one deduces for s > 1 + d/2 a uniform differential inequality of the form

d

dt

 s∑
|k|=0

(
St(V )∂kV , ∂kV

)
L2

 ≤ C(
∣∣V ∣∣

Hs)(
∣∣∂tV ∣∣Hs−1 +

∣∣V ∣∣
Hs)
∣∣V ∣∣2

Hs .

For standard (non-singular) quasilinear systems, that is setting Jµ ≡ 0 in eq. (9.28), the above
estimate is sufficient as we have the control∣∣∂tV ∣∣Hs−1 ≤ C(

∣∣V ∣∣
Hs)
∣∣V ∣∣

Hs (9.29)

stemming from the fact that V satisfies eq. (9.28), and hence the differential inequality, by Gron-
wall’s Lemma and provided that St(V ) is positive definite, provides an a priori control on

∣∣V ∣∣
Hs .

We express the above argument through the cartoon in Figure 9.3a. However, the argument is not
useful in our framework as eq. (9.29) is not uniform with respect to λ≫ 1 due to the contribution
from Jµ.

(a) Standard. (b) Browning and Kreiss [66]. (c) Schochet [378].
Green dots represent space and time derivatives of solutions controlled through energy estimates.
Red hexagons represent additional terms whose control is inferred by the system of equations.

Figure 9.3: Sketch of the different strategies for a priori estimates.

The first strategy that one may have (which is the one developed in [66]) would consist in
controlling time derivatives of the unknown through energy estimates as above: differentiating the
system with respect to time as well as with space and using that Jµ commutes with space and time
derivatives, we obtain (notice we set m = s)

d

dt

∥∥V ∥∥2
s,s,λ̃,(1)

≤ C(
∥∥V ∥∥2

s,s,λ̃
)
∥∥V ∥∥2

s,s,λ̃,(1)
. (9.30)

Using that
∥∥V ∥∥

s,s,λ̃,(1)
≈
∥∥V ∥∥

s,s,λ̃
if St(V ) is positive definite, we have indeed a self-contained

energy inequality, which can be integrated in time to offer a valuable uniform a priori estimate
for the solution and derivatives. This would correspond to Figure 9.3b. Notice however that the
estimate which is propagated for positive times must of course be satisfied initially: the a priori
control of

∥∥V |
t=0

∥∥
s,s,λ̃

is a very strong constraint on the initial data since m = s.
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The strategy in [378] is more subtle. The first step consists in remarking that, by using energy
estimates, we may obtain a uniform energy inequality for time derivatives of the unknowns, of the
form (notice we have now m = 1)

d

dt

∥∥V ∥∥2
s,1,λ̃,(1)

≤ C(
∥∥V ∥∥2

s,1,λ̃
)
∥∥V ∥∥2

s,1,λ̃
. (9.31)

Here, it suffices to ensure that only one time-derivative of the initial data is uniformly controlled, so
that we can take advantage of a gain of a factor λ̃−1/2 as soon as time derivatives are distributed.
However,

∥∥V ∥∥
s,1,λ̃,(1)

≈
∥∥V ∥∥

s,1,λ̃
does not hold, that is we still need to control the contribution

of terms involving time and space derivatives of the unknowns. To this aim we do not use energy
estimates (they fail due to the lack of uniform estimate for

∣∣[∂jt ∂k,St]∂tV ∣∣L2 when j ̸= 0 and
k ̸= 0) but rather directly control the remaining components with respect to the former, that is
eq. (9.26) and eq. (9.27). This is represented in Figure 9.3c. We cannot infer this control from a
simple interpolation uniformly with respect to λ̃ ≫ 1, but rather will make use of eq. (9.28). This
is where the precise properties of Jµ come into play, and this is where the results differ from the
ones in [378]. Indeed, when Jµ is a skew-symmetric differential operator, constant-coefficient and
homogeneous of order one, we can decompose the (frequency) space as the direct sum of the kernel
and the characteristic space associated with non-trivial eigenvalues of its symbol. Controlling the
projection of V onto the kernel (the “regular component”) is obtained as in eq. (9.29), applying first
the projection to the system onto the kernel, and hence withdrawing the non-uniformly bounded
contributions. One controls the other component of V (the “singular component”) in the opposite
direction, projecting the system onto the singular subspace and using that the restriction of Jµ

to the singular subspace is invertible, and that the inverse is a (regularizing) operator of order
−1 in Sobolev spaces. While the above properties are still true in our setting where Jµ is a non-
homogeneous Fourier multiplier, the inverse on the singular subspace (which is −Jµ

1−µ∆ ; see eq. (9.19))
is not uniformly bounded with respect to the parameter µ≪ 1. This is easily understood by setting
µ = 0, in which case Jµ is an order-zero operator, and hence the inverse cannot be regularizing; and
this is the reason why we need to restrict to λ̃ ∈ [ν⋆, λµ] in order to ensure that eq. (9.27) holds.

The parameter m ∈ {1, . . . , s} allows to somehow“interpolate”between the two strategies of [66]
and [378], and allows some flexibility on the assumption on the initial data.

9.6.3 Preparing the initial data

As already mentioned, Theorem 9.4 applies to solutions satisfying a strong initial constraint, as
several time derivatives must be initially controlled. Theorem 9.5 allows to show that for any initial
data defined by (ζ0,u0, ε, µ) in a given ball of Hs ×Hs ×R+ ×R+, and for arbitrarily large λ, we
may set the initial data for the additional unknowns η, w so as to ensure that the desired initial
control holds. The strategy consists in iterating the system of eq. (9.4) in order to extract explicit
expressions for time derivatives in terms of space derivatives, and to iteratively set corrector terms
c(j) so as to cancel out singular (i.e. non-uniformly bounded) terms in these expressions. While it
is not difficult to convince oneself, after manipulating the equations and deducing expressions for
the first corrector terms, that the induction process may indeed be successfully set up, one quickly
realizes that the expressions are very cumbersome. Let us detail the calculations, and how the first
order terms, c(1) and c(2), may be obtained.

We first notice that after differentiating eq. (9.4) with respect to time and using Proposition II.7,
one has that any solution U = (ζ,u, η, w) satisfies∣∣∂j+1

t U
∣∣
Hs−(j+1) ≤ C(h−1

⋆ ,
∥∥U∥∥

s,j
)
(∥∥U∥∥

s,j
+ λ

∥∥η − h
∥∥
s,j

)
, (9.32)

where we denote ∥∥U∥∥2
s,m

def
=

m∑
j=0

∣∣∂jtU ∣∣2Hs−j .
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Hence we can focus on proving inductively that

λ
∥∥(η(m) − h(m))(0, ·)

∥∥
s,m

≤Mm

with Mm = C(h−1
⋆ ,M⋆

0 )M0. Notice that the result for m = 0 is trivial and the result for m = 1
follows from setting c(1) = −h0∇ · u0 +

3
2βu0 · ∇b, as well as the identity

∂t(η − h) + εu · ∇(η − h) = ε(w − 3

2
βu · ∇b+ h∇ · u), (9.33)

Differentiating the above, and applying once again eq. (9.4) on the first-order time derivatives, we
find that any solution satisfies

∂2t (η − h) = r[εU , β∇b]U + λµs[εU , β∇b](η − h, η − h)− λht[h, β∇b](η − h) (9.34)

where r, s and t are differential operators (in space) of order two. The large prefactor that λµ in
front of s is compensated by the fact that this operator is quadratic in η − h, and hence we collect
truly singular terms in the operator t, defined in eq. (9.18).

Rooting from (9.33) and (9.34), we now define

Cj(U)
def
= ∂jt (r[εU , β∇b]U + λµs[εU , β∇b](η − h, η − h))− λ

[
∂jt , ht[h, β∇b]

]
(η − h)

and

Sm(U)
def
=

⌊m/2⌋∑
k=0

(−λht[h, β∇b])kCm−2k

so that any solution to eq. (9.4) satisfies for any m ≥ 2

∂mt (η − h)−Sm−2(U) =

{
(−λht[h, β∇b])m/2(η − h) if m is even,

(−λht[h, β∇b])(m−1)/2∂t(η − h) if m is odd.
(9.35)

We deduce the following expression for c(m):

(−h0t[h0, β∇b])⌊m/2⌋c(m) = −Sm−2(U
(m−1)
0 )− (−λh0t[h0, β∇b])⌊m/2⌋s(m−2) (9.36)

where Sm−2(U
(m−1)
0 ) is the differential operator of order m obtained when all time derivatives

have been replaced by spatial derivatives through eq. (9.4), and

s(m) def
=

{∑m/2
k=1 λ

−kc(2k) if m is even,∑(m−1)/2
k=1 λ−kεc(2k+1) −

∑(m+1)/2
k=1 λ−kεu0 · ∇(εc(2k) + 3

2βb) if m is odd.

Notice c(m) is well-defined by (9.36) and induction on m. We already expressed c(1) and the

expression for c(2) stems from the fact that the contribution from s[εU
(1)
0 , β∇b] vanishes as η(1)0 = h0,

and r[εU
(1)
0 , β∇b]U (1)

0 yields the right-hand side of eq. (9.17).

9.7 Discussion and open questions

We have shown in Section 9.5 the relevance of the Favrie–Gavrilyuk system (9.4) for producing
approximate solutions to the Green–Naghdi system—and ultimately the water waves equations. To
this aim, we have exhibited the impact of the shallowness parameter, which may induce undesirable
oscillations in space in the shallow water regime. In order to avoid these oscillations it was necessary
in our proofs to suitably set the initial data for the augmented variables η, w in a stronger sense than
the usual criterion in low Mach number limits (as we have a condition on as many time derivatives
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as the number of space derivatives we wish to control); and to essentially assume that the bottom
topography is flat.

Of course the first question which comes to mind is whether these assumptions are necessary. It is
quite possible that some structural properties that we have not unveiled so far could permit to obtain
a good control on the solution and the handful time derivatives which ensure a good consistency
property (see Theorem 9.3), assuming only the corresponding initial control on these quantities.
Even for completely ill-prepared initial data, it is possible that the solution would converge weakly
towards a solution having the desired property, just as in the weak compressible limit for Euler
equations; see in particular [312] for the non-isentropic case having properties somewhat similar to
the Favrie–Gavrilyuk system.

In the same way, it is not clear whether the strong assumption on the bottom topography
is necessary. Notice that the bottom-topography contributions in eq. (9.12) have the necessary
skew-symmetric structure (at least when ∂tb ≡ 0); however the obtained singular operator is now
space-dependent. Our strategy described in Section 9.6 fails when we replace J with J(b(x)) because
space derivative do not commute anymore with the singular operator. This is however not hopeless,
and we refer to [62] for a similar problem concerning the large-time behavior of small solutions to
the Saint-Venant system with topography.

Valuable information on the above questions should be gained from numerical experiments.
To my knowledge, the Favrie–Gavrilyuk system has been numerically implemented in the original
work [181] with a particular focus on the incidence of the mesh size, in [249] where Perfectly Matched
Layer (PML) boundary conditions are proposed, and in [68].48 The first two works are restricted
to the flat bottom case, while the latter extends the analysis to variable bottom topographies (and
dimension d = 2). To my opinion, an in-depth numerical investigation on the convergence towards
solutions to the Green–Naghdi system as λ→ ∞, correlated with the influence of the shallow water
parameter, bottom topographies and the preparation of the initial data is yet to be accomplished.

48See also to [179, 180, 207, 41, 206] for numerical experiments on closely related systems, as discussed in Re-
mark 9.1.
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10 The Whitham–Green–Naghdi system

We now introduce a fully dispersive counterpart of the Green–Naghdi system introduced and studied
in Section 8. By fully dispersive, we mean that the linearized system about the trivial equilibrium
coincides exactly with the one of the water waves system, namely eq. (2.3). Because of its close
relation with the Green–Naghdi system and the fully dispersive property akin to the Whitham
equation (see Section v), we refer to the following model as the Whitham–Green–Naghdi system.
We will argue that the full dispersion property is in fact just one consequence of a quantitative
improvement on the precision of the Whitham–Green–Naghdi system (as an asymptotic model)
with respect to the original Green–Naghdi system. To this aim we use the improved approximations
obtained in Section 4.4 and specifically the following one stemming from Proposition 4.15:49

1

µ
Gµ[εζ, βb]ψ = −∇ · (h(Id+µT Fµ

[h, β∇b])−1∇ψ) +O(µ2(ε+ β)), (10.1)

where we recall the notations h = 1 + εζ − βb and

T Fµ

[h, β∇b]u def
=

−1

3h
∇Fµ(h3Fµ∇·u)+ 1

2h

(
∇Fµ

(
h2(β∇b) ·u

)
−h2(β∇b)Fµ∇·u

)
+(β∇b ·u)(β∇b)

and Fµ is the Fourier multiplier (see Definition III.1) defined by

Fµ = F (
√
µ|D|), F (ξ) =

√
3

|ξ|2

(
|ξ|

tanh(|ξ|)
− 1

)
.

Plugging this expansion into eq. (2.7) and withdrawing O(µ2(ε+ β)) terms yields{
∂tζ +∇ · (hu) = 0,

∂tψ + ζ + ε
2 |u|

2 = µεRFµ

[h, β∇b,u],
(10.2)

where

RFµ

[h, β∇b,u] def= u

3h
· ∇Fµ(h3Fµ∇ · u) + 1

2
h2(Fµ∇ · u)2

− 1

2

(u
h
· ∇Fµ

(
h2(β∇b · u)

)
+ h(β∇b · u)Fµ∇ · u+ (β∇b · u)2

)
and u is deduced from (ζ, ψ) after solving the equation

h∇ψ = hu+ µhT Fµ

[h, β∇b]u def
= TFµ

[h, β∇b]u,
49The reasoning expressed in footnote 38 to discard the direct approximation

1

µ
Gµ[εζ, βb]ψ = −∇ · (h∇ψ) + µ∇ ·

(
hT F̃µ [h, β∇b]∇ψ

)
+O(µ2(ε+ β))

where

F̃µ = F̃ (
√
µ|D|), F̃ (ξ) =

√
3

|ξ|2

(
1−

tanh(|ξ|)
|ξ|

)
,

is no longer valid since the modal analysis of the resulting fully dispersive system coincides with the one of the water
waves system. Yet a closer look indicates that some extra—but harmless—regularization, as exhibited in eq. (10.10),
is needed to secure the well-posedness of the initial-value problem. A closely related system is derived and justified
in the sense of consistency in [177, Section 3], and the rigorous well-posedness analysis could be carried out in the
lines of [176]. It should be pointed out that these models have a great practical benefit—at least from the numerical
point of view—with respect to eq. (10.2) from the fact that the inversion of an elliptic operator is not needed to
consider the system as closed evolution equations; see discussion in Section 9.
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and represents the vertically averaged horizontal velocity. 50

Taking the gradient of the second equation one can rewrite the system in terms of the unknowns
ζ and u alone as for the original Green–Naghdi system:{

∂tζ +∇ · (hu) = 0,

∂t
(
u+ µT Fµ

[h, β∇b]u
)
+∇ζ + ε∇

(
1
2 |u|

2 − µRFµ

[h, β∇b,u]
)
= 0.

(10.4)

However it is unclear that an analogue to the formulation provided in eq. (8.6)—and even less for
eq. (8.7)—can be devised. Hence it appears that some part of the structure of the original Green–
Naghdi system has been lost in our fully dispersive system. Yet, as we discuss in Section 10.1, the
important canonical Hamiltonian structure corresponding to Zakharov’s one on the water waves
system remains.

Using physical variables (recall Section 2.4) and taking the gradient of the second equation
in eq. (10.2), we obtain the Whitham–Green–Naghdi system{

∂th +∇ · (hu) = 0,

∂t
(
u + T Fd

2

[h,∇b]u
)
+ g∇(h + b) +∇( 12 |u|

2 −RFd
2

[h,∇b, u]) = 0,
(10.5)

with h = d + ζ − b. The above system has been derived first in [164], in the flat bottom situation,
horizontal dimension d = 1, and bilayer framework (see Section 14.5).

10.1 Hamiltonian structure

As discussed above, the profound structure of the Green–Naghdi system is not entirely carried
over the Whitham–Green–Naghdi system. Yet the main variational structure of the water waves
equations is. Indeed, define the Hamiltonian functional

HWGN(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + (h∇ψ) · TFµ

[h, β∇b]−1(h∇ψ) dx,

which is obtained from plugging the approximation eq. (10.1) in the Hamiltonian functional of the
water waves equations (see Section 2.2). Then Hamilton’s principle on∫ t2

t1

∫
Rd

ζ∂tψ dx+ HWGN dt. (10.6)

yields

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζHWGN

δψHWGN

)
,

which corresponds to eq. (10.2). Hence the Whitham–Green–Naghdi system enjoys a canonical
Hamiltonian structure, and we may follow the discussion of Section 2.2 with straightforward ad-
justments. In particular we have the following group symmetries and related preserved quantities
by Noether’s theorem.

50More precisely, by Proposition 4.14, we have

u = u+O(µ2(ε+ β)), u =
1

h

∫ εζ

−1+βb
∇xΦ(·, z) dz,

where Φ is the unique solution to eq. (4.1). This allows to recognize in the first equation of eq. (10.2) the conservation

of mass. As for the second equation, we notice that denoting w
def
= (β∇b) ·u−hFµ∇·u, eq. (10.2) can be written as{

∂tζ +∇ · (hu) = 0,

∂tψ + ζ + εu · ∇ψ − ε
2
u · u− εµ

2
w2 = 0,

(10.3)

which echoes the formulation of the water waves equations displayed in eq. (2.7’).
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10.2 Group symmetries and preserved quantities

Group symmetries If (ζ, ψ) is a solution to eq. (10.2), then for any θ ∈ R, (ζθ, ψθ) also satisfies
eq. (10.2), where

• Variation of base level for the velocity potential:(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ + θ

)
(t,x).

• Horizontal translation along the direction e ∈ Rd (in the flat bottom case)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t,x− θe).

• Time translation (
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t− θ,x).

• Galilean boost along the direction e ∈ Rd (in the flat bottom case)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ + θe · x

)
(t,x− θet).

• Horizontal rotation (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)(
ζθ, ψθ

)
(t,x)

def
=
(
ζ, ψ

)
(t, Rθx)

where Rθ is the rotation matrix of angle θ.

Preserved quantities We have the following related preserved quantities.

• Excess of mass

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx.

• Horizontal impulse (in the flat bottom case)

d

dt
I = 0, I

def
=

∫
Rd

ζ∇ψ dx (if βb ≡ 0).

• Total energy

d

dt
HWGN = 0, HWGN

def
=

1

2

∫
Rd

ζ2 + (h∇ψ) · udx.

• Horizontal coordinate of mass centroid times mass (in the flat bottom case)

d

dt
C =

∫
Rd

ζ∇ψ dx, C
def
=

∫
Rd

ζx dx (if βb ≡ 0).

• Angular impulse (in dimension d = 2 and for a rotation-invariant bottom, x⊥ · ∇b = 0)

d

dt
A = 0, A

def
=

∫
Rd

ζx⊥ · ∇ψ dx.

where (x, y)⊥
def
= (−y, x).
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Notice also the following conserved quantity which is seemingly trivial in the formulation (10.2) but
not in the formulation (10.5):

d

dt
V = 0, V

def
=

∫
Rd

∇ψ dx =

∫
Rd

u+ T Fµ

[h, β∇b]udx.

Moreover, in the flat bottom case, we deduce from the above the conservation of a quantity corre-
sponding to the horizontal momentum (recall footnote 50)

d

dt
MWGN = 0, MWGN

def
=

∫
Rd

hudx =

∫
Rd

h∇ψ dx+
1

3
∇Fµ(h3Fµ∇ · u) dx = V + I + 0.

The quantities presented here are preserved in a stronger sense: their integrand satisfies a conser-
vation law, which we do not write out explicitly.

10.3 Modal analysis

Linearizing eq. (10.5) (in the flat bottom case, b ≡ 0) about the trivial rest solution, that is setting
h = d + ϵζ0, u = ϵu0 (we could add a constant horizontal velocity by Galilean invariance) and
keeping only first order terms with respect to ϵ≪ 1 yields the system{

∂tζ
0 + d∇ · u = 0,

∂t
(
u0 +

( d|D|
tanh(d|D|) − Id

)
1

|D|2∇∇ · u0
)
+ g∇ζ0 = 0.

Specializing to irrotational velocity fields as we should, and denoting ∇ψ0 def
= d|D|

tanh(d|D|)u
0, we infer{

∂tζ
0 − |D| tanh(d |D|)ψ0 = 0,

∂tψ
0 + gζ0 = 0,

and we recognize the linearized water waves system, eq. (2.3). In particular, the dispersion relation

ω(ξ)2 = gd |ξ| tanh(d |ξ|)

coincides with the one corresponding to the water waves system, hence the “full dispersion” termi-
nology. The reader can refer to Section ii and Section 2.3 for more information (modal analysis,
large-time behavior of solutions, dispersive and Strichartz estimates) on the linearized water waves
system.

10.4 Solitary waves

We cannot expect to find explicit expressions for solitary wave—or cnoidal—solutions to theWhitham–
Green–Naghdi system, contrarily to the ones we obtained in Section 8.4 on the Green–Naghdi
system. Yet we can prove the existence of such traveling wave solutions by means of a suitable
minimization problem.

Indeed, seeking solutions to eq. (10.2) in the unidimensional (d = 1) and flat bottom (b ≡ 0)
framework satisfying

(ζ, ψ)(t, x) = (ζc, ψc)(x− ct), lim
|x|→∞

|(ζc, ψ′
c)|(x) = 0,

denoting hc = 1 + εζc and ψ
′
c = uc − µ

3hc
∂xF

µ
(
h3c∂xF

µuc
)
yields the following set of equations: −cζc + hcuc = 0,

−c
(
uc − µ

3hc
∂xF

µ
(
h3cF

µ∂xuc
))

+ ζc +
ε
2 (u

2
c) = µε

(
uc

3hc
∂xF

µ
(
h3cF

µ∂xuc
)
+ 1

2 (h
2
cF
µ∂xuc)

2
)
.
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Substituting the relation uc = c ζchc
= c ζc

1+εζc
stemming from the first equation into the second one

yields the scalar problem

−c2
(
ζc
hc

− µ
3hc

∂xF
µ
(
h3cF

µ∂x
ζc
hc

))
+ ζc + c2 ε2 (

ζ2c
h2
c
) = c2µε

(
ζc
3h2

c
∂xF

µ
(
h3cF

µ∂x
ζc
hc

)
+ 1

2 (h
2
cF
µ∂x

ζc
hc
)2
)
.

(10.7)
Now, defining

E (ζ) =

∫
R

ζ2

1 + εζ
+ µ

3 (1 + εζ)3
(
Fµ∂x

ζc
1+εζ

)2
dx

we recognize that the Euler-Lagrange equations associated with the minimization problem

argmin
ζ∈L2

q

E (ζ) , L2
q

def
=
{
ζ ∈ L2(R) :

∣∣ζ∣∣2
L2 = q

}
, (10.8)

namely

dE (ζ) = 2αζ

where α ∈ R is a Lagrange multiplier, is equivalent to eq. (10.7) with α = c−2.

Remark 10.1. The existence of such minimization problem is in fact directly related with the vari-
ational structure of the equations given in Section 10.1. Indeed, from Hamilton’s principle on the
Lagrangian action given in eq. (10.6) we infer that solitary waves (ζc, ψ

′
c) are critical points of the

functional HWGN(ζ, ψ) − cI (ζ, ψ). However, as noticed (for the Green–Naghdi system) in [283],
critical points are neither minimizers nor maximizers. This is why we first reduce the dimension of
the problem. Using that for each fixed c and ζ, the functional ψ 7→ HWGN(ζ, ψ) − cI (ζ, ψ) has a
unique critical point, ψc,ζ , and substituting its expression in our functional, we recognize

HWGN(ζ, ψc,ζ)− cI (ζ, ψc,ζ) =
∥∥ζ∥∥2

L2 + c2E (ζ),

and observe that ζc is a critical point of the above functional if an only if (ζc, ψc,ζc) is a critical
point of HWGN(ζ, ψ)− cI (ζ, ψ). The constrained minimization problem eq. (10.8) is now just one
simple step away.

Minimization problems such as eq. (10.8) may be attacked thanks to a powerful tool known
as Lions’ concentration-compactness principle [286]. Let us very roughly describe the strategy.
A natural strategy for proving the existence of minimizers is to consider a minimizing sequence of

functions, ζn ∈ L2
q such that E (ζn) ↘ Iq

def
= minζ∈Dq E (ζ), and using compactness properties to infer

that the sequence converges—at least up to extracting a subsequence—towards a true minimizer,
ζq. The concentration-compactness principle allows to single-down the possible scenarios when
considering such limits of sequences of functions with a given “mass” (here, ζ2n being nonnegative
functions with fixed L1(R)-norm). Loosely speaking, the possible obstructions to compactness
amount to:

• Translation. The elements could shift towards infinity at the left or right sides of the real line
so that the sequence converges point-wisely to zero everywhere.

• Dichotomy. The elements could split into two components comprising a non-trivial portion
of the mass and moving away one from each other.

• Vanishing. The elements could diffuse, spreading over the real line while the amplitude
vanishes everywhere.

• Concentration. In the opposite direction, the elements could concentrate so as for instance to
(weakly) converge towards a Dirac distribution.
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In all these cases, the sequence do not converge—even weakly and up to the extraction of a subse-
quence —towards a function without a loss of mass. The first (translation) scenario is not a serious
obstruction: as our functionals are invariant with respect to translations, one can always shift the
sequence so that the center of mass is located at a given location on the real line. The concentration
scenario is immediately ruled out if an upper bound (straightforwardly satisfied by any minimizing
sequence) on the energy functional ensures a control in a functional space with sufficient regularity.
Hence the scenario of all the mass roughly staying at the same location (up to translations) is the
favorable scenario, hence the name concentration-compactness. There remains to prove that the
“dichotomy” and “vanishing” scenarios cannot occur.

While there are standard strategies, none are so robust that they can be applied in a systematic
fashion. In our specific framework, we encounter a severe difficulty from the fact that the energy
functional is not sufficient to guarantee enough regularity on any minimizing sequence. To deal
with this, borrowing the strategy from [171], it is proved in [165] that one can construct—using
solutions of the much more compact periodic problem—a special minimizing sequence which has
the desired property, and eventually converges.

We reproduce below the main results in [165].

Theorem 10.2. Set ε = µ = 1 and let ν > 1/2 and M > 0. Define the set of minimizers Dν
q,M as

Dν
q,M

def
= argmin

ζ∈Hν
q,M

E (ζ) , Hν
q,M

def
=
{
ζ ∈ Hν(R) :

∣∣ζ∣∣2
L2 = q,

∣∣ζ∣∣
Hν < M

}
.

Then there exists q0 > 0 such that for all q ∈ (0, q0), the following statements hold:

• The set Dν
q,M is nonempty and each element in Dν

q,M solves the traveling wave equation (10.7),

with c2 = α−1 > 1. Thus for any ζ ∈ Dν
q,M ,

(
ζ(x± ct), ψ′

± = ±c ζ
1+ζ (x± ct)

)
is a supercritical

solitary wave solution to (10.2).

• For any minimizing sequence for E , {ζn}n∈N in Hν
q,M such that supn∈N

∥∥ζn∥∥Hν < M , there
exists a sequence {xn}n∈N of real numbers such that a subsequence of {ζn(·+xn)}n∈N converges
(weakly in Hν(R) and strongly in Hs(R) for s ∈ [0, ν)) to an element in Dν

q,M .

• Each ζ ∈ Dν
q,M belongs to Hs(R) for any s ≥ 0 and there exist constants m⋆,M⋆ > 0 such

that ∣∣|c| − 1− 3
8q

2
3

∣∣ ≤ m⋆q
5
6

and, denoting ξKdV(x) =
3
4 sech

2
(
3
4x
)

sup
ζ∈Dν

q,M

inf
x0∈R

∣∣q− 2
3 ζ(q−

1
3 ·)− ξKdV(· − x0)

∣∣
H1(R) ≤M⋆q

1
6

uniformly over q ∈ (0, q0) and ζ ∈ Dν
q,M .

Remark 10.3. We do not claim uniqueness up to spatial translation of the elements of the set Dν
q,M ,

even for q sufficiently small. Moreover, because E is not a quantity which is preserved by the flow
of the Whitham–Green–Naghdi system, our construction offers no result on the dynamical stability
of solitary waves, even measuring the distance of solutions to the set Dν

q,M .

Remark 10.4. Theorem 10.2 holds replacing Fµ = F (
√
µ|D|) where F (ξ) =

√
3

|ξ|2

(
|ξ|

tanh(|ξ|) − 1
)

with any element in a wide class of admissible Fourier multipliers (see Definitions in [165]) ; for
instance Fµ = Id corresponding to the original Green–Naghdi system.

What is not shown in the result, but observed numerically, is that solitary wave solutions to
the Whitham–Green–Naghdi system are closer (asymptotically at a distance O((c− 1)2) as c ↘ 1)
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to the corresponding solutions to the water waves system than the solitary wave solutions to the
Green–Naghdi system or the Korteweg–de Vries equation (both at a distance O(c − 1) as c ↘ 1);
see Figure 10.1. This is in complete agreement with the analysis provided in Section 10.5.

In the opposite direction, numerical experiments provided in [151] indicate the existence—as
for the Green–Naghdi system—of solitary waves with arbitrarily large velocity and amplitude, and
these waves appear to be dynamically stable, although in practice they become very sensitive to
perturbations as c− 1 gets large.
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Figure 10.1: Comparison of the solutions of the KdV and Green–Naghdi models and the water
waves system, taken from [165]. The waves are rescaled so that the Korteweg-de Vries solution
does not depend on c. Consistently, we set ε = µ = 1. The “improved” Green–Naghdi system is
the Whitham–Green–Naghdi system and cannot be distinguished from the water waves solution.

Figure 10.1c is a log-log plot of the normalized ℓ2-norm of the error as a function of c− 1.
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10.5 Rigorous justification

In this section we discuss the complete rigorous justification of the Whitham–Green–Naghdi system,
eq. (10.2) as an asymptotic model for the water waves system, eq. (2.7), in the shallow water regime
(Definition III.2) that is for parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

As already discussed several times in this manuscript, a complete justification follows from several
results: (i) a consistency result stating that exact solutions to the water waves system satisfy
approximately the Whitham–Green–Naghdi equations; (ii) a (local) well-posedness result on the
initial-value problem for the Whitham–Green–Naghdi equations which should be uniform in the
shallow water regime; and (iii) a stability result controlling the difference between an approximate
and an exact solution to the Whitham–Green–Naghdi equations. Altogether, this yields the target
convergence result which estimates the difference between solutions to the water waves system—
which exist on the relevant timescale and satisfy the required bounds by Theorem 2.9—and the
corresponding solutions to the Whitham–Green–Naghdi model.

It turns out that, because theWhitham–Green–Naghdi system, eq. (10.2), has the same structure
as the Green–Naghdi system, eq. (8.2), the results obtained in Section 8.6 extend directly to our
system, with straightforward modifications. For instance, the results in Section 8.6.1 extend to the
operator TFµ

—and its inverse—provided we replace the definitions of the functional spaces Xs
µ and

Y sµ therein with

Xs
Fµ

def
= {u ∈ L2(Rd)d :

∣∣u∣∣2
Xs

Fµ

def
=

s∑
|k|=0

∣∣∂ku∣∣2
L2 + µ

∣∣∂kFµ∇ · u
∣∣2
L2 <∞},

Y sFµ
def
= {v ∈ (X0

Fµ)′ :
∣∣v∣∣2

Y s
Fµ

def
=

s∑
|k|=0

∣∣∂kv∣∣2
(X0

Fµ
)′
<∞}.

In particular—see Lemma 8.9 and Lemma 8.10—the operator TFµ

[h, β∇b] : Xs
Fµ → Y sFµ is well-

defined, one-to-one and onto—and hence eq. (10.2) makes sense—provided that ζ, b are sufficiently
regular and the non-cavitation assumption holds, that is

∀x ∈ Rd, h(x) = 1 + εζ(x)− βb(x) ≥ h⋆ > 0. (10.9)

This allows to obtain the following consistency result from the expansion of the Dirichlet-to-
Neumann operator provided in Section 4.4.

Theorem 10.5 (Consistency). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0. Let s ∈ N and M⋆ ≥ 0. There
exists C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈ Wmax{s+6,2+s⋆}(Rd), any T > 0 and any
(ζ, ψ) ∈ L∞(0, T ;Hmax{s+6,2+s⋆}(Rd)× H̊max{s+6,2+s⋆}(Rd)2) classical solution to the water waves
equations, eq. (2.7), satisfying eq. (10.9) uniformly for t ∈ (0, T ) and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ(t, ·)∣∣

H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

one has {
∂tζ +∇ · (hu) = r1,

∂tψ + ζ + ε
2 |u|

2 − µεRFµ

[h, β∇b,u] = r2,

where we denote h = 1+εζ−βb, u = TFµ

[h, β∇b]−1(h∇ψ), and one has for almost every t ∈ (0, T )∣∣r1(t, ·)∣∣Hs ≤ C µ2(εM + βMb)
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ(t, ·)∣∣

Hs+5

)
,∣∣r2(t, ·)∣∣Hs+1 ≤ C µ2ε

∣∣∇ψ(t, ·)∣∣
H1+s⋆

(∣∣ζ(t, ·)∣∣
Hs+6 +

∣∣∇ψ(t, ·)∣∣
Hs+5

)
.

with M
def
=
∣∣ζ(t, ·)∣∣

H2+s⋆
+
∣∣∇ψ(t, ·)∣∣

H1+s⋆
and Mb

def
=
∣∣b∣∣

Wmax{s+6,2+s⋆},∞ .
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Proof. We first decompose

TFµ

[h, β∇b]u = hu+ µT Fµ

[h, β∇b]u = hJµ0u+ hT̃ Fµ

[h, β∇b]u

where Jµ0
def
=

√
µ|D|

tanh(
√
µ|D|) = (Iµ0 )

−1, Iµ0
def
=

tanh(
√
µ|D|)√

µ|D| and

T̃ Fµ

[h, β∇b]u def
=

−1

3h
∇Fµ((h3 − 1)Fµ∇ · u) + h− 1

3h
∇Fµ(Fµ∇ · u)

+
1

2h

(
∇Fµ

(
h2(β∇b) · u

)
− h2(β∇b)Fµ∇ · u

)
+ (β∇b · u)(β∇b).

The control of r1 then follows from

∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
hTFµ

[h, β∇b]−1(h∇ψ)
)∣∣
Hs

≤
∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ ·

(
h(Iµ0 − µIµ0 T̃ Fµ

[h, β∇b]Iµ0 )∇ψ
)∣∣
Hs

+ µ2
∣∣∇ ·

(
hIµ0 T̃ Fµ

[h, β∇b]Iµ0 T̃ Fµ

[h, β∇b]TFµ

[h, β∇b]−1(h∇ψ)
)∣∣
Hs .

The control of the last term follows from Lemma 8.10 (adapted to our functional framework), the
additional estimate (using the same notations as therein)∣∣T̃ Fµ

[h, β∇b]u
∣∣
Y s
Fµ

≤ C ×
(
(
∣∣εζ∣∣

Hs⋆
+
∣∣β∇b∣∣

W s⋆,∞)
∣∣u∣∣

Xs
Fµ

+
〈
(
∣∣εζ∣∣

Hs +
∣∣β∇b∣∣

W s,∞)
∣∣u∣∣

Xs⋆
Fµ

〉
s>s⋆

)
,

the (uniformly in µ) continuous embeddings Hs+1(Rd)d ⊂ Xs
Fµ ⊂ Hs(Rd)d ⊂ Y sFµ ⊂ Hs−1(Rd)d,

and the boundedness of Iµ0 in Sobolev spaces. As for the first term, we use Proposition 4.15 (with
n = 2 and k = s+ 1), and the identity

∇ ·
(
h
tanh(

√
µ|D|)√

µ|D| ∇ψ + µhT [h, β∇b]∇ψ +
µ

3
h∇∆ψ

)
−∇ ·

(
h(Iµ0 − µIµ0 T̃ Fµ

[h, β∇b]Iµ0 )∇ψ
)

= µ∇ ·
(
h(Iµ0 T̃ Fµ

[h, β∇b]Iµ0 − T̃ Id[h, β∇b])∇ψ
)
.

The last term is estimated as above using the fact that µ−1(Iµ0 − Id) : Hs+2(Rd) → Hs(Rd) and
µ−1(Fµ − Id) : Hs+2(Rd) → Hs(Rd) are bounded, uniformly with respect to µ ∈ (0, µ⋆].

As for the control of r2, we can use the corresponding estimate Theorem 8.2, triangular inequality
and an estimate on µεRFµ

[h, β∇b,u] − µεRId[h, β∇b,u] which follows from the boundedness of
µ−1(Fµ − Id) : Hs+2(Rd) → Hs(Rd).

Unfortunately, the analysis and energy estimates carried out in Section 8.6—outside of the results
in Section 8.6.1—cannot be straightforwardly to our fully dispersive system, since the former applies
to the formulation eq. (8.6) which does not have a direct analogous equivalent to eq. (10.4). Yet the
analysis in [162] is carried on the formulation of the Green–Naghdi system analogous to eq. (10.4),
and the analysis in [164] applies as a specific case to eq. (10.4) in the one-dimensional case d = 1,
flat bottom situation and with surface tension. This gives sufficient grounds to assert the following
claims, of which only the level of regularity is questionable.

Conjecture 10.6 (Local well-posedness). Let d ∈ N⋆, s⋆ > d/2 and s ∈ N, s ≥ 1 + s⋆, h⋆ > 0,
µ⋆ > 0, and M⋆ ≥ 0. There exist T > 0 and C > 0 such that the for any (µ, ε, β) ∈ pSW, any
b ∈W s+1,∞(Rd), and any (ζ0,∇ψ0) ∈ Hs(Rd)× Y sFµ satisfying eq. (10.9) and

M0
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣ε∇ψ0

∣∣
Y 1+s⋆
Fµ

+
∣∣βb∣∣

W s,∞ ≤M⋆,
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there exists a unique (ζ,∇ψ) ∈ C0([0, T/M0];H
s(Rd) × Y sFµ) ∩ C1([0, T/M0];H

s−1(Rd) × Y s−1
Fµ )

solution to the Whitham—Green–Naghdi system, eq. (10.2), with initial data (ζ, ψ) |
t=0

= (ζ0, ψ0);
and we have for any t ∈ [0, T/M0]∣∣ζ(t, ·)∣∣

Hs +
∣∣∇ψ(t, ·)∣∣

Y s
Fµ

+
∣∣u(t, ·)∣∣

Xs
Fµ

≤ C ×
(∣∣ζ0∣∣Hs +

∣∣∇ψ0

∣∣
Y s
Fµ

)
,

where we denote u = TFµ

[h, β∇b]−1(h∇ψ) with h = 1 + εζ − βb, and eq. (10.9) holds with h⋆/2.

Accompanying the well-posedness of the Cauchy problem (and in fact at the center of its proof)
is a stability result (or rather conjecture), analogous to Theorem 8.6, which we shall not write
down. From this, Theorem 10.5 and Conjecture 10.6 we conclude the rigorous justification of the
Whitham–Green–Naghdi model as follows.

Conjecture 10.7 (Convergence). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, s ∈ N and M⋆ ≥ 0.
There exist T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈ Wmax{s+6,2+s⋆},∞(Rd),
any T ⋆ > 0 and any (ζ, ψ) ∈ C0([0, T ⋆];Hmax{s+6,2+s⋆} × H̊max{s+6,2+s⋆}(Rd)1+d) solution to the
water waves equations (2.7) and such that h = 1 + εζ − βb satisfies Equation (10.9) uniformly for
t ∈ [0, T ⋆] and

M
def
= sup

t∈[0,T⋆]

(∣∣εζ(t, ·)∣∣
Hmax{s+1,2+s⋆} +

∣∣ε∇ψ(t, ·)∣∣
Hmax{s+1,1+s⋆}

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

there exists a unique (ζWGN,∇ψWGN) ∈ C0([0, T/M ];Hmax{s,1+s⋆}(Rd)×Y max{s,1+s⋆}
Fµ ) strong solu-

tion to the Whitham–Green–Naghdi system (10.2) with initial data
(
ζWGN, ψWGN

)
|
t=0

=
(
ζ, ψ

)
|
t=0

;
and one has for any t ∈ (0,min{T ⋆, T/M}],∣∣(ζ − ζWGN)(t, ·)

∣∣
Hs +

∣∣(∇ψ−∇ψWGN)(t, ·)
∣∣
Y s
Fµ

≤ C µ2M t
( ∥∥ζ∥∥

L∞(0,t;Hs+6)
+
∥∥∇ψ∥∥

L∞(0,t;Hs+5)

)
.

Remark 10.8. It should be emphasized that the prefactor M = O(ε + β) in the last inequality in
Conjecture 10.7 provides the quantitative gain with respect to the equivalent result on the Green–
Naghdi system, Theorem 8.7. A striking consequence is that the solution to the Whitham–Green–
Naghdi model remains close—in shallow water situations—to the corresponding solution to the water
waves system over the full time interval t ∈ [0,min{T ⋆, T/M}], specifically at a distance O(µ2).
Comparatively, in the situation where ε+ β ≪ 1, the solution to the original Green–Naghdi–system
is a priori useless for times t ≳ µ−2, due to second-order dispersive effects which are not captured
by the model and arise before nonlinear effects. See Appendix I.5 for a numerical illustration of this
feature.

10.6 Boussinesq and Whitham–Boussinesq systems

Starting from the Green–Naghdi–Whitham system, eq. (10.2), and neglecting contributions of order
O(µ(ε+ β)), yields the much simpler-looking{

∂tζ +∇ · (Iµ0∇ψ + (εζ − βb)∇ψ) = 0,

∂tψ + ζ + ε
2 |∇ψ|

2 = 0,

where Iµ0
def
=

tanh(
√
µ|D|)√

µ|D| . Yet there is little hope that the initial-value problem associated with the

above system enjoys good well-posedness properties, and hence we will consider the following class
of regularized systems {

∂tζ +∇ ·
(
Iµ0∇ψ + Iµ1 ((εζ − βb)Iµ1∇ψ)

)
= 0,

∂tψ + ζ + ε
2 |I

µ
1∇ψ|2 = 0.

(10.10)
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As soon as—roughly speaking—Iµ1 = Id+O(µ), the validity of eq. (10.10) as an asymptotic model
does not suffer from introducing Iµ1 ; see Theorem 10.13 below. When Iµ1 = Iµ0 , the system corresponds
to the one introduced in [143] (in the flat bottom situation), and thoroughly studied in [141, 146,
353, 142, 177]. Setting Iµ1 = (Iµ0 )

1/2 has the arguable advantages that the system maintains the
quasilinear nature of the original water waves system (while the system is semilinear when Iµ1 = Iµ0 ),
and that the last two terms in the first equation can be merged as a single term involving the
depth h = 1 + εζ − βb. All these systems belong to a class of so-called Whitham–Boussinesq
systems51 which can be loosely defined as fully dispersive modifications of standard Boussinesq
models. Indeed, setting Iµ0 = Iµ1 = (Id−µ

3∆)−1, and defining u = Iµ0∇ψ we infer (using that u is by
definition a gradient vector field){

(Id−µ
3∆)∂tζ + (Id−µ

3∆)∇ · u+∇ ·
(
(εζ − βb)u

)
= 0,

∂t(u− µ
3∇∇ · u) +∇ζ + ε(u · ∇)u = 0,

(10.11)

then we recognize the specific element of the “abcd” Boussinesq systems with −a = b = d = 1
3 and

c = 0; see Section iv.
Using physical variables (recall Section 2.4), eq. (10.10) yields a Whitham–Boussinesq sys-

tem: {
∂th +∇ ·

(
Id

2

0 dv + Id
2

1 ((h − d)Id2

1 v)
)
= 0,

∂tv + g∇(h + b) + 1
2 |I

d2

1 v |2 = 0.
(10.12)

with h = d + ζ − b and v = ∇ψ; and eq. (10.11) yields a Boussinesq system:{
∂t(h − d2

3 ∆h) +∇ ·
(
hu − d3

3 ∇∇ · u
)
= 0,

∂t
(
u − d2

3 ∇∇ · u
)
+ g∇(h + b) + (u · ∇)u = 0,

(10.13)

where ∇ψ = u − d2

3 ∇∇ · u and u represents the vertically-averaged horizontal velocity.

10.6.1 Hamiltonian structure

It is easy to check that no matter the definition of the operators Iµ0 and Iµ1 (as long as they are
independent of the variables, commute with spatial derivatives, and are symmetric with respect
to the L2(Rd) inner-product), eq. (10.10) enjoys a canonical Hamiltonian structure. Defining the
Hamiltonian functional

HWB(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + |(Iµ0 )1/2∇ψ|2 + (εζ + βb)|Iµ1∇ψ|2 dx,

Hamilton’s principle on ∫ t2

t1

∫
Rd

ζ∂tψ dx+ HWB dt.

yields

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζHWB

δψHWB

)
,

which corresponds to eq. (10.2). From this and Noether’s theorem we infer the relationship be-
tween the easily checked group symmetries and related preserved quantities listed in Section 2.2 or
Section 10.2.

51among which other models have been introduced in [5, 326, 220, 143] (see also [134] for a second-order Whitham–
Boussinesq equation), discussed and compared in [78, 258, 106, 143], and investigated in [241, 356, 409] for the
well-posedness of the initial-value problem, [221] for finite-time wavebreaking, [344, 145, 142, 172] for the existence
of small-amplitude and large-amplitude traveling waves, [220, 353, 131] for the modulational and high frequency
(in)stability of periodic traveling waves.
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10.6.2 Modal analysis

As the Whitham–Green–Naghdi system (see Section 10.3), the Boussinesq–Green–Naghdi system,
eq. (10.10) is fully dispersive: the linearized system about the rest state coincides with one of the
water waves system. The reader can refer to Section ii and Section 2.3 for more information (modal
analysis, large-time behavior of solutions, dispersive and Strichartz estimates) on the linearized
water waves system.

As for the specific Boussinesq system eq. (10.11), its linearized system coincides with the one
of the Green–Naghdi system. Hence the reader can refer to the discussion in Section 8.3, and in
particular Figure 8.1.

10.6.3 Solitary waves

In [145] the authors study the existence of solitary waves for systems of the form eq. (10.10) with
Iµ1 = Iµ0 , in the flat bottom case and dimension d = 1. Their results cover as particular cases the

Whitham–Boussinesq equations introduced in [143], that is Iµ1 = Iµ0 =
tanh(

√
µ|D|)√

µ|D| , and the specific

Boussinesq system eq. (10.11), obtained by setting Iµ1 = Iµ0 = (1 + µ
3 |D|2)−1. Their strategy and

results are very similar to the ones presented in Section 10.4.
Let me display the result—or rather a corollary—obtained very recently by Dinvay in [142].

Instead of relying on a concentration-compactness argument applied to a minimization problem,
the strategy—initiated by Stefanov and Wright [389] for scalar equations— relies on perturbative
methods and the implicit function theorem. Besides simplicity and robustness, a nice feature of
the strategy is that it provides the uniqueness of (even) solitary waves with sufficiently small (yet
supercritical) velocities. Here the results applies to systems of which eq. (10.10) (in the flat bottom
case and dimension d = 1) are particular cases.

Theorem 10.9. Set ε = µ = 1, β = 0 and d = 1. Let Iµ0 =
tanh(

√
µ|D|)√

µ|D| and Iµ1 = I1(
√
µ|D|) with

I1 ∈W 2,∞(R) such that I1(0) = I ′1(0) = 0, and there exists

i. C1 > c1 > 0 and α ∈ [0, 2) such that for any ξ ∈ R, c1⟨ξ⟩−2α1 ≤ I1(ξ) ≤ C1⟨ξ⟩−α1 ;

ii. C2 > 0 and α2 < 1 such that for any ξ ∈ R, |I ′1(ξ)|+ |( 1
I1
)′(ξ)| < C2⟨ξ⟩−α2 .

Then there exists c0 > 1 such that for any c ∈ (1, c0), there exists a unique (ζc, ψc) such that
(ζc, I

µ
1∂xψ) ∈ H1(R) ×H1(R) are two even functions and (ζ, ψ) : (t, x) ∈ R × R 7→ (ζc, ψc)(x − ct)

satisfy eq. (10.10). Moreover, for any s ≥ 1, there exists M⋆ > 0 such that (ζc, ∂xψc) ∈ Hs(R)2,
and, denoting c = 1 + 3

8ϵ and ξKdV(x) =
3
4 sech

2
(
3
4x
)
,∣∣ϵ−1∂xψ(ϵ

−1/2·)− ξKdV

∣∣
Hs(R) +

∣∣ϵ−1ζ(ϵ−1/2·)− ξKdV

∣∣
Hs(R) ≤M⋆ϵmax({2−α1,

3−2α2
4−2α2

})

uniformly over c ∈ (1, c0).

Remark 10.10. The asymptotic when c ↘ 1 is consistent with that of Theorem 10.2. The theorem
applies in particular when Iµ1 = (Iµ0 )

α with α ∈ [0, 2), in which case we can set α1 = α and α2 = α−1.
The result in [142] does not apply to the Boussinesq case Iµ1 = Iµ0 = (1 + µ

3 |D|2)−1 as a particular
case, but to other abcd-Boussinesq systems; see details therein.

Remark 10.11. Contrarily to the result of Stefanov and Wright [389], there is no information con-
cerning the (spectral) stability of the constructed solitary waves in the case of systems.

Remark 10.12. There exist much more results concerning the existence (sometimes with explicit
formula) and stability of solitary wave solutions to the general abcd Boussinesq systems introduced
in Section iv. The interested reader can use [142, 88] as a starting point.
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10.6.4 Rigorous justification

Let us now discuss the complete rigorous justification of theWhitham–Boussinesq system, eq. (10.10)
as an asymptotic model for the water waves system, eq. (2.7), in the shallow water regime that is
(see Definition III.2) for parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

In particular, we will clarify the improvement in accuracy obtained when choosing Iµ0
def
=

tanh(
√
µ|D|)√

µ|D|
(which yields a model with the full dispersion property) rather than, say, Iµ0 = Iµ1 = (Id−µ

3∆)−1,
which yields a Boussinesq system.

Theorem 10.13 (Consistency). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0. Let s ∈ N, α ≥ 0 and

M⋆ ≥ 0. Let Iµ0 =
tanh(

√
µ|D|)√

µ|D| and Iµ1 = I1(
√
µ|D|) with I1 ∈ L∞(R) such that I1(ξ) = 1 + O(ξ2).

There exists C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈Wmax{s+4,2+s⋆}(Rd), any T > 0 and
any (ζ, ψ) ∈ L∞(0, T ;Hmax{s+4,2+s⋆}(Rd) × H̊max{s+4,2+s⋆}(Rd)2) classical solution to the water
waves equations, eq. (2.7), satisfying for all t ∈ (0, T )

∀x ∈ Rd, h(t,x) = 1 + εζ(t,x)− βb(x) ≥ h⋆ > 0 (10.14)

uniformly for t ∈ (0, T ) and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ(t, ·)∣∣

H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

one has {
∂tζ +∇ ·

(
Iµ0∇ψ + Iµ1 ((εζ − βb)Iµ1∇ψ)

)
= r1,

∂tψ + ζ + ε
2 |I

µ
1∇ψ|2 = r2,

and one has for almost every t ∈ (0, T )∣∣r1(t, ·)∣∣Hs ≤ C µ(εM + βMb)
(∣∣ζ(t, ·)∣∣

Hs+4 +
∣∣∇ψ(t, ·)∣∣

Hs+3

)
,∣∣r2(t, ·)∣∣Hs+1 ≤ C µε

∣∣∇ψ(t, ·)∣∣
H1+s⋆

(∣∣ζ(t, ·)∣∣
Hs+4 +

∣∣∇ψ(t, ·)∣∣
Hs+3

)
,

with M
def
=
∣∣ζ(t, ·)∣∣

H2+s⋆
+
∣∣∇ψ(t, ·)∣∣

H1+s⋆
and Mb

def
=
∣∣b∣∣

Wmax{s+6,2+s⋆},∞ .

Proof. Let us first treat the first statement. For the control of r1,

∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ · (Iµ0∇ψ + Iµ1 ((εζ − βb)Iµ1∇ψ))

∣∣
Hs

≤
∣∣ 1
µ
Gµ[εζ, βb]ψ +∇ · ((1 + εζ − βb)Iµ0∇ψ)

∣∣
Hs

+
∣∣∇ · (Iµ1 ((εζ − βb)Iµ1∇ψ)− (εζ − βb)(Iµ1 − Iµ)∇ψ)

∣∣
Hs

The first term in the right-hand side is estimated by Proposition 4.15 (with n = 1 and k = s+ 1),
and the estimate of last term follows from the boundedness of 1

µ (I
µ
1 − Id) : Hs+2(Rd) → Hs(Rd)

and Iµ1 : Hs(Rd) → Hs(Rd), for any s ∈ R, being uniform with respect to µ ∈ (0, µ⋆], and product
estimates in Appendix II.

As for the control of r2, we simply use Proposition 4.10 (with n = 0 and k = s + 2) to
control

∣∣ 1
µG

µ[εζ, βb]ψ
∣∣
Hs+1 , aforementioned product and composition estimates in Appendix II and

boundedness of Iµ1 and 1
µ (I

µ
1 − Id).
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Theorem 10.14 (Consistency). Under the assumptions and using the notations of Theorem 10.13,

denoting Ĩµ0
def
= Ĩ(

√
µ|D|) with Ĩ ∈ L∞(R) such that Ĩ(ξ) = 1 − 1

3ξ
2 + O(ξ4), and assuming addi-

tionally that ψ(t, ·) ∈ H̊s+6(Rd) for almost every t ∈ (0, T ), we have{
∂tζ +∇ ·

(̃
Iµ0∇ψ + Iµ1 ((εζ − βb)Iµ1∇ψ)

)
= r̃1,

∂tψ + ζ + ε
2 |I

µ
1∇ψ|2 = r̃2,

and one has for almost every t ∈ (0, T )∣∣r̃1(t, ·)∣∣Hs ≤ C µ(εM + βMb)
(∣∣ζ(t, ·)∣∣

Hs+4 +
∣∣∇ψ(t, ·)∣∣

Hs+3

)
+ C µ2

∣∣∇ψ(t, ·)∣∣
Hs+5 ,∣∣r̃2(t, ·)∣∣Hs+1 ≤ C µε

∣∣∇ψ(t, ·)∣∣
H1+s⋆

(∣∣ζ(t, ·)∣∣
Hs+4 +

∣∣∇ψ(t, ·)∣∣
Hs+3

)
,

with M
def
=
∣∣ζ(t, ·)∣∣

H2+s⋆
+
∣∣∇ψ(t, ·)∣∣

H1+s⋆
and Mb

def
=
∣∣b∣∣

Wmax{s+6,2+s⋆},∞ .

Proof. The result immediately follows from Theorem 10.13 and 1
µ2 (̃I

µ
0 −Iµ0 ) : H

s+5(Rd) → Hs+1(Rd)
being bounded uniformly with respect to (0, µ⋆], which is a direct consequence of the Taylor expan-

sion tanh(ξ)
ξ = 1− µ

3 ξ
2 +O(ξ4).

Energy estimates for eq. (10.10) can be obtained for a wide class of Fourier multipliers, Iµ0 and
Iµ1 , including all of the specific ones mentioned above. We require the following.

Assumption 10.15. For ℓ ∈ {0, 1}, Iµℓ
def
= Iℓ(

√
µ|D|) with real-valued even Iℓ ∈W 1,∞(R) satisfying

i. there exists C0 > 0 such that for any ξ ∈ R, 0 ≤ Iℓ(ξ) ≤ C0;

ii. there exists C1 > 0 such that for almost any ξ ∈ R, (1 + |ξ|)|I ′ℓ|(ξ) ≤ C1;

iii. for any ξ ∈ R, one has I1(ξ)
2 ≤ I0(ξ).

We shall not detail the proof of the following results, which consists in extending the stan-
dard energy method for hyperbolic symmetrizable quasilinear systems (as detailed for instance
in [310]) and more precisely the Saint-Venant equations—which incidentally are a particular case
of eq. (10.10) with Iµ0 = Iµ1 = Id—to the presence of Fourier multipliers as above, and refer to [176]
for the complete proof (in the flat-bottom situation). Let me simply precise that

• item i and item ii allow to consider Iµ0 and Iµ1 as order-zero operators in Sobolev spaces,
satisfying suitable product and commutator estimates;

• item iii allows to consider nonlinear terms as being of the same order as linear terms. We
could relax the assumption to I1(ξ)

2 ≤ C2I0(ξ) with some C2 > 0, yet the hyperbolicity
condition would be more stringent than the non-cavitation assumption, eq. (10.14).

In the following, we denote for s ∈ N

ZsIµ0
def
=
{
ψ ∈ L2

loc(Rd) :
∣∣(Iµ0 )1/2∇ψ∣∣Hs <∞

}
.

Theorem 10.16 (Local well-posedness). Let d ∈ N⋆, s⋆ > d/2 and s ∈ N, s ≥ 1+ s⋆, h⋆ > 0 µ⋆ > 0,
M⋆ ≥ 0 and C0, C1 > 0. There exist T > 0 and C > 0 such that the for any (µ, ε, β) ∈ pSW, any
Iµ0 and Iµ1 satisfying Assumption 10.15, any b ∈W s+1,∞(Rd) and any (ζ0, ψ0) ∈ Hs ×ZsIµ0

such that

eq. (10.14) holds and

M0
def
=
∣∣εζ0∣∣H1+s⋆

+
∣∣ε(Iµ0 )1/2∇ψ0

∣∣
H1+s⋆

+
∣∣βb∣∣

W s,∞ ≤M⋆,

there exists a unique (ζ, ψ) ∈ C0([0, T/M0];H
s(Rd)×ZsIµ0 )∩C

1([0, T/M0];H
s−1(Rd)×Zs−1

Iµ0
) solution

to eq. (10.10), with initial data (ζ, ψ) |t=0 = (ζ0, ψ0); and we have for any t ∈ [0, T/M0]∣∣ζ(t, ·)∣∣
Hs +

∣∣(Iµ0 )1/2∇ψ(t, ·)∣∣Hs ≤ C ×
(∣∣ζ0∣∣Hs +

∣∣(Iµ0 )1/2∇ψ0

∣∣
Hs

)
.
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Theorem 10.17 (Stability). Let d ∈ N⋆, s ∈ N, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M⋆ ≥ 0 and C0, C1 > 0,

and denote n0
def
= max{s, 1 + s⋆}, n

def
= max{s + 1, 1 + s⋆}. There exists C > 0 such that for any

(µ, ε, β) ∈ pSW, any Iµ0 and Iµ1 satisfying Assumption 10.15, any b ∈ Wn,∞(Rd), any T ⋆ > 0 and
(ζ0, ψ0) ∈ C0([0, T ⋆];Hn0(Rd) × Zn0

Iµ ) satisfying eq. (10.10), and any (ζ, ψ) ∈ L∞(0, T ⋆;Hn(Rd) ×
ZnIµ0

) satisfying {
∂tζ +∇ ·

(
Iµ0∇ψ + Iµ1 ((εζ − βb)Iµ1∇ψ)

)
= r1,

∂tψ + ζ + ε
2 |I

µ
1∇ψ|2 = r2,

with (r1, r2) ∈ L1(0, T ⋆;Hs(Rd)× ZsIµ0
), and assuming that h = 1 + εζ − βb and h0 = 1 + εζ0 − βb

satisfy eq. (10.14) uniformly for t ∈ [0, T ⋆] and

M
def
= ess sup

t∈[0,T⋆]

(∣∣(εζ, ε(Iµ0 )1/2∇ψ)(t, ·)∣∣Hn×Hn +
∣∣(εζ0, ε(Iµ0 )1/2∇ψ0)(t, ·)

∣∣
Hn0×Hn0

)
+
∣∣βb∣∣

Wn,∞ ≤M⋆,

then one has for any t ∈ (0, T ⋆),∣∣(ζ−ζ0)(t, ·)∣∣
Hs+

∣∣(Iµ0 )1/2∇(ψ−ψ0)(t, ·)
∣∣
Hs ≤ CeCMt

(∣∣(ζ−ζ0)(0, ·)∣∣
Hs+

∣∣(Iµ0 )1/2∇(ψ−ψ0)(0, ·)
∣∣
Hs

)
+ C

∫ t

0

eCM(t−τ) (∣∣r1(τ, ·)∣∣Hs +
∣∣(Iµ0 )1/2∇r2(τ, ·)∣∣Hs

)
dτ .

The following results are a direct consequence of Theorem 10.13, Theorem 10.14, Theorem 10.16
and Theorem 10.17.

Theorem 10.18 (Convergence). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, s ∈ N and M⋆ ≥ 0.
There exist T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈ Wmax{s+4,2+s⋆},∞(Rd),
any T ⋆ > 0 and any (ζ, ψ) ∈ C0([0, T ⋆];Hmax{s+4,2+s⋆} × H̊max{s+4,2+s⋆}(Rd)1+d) solution to the
water waves equations (2.7) and such that h = 1+ εζ − βb satisfies Equation (10.14) uniformly for
t ∈ [0, T ⋆] and

M
def
= sup

t∈[0,T⋆]

(∣∣εζ(t, ·)∣∣
Hmax{s+1,2+s⋆} +

∣∣ε∇ψ(t, ·)∣∣
Hmax{s+1,1+s⋆}

)
+
∣∣βb∣∣

Wmax{s+4,2+s⋆},∞ ≤M⋆,

there exists a unique (ζWB, ψWB) ∈ C0([0, T/M ];Hmax{s,1+s⋆}(Rd)×Zmax{s,1+s⋆}
Iµ0

) strong solution to

the Whitham–Boussinesq system (10.10)—with Iµ0 =
tanh(

√
µ|D|)√

µ|D| and Iµ1 satisfying Assumption 10.15,

for instance Iµ1 = (Iµ0 )
α with α ≥ 1/2—with initial data

(
ζWB, ψWB

)
|
t=0

=
(
ζ, ψ

)
|
t=0

; and one has
for any t ∈ (0,min{T ⋆, T/M}],∣∣(ζ − ζWB)(t, ·)

∣∣
Hs +

∣∣(Iµ0 )1/2∇(ψ−ψWB)(t, ·)
∣∣
Hs ≤ C µM t

( ∥∥ζ∥∥
L∞(0,t;Hs+4)

+
∥∥∇ψ∥∥

L∞(0,t;Hs+3)

)
.

The following result is a direct analogue of Theorem 10.18, using that the Boussinesq sys-
tem (10.11) is equivalent to eq. (10.10) with Iµ0 = Iµ1 = (Id−µ

3∆)−1.

Theorem 10.19 (Convergence). Under the assumptions and using the notations of Theorem 10.18,
there exists a unique (ζB,uB) ∈ C0([0, T/M ];Hmax{s,1+s⋆}(Rd) × Hmax{s+1,2+s⋆}) strong solution
to the Boussinesq system (10.11) with initial data

(
ζWB,uWB

)
|
t=0

=
(
ζ, (Id−µ

3∆)−1∇ψ
)
|
t=0

; and
if moreover ∇ψ(t, ·) ∈ L1(0, T ;Hs+5), one has for any t ∈ (0,min{T ⋆, T/M}],∣∣(ζ − ζB)(t, ·)

∣∣
Hs +

∣∣(Id−µ
3∆)−

1
2∇(ψ − ψB)(t, ·)

∣∣
Hs

≤ C µM t
( ∥∥ζ∥∥

L∞(0,t;Hs+4)
+
∥∥∇ψ∥∥

L∞(0,t;Hs+3)

)
+ C µ2

∫ t

0

∣∣∇ψ(τ, ·)∣∣
Hs+5 dτ

where we denote ∇ψB = u− µ
3∇∇ · u.
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Remark 10.20. Comparing Theorem 10.13 with Theorem 10.14, or Theorem 10.18 with Theo-
rem 10.19 allows to recognize clearly the gain of considering Whitham–Boussinesq systems (that

is eq. (10.10) with Iµ0
def
=

tanh(
√
µ|D|)√

µ|D| ) rather than a standard Boussinesq system (that is eq. (10.11)

or, equivalently, eq. (10.10) with Iµ0 = Iµ1 = (Id−µ
3∆)−1). Indeed, in situations with very weak

nonlinearities and mild bottom topographies, ε+β ≪ 1, solutions of the former but not of the latter
remain close—in shallow water situations—to the corresponding solution to the water waves system
over the full time interval t ∈ [0,min{T ⋆, T/M}], specifically at a distance O(µ). What is more, the
control of the additional error term in the Boussinesq system requires more regularity on the data.

10.7 Discussion and open questions

The open questions concerning the Green–Naghdi system we put forward in Section 8.7 arise maybe
even more strongly for the Whitham–Green–Naghdi or Boussinesq systems. Recall (see Section v)
that the fully dispersive Whitham equation has been introduced in view of reproducing wavebreaking
and peaked traveling waves of extreme height; and that such solutions were recently proved to exist
in [219, 173, 402, 374]. Unfortunately, the numerical experiments provided in [151] did not allow
to produce finite-time singularities even in extreme situations, and smooth solitary waves with
(apparently) arbitrarily large amplitude were exhibited. Hence the full dispersion property alone is
not sufficient to explain the attractive features of the Whitham equation.

The question of large time existence of solutions in the situation of weak nonlinearities but
strong bottom variations is also completely open. In view of offering models which remain relevant
on the full time interval t ∈ [0, T/ε], an additional direction of investigation would consist in the
derivation (and rigorous justification) of models with improved precision in such situations; ideally
O(µ2ε) (resp. O(µε) for a Boussinesq-type) instead of O(µ2(ε+ β)) (resp. O(µ(ε+ β))) as shown
in Theorem 10.5 (resp. Theorem 10.13). In this case the system needs to be exact when ε = 0, and
hence the linearized system about the trivial solution must be{

∂tζ
0 − G [0, b]ψ0 = 0,

∂tψ
0 + gζ0 = 0,

where G [0, b]ψ0 = (∂zΦ
0) |

z=0 and Φ0 is the unique solution to ∆x,zΦ
0 = 0 in {(x , z) ∈ Rd+1 : −d + b(t, x) < z < 0},

Φ0 = ψ0 on Rd × {0},
∂zΦ

0 = 0 on {(x , z) ∈ Rd+1 : z = −d + b(t, x)}.

In view of eq. (10.12), a natural candidate as a Boussinesq–Whitham equation for strong topogra-
phies is {

∂tζ + G [0, b]ψ +∇ ·
(

I1(ζI1∇ψ)
)
= 0,

∂tψ + ζ + 1
2 |I1∇ψ|

2 = 0.
(10.15)

where I1 is a sufficiently regularizing near-identity operator. Obviously the operator G [0, b] is
much more complicated than the Fourier multiplier G0 = |D| tanh(d |D|)—or the corresponding

operator in eq. (10.12), namely G0 − ∇ · (Id2

1 bI
d2

1 ∇•)—yet as a (positive) self-adjoint operator we
can use spectral decomposition of the former in lieu of Fourier decomposition (see e.g. [24] for a
description of the Fourier decomposition in the periodic framework, and [423, 118] for a study of
the Bloch decomposition when the bottom topography is periodic ) to devise for instance suitable
definitions of I1. The interested reader can refer to [404] for the derivation of a model similar to
eq. (10.15) with I1 = Id and where Gb is replaced by a ad hoc pseudo-differential approximation,
and to [405] for a numerical comparison of spectral modes of the full operator G [0, b], a first order
approximation based on the Taylor expansion of G [0, b] in the variable b, and the aforementioned
ad hoc approximation.
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CHAPTERD

Higher order models

Jésus a dit : « Que celui qui cherche ne cesse pas de
chercher, jusqu’à ce qu’il trouve. Et quand il aura
trouvé, il sera troublé ; quand il sera troublé, il sera
émerveillé, et il régnera sur le Tout. »

— Thomas l’apôtre, évangile selon Thomas
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Figure D: Models in Chapter D (in green) and some filiations.

Foreword

In this chapter we introduce and discuss higher order models for the water waves system, building
upon the Saint-Venant system (Section 5) and the Green–Naghdi system (Section 8). These are
hierarchies of models, that is families of system depending on a parameter—always denoted N—
which we call the rank of the model, of which the Saint-Venant and/or the Green–Naghdi system
are typically the first rank elements. Recall that the Saint-Venant (resp. Green–Naghdi) system
has been rigorously justified in Section 5.3 (resp. Section 8.5) as a shallow water model for the
water waves system, in—roughly speaking—the following way: the size of the difference between
solutions to the dimensionless water waves system and the corresponding solutions to the model
equations grows proportionally to the size of the initial data with a prefactor bounded as C µ t
(resp. C µ2 t) over a relevant time interval (being of size inversely proportional to the size of the
initial data), where µ is the shallow water parameter, and C depends on an upper bound on the
size of the admissible initial data (together with a lower bound on the minimal depth of the layer,
an upper bound on admissible values for µ, and the norms measuring the size of the data). In good
cases we expect that a similar result holds for all elements in a hierarchy of models, with different
prefactors CN µ

αN t. There are typically two situations:

i. the order as a shallow water model increases with N , that is αN → ∞ as N → ∞;

ii. the accuracy of the model improves with N , that is CN → 0 as N → ∞.

In the latter but not in the former we can hope that the hierarchy provides a robust tool for the
approximation of any (sufficiently regular) solution to the water waves system, and can be useful
for instance to devise strategies for their numerical integration.
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This chapter is decomposed into three sections, corresponding to three different strategies, each
producing a variety of families of higher order models.52

In Section 11 we use an expansion due to Boussinesq [60] and Rayleigh [362] (see [140, §4.1]
for discussion and other relevant references) of the velocity potential—as a solution to the Laplace
problem—as a series involving powers of the shallow water parameter, µ. We are hence typically
in the framework of the first aforementioned situation, and this section emphasizes its possible
shortcomings. Among the different models which can be naturally constructed by this way—which
we call Friedrichs-type systems in acknowledgment to his Appendix to [392]—we introduce explicitly
two families of models: the as high order shallow water models, eq. (11.16) and the extended
Green–Naghdi models, eq. (11.18). These models involve differential operators of increasing
order as the rank of the model grows, which yields several complications. Firstly, half of these
models suffer from very serious high frequency instabilities which prevent any hope as for the well-
posedness of the Cauchy problem. But even in good cases, it is expected that for fixed initial data
the solutions to the systems—if they exist—do not converge towards the corresponding solution to
the water waves system, as N → ∞. This can be seen in particular when studying the dispersion
relation of the models, which converge towards the dispersion relation of the water waves system
only for wavenumbers in a finite-size neighborhood of the origin.

In Section 12 we set up a Galerkin dimension reduction strategy to a reformulation of the
Laplace problem, to devise the approximate formula for the velocity potential—or, more precisely,
the horizontal velocity. As a second step, the usual procedure consists in using this approximate
formula in the Hamiltonian functional of the water waves system, and express the model as the
canonical Hamiltonian equations associated with the approximate Hamiltonian. This procedure
produces a different model for any (reasonable) choice of subspace of real-valued functions of the
fluid domain used in the Galerkin method. Natural examples of such spaces in the shallow water
framework are functions of the form

Φ(t,x, z) =

N∑
i=1

ϕi(t,x)Ψi(x, z) (⋆)

where ϕi(t,x) are variable unknowns of the resulting model, which is characterized by the choice
of the vertical distribution, {Ψi}i∈{1,...,N}. In Section 12.1.3 we explore the outcome of vertical
distribution defined, following the finite element method, as piecewise polynomials in the vertical
variable, z. We particularly emphasize two families of models (respectively playing with the degrees
of the polynomials and the number of elements in the vertical discretization): the augmented
Green–Naghdi models, eq. (12.13) and the “multilayer” Green–Naghdi models, eq. (12.18).
In each case, the system consists in two evolution equations coupled with a system of differential
equations of order two mimicking the Laplace problem. The first family is a higher order shallow
water hierarchy comparable to the models of the preceding section, yet instead of involving high
order differential operators, the size of the system of differential equations grows with the rank, N .
The second family has different properties, akin to the second situation described above. The term
“multilayer” stems from the fact that the models can be interpreted as resulting from the vertical
discretization of the fluid layer in N prescribed—typically proportional—sublayers.

In Section 13 we describe the strategy referred in [261, 260] as “variational” (see [354] for an
overview of related earlier and subsequent works). Of course the preceding strategy was also vari-

52The list is by no means complete. In particular it lacks spectral methods based on expansions with respect to
the steepness parameter, ϵ = ε

√
µ, initiated in [147, 411, 129] (see e.g. [276, 376, 414, 343] for a detailed account

and comparisons). Among them the strategy brought to light by Craig and Sulem in [129], consisting in expanding
the Dirichlet-to-Neumann operator, Gµ[εζ], along the variable εζ, is particularly elegant and effective. Contrarily
to the models introduced in this chapter, the family of models involve Fourier multipliers in addition to differential
operators; see [95] for discussion, references and the explicit display of the models up to fifth order. This method has
been extended and successfully employed in many situations (see [208] and references therein), despite the claim—
based on numerical experiments and formal arguments—in [17] that the Cauchy problem associated with any of the
systems in the family is ill-posed in Sobolev spaces.
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ational in nature, and we argue in Section 13.3 that the two strategies in fact differ only by the
choice of the variational formulation of the Laplace problem. Yet in the latter, we plug directly
the decomposition (⋆) into Luke’s Lagrangian action for the water waves system, and let Hamil-
ton’s principle do all the work in one single step. The outcome is surprising at first, as we obtain
an overdetermined/underdetermined composite system of N evolution equations for the surface
deformation, ζ, and only one evolution equation for (ϕ1, . . . , ϕN ). Yet as shown in Section 13.2
the systems can in fact be written—as in the above hierarchies—under a canonical Hamiltonian
formulation of two evolution equations coupled with a system of differential equations of order two.
Again each choice of the vertical distribution, {Ψi}i∈{1,...,N}, yields a different model. We only
quickly mention the “multilayer” systems and instead focus on the shallow water system, eq. (13.8),
named the Isobe–Kakinuma models in reference to [233, 239]. Indeed the latter benefit from
a rigorous justification theory, thanks to the work of Iguchi and collaborators, which we report in
Section 13.6.
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11 The Boussinesq–Rayleigh expansion, and Friedrichs-type sys-
tems

In this section we follow a natural—and historical—route to derive high order shallow water models
with formally arbitrary precision. The procedure and resulting models have been described in a
number of works; see for instance [140, 418, 294] for fairly extensive accounts, and [302, 96] for more
recent works.

11.1 Expansion procedure

Let us now describe the procedure which yields asymptotic expansions that we use to derive and
justify the asymptotic models discussed in this section. We first describe the velocity potential,
Φ—defined from the variables ζ, b and ψ as the solution to eq. (2.8)—through a formal series in
powers of µ. Following Boussinesq [60] and Rayleigh [362]53 that is making use of the following
relations stemming from eq. (2.8)

µ

∫ z

−1+βb

∫ z′

−1+βb

∆xΦ(·, z′′) dz′′ dz′ +Φ(·, z)− Φ
∣∣
z=−1+βb

− (z + 1− βb)
(
∂zΦ

) ∣∣
z=−1+βb

= 0

and the relations from chain rule and impermeability of the bottom

∇
(
Φ
∣∣
z=−1+βb

)
=
(
∇xΦ

) ∣∣
z=−1+βb

+ (β∇b)
(
∂zΦ

) ∣∣
z=−1+βb

,(
∂zΦ

) ∣∣
z=−1+βb

= µ(β∇b) ·
(
∇xΦ

) ∣∣
z=−1+βb

,

we find
Φ(x, z, t) =

∑
n≥0

(z + 1− βb)nϕn(x, t) (11.1)

where ϕ0
def
= Φ

∣∣
z=−1+βb

is the trace of the velocity potential at the bottom,

ϕ1 =
(
∂zΦ

) ∣∣
z=−1+βb

= µ
(β∇b) · (∇ϕ0)
1 + µ |β∇b|2

and ϕn (n ≥ 2) is given by the recursion relation

ϕn+2 = −µ∆ϕn − 2(n+ 1)(β∇b) · (∇ϕn+1)− (n+ 1)(β∆b)ϕn+1

(n+ 1)(n+ 2)(1 + µ |β∇b|2)
. (11.2)

Remark 11.1. The series in eq. (11.1) and subsequent ones are well-defined (let alone converge) only
for a very restricted class of data—basically analytic functions—since more and more derivatives are
involved in each successive summand. The formula in this section should be considered as formal
series which, when truncated, offer approximate formula and eventually asymptotic models in a
sense which is made precise in Section 11.5.

53Lagrange [265] used a similar expansion, yet using the rest state instead of the bottom as the reference depth.
The works of Boussinesq and Rayleigh is restricted to the flat bottom case; Mei and Le Méhauté [303] for instance
extended the expansion to general topographies. The expansion produces equivalent results to the one we would
obtain by extending the procedure developed in Section 4—based on Lemma 4.7—but has the advantage of being
somewhat more explicit. Another important pioneering work is the one by Friedrichs which appears in the appendix
of [392]. Friedrichs introduces the full Euler equations for homogeneous and potential flows with rescaled (dimension-
less) variables, clearly expresses the role of the shallow water dimensionless parameter, µ—in contrast with ad hoc
hypotheses such as the hydrostatic assumption—and sketches a procedure to derive models of arbitrary high order
with respect to the shallow-water parameter, of which the Saint–Venant system is the first iterate. Yet Friedrichs
does not pursue with the derivation of higher order models, and one could—depending on the choice of the velocity
variable to describe higher order terms—obtain different models, including the two families of systems we describe in
Section 11.2. Interestingly, Friedrichs also comments on the convergence of his expansion procedure; see footnote 27
therein. We shall use the terminology of Friedrichs-type models in place of the also-used Boussinesq models so as to
avoid confusion with the first order long wave model described in Section iv.
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From eq. (11.1) we infer

ψ = Φ
∣∣
z=εζ

=
∑
n≥0

hnϕn, (11.3)

u =
1

h

∫ εζ

−1+βb

∇xΦdz =
∑
n≥0

hn

n+ 1
∇ϕn − (β∇b)

∑
n≥1

hn−1ϕn, (11.4)

u =
(
∇xΦ

) ∣∣
z=εζ

=
∑
n≥0

hn∇ϕn − (β∇b)
∑
n≥1

nhn−1ϕn, (11.5)

w =
1

µ

(
∂zΦ

) ∣∣
z=εζ

=
1

µ

∑
n≥1

nhn−1ϕn, (11.6)

where we use the notation h = 1+ ϵζ − βb. Now we wish to express ϕ0 in terms of the variables ζ,
b and ψ. Once again, this can be done (formally) up to an arbitrarily high order. Expanding each
ϕn as powers of µ and reorganizing expressions,54 we rewrite eq. (11.3) as

∇ψ = ∇ϕ0 +
∑
n≥1

µnVn[ϵζ, βb](∇ϕ0)

where Vn is a differential operator of order 2n acting on (εζ, βb, ϕ0) (and linear on the last variable),
independent of µ. It follows

∇ϕ0 = ∇ψ +
∑
n≥1

µnBn[ϵζ, βb](∇ψ) (11.7)

where Bn (n ≥ 2) is the differential operator of order 2n given by the recursion relation

Bn[εζ, βb]
def
= −Vn[εζ, βb]−

n−1∑
k=1

Vk[εζ, βb] ◦ Bn−k[εζ, βb].

Plugging expansion (11.7) in (11.4),(11.5),(11.6) provides expansions of u,u, w in terms of ∇ψ:

u =
∑
n≥0

µnUn[ϵζ, βb](∇ψ) (11.8)

u =
∑
n≥0

µnUn[ϵζ, βb](∇ψ), (11.9)

w =
∑
n≥0

µnWn[ϵζ, βb](∇ψ), (11.10)

where Un, Un are differential operators of order 2n and Wn is a differential operator of order 2n+1.
In a similar fashion, 55 since U0[ϵζ, βb](∇ψ) = ∇ψ, we can use (11.8) to express

∇ψ = u+
∑
n≥1

µnṼn[ϵζ, βb](u) (11.11)

54Here we remark also that ϕn for n ≥ 1 depends only on β∇b and ∇ϕ0. Similarly, the dependency in (εζ, βb) of
the differential operators below could be replaced by (h, β∇b).

55We could also, equivalently, use eq. (11.4) to infer

∇ϕ0 = u+
∑
n≥1

µnB̃n[ϵζ, βb](u)

and infer eq. (11.11)–(11.12)–(11.13) from the above and eq. (11.3)–(11.5)–(11.6).
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where Ṽn (n ≥ 1) is the differential operator of order 2n given by the recursion relation

Ṽn[εζ, βb]
def
= −Un[εζ, βb]−

n−1∑
k=1

Uk[εζ, βb] ◦ Ṽn−k[εζ, βb].

We infer immediately from the above and eq. (11.9)–(11.10)

u =
∑
n≥0

µnŨn[ϵζ, βb](u), (11.12)

w =
∑
n≥0

µnW̃n[ϵζ, βb](u), (11.13)

where Ũn is a differential operators of order 2n and W̃n is a differential operator of order 2n+ 1.

First order expansions The above procedure can easily performed by computer algebra systems
such as SageMath. Let us for the record provide the first order expansions provided by the above
procedure, in the flat bottom case (βb = 0).

∇ψ = ∇ϕ0 − µ
2∇
(
h2(∇ · ∇)ϕ0

)
+ µ2

24∇
(
h4(∇ · ∇)2ϕ0

)
+O(µ3)

u = 1− µ
6h

2∇(∇ · ∇)ϕ0 +
µ2

120h
4∇(∇ · ∇)2ϕ0 +O(µ3)

u = ∇ϕ0 − µ
2h

2∇(∇ · ∇)ϕ0 +
µ2

24h
4∇(∇ · ∇)2ϕ0 +O(µ3)

w = h(∇ · ∇)ϕ0 − µ
6h

3(∇ · ∇)2ϕ0 +
µ2

120h
5(∇ · ∇)2ϕ0 +O(µ3)

and in turn

u = ∇ψ + µ
2∇
(
h2(∇ · ∇)ψ

)
− µ

6h
2∇(∇ · ∇)ψ

− µ2

24∇
(
h4(∇ · ∇)2ψ

)
+ µ2

4 ∇
(
h2(∇ · ∇)

(
h2(∇ · ∇)ψ

))
− µ2

12h
2∇(∇ · ∇)

(
h2(∇ · ∇)ψ

)
+ µ2

120h
4∇(∇ · ∇)2ψ +O(µ3)

u = ∇ψ − µ
2h

2∇(∇ · ∇)ψ + µ
2∇
(
h2(∇ · ∇)ψ

)
+ µ2

24h
4∇
(
(∇ · ∇)2ψ

)
− µ2

4 h
2∇
(
(∇ · ∇)

(
h2(∇ · ∇)ψ

))
− µ2

24∇
(
h4(∇ · ∇)2ψ

)
+ µ2

4 ∇
(
h2(∇ · ∇)

(
h2(∇ · ∇)ψ

))
+O(µ3)

w = h(∇ · ∇)ψ + µ
2h(∇ · ∇)

(
h2(∇ · ∇)ψ

)
− µ

6h
3(∇ · ∇)2ψ

− µ2

24h(∇ · ∇)
(
h4(∇ · ∇)2ψ

)
+ µ2

4 h(∇ · ∇)
(
h2(∇ · ∇)

(
h2(∇ · ∇)ψ

))
− µ2

12h
3(∇ · ∇)2

(
h2(∇ · ∇)ψ

)
+ µ2

120h
5(∇ · ∇)3ψ +O(µ3),

and

∇ψ = u+ µ
6h

2∇∇ · u− µ
2∇(h2∇ · u)

− µ2

120h
4∇(∇ · ∇)∇ · u+ µ2

36h
2∇∇ ·

(
h2∇∇ · u

)
− µ2

12∇
(
h2∇ ·

(
h2∇∇ · u

))
+ µ2

24∇
(
h4(∇ · ∇)∇ · u

)
+O(µ3),

u = u− µ
3h

2∇∇ · u+ µ2

30h
4∇(∇ · ∇)∇ · u− µ2

18h
2∇∇ ·

(
h2∇∇ · u

)
+O(µ3),

w = h∇ · u+
µ

6
h∇ ·

(
h2∇∇ · u

)
− µ

6h
3(∇ · ∇)∇ · u

− µ2

120h∇ ·
(
h4∇(∇ · ∇)∇ · u

)
+ µ2

36h∇ ·
(
h2∇∇ ·

(
h2∇∇ · u

))
− µ

36h
3(∇ · ∇)∇ ·

(
h2∇∇ · u

)
+ µ2

120h
5(∇ · ∇)2∇ · u+O(µ3).

https://www.sagemath.org/
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Of course the right-hand sides can be written in a more compact way. In particular, neglecting
O(µ2) contributions in the approximation of ∇ψ in terms of u, we recognize

∇ψ = u− µ
3h∇(h3∇ · u) +O(µ2)

which is nothing but eq. (8.5) in the flat bottom situation. In the same way, using the relation (see
Lemma 4.6)

Gµ[εζ, βb]ψ = −µ∇ · (hu), (11.14)

we recognize

u = ∇ψ + µ
3h∇

(
h3∇ · ∇ψ

)
+O(µ2)

1

µ
Gµ[εζ, βb]ψ = −∇ ·

(
h∇ψ

)
− µ

3 (∇ · ∇)
(
h3∇ · ∇ψ

)
+O(µ2)

that is the first order approximations (again, in the flat bottom situation) stated in Proposition 4.9
and Proposition 4.10. As we mentioned before, the procedure used in their proof could be extended
to obtain the above expansions at any order.

11.2 Two high order Friedrichs-type models

We can plug the formal series, eq. (11.8)-(11.9)-(11.10) into the water waves equations, eq. (2.7’).
Denoting

(un,un, wn)
def
= (Un[ϵζ, βb](∇ψ),Un[ϵζ, βb](∇ψ),Wn[ϵζ, βb](∇ψ)),

using the relation (11.14) and truncating terms of order O(µN+1) yields
∂tζ +

N∑
n=0

µn∇ ·
(
hun

)
= 0,

∂tψ + ζ + ϵ

N∑
n=0

µn

(
un · ∇ψ − 1

2

n∑
k=0

uk · un−k −
1

2

n−1∑
k=0

wkwn−1−k

)
= 0.

(11.15)

Using physical variables (recall Section 2.4), we get
∂tζ +

N∑
n=0

d2n∇ ·
(
hun

)
= 0,

∂tψ + gζ +

N∑
n=0

d2n

(
un · ∇ψ − 1

2

n∑
k=0

uk · un−k −
1

2

n−1∑
k=0

wkwn−1−k

)
= 0,

(11.16)

where (un, un,wn)
def
= (Un[d−1ζ, d−1b](∇ψ),Un[d−1ζ, d−1b](∇ψ),Wn[d

−1ζ, d−1b](∇ψ)). We shall
refer to these systems as high order shallow water systems.

Remark 11.2. It is important to remark that we truncate the formal series after they have been
plugged in the equations (2.7’). Alternatively, we could plug the truncated expansions of u, u and
w in eq. (2.7’). This would yield another family of systems, equivalent to eq. (11.15) in the sense
of consistency, but which do not enjoy the Hamiltonian structure described in Section 11.3.

Alternatively, we can use the formal series eq. (11.11)-(11.12)-(11.13) into eq. (2.7’). Denoting

(vn,un, wn)
def
= (Ṽn[ϵζ, βb](u), Ũn[ϵζ, βb](u), W̃n[ϵζ, βb](u)),
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and truncating terms of order O(µN+1) yields
∂tζ +∇ ·

(
hu
)
= 0,

∂t

(
N∑
n=0

µnvn

)
+∇ζ + ϵ

N∑
n=0

µn∇

(
n∑
k=0

uk · vn−k −
1

2

n∑
k=0

uk · un−k −
1

2

n−1∑
k=0

wkwn−1−k

)
= 0.

(11.17)
Using physical variables, we get

∂tζ +∇ ·
(
hu
)
= 0,

∂t

(
d2n

N∑
n=0

vn

)
+ g∇ζ +

N∑
n=0

d2n∇

(
n∑
k=0

uk · vn−k −
1

2

n∑
k=0

uk · un−k −
1

2

n−1∑
k=0

wkwn−1−k

)
= 0,

(11.18)

where (vn, un,wn)
def
= (Ṽn[d−1ζ, d−1b](u), Ũn[d−1ζ, d−1b](u), W̃n[d

−1ζ, d−1b](u)). Following the
terminology in [301, 302], we will refer to these systems as the extended Green–Naghdi systems.

Remark 11.3. Setting N = 0 in eq. (11.15), we find the Saint-Venant system under formulation
eq. (5.2). Setting N = 1 yields the system suffering from strong high frequency modal instabilities
discussed in footnote 38. When N = 2 and in the flat bottom situation, we obtain [96, (60)–(61)].

Setting N = 0 in eq. (11.17), we find the Saint-Venant system under formulation eq. (5.3).
Setting N = 1 yields the Green–Naghdi system, eq. (8.6), or equivalently eq. (8.4) in footnote 39,
provided we set ∇ψ from (εζ, βb,u) according to eq. (8.5), that is ∇ψ = u+ µhT [h, β∇b]u. When
N = 2, the system suffers from strong high frequency modal instabilities; see Section 11.4. It is
displayed explicitly, in the flat bottom situation, in [302, (2.5)–(3.3)]. The system for N = 3 is
displayed explicitly, in the flat bottom one-dimensional situation, in [302, (2.5)–(3.21)].

Remark 11.4. It is clear that we can produce different models by extending the procedure in Sec-
tion 11.1 so as to produce expansions in terms of different velocity variables, such as ∇ϕ0 or
(following Nwogu [345]) the horizontal velocity evaluated at a given height. All these models will
be different, and in particular will produce different dispersion relations. 56 Yet they will have the
same nature, in that they involve differential operators of increasing order as the rank of the model
in the family, N , grows. Additionally, manipulations equivalent to the “BBM trick” can be useful,
and a long wave assumption of the form ε+ β = O(µ) is often employed. Given the such degrees of
freedom, it is not a surprise that the literature on the subject is vast and cluttered. The interested
reader can refer to [347, 140, 295, 256, 418, 51] and particularly [294] for a thorough account and
extensive bibliographic references.

11.3 Hamiltonian structure

The two models, eq. (11.15) and eq. (11.17), enjoy a Hamiltonian structure which is inherited from
that of the water waves system; see Section 2.2.

The high order shallow water systems Let us define, based on Section 2.2 and Lemma 4.6,

H N
ho (ζ, ψ)

def
=

1

2

∫
Rd

ζ2 + (1 + εζ − βb)(∇ψ) ·

(
N∑
n=0

Un[ϵζ, βb](∇ψ)

)
dx.

56 After the completion of this Section, the model using the horizontal velocity at the (flat) bottom has been
derived and studied by Choi in [97]. This model has quite interesting properties compared with the ones presented
in this Section, eq. (11.15) and eq. (11.17), in particular concerning its linear dispersion relation (see Section 11.4).
Indeed, the model does not suffer from any modal instability and, moreover, its linear dispersion relation converges
towards the one of the water waves system as the rank of the model, N , grows.
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Then eq. (11.15) reads {
∂tζ − δψH N

ho = 0,

∂tψ + δζH N
ho = 0.

In order to check this claim, we rely on the following properties satisfied, for smooth and rapidly

decaying data, by (un,un, wn)
def
= (Un[ϵζ, βb](∇ψ),Un[ϵζ, βb](∇ψ),Wn[ϵζ, βb](∇ψ)). We have

i. u0 = ∇ψ, un = −ϵwn−1∇ζ (n ≥ 1), and wn − (ϵ∇ζ) · un = −∇ ·
(
(1 + εζ − βb)un

)
(n ≥ 0);

ii. for any n ≥ 0 and any smooth and rapidly decaying ψ1, ψ2,∫
Rd

(1 + εζ − βb)(∇ψ1) · Un[ϵζ, βb](∇ψ2) dx =

∫
Rd

(1 + εζ − βb)(∇ψ2) · Un[ϵζ, βb](∇ψ1) dx;

iii. denoting GNho[ϵζ, βb]ψ
def
= −∇ ·

(
(1 + εζ − βb)Un[ϵζ, βb](∇ψ)

)
, we have for any n ≥ 0

dζ Gnho[ϵζ, βb](δζ)ψ = −
n−1∑
k=0

Gkho[ϵζ, βb]
(
(δζ)wn−1−k

)
−∇ · ((δζ)un) .

These properties are the direct counterparts of the identities satisfied by Φ the solution to the
Laplace problem, eq. (2.8), (by chain rule and Proposition 2.3)

i. ∇ψ = (∇xΦ)
∣∣
z=εζ

+(ε∇ζ)(∂zΦ)
∣∣
z=εζ

, and 1
µG

µ[ϵζ, βb]ψ = 1
µ (∂zΦ)

∣∣
z=εζ

−(ε∇ζ)·(∇xΦ)
∣∣
z=εζ

;

ii.
∫
Rd ψ1Gµ[ϵζ, βb]ψ2 dx =

∫
Rd ψ2Gµ[ϵζ, βb]ψ1 dx;

iii. dζ Gµ[ϵζ, βb](δζ)ψ = −Gµ[ϵζ, βb]
(
(δζ)(∂zΦ)

∣∣
z=εζ

)
− µ∇ ·

(
(δζ)(∇xΦ)

∣∣
z=εζ

)
.

That they hold can be checked directly from the definitions of Un,Un,Wn; or by reasoning asymp-
totically from the expansions of the above identities as µ↘ 0 (making use of the rigorous analysis
in Section 11.5). From the above identities we quickly infer, as desired,

δψH N
ho =

N∑
n=0

µnGNho[ϵζ, βb]ψ = −
N∑
n=0

µn∇ ·
(
(1 + εζ − βb)un

)
δζH

N
ho = ζ +

ε

2

N∑
n=0

µn

(
un · ∇ψ + un · u0 −

n∑
k=0

uk · un−k −
n−1∑
k=0

wkwn−1−k

)
.

From the Hamiltonian structure we have—by Noether’s theorem—a relation between group
symmetries of the system and preserved quantities; see Section 2.2. In particular sufficiently regular
and spatially localized solution to eq. (11.15) preserve the excess of mass,

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx,

horizontal impulse in the flat bottom case

d

dt
I = 0, I

def
=

∫
Rd

ζ∇ψ dx (if βb ≡ 0),

and total energy

d

dt
H N

ho = 0.
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We also have, obviously d
dtV = 0 where V =

∫
Rd ∇ψ and we expect the preservation of horizontal

momentum, in the flat bottom case:

d

dt
MN

ho = 0, M =

∫
Rd

N∑
n=0

µnhUn[ϵζ, βb](∇ψ) dx (if βb ≡ 0)

(and in fact that each of the summands, for n ≥ 1, is a gradient vector field).

The extended Green–Naghdi system In the spirit of Section 8.1.1, we may define

H̃ N
ho (ζ, ψ)

def
=

1

2

∫
Rd

ζ2 + (1 + εζ − βb)(∇ψ) · U (N)[ϵζ, βb](∇ψ) dx.

where U (N)[ϵζ, βb](∇ψ) is formally defined by the relation

U (N)[ϵζ, βb](∇ψ) = u(N) where ∇ψ =

N∑
n=0

µnvn, vn = Ṽn[ϵζ, βb](u(N)),

or in other words ( N∑
n=0

µnṼn[ϵζ, βb]
)
◦ U (N)[ϵζ, βb] = Id,

and infer similarly as above that eq. (11.17) reads{
∂tζ − δψH̃ N

ho = 0,

∂tψ + δζH̃ N
ho = 0,

making use of the identities ∇ψ =
∑N
n=0 µ

nṼn[ϵζ, βb](u) and u = U (N)[ϵζ, βb]∇ψ.
Obviously the above is very formal since there is no reason to believe that, apart from very

specific cases,57 U (N) should be well-defined. Matsuno exhibits in [302] a non-canonical Hamiltonian

formulation of eq. (11.17) using the variables (ζ,m
def
= hu) and as such does not require to define

U (N)[ϵζ, βb]. Yet the above formal canonical structure allows to highlight the relationship with
the canonical Hamiltonian structure of the water waves system and to easily express preserved
quantities satisfied by sufficiently regular and spatially localized solution to eq. (11.17), specifically
the excess of mass,

d

dt
Z = 0, Z

def
=

∫
Rd

ζ dx,

horizontal impulse in the flat bottom case

d

dt
Ĩ N

ho = 0, Ĩ N
ho

def
=

∫
Rd

ζv(N) dx (if βb ≡ 0),

and total energy

d

dt
H̃ N

ho = 0, H̃ N
ho =

1

2

∫
Rd

ζ2 + (1 + εζ − βb)v(N) · udx,

where in the last two definitions we denote v(N) def
=
∑N
n=0 µ

nṼn[ϵζ, βb](u). We also have

d

dt
Ṽ N
ho = 0, Ṽ N

ho =

∫
Rd

v(N) dx,

57among which the case N = 0 (corresponding to the Saint-Venant system; Section 5) for which U(0)[ϵζ, βb] = Id
and the case N = 1 (corresponding to the Green–Naghdi system; Section 8) since U(1)[ϵζ, βb] = (Id+µT [h, β∇b])−1.



11. The Boussinesq–Rayleigh expansion, and Friedrichs-type systems 160

which can be interpreted as the fact that v(N) approximates to a gradient vector field, v(N) ≈ ∇ψ.
It appears that for each n ≥ 1, hṼn[ϵζ, βb](u) is a gradient vector field (the case n = 1 corresponds
to the contribution hT [h, β∇b] in the Green–Naghdi system). Then we would infer in particular
the preservation of horizontal momentum, in the flat bottom case:

d

dt
M = 0, M =

∫
Rd

hudx (if βb ≡ 0).

11.4 Modal analysis

The expansions described in Section 11.1 can be made fairly explicit in the flat bottom and linear
setting, namely ϵ = β = 0. In this case, we have

ϕ(x, z, t) =
∑
n≥0

(z + 1)2n
(−1)nµn

(2n)!
(∇ · ∇)nϕ0,

thus

ψ =
∑
n≥0

(−1)nµn

(2n)!
(∇ · ∇)nϕ0,

u =
∑
n≥0

(−1)nµn

(2n+ 1)!
∇(∇ · ∇)nϕ0,

from which we infer

∇ϕ0 = b0∇ψ +
∑
n≥1

µnbn∇(∇ · ∇)nψ,

∇ϕ0 = b̃0u+
∑
n≥1

µnb̃n∇(∇ · ∇)n−1∇ · u,

where b0 = b̃0 = 1 and bn, b̃n (n ≥ 1) are given by the recursion relation

bn = −
n∑
k=1

(−1)k

(2k)!
bn−k, b̃n = −

n∑
k=1

(−1)k

(2k + 1)!
b̃n−k. (11.19)

This yields

u = c0∇ψ +
∑
n≥1

µncn∇(∇ · ∇)nψ

∇ψ = c̃0u+
∑
n≥1

µnc̃n∇(∇ · ∇)n−1∇ · u

where

cn =

n∑
k=0

(−1)k

(2k + 1)!
bn−k, c̃n =

n∑
k=0

(−1)k

(2k)!
b̃n−k. (11.20)

Hence we find that eq. (11.15) when linearized about the trivial solution58 (that is setting ε = β = 0)
yields {

∂tζ − Gµ,Nψ = 0,

∂tψ + ζ = 0,
(11.21)

58By Galilean invariance, linearizing about the constant solution (ζ = 0, ψ = u · x) yields only an additional
advection term with velocity u.
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where Gµ,N is the Fourier multiplier (see Definition III.1) defined by

Gµ,N def
= |D|2

N∑
n=0

µn(−1)ncn|D|2nψ.

In particular we have the following dispersion relation associated with eq. (11.21):

ωNho(ξ)
2 = |ξ|2DN (

√
µ|ξ|), DN (ξ)

def
=

N∑
n=0

(−1)ncnξ
2n. (11.22)

Similarly, eq. (11.17) when linearized about the trivial solution yields{
∂tζ +∇ · u = 0,

∂tṼµ,Nu+∇ζ = 0,
(11.23)

where Ṽµ,N is the Fourier multiplier defined by

Ṽµ,N def
= Id+

N∑
n=1

µn(−1)nc̃nD|D|2(n−1)D · .

In particular we have the dispersion relation associated with eq. (11.23) in dimension d = 2:

ω̃Nho(ξ)

(
ω̃Nho(ξ)

2 − |ξ|2

D̃N (
√
µ|ξ|)

)
= 0, D̃N (ξ)

def
=

N∑
n=0

(−1)nc̃nξ
2n. (11.24)

The solution ω̃Nho(ξ) = 0 is a spurious mode stemming (when d = 2) from the fact that the second
equation in eq. (11.17) describes an evolution through potential forces. We withdraw it from future
discussions.

These dispersion relations should be compared with the one of the water waves system (when
linearized about the rest state), namely

ωww(ξ)
2 = |ξ|2

tanh(
√
µ|ξ|)

√
µ|ξ|

. (11.25)

Solutions to the above dispersion relations—eq. (11.22), (11.24) and (11.25)—are plotted in Fig-

ure 11.1. We explore in the following some properties of DN (ξ) and D̃N (ξ) which prove and explain
the behavior of the dispersion relations which can be witnessed in these figures.59

Lemma 11.5. For any N ∈ N, DN (ξ) is the Taylor expansion at order 2N of ξ 7→ tanh(ξ)
ξ , and

D̃N (ξ) is the Taylor expansion at order 2N of ξ 7→ ξ
tanh(ξ) For instance,

D0(ξ) = 1 ; D1(ξ) = 1− 1

3
ξ2 ; D2(ξ) = 1− 1

3
ξ2 +

2

15
ξ4 etc.

59The are several important consequences to Proposition 11.6 concerning properties of eq. (11.15) (resp. eq. (11.17))
when linearized about the rest state. From item i. and eq. (11.22) (resp. eq. (11.24)) we see that the dispersion
relation fits the one of the water-waves system, eq. (11.25), at order O(µN+1), for sufficiently small wavenumbers.
From item ii. we see that for larger wavenumbers, the angular frequency predicted by the models fail to converge
towards the one of the water waves system as N goes to infinity. This failure shows that the limitations in the
results at the nonlinear level presented in Section 11.5 are not technical, but in fact a consequence of the detrimental
behavior of high rank systems. From item iii. we see that when N ≥ 1 is odd (resp. N ≥ 2 even), the linearized
system suffers from extremely strong instabilities at large wavenumbers. On the contrary, if N ≥ 0 is even (resp.
N = 0 or N ≥ 1 odd), then the plane waves are stable for all wavenumbers. While it is true that it is possible
to improve the behavior of Friedrichs-type models at the linear level by suitable choice of variables and/or ad hoc
manipulations, the models that we obtain in that way typically do not enjoy the variational structure exhibited in
Section 11.3, and still suffer from all the difficulties at the nonlinear level described in Section 11.5.
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(a) High order shallow water systems, eq. (11.15).
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(b) Extended Green–Naghdi systems, eq. (11.17).
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(c) Same as (a), in log scale.
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(d) Same as (b), in log scale.

Figure 11.1: In (a) and (b), non-trivial wave frequencies, |ω|(|ξ|), given by the (rescaled)
dispersion relations (11.22) and (11.24) corresponding to the (linearized about rest) high order

Friedrichs-type models. The corresponding wave frequencies of the water waves system is given by
eq. (11.25). In (c) and (d), the “error” is represented in log scale.

Wave frequencies with non-zero imaginary parts, corresponding to unstable modes, are not
represented. The dotted vertical line delimits the domain of convergence as N → ∞.
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D̃0(ξ) = 1 ; D̃1(ξ) = 1 +
1

3
ξ2 ; D̃2(ξ) = 1 +

1

3
ξ2 − 1

45
ξ4 etc.

More precisely, we have

cn =
22n+2(22n+2 − 1)B2n+2

(2n+ 2)!
, c̃n =

22nB2n

(2n)!

where Bn are the Bernoulli numbers: B0 = 1, B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , etc.; and in particular

cn = (−1)n
8

π2

(
2

π

)2n

(1 +O(2−2n)), c̃n = (−1)n−12

(
1

π

)2n

(1 +O(2−2n)) (n→ ∞).

Proof. In accordance with the Taylor expansion of the function sech at the origin, we find that

bn =
E2n

(2n)!

where En is the Euler number. Indeed, one has b0 = E0 = 1 and (11.19) yields the recursion
formula satisfied by E2n [4, 23.1.7]:

(2n)!bn = −
n∑
r=1

(−1)r
(
(2n)!

(2r)!

)
(2n− 2r)!bn−r.

We deduce from (11.20) that (−1)ncn is the (2n + 1)th coefficient of the Taylor expansion of the

function ξ 7→ tanh(ξ) at the origin. The corresponding results for D̃N (ξ) follows in a similar way,
and are proved in [302].

The asymptotics as n → ∞ are direct consequences of the formula (−1)n B2n

(2n!) = 2
(2π)2n ζ(2n)

where ζ is the Riemann function.

Proposition 11.6. The polynomial DN , defined in eq. (11.22), is even and satisfies the following.

i. For any r < π
2 , there exists C > 0 such that for any N ≥ 0 and ξ ∈ [−r, r],∣∣∣∣DN (ξ)− tanh(ξ)

ξ

∣∣∣∣ ≤ C
(2ξ
π

)2N+2
.

ii. For any |ξ| > π
2 , (−1)NDN (ξ) ∼ 8

π2

(
2ξ
π

)2N → +∞ as N → ∞.

iii. For any N ≥ 1, (−1)NDN (ξ) ∼ (−1)NcNξ
2N → +∞ as ξ → ∞.

iv. If N ≥ 0 is even, then DN (ξ) ≥ tanh(ξ)
ξ .

v. If N ≥ 1 is odd, then DN (ξ) ≤ tanh(ξ)
ξ .

The polynomial D̃N , defined in eq. (11.24), is even and satisfies the following properties.

i. For any r < π, there exists C > 0 such that for any N ≥ 0 and ξ ∈ [−r, r],∣∣∣∣∣ 1

D̃N (ξ)
− tanh(ξ)

ξ

∣∣∣∣∣ ≤ C
( ξ
π

)2N+2
.

ii. For any |ξ| > π, (−1)N−1D̃N (ξ) ∼ 2
(
ξ
π

)2N → +∞ as N → ∞.

iii. For any N ≥ 1, (−1)N−1D̃N (ξ) ∼ (−1)N−1c̃Nξ
2N → +∞ as ξ → ∞.
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iv. If N ≥ 0 is even, then D̃N (ξ) ≤ ξ
tanh(ξ) .

v. If N ≥ 1 is odd, then D̃N (ξ) ≥ ξ
tanh(ξ) , and hence 0 < 1

D̃N (ξ)
≤ tanh(ξ)

ξ .

Proof. The first three items are obvious consequences of Lemma 11.5.
For the last items, we will use a maximum principle. We remark that ξ tanh(ξ) = ϕ′ξ(0) where

ϕξ(z)
def
= tanh(ξ) sinh(ξz)ψ + cosh(ξz) is the unique solution to

ϕ′′ξ − ξ2ϕξ = 0 ; ϕ′ξ(−1) = 0 ; ϕξ(0) = 1.

We now define

ϕN,ξ(z)
def
=

N∑
n=0

n∑
k=0

(−1)k

(2k)!
bn−k(z + 1)2k(−1)nξ2n.

Notice that ϕ′N,ξ(−1) = 0, ϕN,ξ(0) =
∑N
n=0

∑n
k=0

(−1)k

(2k)! bn−k(−1)nξ2n = 1 by (11.19), and by (11.20)

ϕ′N,ξ(0) =

N∑
n=1

(−1)nξ2n
n∑
k=1

(−1)k

(2k − 1)!
bn−k =

N−1∑
n=0

(−1)ncnξ
2n+2 = ξ2DN−1(ξ).

Notice also

ϕ′′N,ξ(z) = ξ2ϕN,ξ(z)− (−1)Nξ2N+2
N∑
k=0

(−1)k

(2k)!
bN−k(z + 1)2k.

Let us admit for the moment that

∀z ∈ [0,−1],

N∑
k=0

(−1)k

(2k)!
bN−k(z + 1)2k ≥ 0. (11.26)

Summarizing, we have

(−1)N (ϕξ−ϕN,ξ)′′−ξ2(ϕξ−ϕN,ξ) ≥ 0; (−1)N (ϕξ−ϕN,ξ)′(−1) = 0 ; (−1)N (ϕξ−ϕN,ξ)(0) = 0.

Let us assume for instance that N is odd, and, reasoning by contradiction, that ϕ′N,ξ(0)−ϕ′ξ(0) < 0.
Denote z⋆ the maximal value z⋆ ∈ [−1, 0] for which ϕ′N,ξ(z) − ϕ′ξ(z) ≥ 0. We have z⋆ < 0 by
continuity, and since ϕN,ξ(0) − ϕξ(0) = 0, one has ϕN,ξ(z) − ϕξ(z) > 0 for z ∈ (z⋆, 0). However,
since ϕ′′N,ξ(z)− ϕ′′ξ (z) ≥ ξ2(ϕN,ξ(z)− ϕξ(z)) > 0, we see that ϕ′N,ξ(z⋆)− ϕ′ξ(z⋆) ≤ ϕ′N,ξ(0)− ϕ′ξ(0),
which is a contradiction. Hence we proved, when N is odd, that

0 ≤ ϕ′N,ξ(0)− ϕ′ξ(0) = ξ2DN−1(ξ)− ξ tanh(ξ).

Of course, the same reasoning yields ξ2DN−1(ξ) ≤ ξ tanh(ξ) when N is even.
Let us now show eq. (11.26). Denote

PN (Z)
def
=

N∑
k=0

(−1)k

(2k)!
bN−kZ

2k, QN (Z)
def
=

N∑
k=0

(−1)k

(2k + 1)!
bN−kZ

2k+1

so that P ′
N = −QN−1, and Q

′
N = PN . Using the above as well as the boundary values PN (1) = 0

(by eq. (11.19)) and QN (0) = 0, it is straightforward to show by induction (P0 = 1) that for any
N ∈ N, PN is non-increasing, QN is non-decreasing, and PN (z) ≥ 0, QN (z) ≥ 0 for any z ∈ [0, 1].
This concludes the proof of the first part of Proposition 11.6.
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The second part follows by the same techniques, in particular noticing that ξ
tanh(ξ) = ϕ′ξ(0)

where ϕ̃ξ(z)
def
= 1

tanh(ξ) sinh(ξz)ψ + cosh(ξz) is the unique solution to

ϕ̃′′ξ − ξ2ϕ̃ξ = 0 ; ϕ̃ξ(−1) = 0 ; ϕ̃ξ(0) = 1,

and introducing

ϕ̃N,ξ(z)
def
=

N∑
n=0

n∑
k=0

(−1)k

(2k + 1)!
b̃n−k(z + 1)2k+1(−1)nξ2n.

The rest of the proof is left to the reader.

11.5 Rigorous justification

In this section, we discuss the rigorous justification of the high order models, eq. (11.15) and
eq. (11.17), as asymptotic models for the water waves system, eq. (2.7). The key ingredient is a
rigorous statement for the formal expansions, through a quantitative estimate of the remainder
term, generalizing Proposition 4.9 and Proposition 4.10.

As always, our results hold in the shallow water regime, i.e. for parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

Lemma 11.7. Let d ∈ N⋆ and s⋆ > d/2. Let µ⋆ > 0, M ≥ 0, k ∈ N, n ∈ N. There exists
C > 0 such that for any (µ, ε, β) ∈ pSW, and for any ζ ∈ Hmax({s⋆,k+2n+1})(Rd) and any b ∈
Wmax({s⋆,k+2n+1}),∞(Rd) satisfying ∣∣εζ∣∣

Hs⋆
+
∣∣βb∣∣

W s⋆,∞ ≤M,

the operators Un[ϵζ, βb] : H̊k+2n+1 → Hk, Un[ϵζ, βb] : H̊k+2n+1 → Hk, Wn[ϵζ, βb] : H̊
k+2n+2 → Hk

defined through the procedure described in Section 11.1, are well-defined and continuous, and∣∣Un[ϵζ, βb](∇ψ)∣∣Hk ≤ C
(∣∣∇ψ∣∣

Hk+2n + ⟨(
∣∣εζ∣∣

Hk+2n +
∣∣βb∣∣

Wk+2n,∞)
∣∣∇ψ∣∣

Hs⋆
⟩k+2n>s⋆

)
,∣∣Un[ϵζ, βb](∇ψ)∣∣Hk ≤ C

(∣∣∇ψ∣∣
Hk+2n + ⟨(

∣∣εζ∣∣
Hk+2n +

∣∣βb∣∣
Wk+2n,∞)

∣∣∇ψ∣∣
Hs⋆

⟩k+2n>s⋆

)
,∣∣Wn[ϵζ, βb](∇ψ)

∣∣
Hk ≤ C

(∣∣∇ψ∣∣
Hk+2n+1 + ⟨(

∣∣εζ∣∣
Hk+2n+1 +

∣∣βb∣∣
Wk+2n+1,∞)

∣∣∇ψ∣∣
Hs⋆

⟩k+2n+1>s⋆

)
.

Proof. From the procedure described in Section 11.1, we infer that Un, Un and Wn can be written
as the sum of contributions of the dorm

P1∂
α1
(
P2∂

α2
(
· · ·
(
Pk∂

αk∇ψ
)
· · ·
))

where for any j ∈ {1, . . . , k}, Pj = Pj(εζ, βb) is a polynomial in its variables and αj ∈ Nd is a
multiindex, with ∑

j

|αj | =

{
2n for Un, Un,
2n+ 1 for Wn.

The result follows from the product estimates in Proposition II.7 and Proposition II.14, the inter-
polation estimates in Lemma II.3 and Lemma II.13, and Young’s inequality.

Lemma 11.8. There exists p ∈ N such that the following holds. Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0,
µ⋆ > 0, M ≥ 0, s ≥ 0, N ∈ N. There exists C > 0 such that for any (µ, ε, β) ∈ pSW, any
ζ ∈ Hmax({s+4N+p,2+s⋆})(Rd) and b ∈Wmax({s+4N+p,2+s⋆}),∞(Rd) satisfying

∀x ∈ Rd, h(x)
def
= 1 + εζ(x)− βb(x) ≥ h⋆ > 0 (11.27)
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and ∣∣εζ∣∣
H2+s⋆

+
∣∣βb∣∣

W 2+s⋆,∞ ≤M,

one has∣∣u−
∑N
n=0 µ

nun
∣∣
Hs +

∣∣u−
∑N
n=0 µ

nun
∣∣
Hs +

∣∣w −
∑N
n=0 µ

nwn
∣∣
Hs

≤ C µN+1
(∣∣∇ψ∣∣

Hs+4N+p + (
∣∣εζ∣∣

Hs+4N+p +
∣∣βb∣∣

W s+4N+p,∞)
∣∣∇ψ∣∣

Hs⋆

)
with

(
un , un , wn )

def
=
(
Un[ϵζ, βb](∇ψ) , Un[ϵζ, βb](∇ψ) , Wn[ϵζ, βb](∇ψ)

)
and

(
u , u , w

) def
=

(
1

h

∫ εζ

−1+βb

∇xΦ(·, z) dz , (∇xΦ)(·, εζ) ,
1

µ
(∂zΦ)(·, εζ)

)

where Φ is the strong solution to the Laplace problem eq. (2.8) (see Proposition 4.5).

Proof. We prove the result for s = k ∈ N, the general case being an obvious consequence. Let us
introduce, for N ∈ N,

Φapp,N (x, z) =

2N+2∑
n=0

(z + 1− βb)nϕn(x),

where

ϕ0 = ψ +

N∑
n=1

µnBn[ϵζ, βb](∇ψ) ; ϕ1 = µ
(β∇b) · (∇ϕ0)
1 + µ |β∇b|2

,

with Bn[ϵζ, βb] defined in Section 11.1; and ϕn (n ≥ 2) is given by the recursion relation

ϕn+2 = −µ∆ϕn − 2(n+ 1)(β∇b) · (∇ϕn+1)− (n+ 1)(β∆b)ϕn+1

(n+ 1)(n+ 2)(1 + µ |β∇b|2)
.

By proceeding as in Lemma 11.7 we have for any k ∈ N and s⋆ > d/2∣∣∇ϕ0∣∣Hk ≤ C
(∣∣∇ψ∣∣

Hk+2N + (
∣∣εζ∣∣

Hk+2N +
∣∣βb∣∣

Wk+2N,∞)
∣∣∇ψ∣∣

Hs⋆

)
where, here and thereafter, C depends uniquely on d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M ≥ 0,
k ∈ N, N ∈ N, and changes from line to line. By induction on n ∈ {0, . . . , 2N + 2}, we infer∣∣ϕn∣∣Hk ≤ µ⌊(n+1)/2⌋ C

(∣∣∇ψ∣∣
Hk+2N+n−1 + (

∣∣εζ∣∣
Hk+2N+n−1 +

∣∣βb∣∣
Wk+2N+n−1,∞)

∣∣∇ψ∣∣
Hs⋆

)
.

By construction, we find that

µ∆xΦapp,N + ∂2zΦapp,N = (z + 1− βb)2N+1r1,N + (z + 1− βb)2N+2r2,N (11.28)

with

r1,N = µ∆ϕ2N+1 − 2µ(2N + 2)(β∇b) · (∇ϕ2N+2)− µ(2N + 2)(β∆b)ϕ2N+2,

r2,N = µ∆ϕ2N+2.

From the above, we infer∣∣r1,N ∣∣Hk +
∣∣r2,N ∣∣Hk ≤ µN+2 C

(∣∣∇ψ∣∣
Hk+4N+3 + (

∣∣εζ∣∣
Hk+4N+3 +

∣∣βb∣∣
Wk+4N+3,∞)

∣∣∇ψ∣∣
Hs⋆

)
.

Moreover, we have

(∂zΦapp,N − µ(β∇b) · ∇xΦapp,N )
∣∣
z=−1+βb

= ϕ1 − µβ∇b · (∇ϕ0 − (β∇b)ϕ1) = 0. (11.29)
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Finally, denoting Vn[ϵζ, βb] as in Section 11.1 and proceeding as in Lemma 11.7 we have,

Φapp,N

∣∣
z=ϵζ

=

2N+1∑
n=0

(1 + εζ − βb)nϕn = ϕ0 +

N∑
n=1

µnVn[ϵζ, βb](∇ϕ0) + rN

with ∣∣rN ∣∣Hk ≤ µN+1 C
(∣∣∇ψ∣∣

Hk+4N + (
∣∣εζ∣∣

H4N +
∣∣βb∣∣

W 4N,∞)
∣∣∇ψ∣∣

Hs⋆

)
,

and therefore, using the identity ϕ0 = ψ +
∑2N
n=1 µ

nBn[ϵζ, βb](∇ψ) and the recursion formula

Bn[εζ, βb]
def
= −Vn[εζ, βb]−

n−1∑
k=1

Vk[εζ, βb] ◦ Bn−k[εζ, βb],

we find

Φapp,N

∣∣
z=ϵζ

= ψ +

2N∑
n=N+1

N∑
k=n−N

µnVn[ϵζ, βb] ◦ Bn−k[ϵζ, βb](∇ψ) + rN .

Proceeding once again as in Lemma 11.7, we deduce∥∥Φapp,N

∣∣
z=ϵζ

− ψ
∥∥
Hk ≤ µN+1 C

(∣∣∇ψ∣∣
Hk+4N + (

∣∣εζ∣∣
H4N +

∣∣βb∣∣
W 4N,∞)

∣∣∇ψ∣∣
Hs⋆

)
. (11.30)

We have proved that Φapp,N satisfies approximately the Laplace problem, eq. (2.8). The problem
is slightly different from the one studied in Proposition 4.5 since the remainder terms in the bulk of
the fluid domain and on the Neumann (impermeability) condition at the bottom do not correspond;
see Definition 4.2. However the proof is straightforwardly adapted to this framework—see [268,
Lemma 3.43]—and we find that there exists p ∈ N such that∥∥Λk∇µ

x,z(Φapp,N−Φ)
∥∥
L2(S)

≤ µN+ 3
2 C

(∣∣∇ψ∣∣
Hk+4N+p+(

∣∣εζ∣∣
Hk+4N+p+

∣∣βb∣∣
Wk+4N+p,∞)

∣∣∇ψ∣∣
Hs⋆

)
where we denote ∇µ

x,z
def
= (

√
µ∇, ∂z)⊤, Λ

def
= (Id−∆x)

1/2, S def
= Rd×(−1, 0) and Φapp,N = Φapp,N ◦Σ

and Φ = Φ ◦ Σ with Σ : (x, z) ∈ S 7→
(
x, (1 + εζ(x) − βb(x))z + εζ(x)

)
. It follows that for any

α ∈ Nd such that |α| ≤ k,∥∥∇µ
x,z∂

α(Φapp,N−Φ)
∥∥
L2(Ω)

≤ µN+ 3
2 C

(∣∣∇ψ∣∣
Hk+4N+p+(

∣∣εζ∣∣
Hk+4N+p+

∣∣βb∣∣
Wk+4N+p,∞)

∣∣∇ψ∣∣
Hs⋆

)
Denoting

uapp,N
def
=

1

h

∫ ϵζ

−1+βb

∇xϕapp,N dz, uapp,N
def
= (∇xϕapp,N )

∣∣
z=ϵζ

, wapp,N
def
= (∂zϕapp,N )

∣∣
z=ϵζ

,

we deduce, augmenting p if necessary,∣∣u− uapp,N

∣∣
Hk +

∣∣u− uapp,n

∣∣
Hk +

∣∣w − wapp,n

∣∣
Hk

≤ C µN+1
(∣∣∇ψ∣∣

Hk+4N+p + (
∣∣εζ∣∣

Hk+4N+p +
∣∣βb∣∣

Wk+4N+p,∞)
∣∣∇ψ∣∣

Hs⋆

)
where we use Cauchy–Schwarz inequality for the first contribution, the trace inequality eq. (4.5) for
the second and together with eq. (11.28)–eq. (11.29) for the third.

The last step consists in showing that∣∣uapp,N −
∑N
n=0 µ

nun
∣∣
Hk +

∣∣uapp,n −
∑N
n=0 µ

nun
∣∣
Hk +

∣∣wapp,n −
∑N
n=0 µ

nwn
∣∣
Hk

≤ C µN+1
(∣∣∇ψ∣∣

Hk+4N+p + (
∣∣εζ∣∣

Hk+4N+p +
∣∣βb∣∣

Wk+4N+p,∞)
∣∣∇ψ∣∣

Hs⋆

)
.

This follows from the definitions of the operators Un[ϵζ, βb], Un[ϵζ, βb] and Wn[ϵζ, βb], given in
eq. (11.8)–(11.9)–(11.10), proceeding as we have done to prove eq. (11.30).
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Remark 11.9. We observe a loss of 4N + p derivatives (or 4N + p− 1 for the variable w) between
the regularity of the data and the control of the approximation. This should be compared with
Proposition 4.9 in which we observe a loss of “only” 2N + p̃. It is clear that we could extend the
analysis in Section 4 to obtain approximations at any order (see [268, Proposition 3.37]). Remarking
that the two expansions must coincide, we infer that the above result does hold with a loss of 2N + p̃
derivatives, which is optimal (up to the choice of p̃) since the next term in the approximation is
given through a differential operator of order 2N +2 (or 2N +3 for the variable w) which does not
vanish identically, as we can see from the linear analysis in Section 11.4.

The following consistency result is an obvious consequence of Lemma 11.7 and Lemma 11.8.

Proposition 11.10 (Consistency). There exists p ∈ N such that the following holds.
Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, M⋆ ≥ 0, s ≥ 0, N ∈ N⋆. There exists C > 0

such that for any (µ, ε, β) ∈ pSW, for any b ∈ Wmax{s+4N+p,2+s⋆}(Rd), for any T > 0 and for
any (ζ, ψ) ∈ L∞(0, T ;Hmax{s+4N+p,2+s⋆}(Rd)× H̊max{s+4N+p,2+s⋆}(Rd)2) classical solution to the
water waves equations, eq. (2.7’), satisfying eq. (11.27) uniformly for t ∈ (0, T ) and

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
Hs⋆+2N +

∣∣∇ψ(t, ·)∣∣
Hs⋆+2N

)
+
∣∣βb∣∣

Wmax{s+4N+p,2+s⋆},∞ ≤M⋆,

one has 
∂tζ +

N∑
n=0

µn∇ ·
(
hun

)
= r1,N ,

∂tψ + ζ + ϵ

N∑
n=0

µn

(
un · ∇ψ − 1

2

n∑
k=0

uk · un−k −
1

2

n−1∑
k=0

wkwn−1−k

)
= r2,N ,

where we denote(
un , un , wn )

def
=
(
Un[ϵζ, βb](∇ψ) , Un[ϵζ, βb](∇ψ) , Wn[ϵζ, βb](∇ψ)

)
and one has for almost every t ∈ (0, T )∣∣r1,N (t, ·)

∣∣
Hs ≤ C µN+1

(∣∣ζ(t, ·)∣∣
Hs+4N+p +

∣∣∇ψ(t, ·)∣∣
Hs+4N+p

)
,∣∣r2,N (t, ·)

∣∣
Hs+1 ≤ C µN+1ε

∣∣∇ψ(t, ·)∣∣
Hs⋆+2N

(∣∣ζ(t, ·)∣∣
Hs+4N+p +

∣∣∇ψ(t, ·)∣∣
Hs+4N+p

)
.

Remark 11.11. We have provided the consistency of the water waves system with respect to the
first model, eq. (11.15). We could provide the consistency of the water waves system with respect
to the second model, eq. (11.17), along the same lines. Yet we have in this case an additional step,
due to the fact that the variables of the model are (ζ,u) instead of (ζ,∇ψ). Recall the latter is
uniquely defined from the former and we have regularity estimates, by Proposition 4.9. In addition
to controlling the differences∣∣u−

∑N
n=0 µ

nŨn[ϵζ, βb](u)
∣∣
Hs and

∣∣w −
∑N
n=0 µ

nW̃n[ϵζ, βb](u)
∣∣
Hs ,

where Ũn and W̃n are defined in eq. (11.12)–(11.13), we also need to control∣∣∂t(∇ψ −
∑N
n=0 µ

nṼn[ϵζ, βb](u)
)∣∣
Hs

where Ṽn is defined in eq. (11.11). While the former would be obtained similarly as in Lemma 11.8,
the latter requires a specific analysis basically amounting to considering the Laplace problem satisfied
the time derivative of the velocity potential, ∂tΦ; see Remark 5.2 for a similar remark with a little
bit more details.
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In this manuscript, convergence results follow from stability and the well-posedness of the Cauchy
problems. Except in particular cases already treated (specifically in Section 5.3 and Section 8.5)
these are open problems, which are discussed in the following section. We could use the opposite
reasoning and prove that regular solutions to the model systems, eq. (11.15) or eq. (11.17) (although
in the latter we face the issue of reconstructing the velocity potential from the knowledge of the
layer-averaged velocity), satisfy the water waves system up to a small remainder; and then refer
to [268, Theorem 4.18] to deduce that the corresponding water waves solution remains close on
the relevant time interval. Of course, while the set of regular solutions to the models may not be
trivial even when lacking a robust well-posedness theory (it may contain solitary waves and analytic
solutions for instance), the outcome is much less appealing than the ones we obtained so far.

11.6 Discussion and open questions

Let us quote Matsuno [302, §6], on the extended Green–Naghdi model.

There are a number of interesting problems associated with the extended GN equations
that are worthy of further study. In conclusion, we list some of them.

(i) The identification of physically relevant models among various extended GN equa-
tions.

(ii) The effect of higher-order dispersion on the wave characteristics in comparison with
that predicted by other asymptotic models like Boussinesq equations.

(iii) Numerical computations of the initial value problems as well as solitary and periodic
wave solutions.

(iv) The justification of the asymptotic models by means of the rigorous mathematical
analysis.

Let us discuss these points. As we mentioned above there is so far no well-posedness result
concerning the initial-value problem for systems eq. (11.15) (unless N = 0 corresponding to the
Saint-Venant system; see Theorem 5.3) or systems eq. (11.17) (unless again N = 0, or N = 1
corresponding to the Green–Naghdi system; see Theorem 8.3). As mentioned in Section 11.4, the
cases N ≥ 1 odd for eq. (11.15) and N ≥ 2 even for eq. (11.17) are hopeless, due to high frequency
modal instabilities. The remaining cases are open problems. Such results, if they hold, typically
rely on very delicate cancellations since high order differential operators are involved,60 and/or
on manipulations akin to the “BBM trick” to derive equivalent models with favorable properties;
see [52, 77, 252] for Boussinesq-type models and [253, 251] for the full justification of a modified
extended Green–Naghdi system built from eq. (11.17) with N = 2.

As we have mentioned in Section 11.4, and as is apparent in Figure 11.1, augmenting the
rank, N , in the family of systems fails to improve the approximation (at least for the models we
exhibited; see however footnote 56), even in the linear framework, as soon as moderate-to-high
(spatial) frequencies account for a significant proportion of the energy. We expect that for a given
(initial) datum, there is a critical N⋆ such that the prediction of the model improves with growing
rank N ≤ N⋆, and then quickly deteriorates. From Figure 11.1 one can imagine that higher rank
systems will be relevant only for waves with very large wavelength; or, if we fix smooth data and
allow the parameter µ ∈ (0, µ⋆] to vary, for very small values of µ.

In the same way, assuming that solitary waves solutions to our systems do exist—there is no
rigorous result to my knowledge—we do expect that they provide very good approximations for
solitary waves solutions to the water waves system with very small (yet supercritical) velocities,
since the latter are long waves; but we do not expect that increasing the rank of the model allows to

60Systems (11.17) appear more favorable since—as in our analysis of the Green–Naghdi (and obviously the Saint-
Venant) system—the system can be interpreted as quasilinear of order 1 when using relevant functional spaces.
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widen the velocity interval for which solitary wave solutions to the system provide a fair description
of solitary wave solutions to the water waves system.

Shortly put, we expect that augmenting the rank of the model may improve its accuracy for
flows with very large wavelength, but we cannot hope that they improve their domain of validity.

In their review [294], Madsen and Fuhrman report in many details the long history which led
to enhanced Friedrichs-type (therein called Boussinesq-type) models with improved performance at
moderate frequencies. Most often, due to the complexity of the models, one relies on the help of
numerical simulations to compare the behavior of models. Conveniently, the next chapter in the
same book [427], by Zang, Fang and Liu, provides an example of such analysis.

There is much more to discuss on Friedrichs-type high order models than the author can digest
or report, and it should be clearly stated that the present Section only scratches the surface. Yet
it is my opinion that the difficulties we describe are inherently linked to the method of derivation,
and first and foremost to the use of the Boussinesq–Rayleigh expansion, eq. (11.1). We present in
Sections 12 and 13 two approaches which appear much more promising.
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12 The Galerkin method, and the augmented and“multilayer”Green–
Naghdi systems

In this section we shall derive formally a large class of models for the water waves system, eq. (2.7),
using as main tool the finite element method applied to a convenient reformulation of the Laplace
equation, eq. (2.8). The classes of models we can construct in this way is huge, as it depends on
the choice of the subspace defining the dimension reduction. As a matter of fact, the procedure
provides a natural framework for the complete numerical discretization of the water waves system.
We provide two class of examples representing two natural strategies in which the subspace is
tensorized in the vertical and horizontal space variables. In the first one, we mimic the Boussinesq–
Rayleigh shallow water expansion of the preceding Section, eq. (11.1); yet the outcome are models
with completely different features, and in particular high order differential operators are replaced
by a system of differential equations of order two. In the second strategy, the subspace is defined
through an artificial discretization in“layers” in the vertical variable. Once again the models involve
a system of differential equations of order two, in place of the Dirichlet-to-Neumann operator. Both
models can be interpreted as special cases of the finite element method for which the basis functions
are piecewise polynomials in the vertical variable. Interestingly, the Green–Naghdi system studied
in Section 8 is a special case for both families.

12.1 Derivation of the models

12.1.1 Reformulation of the Laplace problem

In this section, we drop any reference to the time variable which acts as a parameter. We work
with the following integral equation satisfied by the velocity potential, as a solution to the Laplace
problem, eq. (2.8) (see Lemma 4.7)

Φ + µℓ[εζ, βb]Φ = ψ

where

(
ℓ[εζ, βb]Φ

)
(·, z) def

= −
∫ εζ

z

(
−(β∇b) · (∇xΦ)

∣∣
z=−1+βb

+

∫ z′

−1+βb

∆xΦ(·, z′′) dz′′
)
dz′

More precisely, applying the horizontal gradient operator, we shall consider the relation

∇xΦ(x, z) + µ
(
L[εζ, βb]∇xΦ

)
(x, z) = ∇ψ(x)

were

(
L[εζ, βb]U

)
(·, z) def

= −∇x

(∫ εζ

z

(
−(β∇b) · U

∣∣
z=−1+βb

+

∫ z′

−1+βb

∇x · U(·, z′′) dz′′
)
dz′

)
. (12.1)

Note L[εζ, βb] is a symmetric operator in L2(Ω) where Ω = {(x, z) ∈ Rd+1 : −1 + βb(x) < z < εζ(x)}:
for sufficiently regular and localized functions,

(
L[εζ, βb]U , V

)
L2(Ω)

def
=

∫
Rd

∫ εζ(x)

−1+βb(x)

(L[εζ, βb]U) · V dz dx

=

∫
Rd

∫ εζ(x)

−1+βb(x)

(
∇x ·

(∫ z

−1+βb(x)

U(x, z′) dz′

))(
∇x ·

(∫ z

−1+βb(x)

V (x, z′) dz′

))
dz dx.
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Obviously, L[εζ, βb] is positive:
(
L[εζ, βb]U , U

)
L2(Ω)

≥ 0. It is hence natural to consider the space

Xµ(Ω)
def
=
{
U ∈ L2(Ω)d :

∥∥∇x ·
( ∫ ·

−1+βb(x)
U(·, z′) dz′

)∥∥
L2(Ω)

}
endowed with the topology induced by the inner-product

⟨U , V ⟩Xµ

def
=
(
U , V

)
L2(Ω)

+µ
(
∇x ·

( ∫ ·
−1+βb

U(·, z′) dz′
)
, ∇x ·

( ∫ ·
−1+βb

V (·, z′) dz′
))
L2(Ω)

. (12.2)

we can apply Riesz representation Lemma to infer that Id+µL[εζ, βb] : Xµ → (Xµ)
′ is invertible.

For ψ ∈ H̊1(Rd), we may define ψ̃ : (x, z) ∈ Ω 7→ ψ(x) ∈ H1(Ω)d+1 ⊂ (Xµ)
′, and the Laplace

problem may be rewritten equivalently (dropping the tilde) as

∇xΦ =
(
Id+µL[εζ, βb]

)−1∇ψ. (12.3)

More precisely, we define the following notion of variational solutions.

Definition 12.1 (Variational solutions). Let ψ ∈ H̊1(Rd) and ζ, b ∈W 1,∞(Rd) satisfying

∀x ∈ Rd, h(x) = 1 + εζ(x)− βb(x) ≥ h⋆ > 0.

We say that U ∈ Xµ(Ω) is a variational solution to eq. (12.3) if for any V ∈ Xµ(Ω),

⟨U , V ⟩Xµ =
(
∇ψ , V

)
L2(Ω)

=

∫
Rd

(∇ψ) ·
(∫ εζ

−1+βb

V (·, z) dz
)
dx

where ⟨·, ·⟩Xµ
is defined in eq. (12.2). In the formula above we identified x 7→ ψ(x) ∈ H̊1(Rd) and

(x, z) 7→ ψ(x) ∈ H̊1(Ω).

Remark 12.2. It is interesting to pause and compare our formulation with the Dirichlet-to-Neumann
operator. We have (see Lemma 4.6)

Gµ[εζ, βb]ψ = −µ∇ ·

(∫ εζ

−1+βb

∇xΦ(·, z) dz

)
= −µ∇ ·

(∫ εζ

−1+βb

(
Id−µL[εζ, βb]

)−1∇ψ

)
. (12.4)

We can therefore relate properties of the Dirichlet-to-Neumann operator (see Proposition 2.3) with
properties of (Id−µL[εζ, βb])−1. For instance,

〈 1
µ
Gµ[εζ, βb]ψ1, ψ2

〉
(H̊1)′−H̊1 =

∫
Rd

(∫ εζ

−1+βb

((
Id−µL[εζ, βb]

)−1∇ψ1

)
(·, z) dz

)
· ∇ψ2 dx

=
( (

Id−µL[εζ, βb]
)−1∇ψ1 , ∇ψ2

)
L2(Ω)

.

Moreover, the relation above shows that solving eq. (12.3) is sufficient to infer Gµ[εζ, βb]ψ, and
hence every contribution in the water waves system, eq. (2.7).

12.1.2 Galerkin dimension reduction

We now apply the Galerkin method to the variational formulation of eq. (12.3). Define Y ⊂ Xµ(Ω)
a subspace and ΠY : Xµ(Ω) → Y the corresponding orthogonal projection: Π2

Y = ΠY = ΠY
⋆. Then

we define an approximate solution to eq. (12.3) as the variational solution to(
Id+µΠY L[εζ, βb]ΠY

)
UY = ∇ψ,

that is UY such that UY −∇ψ ∈ Y and

∀V ∈ Y, ⟨UY , V ⟩Xµ
=
(
∇ψ , V

)
L2(Ω)

. (12.5)

where we recall that ⟨·, ·⟩Xµ
is defined in eq. (12.2).
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Remark 12.3. By standard properties of the Galerkin method we have, denoting U the exact solution
defined in Definition 12.1 and UY the approximate solution defined above,∥∥U − UY

∥∥2
L2(Ω)

≤ ⟨U − UY , U − UY ⟩Xµ
≤ inf
V ∈Y

⟨U − V , U − V ⟩Xµ
.

Once UY has been defined, we can plug this formula in eq. (12.4) to infer an approximation of
the Dirichlet-to-Neumann operator, and in turn an approximate model for the water waves system,
eq. (2.7). In this last step, it is beneficial to preserve the canonical Hamiltonian structure of the
system, and to derive the model through an approximate Hamiltonian: we define

HY (ζ, ψ)
def
=

1

2

∫
Rd

ζ2 + (∇ψ) ·
(∫ εζ

−1+βb

UY (·, z) dz
)
dx (12.6)

and consider {
∂tζ − δψHY = 0,

∂tψ + δζHY = 0.
(12.7)

By Noether’s theorem (see Section 2.2), the system preserves mass, energy and horizontal impulse:

d

dt
Z =

d

dt
HY = 0, Z

def
=

∫
Rd

ζ dx,
d

dt
I = 0, I

def
=

∫
Rd

ζ∇ψ dx (if βb ≡ 0).

The procedure above yields a model for any choice of the subspace Y ⊂ Xµ(Ω). We provide in
the following subsection a few revealing examples, where subspaces Y are set—complying with the
finite element method—as the superposition of piecewise polynomial functions in the variable z.

12.1.3 The augmented and “multilayer” Green–Naghdi systems

i. If we set Π0 = 0 the null operator, then the procedure above yields U0 = ∇ψ,

H 0
SV(ζ, ψ)

def
=

1

2

∫
Rd

ζ2 + (1 + εζ − βb)|∇ψ|2 dx

and {
∂tζ +∇ ·

(
(1 + εζ − βb)∇ψ

)
= 0,

∂tψ + ζ + ε
2 |∇ψ|

2 = 0.

In other words, we recover the Saint-Venant system, eq. (5.2).

ii. If we set Π1 as the layer-averaging operator

Π1 : U 7→ 1

1 + εζ − βb

∫ εζ

−1+βb

U(·, z′) dz′,

then direct computations show that for any sufficiently regular U ,

Π1L[εζ, βb]Π1U = T [h, β∇]u.

where we denote u = Π1U , h = 1 + εζ − βb and T [h, β∇] has been defined in eq. (4.7):

T [h, β∇b]u def
=

−1

3h
∇(h3∇ · u) + 1

2h

(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ (β∇b · u)(β∇b).

From this we infer U1
def
= (Id+µT [h, β∇])−1∇ψ = Tµ[h, β∇b]−1(h∇ψ) with Tµ = h Id+µhT ,61

H 1
GN(ζ, ψ)

def
=

1

2

∫
Rd

ζ2 + (h∇ψ) · Tµ[h, β∇b]−1(h∇ψ) dx

and the associated canonical Hamiltonian equations, eq. (12.7), are the Green–Naghdi equa-
tions, eq. (8.2); see Section 8.1.1.

61It is interesting to notice how the symmetry of Tµ in L2(Rd) relates to the symmetry of Π1L[εζ, βb]Π1 in L2(Ω).
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iii. Building upon the previous examples, and motivated by the Boussinesq–Rayleigh expansion,
eq. (11.1), we set N ∈ N⋆, and p1, · · · , pN nonnegative integers with p1 < · · · < pN and set

YN =

{
U ∈ Xµ(Ω) : U(x, z) =

N∑
i=1

ui(x) (z + 1− βb(x))pi , ui ∈ X0
µ

}
where we denote, as in Section 8.5,

X0
µ

def
= {u ∈ L2(Rd)d :

∣∣u∣∣2
X0

µ

def
=
∣∣u∣∣2

L2 + µ
∣∣∇ · u

∣∣2
L2 <∞}.

Solving eq. (12.5) yields

UN =

N∑
i=1

ui(x) (z + 1− βb(x))pi

where (ui)i∈{1,...,N} ∈ (X0
µ)
N satisfies for any (vi)i∈{1,...,N} ∈ (X0

µ)
N ,

N∑
i=1

N∑
j=1

∫
Rd

[
hpi+pj+1

pi + pj + 1
ui · vj + µ

hpi+pj+3

(pi + 1)(pj + 1)(pi + pj + 3)
(∇ · ui)(∇ · vj)

+ µ
hpi+pj+2

(pj + 1)(pi + pj + 2)
(−β∇b · ui)(∇ · vj) + µ

hpi+pj+2

(pi + 1)(pi + pj + 2)
(∇ · ui)(−β∇b · vj)

+ µ
hpi+pj+1

pi + pj + 1
(−β∇b · ui)(−β∇b · vj)

]
dx =

N∑
j=1

∫
Rd

hpj+1

pj + 1
(∇ψ) · vj dx,

where h = 1 + εζ − βb. The above can be written as a system of linear differential equations

∀j ∈ {1, . . . , N},
N∑
i=1

Lµji[h, β∇b]ui =
hpj+1

pj + 1
∇ψ (12.8)

where for any i, j ∈ {1, . . . , N},

Lµji[h, β∇b]ui
def
=

hpi+pj+1

pi + pj + 1
ui − µ∇

(
hpi+pj+3

(pi + 1)(pj + 1)(pi + pj + 3)
(∇ · ui)

)
+ µ∇

(
hpi+pj+2

(pj + 1)(pi + pj + 2)
(β∇b · ui)

)
− µ

hpi+pj+2

(pi + 1)(pi + pj + 2)
(∇ · ui)(β∇b)

+ µ
hpi+pj+1

pi + pj + 1
(β∇b · ui)(β∇b). (12.9)

If N = 1 and p1 = 0, we recover the Green–Naghdi equations. Otherwise we put

H
(p1,...,pN )
aGN (ζ, ψ)

def
=

1

2

∫
Rd

ζ2 +

N∑
i=1

hpi+1

pi + 1
ui · ∇ψ dx

where we recall that (ui)i∈{1,...,N} is determined from (εζ, βb, ψ) by eq. (12.8). Because

ψ 7→ G(p1,...,pN )
aGN [εζ, βb]ψ

def
= −∇ ·

(
N∑
i=1

hpi+1

pi + 1
ui

)
is symmetric for the L2(Rd) inner product, we have

δψH
(p1,...,pN )
aGN (ζ, ψ) = G(p1,...,pN )

aGN [εζ, βb]ψ = −∇ ·

(
N∑
i=1

hpi+1

pi + 1
ui

)
. (12.10)
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We infer the functional derivative with respect to ζ as follows. Denote for all i, j ∈ {1, . . . , N},

DhLµji[h, β∇b](η)uj
def
= ηhpi+pj

(
ui + (β∇b · ui)(β∇b)

)
− µ∇

(
η

hpi+pj+2

(pi + 1)(pj + 1)
(∇ · ui)

)
+ µ∇

(
η
hpi+pj+1

pj + 1
(β∇b · ui)

)
− µη

hpi+pj+1

pi + 1
(∇ · ui)(β∇b),

so that η 7→ DhLµji[h, β∇b](η), is the Fréchet derivative of L
µ
ji[h, β∇b] with respect to h. Then,

denoting (ui[εζ, β∇b]ψ)i∈{1,...,N} the solutions to eq. (12.8) we have for all j ∈ {1, . . . , N}

N∑
i=1

Lµji[h, β∇b]Dζui[h, β∇b](η)ψ + ε

N∑
i=1

DhLµji[h, β∇b](η)ui[εζ, β∇b]ψ = εηhpj∇ψ.

From this and the fact that (Lµji)⋆ = Lµij with (Lµij)⋆ the adjoint operator in L2(Rd), we infer

δζH
(p1,...,pN )
aGN (ζ, ψ) = ζ + ε

N∑
i=1

hpiui · ∇ψ − ε

2

N∑
i=1

N∑
j=1

Qµ
ij [h, β∇b](ui,uj) (12.11)

with, for all i, j ∈ {1, . . . , N},

Qµ
ij [h, β∇b](u,v)

def
= hpi+pj

(
u · v + (β∇b · u)(β∇b · v)

)
+ µ

hpi+pj+2

(pi + 1)(pj + 1)
(∇ · v)(∇ · u)

− µ
hpi+pj+1

pj + 1
(∇ · v)(β∇b · u)− µ

hpi+pj+1

pi + 1
(∇ · u)(β∇b · v).

Summing up, we consider {
∂tζ − δψH

(p1,...,pN )
aGN (ζ, ψ) = 0,

∂tψ + δζH
(p1,...,pN )
aGN (ζ, ψ) = 0.

(12.12)

where δψH
(p1,...,pN )
aGN (ζ, ψ), δζH

(p1,...,pN )
aGN (ζ, ψ) are given by eq. (12.10)–(12.11) and, therein,

(ui)i∈{1,...,N} ∈ (X0
µ)
N are defined as the solutions to eq. (12.8).

Remark 12.4. It is interesting to compare with the models introduced in Section 11, in which
the space YN plays a key role, but where the variables (ui)i∈{0,...,N} are explicitly computed
from the Boussinesq–Rayleigh expansion eq. (11.1), instead of being characterized as solutions
to a system of differential equations as above. We see that, when increasing the rank of the
model, N , the size of the system grows in the latter strategy, while the order of the differential
operators at stake grows in the former strategy.

Using physical variables (recall Section 2.4), eq. (12.12) yields the augmented Green–
Naghdi systems ∂tζ +∇ ·

(∑N
i=1

hpi+1

pi+1 ui

)
= 0,

∂tψ + gζ +
∑N
i=1 h

piui · ∇ψ − 1
2

∑N
i=1

∑N
j=1 Q1

ij [h,∇b](ui, uj) = 0,
(12.13)

where h(t, x) = d + ζ(t, x) − b(x), Lij and Qij are defined above and (ui)i∈{1,...,N} are the
solutions to

∀j ∈ {1, . . . , N},
N∑
i=1

L1
ji[h,∇b]ui =

hpj+1

pj + 1
∇ψ.
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iv. We now define a projection corresponding to a “multilayer” discretization of the flow.62 Set
N ∈ N⋆ and

−1 + βb(x) = η0(x) < η1(x) < · · · < ηN (x) = εζ(x).

Then we denote

ΠN : U 7→
N∑
i=1

ui(x)1(ηi−1(x),ηi(x))(z), ui
def
=

1

ηi − ηi−1

∫ ηi

ηi−1

U(·, z) dz

where 1(a,b)(z) = 1 if z ∈ (a, b), and 0 otherwise. Solving eq. (12.5) (in the flat bottom case,
βb ≡ 0, for simplicity) yields

UN =

N∑
i=1

ui(x)1(ηi−1(x),ηi(x))(z)

where (ui)i∈{1,...,N} ∈ (X0
µ)
N satisfies for any (vi)i∈{1,...,N} ∈ (X0

µ)
N ,

∫
Rd

N∑
i=1

hiui · vi dx+ µ

∫
Rd

N∑
i=1

∫ ηi

ηi−1

(∑i−1
j=1 ∇ · (hjuj) +∇ · ((z − ηi−1)ui)

)
×
(∑i−1

k=1 ∇ · (hkvk) +∇ · ((z − ηi−1)vi)
)
dz dx =

∑N
i=1

∫
Rd(∇ψ) · (hivi) dx.

where we denote hi = ηi − ηi−1 for i ∈ {1, . . . , N}. The above can be written as a system of
linear differential equations for (ui)i∈{1,...,N} ∈ (X0

µ)
N :

∀i ∈ {1, . . . , N}, hiui+µhiT [hi,∇ηi−1]ui+µIi[η0, . . . , ηN ](u1, . . . ,uN ) = hi∇ψ (12.14)

where we recall the notation

T [h,∇η]u def
=

−1

3h
∇(h3∇ · u) + 1

2h

(
∇
(
h2(∇η) · u

)
− h2(∇η)∇ · u

)
+ (∇η · u)(∇η)

and introduce

Ii[η0, . . . , ηN ](u1, . . . ,uN )
def
= −hi(∇ηi−1)·

(∑i−1
j=1 ∇ · (hjuj)

)
+hi

∑N
j=i+1 ∇ (hj(∇ηj−1) · uj)

− 1
2∇
(
h2i
∑i−1
j=1 ∇ · (hjuj)

)
− hi

2

∑N
j=i+1 ∇

(
h2j∇ · uj

)
−hi

∑N
k=i+1

∑k−1
j=1 ∇ (hk∇ · (hjuj)) .

When N = 1, I[η0, η1]u1 = 0 and, denoting u = u1 and h = h1 = 1 + εζ − βb, eq. (12.14)
reads

u+ µT [h, β∇b]u = ∇ψ.
We recognize once again the Green–Naghdi system. This is of course consistent with the fact
that the projection ΠN for N = 1 is the layer-averaging operator. Otherwise we put

H
(η0,...,ηN )
mGN (ζ, ψ)

def
=

1

2

∫
Rd

ζ2 +

N∑
i=1

hiui · ∇ψ dx

where (ui)i∈{1,...,N} is determined from (−1+ βb = η0, η1, . . . , ηN = εζ, ψ) by eq. (12.14). As
above we remark that

ψ 7→ G(η0,...,ηN )
mGN [εζ, βb]ψ

def
= −∇ ·

(
N∑
i=1

hiui

)
62Here and thereafter, the “multilayer” terminology comes with quote marks. It should not be confused with

the bilayer or multilayer framework studied in Section 3 and Section 6 where layers are defined by the density
stratification. Here the layers simply correspond to a discretization strategy along the vertical variable. In particular,
particles of fluid freely cross the “interfaces”.



177 Chapter D. Higher order models

is symmetric for the L2(Rd) inner product, and hence

δψH
(η0,...,ηN )
mGN (ζ, ψ) = G(η0,...,ηN )

mGN [εζ, βb]ψ = −∇ ·

(
N∑
i=1

hiui

)
. (12.15)

Proceeding as for the augmented Green–Naghdi systems, we find

δζH
(η0,...,ηN )
mGN (ζ, ψ) = ζ + ε

N∑
i=1

∂hi

ε∂ζ (ui · ∇ψ − 1
2 |ui|

2)− µε

2

N∑
i=1

Qi[η0, . . . , ηN ](u1, . . . ,uN )

(12.16)
where Qi[η0, . . . , ηN ](u1, . . . ,uN ) is defined by∫

Rd

ui ·Dζ

(
hiT [hi,∇ηi−1]ui + Ii[η0, . . . , ηN ](u1, . . . ,uN )

)
(η) dx

= ε

∫
Rd

ηQi[η0, . . . , ηN ](u1, . . . ,uN ) dx,

where η 7→ Dζ

(
hiT [hi,∇ηi−1]ui + Ii[η0, . . . , ηN ](u1, . . . ,uN )

)
(η) is the Fréchet derivative of

the function with respect to ζ, the variables ui (i ∈ {1, . . . , N}) being fixed. The formula
is explicit but not very nice, in particular if ηi depends on ζ for i ∈ {1, . . . , N}. A typical
example is

ηi(t,x)
def
= −1 + βb(x) + ℓi(1 + εζ(t,x)− βb(x)), 0 = ℓ0 < ℓ1 < · · · < ℓN = 1.

To summarize, we consider {
∂tζ − δψH

(η0,...,ηN )
mGN (ζ, ψ) = 0,

∂tψ + δζH
(η0,...,ηN )
mGN (ζ, ψ) = 0.

(12.17)

where δψH
(η0,...,ηN )
mGN (ζ, ψ), δζH

(η0,...,ηN )
mGN (ζ, ψ) are given by eqs. (12.15) and (12.16) and where

(ui)i∈{1,...,N} ∈ (X0
µ)
N are solutions to eq. (12.14). Using physical variables (recall Sec-

tion 2.4), eq. (12.17) yields the “multilayer” Green–Naghdi systems ∂tζ +∇ ·
(∑N

i=1 hiui

)
= 0,

∂tψ + gζ +
∑N
i=1

∂hi
∂ζ (ui · ∇ψ − 1

2 |ui|
2)− 1

2

∑N
i=1 Qi[η0, . . . , ηN ](u1, . . . , uN ) = 0,

(12.18)
where hi = ηi−ηi−1 with −d+b(x) = η0(ζ(t, x)) < η1(ζ(t, x)) < · · · < ηN (ζ(t, x)) = ζ(t,x),
T , Ii, and Qi are defined above and (ui)i∈{1,...,N} are the solutions to

∀i ∈ {1, . . . , N}, hiui + hiT [hi,∇ηi−1]ui + Ii[η0, . . . , ηN ](u1, . . . , uN ) = hi∇ψ.

v. More generally, we can associate a model to

Y =

{
U ∈ Xµ(Ω) : U(x, z) =

N∑
i=1

ui(x)Ψi(x, z), ui ∈ X0
µ

}

for any given (linearly independent and sufficiently regular) choice of the vertical distribution,
{Ψi}i∈{1,...,N}, possibly depending on (εζ, βb). Solving eq. (12.5) yields

UN =

N∑
i=1

ui(x)Ψi(x, z)
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where (ui)i∈{1,...,N} ∈ (X0
µ)
N satisfies for any (vi)i∈{1,...,N} ∈ (X0

µ)
N ,

N∑
i=1

N∑
j=1

∫
Rd

aijui · vj + µ bij(∇ · ui)(∇ · vj)

+ µ (cij · ui)(∇ · vj) + µ(∇ · ui)(cji · vj)

+ µui ·Mijvj dx =

N∑
j=1

∫
Rd

dj(∇ψ) · vj dx,

with

aij =

∫ εζ

−1+βb

Ψi(·, z)Ψj(·, z) dz ,

bij =

∫ εζ

−1+βb

(∫ z

−1+βb

Ψi(·, z′) dz′
)(∫ z

−1+βb

Ψj(·, z′) dz′
)
dz ,

cij =

∫ εζ

−1+βb

(∫ z

−1+βb

∇xΨi(·, z′) dz′
)(∫ z

−1+βb

Ψj(·, z′) dz′
)
dz ,

Mij =

∫ εζ

−1+βb

(∫ z

−1+βb

∇xΨi(·, z′) dz′
)(∫ z

−1+βb

∇⊤
xΨj(·, z′) dz′

)
dz ,

dj =

∫ εζ

−1+βb

Ψj(·, z) dz .

We infer the system of linear differential equations

∀j ∈ {1, . . . , N},
N∑
i=1

Lµjiui = dj∇ψ (12.19)

where for any i, j ∈ {1, . . . , N},

Lµjiui
def
= ajiui − µ∇ (bji(∇ · ui))− µ∇(cij · ui) + µ(∇ · ui)cji + µMjiui.

We put

H (Ψ1,...,ΨN )(ζ, ψ)
def
=

1

2

∫
Rd

ζ2 +

N∑
i=1

diui · ∇ψ dx

and consider {
∂tζ − δψH (Ψ1,...,ΨN ) = 0,

∂tψ + δζH (Ψ1,...,ΨN ) = 0.
(12.20)

with

δψH (Ψ1,...,ΨN )(ζ, ψ) = −∇ · (diui) , (12.21)

δζH
(Ψ1,...,ΨN )(ζ, ψ) = ζ + ε

N∑
i=1

∂di
ε∂ζui · ∇ψ − ε

2

N∑
i=1

Qµ
i (u1, . . . ,uN ), (12.22)

where (u1, . . . ,un) is determined by eq. (12.19) and Qµ
i (u1, . . . ,uN ) is defined by∫

Rd

ui ·
N∑
j=1

Dζ

(
Lµijuj

)
(η) dx = ε

∫
Rd

ηQµ
i (u1, . . . ,uN ) dx,

where η 7→ Dζ

(
Lµijuj

)
(η) is the Fréchet derivative of Lµijuj with respect to ζ, the variable uj

being fixed. Of course the formulae depend heavily on the choice of the vertical distribution,
{Ψi}i∈{1,...,N}, and its dependency with respect to εζ.
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12.2 Modal analysis

In this section we study the dispersion relation associated to some augmented and “multilayer”
Green–Naghdi systems, introduced in Item iii and Item iv above. The findings are illustrated in
Figure 12.1. Recall that the water waves system, when linearized about the rest state solution and
in the flat bottom situation reads (see Section 2.3){

∂tζ
0 + 1√

µ |D| tanh(√µ|D|)ψ0 = 0,

∂tψ
0 + ζ0 = 0,

which yields the dispersion relation

ωww(ξ)
2 = 1√

µ |ξ| tanh(
√
µ|ξ|).

The corresponding linearized augmented Green–Naghdi system reads{
∂tζ

0 +
∑N
i=1

1
pi+1∇ · u0

i = 0,

∂tψ
0 + ζ0 = 0,

where (u0
i )i∈{1,...,N} is determined by solving the system

∀j ∈ {1, . . . , N},
N∑
i=1

1
pi+pj+1u

0
i − µ 1

(pi+1)(pj+1)(pi+pj+3)∇(∇ · u0
i ) =

1
pj+1∇ψ.

The linearized “multilayer” Green–Naghdi system with ηi = −1 + βb+ ℓi(1 + εζ − βb) for 0 = ℓ0 <
ℓ1 < · · · < ℓN = 1 read {

∂tζ
0 +

∑N
i=1(ℓi − ℓi−1)∇ · u0

i = 0,

∂tψ
0 + ζ0 = 0,

where (u0
i )i∈{1,...,N} is determined by solving the system

∀i ∈ {1, . . . , N}, u0
i −

µ
3 (ℓi − ℓi−1)

2∇(∇ · u0
i )−

µ
2

∑i−1
j=1(ℓi − ℓi−1)(ℓj − ℓj−1)∇(∇ · u0

j )

− µ
2

∑N
j=i+1(ℓj − ℓj−1)

2∇(∇ · u0
j )− µ

∑N
k=i+1

∑k−1
j=1 (ℓk − ℓk−1)(ℓj − ℓj−1)∇(∇ · u0

j ) = ∇ψ.

When choosing “layers” with equal depth, ℓi = i/N for i ∈ {0, . . . , N}, the above reads simply

∀i ∈ {1, . . . , N}, u0
i−

µ
3N2∇(∇·u0

i )−
µ

2N2

∑
j ̸=i∇(∇·u0

j )−µ
∑N
j=1

N−max({i,j})
N2 ∇(∇·u0

j ) = ∇ψ.

The augmented Green–Naghdi model Recall that for N = 1 and p1 = 0, the model presented
in Item iii (in fact in Item ii) corresponds to the Green–Naghdi equations. Accordingly, u0

1 =(
Id−µ

3∇∇ ·
)−1∇ψ = ∇(Id−µ

3∆)−1ψ, and the dispersion relation (see Section 8.3) is

ωGN(ξ)
2 = |ξ|2 1

1 + µ
3 |ξ|2

.

When N = 2, and (p1, p2) = (0, 1), we find

u0
1 = ∇ 240 + 36µ∆

240− 104µ∆+ 3µ2∆2
ψ, u0

2 = ∇ −120µ∆

240− 104µ∆+ 3µ2∆2
ψ,

and the corresponding dispersion relation

ω
(0,1)
aGN (ξ)2 = |ξ|2 240 + 24µ|ξ|2

240 + 104µ|ξ|2 + 3µ2|ξ|4
.
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(a) Augmented Green–Naghdi systems.

0.0 2.5 5.0 7.5 10.0
d| |

0

1

2

3

|
|/

g/
d

water waves
N = 1 (Green-Naghdi)
N = 2
N = 3
N = 4

(b) “Multilayer” Green–Naghdi systems.

-2 -1 0 1 2
log10(d| |)

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

lo
g 1

0(
1

|
|/|

w
w
|)

N = 1 (Green-Naghdi)
N = 2, p1 = 0, p2 = 1
N = 2, p1 = 0, p2 = 2
N = 3, p1 = 0, p2 = 1, p3 = 2
N = 3, p1 = 0, p2 = 2, p3 = 4

(c) Same as (a), in log scale.
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Figure 12.1: In (a) and (b), wave frequencies, |ω|(|ξ|), given by the dispersion relations
corresponding to the (linearized about rest) augmented and “multilayer” Green–Naghdi models,

respectively. In (c) and (d), the “error” is represented in log scale.
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When N = 2, and (p1, p2) = (0, 2), we find

u0
1 = ∇ 210 + 15µ∆

210− 90µ∆+ 2µ2∆2
ψ, u0

2 = ∇ −105µ∆

210− 90µ∆+ 2µ2∆2
ψ,

and the corresponding dispersion relation

ω
(0,1)
aGN (ξ)2 = |ξ|2 105 + 10µ|ξ|2

105 + 45µ|ξ|2 + µ2|ξ|4
.

Let us observe the small wavenumber Taylor series

ωww(ξ)
2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 2

15
µ2|ξ|4 − 17

315
µ3|ξ|6 + 62

2835
µ4|ξ|8 +O(µ5|ξ|10)

)
,

ωGN(ξ)
2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 1

9
µ2|ξ|4 +O(µ6|ξ|6)

)
,

ω
(0,1)
aGN (ξ)2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 19

144
µ2|ξ|4 +O(µ6|ξ|6)

)
,

ω
(0,2)
aGN (ξ)2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 2

15
µ2|ξ|4 − 17

315
µ3|ξ|6 + 241

11025
µ4|ξ|8 +O(µ5|ξ|10)

)
.

Hence we see that augmenting the rank of the model does not necessarily improve the small
wavenumber behavior of the model by an order of magnitude—yet observe that 19

144 = 0.132 is
closer to 2

15 ≈ 0.133 than 1
9 ≈ 0.111. The approximation produced by the model with N = 2, and

(p0, p1) = (0, 2) is excellent. In fact ω
(0,2)
aGN (ξ)2 is the Padé approximant of order (4, 4) to ωww(|ξ|)2

about |ξ| = 0, so it is in some sense the best possible approximation with polynomials of such
degrees.

When N = 3, and (p1, p2, p3) = (0, 1, 2), we find the dispersion relation

ω
(0,1,2)
aGN (ξ)2 = |ξ|2 6300 + 780µ|ξ|2 + 15µ2|ξ|4

6300 + 2880µ|ξ|2 + 135µ2|ξ|4 + µ3|ξ|6

= ωww(ξ)
2 − |ξ|2

( 1

396900
µ4|ξ|8 +O(µ5|ξ|10)

)
.

When N = 3, and (p1, p2, p3) = (0, 2, 4), we find the dispersion relation

ω
(0,2,4)
aGN (ξ)2 = |ξ|2 10395 + 1260µ|ξ|2 + 21µ2|ξ|4

10395 + 4725µ|ξ|2 + 210µ2|ξ|4 + µ3|ξ|6

= ωww(ξ)
2 − |ξ|2

( 1

1404728325
µ6|ξ|12 +O(µ7|ξ|14)

)
.

We see that the precision of ω
(0,1,2)
aGN (ξ)2 is in par with the precision of ω

(0,2)
aGN (ξ)2 in order of magni-

tude, although 62
2835 −

241
11025 ≈ 1.0 10−5 and 1

396900 ≈ 2.5 10−6. ω
(0,2,4)
aGN (ξ)2 is the Padé approximant

of order (6, 6) to ωww(|ξ|)2 about |ξ| = 0, which motivates the following conjecture.

Conjecture 12.5. For any N ∈ N⋆ and setting pi = 2(i− 1) for i ∈ {1, . . . , N}, ω(p1,...,pN )
aGN (ξ)2 is the

Padé approximant of order (2N, 2N) to ωww(|ξ|)2 about |ξ| = 0. In particular [4, 4.5.70]

ω
(p1,...,pN )
aGN (ξ)2

|ξ|2
=

1

1 + µ|ξ|2

3+
µ|ξ|2

5+
µ|ξ|2

...+ µ|ξ|2
4N−1

→ ωww(ξ)
2

|ξ|2
(N → ∞)

and 0 ≤ ωww(ξ)2−ω(p1,...,pN )

aGN (ξ)2

|ξ|2 ≤ CNµ
2N |ξ|4N , where CN depends uniquely on N .

Remark 12.6. By this conjecture we do not mean that setting pi = 2(i − 1) is necessarily the best
choice in the nonlinear framework, and in particular in presence of a non-trivial bottom topography.
The interested reader should refer to Section 13, specifically Section 13.6.
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The “multilayer” Green–Naghdi model Recall that for N = 1, the model presented in Item iv
corresponds to the Green–Naghdi equations. Accordingly,

u0
1 =

(
Id−µ

3
∇∇ ·

)−1∇ψ = ∇(Id−µ
3
∆)−1ψ

and the corresponding dispersion relation is

ωGN(ξ)
2 = |ξ|2 1

1 + µ
3 |ξ|2

.

When N = 2, solving the differential equation and denoting h1 = ℓ1 − ℓ0 = ℓ1 and h2 = ℓ2 − ℓ1 =
1− ℓ1 yields

u0
1 = ∇ 36 + µ6h22∆

36− µ(12h21 + 12h22 + 36h1h2)∆ + µ(4h21h
2
2 + 3h1h32)∆

2
ψ,

u0
2 = ∇ 36− µ12h21∆− µ18h1h2∆

36− µ(12h21 + 12h22 + 36h1h2)∆ + µ(4h21h
2
2 + 3h1h32)∆

2
ψ,

and as a consequence the dispersion relation

ω
(ℓ0,ℓ1,ℓ2)
mGN (ξ)2 = |ξ|2 36 + µ12h1h2|ξ|2

36 + µ(12h21 + 12h22 + 36h1h2)|ξ|2 + µ(4h21h
2
2 + 3h1h32)|ξ|4

.

When h1 = h2 = 1/2, i.e. ℓ1 = 1/2, the above reduces to

ω
(0,1/2,1)
mGN (ξ)2 = |ξ|2 576 + 48µ|ξ|2

576 + 240µ|ξ|2 + 7µ2|ξ|4
= |ξ|2

(
1− 1

3
µ|ξ|2 + 73

576
µ2|ξ|4 +O(µ3|ξ|6)

)
.

Hence we see that augmenting the rank of the model from N = 1 to N = 2 does not improve the
small wavenumber behavior of the model by an order of magnitude. It is possible to tailor the
choice of η1 to improve the small wavenumber behavior, yet again not by an order of magnitude.

The optimal choice—even allowing values ℓ1 < 0 or ℓ1 > 1—is ℓ1 = 1+
√
17

8 for which the prefactor
73
576 ≈ 0.127 in the Taylor expansion is replaced by 2155

18432 + 17
6144

√
17 ≈ 0.128 which is only slightly

closer to the desired 2
15 ≈ 0.133.

In the following, we always set ℓi = i/N for i ∈ {1, . . . , N}. For N ∈ {3, 4}, we find

ω
(0, 13 ,

2
3 ,1)

mGN (ξ)2 = |ξ|2 78732 + 8748µ|ξ|2 + 135µ2|ξ|4

78732 + 34992µ|ξ|2 + 1539µ2|ξ|4 + 13µ3|ξ|6

= |ξ|2
(
1− 1

3
µ|ξ|2 + 95

729
µ2|ξ|4 +O(µ3|ξ|6)

)
,

ω
(0, 14 ,

1
2 ,

3
4 ,1)

mGN (ξ)2 = |ξ|2 84934656 + 10616832µ|ξ|2 + 248832µ2|ξ|4 + 1344µ3|ξ|6

84934656 + 38928384µ|ξ|2 + 2045952µ2|ξ|4 + 27264µ3|ξ|6 + 97µ4|ξ|8

= |ξ|2
(
1− 1

3
µ|ξ|2 + 1213

9216
µ2|ξ|4 +O(µ3|ξ|6)

)
.

These values coincide with the ones found in [184], where convergence towards the dispersion relation
of the water waves system is proved. Once again we observe that augmenting the rank of the model
does not improve the small wavenumber behavior of the model by an order of magnitude with
respect to the Green–Naghdi equation, but improves the prefactors in the Taylor expansion:

2

15
− 1

9
≈ 2.2 10−1,

2

15
− 73

576
≈ 6.5 10−3,

2

15
− 95

729
≈ 3.0 10−3,

2

15
− 1213

9216
≈ 1.7 10−3.

We observe a similar behavior in the next order coefficient in the Taylor series, which motivates the
following conjecture.
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Conjecture 12.7. Setting ℓi = i/N for i ∈ {0, . . . , N}, one has for any ξ ∈ Rd,

0 ≤
ωww(ξ)

2 − ω
(ℓ0,ℓ1,...,ℓN )
mGN (ξ)2

|ξ|2
×N2 = O(µ2|ξ|4),

uniformly with respect to N ∈ N⋆.

Remark 12.8. While this conjecture appears less impressive than the corresponding one for the
augmented Green–Naghdi model, this does not mean that the “multilayer” model cannot be relevant
in the nonlinear framework, in particular in the presence of small wavelengths.

12.3 Discussion and open questions

In this section we have merely sketched a way to derive in a systematic way families of models for
the water waves equations. All the models obtained by this procedure (except trivial ones) have in
common the fact that a system of linear differential equations of order two, playing the role of the
Laplace problem, needs to be solved.

It is likely that some of the models, or at least closely resembling ones, have already appeared in
the literature, in particular in the works reviewed in [294]. In particular, the works [292, 293] can be
seen as a starting point—at least in this community—of high order shallow water models with low
order differential operators, and a“multilayer”approach was introduced in [291, 290]. My motivation
to study such models was triggered by the“multilayer” approach presented in [184]. Another closely
related “multilayer” approach is also presented in [269, §3.6], together with a discussion and earlier
references. To my knowledge it is the first time that the two types of models are presented in the
same framework, and that their inherent variational structure (for potential flows) is brought to
light.

A strategy for the numerical discretization of the “multilayer”model has been proposed in [372].
Yet a thorough investigation of the “multilayer” approach, balancing improved accuracy and com-
putational cost of increasing the number of layers, is yet to be accomplished.

There are, to my knowledge, no rigorous results concerning the models presented in this section.
In particular, motivated by Remark 12.3 and the modal analysis in Section 12.2, it is natural to ask
whether the models obtained by our procedure can approach solutions to the water waves system
with an arbitrary precision (augmenting the rank of the model, N , and hence the size of the inherent
system of differential equations), and in this case to characterize the rate of convergence.

The existence (and properties) of solitary waves, or the ability to reproduce phenomena featuring
small scales are also completely open. It would also be interesting to extend the models outside of
the irrotational and/or homogeneous framework. All these questions are obviously way outside of
the scope of the present document.

Let me conclude in a positive note: the Isobe–Kakinuma model, which presents the same features
as the the ones described in this section and is discussed in the following one, do enjoy a rigorous
analysis thanks to the work of Iguchi and collaborators.
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13 The variational method and Isobe–Kakinuma systems

In this section we discuss a procedure to derive asymptotic models for the water waves system, using
strongly the variational structure of the latter. The name “variational method” can be argued since
in the previous section the procedure was already based on variational methods (see Section 12.1.2)
first when using the Galerkin method of dimension reduction to a variational formulation of the
Laplace problem for the velocity potential, and then when deriving the models as canonical Hamil-
tonian equations. Here we shall use the variational structure of the water waves system in a single
step, using Luke’s variational formulation [289] (see Section 2.2). In Section 13.3 we show that the
method studied in this section can in fact be interpreted as being exactly the method studied the
previous section, although using another variational formulation of the Laplace problem.

13.1 Derivation by Luke’s Lagrangian

Let us recall Luke’s variational formulation of the water waves system, eq. (2.2), as displayed in
Section 2.2. Using dimensionless variables, eq. (2.2) can be interpreted as Hamilton’s principle

δL = 0 (13.1)

where the Lagrangian action is

L
def
=

∫ t1

t0

∫
Rd

ε

2
ζ2 +

(∫ εζ

−1+βb

∂tΦ+
ε

2µ
(∂zΦ)

2 +
ε

2
|∇xΦ|2 dz

)
dx dt, (13.2)

The variational procedure consists simply in replacing the velocity potential, Φ, by

Φapp
IK (t,x, z)

def
=

N∑
i=0

Ψi(x, z)ϕi(t,x) (13.3)

where {Ψi}i=0,1,...,N is a given—i.e. chosen by the designer and characterizing the resulting model—
family of functions independent of time, and {ϕi}i=0,1,...,N are unknowns functions independent the

variable, z. We shall refer to the family {Ψi}i=0,1,...,N as the vertical distribution.

When replacing Φ with Φapp in eq. (13.2) yields

L app
IK

def
=

∫ t1

t0

∫
Rd

ℓapp(t,x) dx dt (13.4)

where

ℓappIK
def
=

ε

2
ζ2 +

N∑
i=0

(∂tϕi)

∫ εζ

−1+βb

Ψi(·, z) dz +
ε

2µ

N∑
i=0

N∑
j=0

ϕiϕj

∫ εζ

−1+βb

(
(∂zΨi(·, z))(∂zΨj)

)
(·, z) dz

+
ε

2

N∑
i=0

N∑
j=0

(
ϕiϕj

∫ εζ

−1+βb

(
(∇xΨi) · (∇xΨj)

)
(·, z) dz + ϕi(∇ϕj) ·

∫ εζ

−1+βb

(
Ψj∇xΨi

)
(·, z) dz

+ ϕj(∇ϕi) ·
∫ εζ

−1+βb

(
Ψi∇xΨj

)
(·, z) dz + (∇ϕi) · (∇ϕj)

∫ εζ

−1+βb

(
ΨiΨj

)
(·, z) dz

)
.
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Euler–Lagrange equations on eq. (13.4) yield63

∀i ∈ {0, 1, . . . , N}, 0 = δεϕiL
app
IK = −∂tζΨi

∣∣
z=εζ

+
1

µ

N∑
j=0

ϕj

∫ εζ

−1+βb

(
(∂zΨi)(∂zΨj)

)
(·, z) dz

+

N∑
j=0

(
ϕj

∫ εζ

−1+βb

(
(∇xΨi) · (∇xΨj)

)
(·, z) dz + (∇ϕj) ·

∫ εζ

−1+βb

(
Ψj∇xΨi

)
(·, z) dz

)

−
N∑
j=0

∇ ·

(
ϕj

∫ εζ

−1+βb

(
Ψi∇xΨj

)
(·, z) dz + (∇ϕj)

∫ εζ

−1+βb

(
ΨiΨj

)
(·, z) dz

)
(13.5)

and

0 = δεζL
app
IK =

N∑
i=0

(∂tϕi)Ψi
∣∣
z=εζ

+ ζ +
ε

2µ

 N∑
j=0

ϕj(∂zΨj)
∣∣
z=εζ

2

+
ε

2

∣∣∣∣∣∣
N∑
j=0

(∇ϕj)Ψj
∣∣
z=εζ

+ ϕj(∇xΨj)
∣∣
z=εζ

∣∣∣∣∣∣
2

. (13.6)

Equation (13.5)–(13.6) can be viewed as a system of (N+2) differential equations for the unknowns
(ζ, ϕ0, ϕ1, . . . , ϕN ), and define our models.

Remark 13.1. Notice that the system consists in (N + 1) evolution equations for ζ and only one
evolution equation for (ϕ0, ϕ1, . . . , ϕN ), so that it is an overdetermined/underdetermined composite
system. Its structure is hence very different from all the systems discussed so far—and in particular
the water waves system, eq. (2.7)—but we will show in Section 13.2 how a standard system of two
evolution equations (under canonical Hamiltonian form) can be recovered from the above.

Based on the Boussinesq–Rayleigh expansion, eq. (11.1), it is natural to set {Ψi}i=0,1,...,N as

∀i ∈ {0, 1, . . . , N}, Ψi(x, z) =
(
z + 1− βb(x)

)pi
where p0, p1, . . . , pN are non-negative integers satisfying by convention 0 = p0 < p1 < · · · < pN . In
this case eq. (13.5)–(13.6) read

hpi∂tζ +
∑N
j=0 ∇ ·

(
hpi+pj+1

pi+pj+1∇ϕj −
pj

pi+pj
hpi+pjϕj(β∇b)

)
+
∑N
j=0

pi
pi+pj

hpi+pj (∇ϕj) · (β∇b)−
∑N
j=0

pipj
pi+pj−1h

pi+pj−1(µ−1 + |β∇b|2)ϕj = 0

∀i ∈ {0, 1, . . . , N} ,∑N
j=0 h

pj (∂tϕj) + ζ

+ ε
2

(∣∣∣∑N
j=0 h

pj (∇ϕj)− pjh
pj−1ϕj(β∇b)

∣∣∣2 + µ−1
(∑N

j=0 pjh
pj−1ϕj

)2)
= 0 ,

(13.7)

where we denote as usual h
def
= 1 + εζ − βb the (non-dimensionalized) depth of the layer, and use

the convention 0
0 = 0.

63We assume here and henceforth that the bottom topography is time-independent.
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Using physical variables (recall Section 2.4), eq. (13.7) reads

hpi∂tζ +
∑N
j=0 ∇ ·

(
hpi+pj+1

pi+pj+1∇φj −
pj

pi+pj
hpi+pjφj∇b

)
+
∑N
j=0

pi
pi+pj

hpi+pj (∇φj) · (∇b)−
∑N
j=0

pipj
pi+pj−1h

pi+pj−1(1 + |∇b|2)φj = 0

∀i ∈ {0, 1, . . . , N} ,∑N
i=0 h

pi(∂tφi) + gζ

+ 1
2

(∣∣∣∑N
i=0 h

pi(∇φi)− pih
pi−1φi(∇b)

∣∣∣2 + (∑N
i=0 pih

pi−1φi

)2)
= 0 ,

(13.8)

where h(t, x)
def
= d + ζ(t, x) − b(x). When N = 0 (and p0 = 0), the system coincides with the

Saint-Venant system (Section 5). While the general equations (13.5)–(13.6) are displayed in [232,
233, 238, 239, 240], the above choice of vertical distribution is systematically put forward. This is
why we refer to (13.8) as the Isobe–Kakinuma model.

Remark 13.2 (Other choices of vertical distributions). We have implicitly assumed in eq. (13.3)
that the vertical distribution, {Ψi}i=0,1,...,N , does not depend on the unknown variable, ζ. This
restriction can be removed and we can set, as was done by Klopman, van Groesen, and Dingemans
in [261] (see also [355] and references therein)

Φapp(t,x, z)
def
=

N∑
i=0

Ψi(x, z, εζ(t,x))ϕi(t,x) (13.9)

but in this case the equations must be modified to take into account for

∇xΦ
app =

N∑
i=0

Ψi∇ϕi + ϕi∇xΨi + εϕi(∂ζΨi)∇ζ,

where the last term is new.
This extended framework is interesting as it allows to choose the vertical distribution such that

Ψi(x, z, εζ)
∣∣
z=εζ

= 0 for i = 1, . . . , N in which case the equations replacing eq. (13.5)–(13.6) consist
in a system of 2N time-independent linear differential equations allowing to determine (ϕ1, . . . , ϕN )
from the knowledge of (ζ, ϕ0), and two evolution equations for (ζ, ϕ0). Moreover, this system is
readily under the canonical Hamiltonian form; see the discussion in Section 13.2.

For instance, one can set
Ψi(x, z, εζ) = (z − εζ)pi

with non-negative integers 0 = p0 < p1 < · · · < pN .
Another natural choice consists in defining the vertical distribution from solutions to the vertical

Sturm–Liouville eigenproblem

∂2zΨi + k2nΨi = 0, −1 + βb(x) < z < εζ(x)

with appropriate boundary conditions at z = εζ and z = −1 + βb. Based on a tweak on this
vertical distribution—proposed in [28]—Athanassoulis and Papoutsellis were able to prove in [29]
the rigorous convergence of Φapp towards sufficiently regular Φ (with sufficiently regular (ζ, b)) for a
vertical distribution constructed in this way. Moreover, using the boundary condition ∂zΨi

∣∣
z=εζ

= 0
for i ∈ {1, . . . , N}, the Hamiltonian equations derived in Section 13.2 are much simplified; see [355].

Yet another natural choice of vertical distribution, based on the finite element method and the
“multilayer” approach introduced in Section 12.1.3, is

Ψi(x, z) =


ηi−1(x)−z

ηi−1(x)−ηi(x) if ηi(x) ≤ z < ηi−1(x),
z−ηi+1(x)

ηi(x)−ηi+1(x)
if ηi+1(x) < z ≤ ηi(x),

0 otherwise,

where −1 + βb(x) = ηN (x) < · · · < η1(x) < η0(x) = εζ(x).
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13.2 Reformulation of the equations and Hamiltonian structure

In this section we reformulate system eq. (13.5)–(13.6) as two (canonical Hamiltonian) evolution
equations, coupled with a system of differential equations approximating the Laplace problem. This
analysis is based on [161]; see also [355, § 4.3].

We first notice that—by construction—the system eq. (13.5)–(13.6) benefits from a Lagrangian
structure which, based on the relation with Zakharov’s Hamiltonian structure put forward by
Miles [316], can be written as follows. Set

E app
IK (ζ,ϕ)

def
=

∫
Rd

1

2
ζ2 +

(∫ εζ

−1+βb

1

2µ
(∂zΦ

app
IK )2 +

1

2
|∇xΦ

app
IK |2 dz

)
dx (13.10)

where Φapp is defined from ϕ
def
= (ϕ0, . . . , ϕN )⊤ by eq. (13.3). Then eq. (13.5)–(13.6) reads(

0 −l⊤
l ON+1

)(
∂tζ
∂tϕ

)
=

(
δζE

app
IK

δϕE app
IK

)
. (13.11)

where ON+1 is the (N + 1)× (N + 1) null matrix, and

ϕ
def
= (ϕ0, ϕ1, . . . , ϕN )⊤, l =

(
Ψ0

∣∣
z=εζ

,Ψ1

∣∣
z=εζ

, . . . ,ΨN
∣∣
z=εζ

)⊤
.

Let us describe how the above Hamiltonian equations can be put in canonical form. Let us first
introduce convenient notations: we define

Lµij [εζ, βb]φ
def
= −∇ ·

(
(∇φ)

∫ εζ

−1+βb

(
ΨiΨj

)
(·, z) dz

)
+∇ ·

(
φ

∫ εζ

−1+βb

(
Ψi∇xΨj

)
(·, z) dz

)

− (∇φ) ·
∫ εζ

−1+βb

(
Ψj∇xΨi

)
(·, z) dz + φ

∫ εζ

−1+βb

(
1
µ (∂zΨi)(∂zΨj) + (∇xΨi) · (∇xΨj)

)
(·, z) dz.

(13.12)

We have that Lij is a differential operator of order two, and (Lµij)⋆ = Lµji, with (Lµij)⋆ the adjoint

operator in L2(Rd). We now consider for φ
def
= (φ0, φ1, . . . , φN )⊤ the following system of equations

satisfied by solutions to (13.5):{
Ψ0

∣∣
z=εζ

∑N
j=0 L

µ
ijφj = Ψi

∣∣
z=εζ

∑N
j=0 L

µ
0jφj ∀i ∈ {1, . . . , N}

l •φ = ψ,
(13.13)

where we use • to denote the (N + 1)-dimensional inner product. Provided that the family of
functions {Ψj}j=0,...,N are sufficiently “nice”,64 the above system can be inverted and there exists
a linear operator

S[εζ, βb] : ψ 7→ φ

where φ is the unique solution to eq. (13.13). Finally, we define

H app
IK (ζ, ψ)

def
= E app

IK (η,S[εζ, β]ψ). (13.14)

Notice first that, differentiating the last equation in eq. (13.13), we have that η 7→ DζS[εζ, βb](η),
the Fréchet derivative of S[εζ, βb] with respect to ζ, satisfies

l •
(
DζS[εζ, βb](η)ψ

)
+ ηl′ •φ = 0, (13.15)

64By “nice” it is meant regularity and linear independence. See [341, Proposition 1.3] for the rigorous result when
Ψi(x, z) = (z + 1− βb(x))pi with 0 = p0 < p1 < · · · < pN .
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where l′ =
(
∂zΨ0

∣∣
z=εζ

, ∂zΨ1

∣∣
z=εζ

, . . . , ∂zΨN
∣∣
z=εζ

)⊤
. Then we have for sufficiently smooth data,

assuming Ψ0

∣∣
z=εζ

̸= 0,

DψH app
IK (ζ, ψ)φ = DϕE app

IK (ζ,S[εζ, βb]ψ)S[εζ, βb]φ

=
(
Lµ S[εζ, βb]ψ , S[εζ, βb]φ

)
(L2)N+1

=
(
(Ψ0

∣∣
z=εζ

)−1lLµ0S[εζ, βb]ψ , S[εζ, βb]φ
)
(L2)N+1

=
(
(Ψ0

∣∣
z=εζ

)−1Lµ0S[εζ, βb]ψ , φ
)
L2

where we used eq. (13.11), eq. (13.13) and denote Lµ = (Lµij)i,j∈{0,1,...,N} and Lµ0 = (Lµ0j)j∈{0,1,...,N};

DζH
app
IK (ζ, ψ)η = DζE

app
IK (ζ,S[εζ, βb]ψ)η +DϕE app

IK (ζ,S[εζ, βb]ψ)DζS[εζ, βb](η)ψ

=
(
δζE

app
IK (ζ,S[εζ, βb]ψ) , η

)
L2 +

(
Lµ S[εζ, βb]ψ , DζS[εζ, βb](η)ψ

)
(L2)N+1

=
(
δζE

app
IK (ζ,S[εζ, βb]ψ) , η

)
L2 +

(
(Ψ0

∣∣
z=εζ

)−1lLµ0S[εζ, βb]ψ , DζS[εζ, βb](η)ψ
)
(L2)N+1

=
(
δζE

app
IK (ζ,S[εζ, βb]ψ) , η

)
L2 −

(
(Ψ0

∣∣
z=εζ

)−1Lµ0S[εζ, βb]ψ , ηl′ • S[εζ, βb]ψ
)
L2

where we used eq. (13.15) and recall l′ =
(
∂zΨ0

∣∣
z=εζ

, ∂zΨ1

∣∣
z=εζ

, . . . , ∂zΨN
∣∣
z=εζ

)⊤
. Hence

(Ψ0

∣∣
z=εζ

)δψH app
IK (ζ, ψ) = Lµ0S[εζ, βb]ψ = δϕ0E

app
IK (ζ,S[εζ, βb]ψ),

(Ψ0

∣∣
z=εζ

)δζH
app
IK (ζ, ψ) = (Ψ0

∣∣
z=εζ

)δζE
app
IK (ζ,S[εζ, βb]ψ)− (l′ • S[εζ, βb]ψ)δϕ0E

app
IK (ζ,S[εζ, βb]ψ).

From this and eq. (13.11) we infer immediately that (η, ϕ0, ϕ1, . . . , ϕN ) sufficiently regular solutions
to the system eq. (13.5)–(13.6) satisfy

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
δζH

app
IK

δψH app
IK

)
(13.16)

where ψ
def
=
∑N
j=0 ϕjΨj

∣∣
z=εζ

. Conversely, given a (ζ, ψ) a sufficiently regular solution to eq. (13.16),

and defining (ϕ0, ϕ1, . . . , ϕN )⊤
def
= S[εζ, β]ψ the unique solution to eq. (13.13), then (η, ϕ0, ϕ1, . . . , ϕN )

satisfy eq. (13.5)–(13.6).

Remark 13.3. This formal procedure to derive eq. (13.16), the canonical Hamiltonian formulation
to eq. (13.5)–(13.6), can be made rigorous; see [161] in the case Ψi(x, z) = (z + 1 − βb(x))pi with
0 = p0 < p1 < · · · < pN . In this case, eq. (13.16) reads explicitly

∂tζ +
∑N
j=0 ∇ ·

(
hpj+1

pj+1 ∇ϕj − hpjϕj(β∇b)
)

= 0 ,

∂tψ + ζ + ε
(∑N

i=0 pih
pi−1ϕi

)(∑N
j=0 ∇ ·

(
hpj+1

pj+1 ∇ϕj − hpjϕj(β∇b)
))

+ ε
2

(∣∣∣∑N
j=0 h

pj (∇ϕj)− pjh
pj−1ϕj(β∇b)

∣∣∣2 + µ−1
(∑N

j=0 pjh
pj−1ϕj

)2)
= 0 ,

(13.17)

where h = 1 + εζ − βb and (ϕ0, ϕ1, . . . , ϕN ) are the unique solutions to the system
−hpi

∑N
j=0 ∇ ·

(
hpj+1

pj+1 ∇ϕj − hpjϕj(β∇b)
)
+
∑N
j=0 ∇ ·

(
hpi+pj+1

pi+pj+1∇ϕj −
pj

pi+pj
hpi+pjϕj(β∇b)

)
+
∑N
j=0

pi
pi+pj

hpi+pj (∇ϕj) · (β∇b)−
∑N
j=0

pipj
pi+pj−1h

pi+pj−1(µ−1 + |β∇b|2)ϕj = 0

∀i ∈ {1, . . . , N},∑N
i=0 h

piϕi = ψ.



189 Chapter D. Higher order models

Remark 13.4 (Preserved quantities). A consequence of the above analysis is the fact that—by
Noether’s theorem, see Section 2.2—solutions to eq. (13.5)–(13.6) preserve the excess of mass, en-
ergy, and horizontal impulse in the flat bottom case:

d

dt
Z =

d

dt
E app
IK = 0, Z

def
=

∫
Rd

ζ dx,
d

dt
I app

IK = 0, I app
IK

def
=

∫
Rd

ζ∇ψ dx (if βb ≡ 0).

where ψ
def
=
∑N
j=0 ϕjΨj

∣∣
z=εζ

and E app
IK is defined in eq. (13.10).

Remark 13.5. The above analysis is made trivial when {Ψi}i=1,...,N are chosen so that Ψ0

∣∣
z=εζ

̸= 0

and Ψi
∣∣
z=εζ

= 0 for i = 1, . . . , N . Then eq. (13.11) reads(
0 −Ψ0

∣∣
z=εζ

Ψ0

∣∣
z=εζ

0

)(
∂tζ
∂tϕ0

)
=

(
δζE app

∂ϕ0
E app

)
, ∂ϕi

E app = 0 ∀i = 1, . . . , N,

and, since ψ
def
=
∑N
j=0 ϕjΨj

∣∣
z=εζ

= ϕ0Ψ0

∣∣
z=εζ

,

E app(η, ϕ0, ϕ1, . . . , ϕN ) = E app(η,S[εζ, βb](ϕ0Ψ0

∣∣
z=εζ

))
def
= H app(ζ, ϕ0Ψ0

∣∣
z=εζ

).

This description was put forward in [261]. Notice however that here we implicitly imply that the
vertical distribution {Ψi}i∈{1,...,N} depends on the unknown variable ζ. Hence eq. (13.5)–(13.6) are
no longer valid (see Remark 13.2); yet the discussion in this section applies, with straightforward
adjustments.

13.3 Derivation through the Galerkin method

In this section we recover (13.19)–(13.20) following the Galerkin method described in Section 12.1,
replacing the vertically integrated variational formulation to the Laplace problem given in Defini-
tion 12.1 with the one we originally introduced in Definition 4.2, and which we recall below.

Definition 13.6 (Variational solutions). Let ψ ∈ H̊1(Rd) and ζ, b ∈W 1,∞(Rd) satisfying

∀x ∈ Rd, h(x) = 1 + εζ(x)− βb(x) ≥ h⋆ > 0.

We say that Φ is a variational solution to eq. (4.1) if there exists Φ̃ ∈ H1
0,top(Ω) such that Φ = ψ+Φ̃

and for any φ̃ ∈ H1
0,top(Ω),∫∫

Ω

∇µ
x,zΦ̃ · ∇µ

x,zφ̃dx dz = −µ
∫∫

Ω

∇ψ · ∇xφ̃dx dz,

which we can rewrite, denoting φ = ψ + φ̃,∫∫
Ω

∇µ
x,zΦ · ∇µ

x,zφdx dz = µ

∫∫
Ω

∇xΦ · ∇(φ
∣∣
z=εζ

) dx dz,

In the formula above we identified x 7→ ψ(x) ∈ H̊1(Rd) and (x, z) 7→ ψ(x) ∈ H̊1(Ω).

Setting

V(Ψ0,...,ΨN )
def
=

{
Φ : Φ(x, z) =

N∑
i=0

Ψi(x, z)ϕi(x), ϕi ∈ H1(Rd)

}
,

the Galerkin approximate solution is Φapp ∈ V(Ψ0,...,ΨN ) the solution to

∀φ ∈ V(Ψ0,...,ΨN ),

∫∫
Ω

∇µ
x,zΦ̃

app · ∇µ
x,zφdx dz = −

∫∫
Ω

µ∇ψ · ∇xφdx dz. (13.18)
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Denoting

Φapp def
=

N∑
i=0

Ψi(x, z)ϕi(x) and φ
def
=

N∑
j=0

Ψj(x, z)φj(x),

eq. (13.18) reads

N∑
i=0

N∑
j=0

∫
Rd

(
ϕiφj

(∫ εζ

−1+βb

(
∂zΨi(·, z)

)(
∂zΨj(·, z)

)
dz
)

+ µ

∫ εζ

−1+βb

(
ϕi(∇xΨi(·, z)) + Ψi(·, z)(∇ϕi)

)
·
(
φj(∇xΨj(·, z)) + Ψj(·, z)(∇φj)

)
dz

)
dx

= µ

N∑
i=0

N∑
j=0

∫
Rd

(
ϕi

∫ εζ

−1+βb

∇xΨi(·, z) dz + (∇ϕi)
∫ εζ

−1+βb

Ψi(·, z) dz

)
· ∇(ϕjΨj

∣∣
z=εζ

) dx,

which we can rewrite as the following system of differential equations:

∀j ∈ {0, . . . , N},
N∑
i=0

(
ϕi

(∫ εζ

−1+βb

(
∂zΨi(·, z)

)(
∂zΨj(·, z)

)
dz
)

+ µϕi

∫ εζ

−1+βb

(∇xΨj(·, z)) · (∇xΨi(·, z)) dz + µ(∇ϕi) ·
∫ εζ

−1+βb

Ψi(·, z)(∇xΨj(·, z)) dz

− µ∇ ·
(
ϕi

∫ εζ

−1+βb

Ψj(·, z)(∇xΨi(·, z)) dz + (∇ϕi)
∫ εζ

−1+βb

Ψj(·, z)Ψi(·, z) dz
))

= −µΨj
∣∣
z=εζ

N∑
i=0

∇ ·

(
ϕi

∫ εζ

−1+βb

∇xΨi(·, z) dz + (∇ϕi)
∫ εζ

−1+βb

Ψi(·, z) dz

)
.

Owing to the fact that the right-hand sides are proportional to Ψj
∣∣
z=εζ

for j ∈ {0, . . . , N} , we infer

∀j ∈ {1, . . . , N}, Ψ0

∣∣
z=εζ

N∑
i=0

Lµjiϕi = Ψj
∣∣
z=εζ

N∑
i=0

Lµ0iϕi, (13.19)

where we use the notation Lµij as in eq. (13.12). Notice also that we have, by definition,

ψ
def
= Φapp

∣∣
z=εζ

=

N∑
i=0

Ψi
∣∣
z=εζ

ϕi. (13.20)

Proceeding as in Section 12.1, we set

H app def
=

1

2

∫
Rd

ζ2 + (∇ψ) ·
∫ εζ

−1+βb

∇Φapp(·, z) dz dx

=
1

2

∫
Rd

ζ2 + ψ
∑N
i=0 L

µ
0iϕi dx,

where {ϕi}i∈{0,...,N} is determined from (ζ, ψ) by solving the system (13.19)–(13.20). It is now
straightforward to check that H app is characterized by eq. (13.14). In particular, by the analysis
in Section 13.2, Hamilton’s equations{

∂tζ − δψH app = 0,

∂tψ + δζH app = 0,
(13.21)

are equivalent to eq. (13.5)–(13.6).
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13.4 Traveling waves

The existence and properties of solitary wave solutions to the Isobe–Kakinuma systems (in the flat
bottom and one-dimensional situation) has been investigated by Colin and Iguchi in [111]. In this
work, the authors prove the existence of a family of solitary wave solutions to eq. (13.7) for any
sufficiently small supercritical velocity, behaving—as expected—asymptotically as long waves when
the velocity converges towards the critical velocity of infinitely long waves.

Let us reproduce their result with our notations, below.

Theorem 13.7. Set ε = µ = 1, β = 0 and d = 1. Let N ∈ N⋆ and 0 = p0 < p1 < · · · < pN . There
exists c0 > 1 such that for any c ∈ (1, c0), there exists (ζc, ϕc,0, ϕc,1, . . . , ϕN,c) ∈ C∞(R) such that
(ζc, ϕ

′
c,0) are even, (ϕc,1, . . . , ϕN,c) are odd, and

(ζ, ϕ0, ϕ1, . . . , ϕN ) : (t, x) ∈ R× R 7→ (ζc, ϕc,0, ϕc,1, . . . , ϕN,c)(x− ct)

satisfies eq. (13.7). Moreover, there exists γ > 0 such that for any s ≥ 0, there exists M⋆ > 0 such
that (ζc, ϕ

′
c,0, ϕc,1, . . . , ϕN,c) ∈ Hs(R)2+N , and, denoting c = 1 + 3

8ϵ and ξKdV(x) =
3
4 sech

2
(
3
4x
)
,∣∣ϵ−1ζc(ϵ

−1/2·)− ξKdV((3γ)
−1/2·)

∣∣
Hs(R) ≤M⋆ϵ

uniformly over c ∈ (1, c0).

Remark 13.8. The coefficient γ depends in the above statement depends uniquely on p1 < · · · < pN ,
and appears to value γ = 1

3 if p1 = 2. The result leaves open the expected behavior, based on the
modal analysis below and the consistency result in Section 13.6, that at least when pi = 2i for
i ∈ {0, 1, . . . , N}, the solitary wave solution approaches the corresponding solitary wave solution to
the water waves system (see Section 2.6) with precision O(ϵ2N ), hence improving upon the precision
of the corresponding solitary waves solution to the Green–Naghdi system (see Section 8.4) for any
N ∈ N⋆, and the one of the Whitham–Green–Naghdi system (see Section 10.4 and Remark 10.4)
as soon as N ≥ 2.

Moreover, the authors study numerically the case of N = 1 and p0 = 0, p1 = 2, and find that
there appears to exists a maximal value c⋆ ≈ 1.26153 such that as c↗ c⋆, the profiles of the solitary
wave, ζc, converges towards a peaked profile. Hence—contrarily to the Green–Naghdi system, see
Section 8.4—the Isobe–Kakinuma model is able to reproduce qualitatively the corresponding feature
of the water waves system; see Section 2.6. However the numerically computed angle at the crest is
approximately 2π × 0.424 (in radians) and hence greater than the one of the water waves system,
that is 2π 1

3 . It is conjectured that augmenting N , the solitary wave of extreme height of the Isobe–
Kakinuma model will approach the solitary wave of extreme height of the water waves system.

13.5 Modal analysis

In this section we compare the dispersion relation associated to some models described by eq. (13.5)–
eq. (13.6) with the one associated with the water waves system, eq. (2.7). The results in this section
are illustrated in Figure 13.1. Recall (see Section 2.3) that when linearized about the rest solution,
ζ = 0 and ∇ψ = 0, and setting βb = 0, the water waves system reads{

∂tζ
0 + 1√

µ |D| tanh(√µ|D|)ψ0 = 0,

∂tψ
0 + ζ0 = 0,

which yields the dispersion relation

ωww(ξ)
2 = 1√

µ |ξ| tanh(
√
µ|ξ|).
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Figure 13.1: In (a) and (b), wave frequencies, |ω|(|ξ|), given by the dispersion relations
corresponding to the (linearized about rest) Isobe–Kakinuma and “multilayer” variational models,

respectively. In (c) and (d), the “error” is represented in log scale.



193 Chapter D. Higher order models

The Isobe–Kakinuma systems When linearizing about the rest state solution, the Isobe–Kakinuma
system—under the formulation (13.17)—reads{

∂tζ
0 +

∑N
j=0

1
pj+1∇ · ∇ϕ0j = 0,

∂tψ
0 + ζ0 = 0,

where (ϕ00, ϕ
0
1, . . . , ϕ

0
N ) are the unique solutions to the system{ ∑N

j=0
pi

(pj+1)(pi+pj+1)µ∇ · ∇ϕ0j +
pipj

pi+pj−1ϕ
0
j = 0 ∀i ∈ {1, . . . , N},∑N

i=0 ϕ
0
i = ψ.

When N = 0 and p0 = 0, the Isobe–Kakinuma model is simply the Saint-Venant system (Section 5),
whose dispersion relation is

ωSV(ξ)
2 = |ξ|2.

When N = 1, p0 = 0 and p1 = 1, one has

ϕ0 =
1 + 1

6µ∇ · ∇
1− 1

3µ∇ · ∇
ψ, ϕ1 =

1

2

−µ∇ · ∇
1− 1

3µ∇ · ∇
ψ

and the corresponding dispersion relation

ω
(0,1)
IK (ξ)2 = |ξ|2

1 + 1
12µ|ξ|

2

1 + 1
3µ|ξ|2

.

When N = 1, p0 = 0 and p1 = 2, one has

ϕ0 =
1 + 1

10µ∇ · ∇
1− 2

5µ∇ · ∇
ψ, ϕ1 =

1

2

−µ∇ · ∇
1− 2

5µ∇ · ∇
ψ

and the corresponding dispersion relation

ω
(0,2)
IK (ξ)2 = |ξ|2

1 + 1
15µ|ξ|

2

1 + 2
5µ|ξ|2

.

Observe the small wavenumber Taylor series

ωww(ξ)
2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 2

15
µ2|ξ|4 − 17

315
µ3|ξ|6 + 62

2835
µ4|ξ|8 +O(µ5|ξ|10)

)
,

ω
(0,1)
IK (ξ)2 = |ξ|2

(
1− 1

4
µ|ξ|2 +O(µ2|ξ|2)

)
,

ω
(0,2)
IK (ξ)2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 2

15
µ2|ξ|4 − 4

75
µ3|ξ|6 +O(µ4|ξ|8)

)
,

ωGN(ξ)
2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 1

9
µ2|ξ|4 +O(µ6|ξ|6)

)
,

ω
(0,2)
aGN (ξ)2 = |ξ|2

(
1− 1

3
µ|ξ|2 + 2

15
µ2|ξ|4 − 17

315
µ3|ξ|6 + 241

11025
µ4|ξ|8 +O(µ5|ξ|10)

)
.

As in Section 12.2, we see that ω
(0,1)
IK is not more precise than the dispersionless angular frequency

predicted by the Saint-Venant system, ω2
SV = |ξ|2. However the agreement when N = 1, p0 =

0 and p1 = 2, is excellent: between that of the Green–Naghdi system (ωGN) and that of the

corresponding augmented Green–Naghdi system (ω
(0,2)
aGN ). This order of approximation is consistent

with the degrees of the polynomials involved in the rational fraction. In fact ω
(0,2)
aGN (ξ)2 is the Padé
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approximant of order (4, 2) to ωww(|ξ|)2 about |ξ| = 0, so it is in some sense the best possible
approximation with polynomials of such degrees.

When N = 2, and (p0, p1, p2) = (0, 1, 2), we find the dispersion relation

ω
(0,1,2)
IK (ξ)2 = |ξ|2 720 + 72µ|ξ|2 + µ2|ξ|4

720 + 312µ|ξ|2 + 9µ2|ξ|4

= ωww(ξ)
2 + |ξ|2

( 1

2800
µ3|ξ|6 +O(µ4|ξ|8)

)
.

When N = 2, and (p1, p2, p3) = (0, 2, 4), we find the dispersion relation

ω
(0,2,4)
IK (ξ)2 = |ξ|2 945 + 105µ|ξ|2 + µ2|ξ|4

945 + 420µ|ξ|2 + 15µ2|ξ|4

= ωww(ξ)
2 + |ξ|2

( 1

9823275
µ5|ξ|10 +O(µ6|ξ|12)

)
.

We see that the precision of ω
(0,1,2)
IK (ξ)2 is in par with the precision of ω

(0,2)
IK (ξ)2 in order of mag-

nitude, although 17
315 − 4

75 ≈ 6.3 10−4 and 1
2800 ≈ 3.6 10−4. ω

(0,2,4)
IK (ξ)2 is the Padé approximant of

order (6, 4) to ωww(|ξ|)2 about |ξ| = 0. In fact we have the following result.

Proposition 13.9. For any N ∈ N and setting pi = 2i for i ∈ {0, . . . , N}, ω(p0,p1,...,pN )
IK (ξ)2 is the

Padé approximant of order (2N + 2, 2N) to ωww(|ξ|)2 about |ξ| = 0. In particular,

ω
(p0,p1,...,pN )
IK (ξ)2

|ξ|2
=

1

1 + µ|ξ|2

3+
µ|ξ|2

5+
µ|ξ|2

...+ µ|ξ|2
4N+1

→ ωww(ξ)
2

|ξ|2
(N → ∞)

and 0 ≤ ω
(0,...,2N)
IK (ξ)2−ωww(ξ)2

|ξ|2 ≤ CNµ
2N+1|ξ|4N+2, where CN depends uniquely on N .

The first part of the statement is stated and proved in [341, Theorem 2.2]. The second part is
Lambert’s continued fraction of tanh, see [4, 4.5.70]. Since all coefficients are positive, the truncated

sequences ω
(p0,p1,...,pN )
IK (ξ)2 and ω

(p1,...,pN )
aGN (ξ)2 in Conjecture 12.5 are adjacent.

Remark 13.10. Compare with Conjecture 12.5. The Isobe–Kakinuma and augmented Green–Naghdi
models realize a Padé approximant framing of the water waves dispersion relation. Again we do not
mean that setting pi = 2i is necessarily the best choice in the nonlinear framework, and in particular
in presence of a nontrivial bottom topography; see Section 13.6.

The Klopman, van Groesen and Dingemans systems We continue the analysis with other choices of
vertical distribution, described in Remark 13.2. While we argued therein that vertical distributions
of the form

Φapp(t,x, z)
def
=

N∑
i=0

Ψi(x, z, εζ(t,x))ϕi(t,x)

would modify equations eq. (13.5)–eq. (13.6), the changes are immaterial when we linearize about
the rest state. This explains in particular why the dispersion relation of the “parabolic” model in

[261] yields exactly ω
(0,2)
IK (ξ), since the vertical distributions coincide with Ψ0(x, z) = 1, Ψ1(x, z) =

(z+1)2 when εζ = 0. In the same way, the dispersion relation when Ψi(x, z, εζ) = (z−εζ)i ≈ zi for

i = 0, 1, . . . , N—which are listed up to N = 5 in [261, (5.21)]—fit with ω
(0,1,...,N)
IK (ξ). The nonlinear

equations, however, differ.
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The“multilayer”systems We put ηi = −1+βb+ℓi(1+εζ−βb) for given 0 = ℓN < · · · < ℓ1 < ℓ0 = 1
and

Ψi(x, z, εζ) =


ηi−1(x)−z

ηi−1(x)−ηi(x) if ηi(x) ≤ z < ηi−1(x),
z−ηi+1(x)

ηi(x)−ηi+1(x)
if ηi+1(x) < z ≤ ηi(x)

0 otherwise.

The linearized system about the rest state reads{
∂tζ

0 + µ−1 ϕ
0
0−ϕ

0
1

ℓ0−ℓ1 − ℓ0−ℓ1
3 ∇ · ∇ϕ00 − ℓ0−ℓ1

6 ∇ · ∇ϕ01 = 0,

∂tϕ
0
0 + ζ0 = 0,

where (ϕ01, . . . , ϕ
0
N ) are the unique solutions to the system

ϕ0
i−ϕ

0
i−1

ℓi−1−ℓi +
ϕ0
i−ϕ

0
i+1

ℓi−ℓi+1
− ℓi−1−ℓi

6 µ(∇ · ∇)(2ϕ0i + ϕ0i−1)−
ℓi−ℓi+1

6 µ(∇ · ∇)(2ϕ0i + ϕ0i+1) = 0

∀i ∈ {1, . . . , N − 1},
ϕ0
N−ϕ0

N−1

ℓN−1−ℓN − µ ℓN−1−ℓN
6 µ(∇ · ∇)(2ϕ0N + ϕ0N−1) = 0.

The singularity as µ ↘ 0 is only apparent as we can see in the explicit formula below. In fact,
choosing Ψ0 = 1 and {Ψi}i∈{1,...,N} as above yields an equivalent system where the singularity
vanishes (with the price to pay that the system to invert no longer enjoys the tridiagonal structure).
When N = 1 we have the dispersion relation

ω(ℓ0,ℓ1)(ξ)2 = (ℓ1 − ℓ0)|ξ|2
1 + 1

12µ(ℓ1 − ℓ0)
2|ξ|2

1 + 1
3µ(ℓ1 − ℓ0)2|ξ|2

and since ℓ0 = 1 and ℓ1 = 0, we recover naturally

ω(1,0)(ξ)2 = ω
(0,1)
IK (ξ)2 = |ξ|2

1 + 1
12µ|ξ|

2

1 + 1
3µ|ξ|2

= |ξ|2
(
1− 1

4
µ|ξ|2 +O(µ2|ξ|2)

)
.

When N = 2 we find, denoting h1 = ℓ0 − ℓ1 = 1− ℓ1 and h2 = ℓ1 − ℓ2 = ℓ1,

ω(ℓ0,ℓ1,ℓ2)(ξ)2 = |ξ|2 36 + (3h21 + 3h22 + 9h1h2)µ|ξ|2 + h21h
2
2µ

2|ξ|4

36 + (12h21 + 12h22 + 36h1h2)µ|ξ|2 + (4h21h
2
2 + 3h1h32)µ

2|ξ|4

= |ξ|2
(
1− 1

4 (h
2
1 + h22 + 3h1h2)µ|ξ|2 +O(µ2|ξ|4)

)
.

The best result at low frequencies is obtained for h1 = h2 = 1
2 , and hence (ℓ0, ℓ1, ℓ2) = (1, 12 , 0), for

which

ω(1, 12 ,0)(ξ)2 = |ξ|2 576 + 60µ|ξ|2 + µ2|ξ|4

576 + 240µ|ξ|2 + 7µ2|ξ|4

= |ξ|2
(
1− 5

16
µ|ξ|2 +O(µ2|ξ|4)

)
.

In the following, we always set ℓi = 1− i/N for i ∈ {0, 1, . . . , N}. For N ∈ {3, 4}, we find

ω(1, 23 ,
1
3 ,0)(ξ)2 = |ξ|2 314928 + 37908µ|ξ|2 + 864µ2|ξ|4 + 5µ3|ξ|4

314928 + 139968µ|ξ|2 + 6156µ2|ξ|4 + 52µ3|ξ|6

= |ξ|2
(
1− 35

108
µ|ξ|2 +O(µ2|ξ|4)

)
,

ω(1, 34 ,
2
4 ,

1
4 ,1)(ξ)2 = |ξ|2 84934656 + 11059200µ|ξ|2 + 304128µ2|ξ|4 + 2640µ3|ξ|6 + 7µ4|ξ|8

84934656 + 38928384µ|ξ|2 + 2045952µ2|ξ|4 + 27264µ3|ξ|6 + 97µ4|ξ|8

= |ξ|2
(
1− 21

64
µ|ξ|2 +O(µ2|ξ|4)

)
.
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Hence we observe that the behavior of the dispersion relations is—unsurprisingly—very similar to
the one of the “multilayer” Green–Naghdi model (in fact the polynomial at the denominator of
the rational fraction is exactly the same); see Section 12.2. In particular, augmenting N does not
improve the small wavenumber behavior of the model by an order of magnitude with respect to the
Saint-Venant system, but improves the prefactors in the Taylor expansion:

(
1

3
− 1

4
) = 4 (

1

3
− 5

16
) = 9 (

1

3
− 35

108
) = 16 (

1

3
− 21

64
)

(the striking progression holds only approximately for the next order coefficient in the Taylor series).
This motivates the following conjecture.

Conjecture 13.11. Setting ℓi = 1− i/N for i ∈ {0, . . . , N}, one has for any ξ ∈ Rd,

0 ≤ ω(ℓ0,ℓ1,...,ℓN )(ξ)2 − ωww(ξ)
2

|ξ|2
×N2 = O(µ|ξ|2),

uniformly with respect to N ∈ N⋆.

This property appears to be the weakest of the high order models studied in Section 12.2 and
Section 13.5. Again, this does not mean that the variational “multilayer”model cannot be relevant
in the nonlinear framework, in particular in the presence of small wavelengths.

13.6 Rigorous justification

In this section we report on the rigorous justification of the Isobe–Kakinuma systems, eq. (13.7) as
an asymptotic model for the water waves system, eq. (2.7), obtained in a series of work of Iguchi
and collaborators, [335, 225, 341], culminating with [226]. Here we will restrict ourselves to the
following vertical distribution:

∀i ∈ {0, 1, . . . , N}, Ψi(x, z) =
(
z + 1− βb(x)

)pi
where {

∀i ∈ {1, . . . , N}, pi = 2i in the flat bottom case, βb ≡ 0;

∀i ∈ {1, . . . , N}, pi = i for variable bottom topographies.
(13.22)

As a matter of fact the above restriction is not essential to the well-posedness result stated below,
but to the following consistency result. As always, we consider the shallow water regime (Defini-
tion III.2) that is parameters in the set

pSW =
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

Before stating the results, it is convenient to recall the notations of Section 13.2. Defining

l(h)
def
=
(
hp0 , hp1 , . . . , hpN

)⊤
and, as in eq. (13.12),

Lµij [h, β∇b]φ
def
= −∇ ·

(
hpi+pj+1

pi+pj+1∇φ− pj
pi+pj

hpi+pjφ(β∇b)
)

− pi
pi+pj

hpi+pj (∇φ) · (β∇b) + pipj
pi+pj−1h

pi+pj−1(µ−1 + |β∇b|2)φ (13.23)

we can rewrite the Isobe–Kakinuma model eq. (13.7) compactly as{
−l(h)∂tζ + Lµ[h, β∇b]ϕ = 0,

l(h) • ∂tϕ+ ζ + ε
2

(
|u|2 + µ−1w2

)
= 0,

(13.24)
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where we denote h
def
= 1 + εζ − βb, ϕ

def
= (ϕ0, ϕ1, . . . , ϕN )⊤, Lµ = (Lµij)i,j∈{0,1,...,N} and

u
def
= l(h) • ∇ϕ− (l′(h) • ϕ)(β∇b), w

def
= l′(h) • ϕ, (13.25)

where we use • to denote the (N + 1)-dimensional inner product. Notice

(u, w) =
(
∇xΦ

app, ∂zΦ
app
) ∣∣

z=εζ
, Φapp def

=

N∑
i=0

(
z + 1− βb

)pi
ϕi.

Recall that any solution to eq. (13.24) must satisfy

∀i ∈ {1, . . . , N},
N∑
j=0

Lµijϕj = hpi
N∑
j=0

Lµ0jϕj . (13.26)

In the following, we denote

Xs
µ

def
=
{
ϕ = (ϕ0, ϕ1, . . . , ϕN ) ∈ H̊s+1(Rd)×Hs+1(Rd)N ,

∣∣ϕ∣∣2
Xs

µ

def
=

N∑
i=0

∣∣∇ϕi∣∣2Hs +

N∑
j=1

µ−1
∣∣ϕj∣∣2Hs <∞

}
.

Theorem 13.12 (Consistency). Let d ∈ N⋆, N ∈ N, h⋆ > 0, µ⋆ > 0 and M⋆ ≥ 0. Let s ∈ N be such
that s ≥ 4N + 2 and s > d/2 + 2N + 2 in the flat bottom case, βb ≡ 0; s ≥ max({3, 4⌊N/2⌋+ 2})
and s > d/2 + 2⌊N/2⌋ + 2 otherwise. There exists C > 0 such that for any (µ, ε, β) ∈ pSW, any
b ∈ W s+1,∞(Rd), any T > 0 and any (ζ,ϕ) ∈ L∞(0, T ;Hs(Rd) ×Xs

µ) solution to eq. (13.24) and
satisfying

∀x ∈ Rd, h(t,x)
def
= 1 + εζ(t,x)− βb(x) ≥ h⋆ > 0 (13.27)

uniformly for t ∈ (0, T ) and

M
def
= ess sup

t∈(0,T )

(∣∣εζ(t, ·)∣∣
Hs

)
+
∣∣βb∣∣

W s+1,∞ ≤M⋆,

then, denoting ψ
def
= l(h) • ϕ, one has

∂tζ − 1
µG

µ[εζ, βb]ψ = r1,

∂tψ + ζ + ε
2 |∇ψ|

2 − µε
( 1µG

µ[εζ, βb]ψ + ε∇ζ · ∇ψ)2

2(1 + µε2|∇ζ|2)
= r2,

where, for almost every t ∈ (0, T ),∣∣r1(t, ·)∣∣Hs−2Ñ−4 ≤ C µ1+Ñ
∣∣∇ψ(t, ·)∣∣

Hs−1 ,∣∣r2(t, ·)∣∣Hs−2Ñ−4 ≤ C µ1+Ñε
∣∣∇ψ(t, ·)∣∣2

Hs−1 ,

with Ñ = 2N in the flat bottom case, and Ñ = 2⌊N/2⌋ otherwise.

Remark 13.13. The statement of the consistency result—following [226, Theorem 2.2]—is in the
opposite direction with respect to other consistency statements in this document, where solutions
to the water waves system are shown to satisfy the model up to a small remainder terms. We
favored the latter as long as stability results for the models were easier to prove and stronger than
the corresponding stability result for the water waves system (see [268, Theorem 4.18]). This is
no longer the case for the Isobe–Kakinuma model due to the special structure of the system, and
specifically the fact that the hypersurface t = 0 in the space-time Rd × R is characteristic.
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Remark 13.14. The precision of order O(µ1+Ñ ) with Ñ = 2N in the flat bottom case is striking
when we compare with the expected precision of the Boussinesq–Rayleigh expansion, eq. (11.1), with
the same number of terms, that is O(µ1+N ), and manifests the power of variational methods. As a
side note, the approximate formula for the velocity potential

Φapp def
=

N∑
i=0

Ψi(x, z)ϕi(x) =

N∑
i=0

(
z + 1− βb(x)

)pi
ϕi(x)

is not precise at order O(µ1+Ñ ) in the bulk of the fluid; but only
∫ εζ
−1+βb

∇Φapp(·, z) dz is.

Sketch of the proof. While giving the detailed proof is out of the scope of the present document, it
is interesting to describe the main ideas. The key element comes from robust estimates on solutions
to the system {∑N

j=0 L
µ
ijϕj − hpi

∑N
j=0 L

µ
0jϕj = ψi ∀i ∈ {1, . . . , N},∑

j = 0Nhpjϕj = ψ0.
(13.28)

This system mimics the Laplace problem studied in Section 4 (with remainder terms), and the
following result should be compared with Proposition 4.5. In [226, §3] it is shown that for any
s > d/2 + 1 and k ∈ {0,±1, . . . ,±s− 1} under the assumptions

h ≥ h⋆ > 0,
∣∣εζ∣∣

Hs +
∣∣βb∣∣

W s,∞ ≤M⋆,

for any ψ = (ψ0, ψ1, . . . , ψN ) ∈ H̊k+1 × (H̊k−1)N there exists a unique ϕ = (ϕ0, ϕ1, . . . , ϕN ) ∈
H̊k+1 × (Hk+1)N solution to the above and that

∣∣∇ϕ0∣∣Hk +

N∑
j=1

(∣∣∇ϕj∣∣Hk + µ− 1
2

∣∣ϕj∣∣Hk

)
≤ C

∣∣∇ψ0

∣∣
Hk +

N∑
j=1

min
({∣∣ψj∣∣Hk−1 , µ

1
2

∣∣ψj∣∣Hk

})
,

where C depends only on s, h⋆ and M⋆ (in particular it is uniform with respect to (µ, ε, β) ∈ pSW).
This results follows from rewriting the above system (substituting in the first N equations the
formula for ϕ0 induced by the last equation) as a symmetricN -by-N system of differential equations,
and applying standard tools for elliptic problems, akin to the ones employed in Proposition 4.5.
The first step, that is the coercivity of the linear system of differential operators, follows from
recognizing the (positive) kinetic energy in eq. (13.10) in (Lµϕ,ϕ)L2 , that is

(Lµϕ,ϕ)L2 =

∫
Rd

∫ εζ

−1+βb

1

2µ
(∂zΦ

app
IK )2 +

1

2
|∇xΦ

app
IK |2 dz dx, Φapp def

=

N∑
i=0

(
z + 1− βb

)pi
ϕi.

(13.29)
Here the non-cavitation assumption h ≥ h⋆ > 0 and the linear independence of the function
z 7→

(
z + 1 − βb(x)

)pi
play a crucial role. This quickly yields the case k = 0. Then product and

commutator estimates in Appendix II allow to deduce by induction the cases k = 1, . . . , s − 1.
Finally the cases k = −1, . . . ,−s+ 1 follow by duality.

As a second step, using the above estimates and separating first-order O(µ−1) terms to up-to-
second order O(1) terms in (Lµi· − hpiLµ0·)i∈{1,...,N}, and observing that the linear system induced
by the former is non-singular, one deduces that when ψ1 = · · · = ψN = 0 above, then provided
k + 2j − 1 ≤ s− 1{∣∣ϕj∣∣Hk ≤ C(M⋆)µ

j
∣∣∇ψ0

∣∣
Hk+2j−1 in the flat bottom case,∣∣ϕ2j−1

∣∣
Hk ≤ C(M⋆)µ

j
∣∣∇ψ0

∣∣
Hk+2j−1 otherwise.

(13.30)

As one can see, here, the precise choice of the vertical distribution is essential.
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Then we deduce the result from the previously proved bounds. One introduces as an interme-
diary approximate solution

Φ̃app def
=

2N+2∑
i=0

Ψi(x, z)ϕ̃i(x) =

2N+2∑
i=0

(
z + 1− βb(x)

)pi
ϕ̃i(x),

where ϕ̃i is obtained by solving the augmented (2N + 3)-by-(2N + 3) problem, eq. (13.26) and

l(h)•ϕ̃ = ψ. Using the above estimates, one easily checks that the augmented approximate solution

satisfies the Laplace problem, eq. (4.2), with O(µ1+Ñ ) remainder terms. By Proposition 4.5 we have

directly the desired control of the difference between Φ, the exact solution, and Φ̃app, and more
importantly by Green’s formula (see Lemma 4.6)

1

µ
Gµ[εζ, βb]ψ −

2N+2∑
j=0

Lµij ϕ̃j = O(µ2Ñ+1).

Now there remains to observing the key cancellation when considering
∑2N+2
j=0 Lµ0j ϕ̃j −

∑2N
j=0 L

µ
0jϕj

where ϕj are the solutions to the (N + 1)-by-(N + 1) problem, eq. (13.26) and l(h) • ϕ = ψ. To
this aim we use duality reasoning, set φ a smooth test function, denote (φ0, φ1, . . . , φ2N+2)

⊤ the

solution to the augmented (2N + 3)-by-(2N + 3) problem, eq. (13.26) and
∑2N+2
i=0 hpiφi = φ. We

have, using all the identities and that (Lµij)⋆ = Lµji for the L2(Rd) inner-product,

( 2N+2∑
j=0

Lµ0j ϕ̃j , φ
)
L2 =

( 2N+2∑
j=0

Lµ0j ϕ̃j ,
2N+2∑
i=0

hpiφi
)
L2 =

2N+2∑
i=0

2N+2∑
j=0

(
Lµij ϕ̃j , φi

)
L2

=

2N+2∑
i=0

2N+2∑
j=0

(
ϕ̃j ,Lµjiφi

)
L2 =

2N+2∑
i=0

2N+2∑
j=0

(
ϕ̃j , h

pjLµ0iφi
)
L2 =

(
ψ,

2N+2∑
i=0

Lµ0iφi
)
L2

=
( N∑
j=0

hpjϕj ,

2N+2∑
i=0

Lµ0iφi
)
L2 =

N∑
j=0

(
ϕj ,

2N+2∑
i=0

Lµjiφi
)
L2

=

N∑
j=0

N∑
i=0

(
Lµijϕj , φi

)
L2 +

N∑
j=0

2N+2∑
i=N+1

(
Lµijϕj , φi

)
L2

=
( N∑
j=0

Lµ0jϕj , φ
)
L2 −

( N∑
j=0

Lµ0jϕj ,
2N+2∑
i=N+1

hpiφi
)
L2 +

N∑
j=0

2N+2∑
i=N+1

(
Lµijϕj , φi

)
L2

=
( N∑
j=0

Lµ0jϕj , φ
)
L2 +

N∑
j=0

2N+2∑
i=N+1

(
(Lµij − hpiLµ0j)(ϕj − ϕ̃j), φi

)
L2

+

2N+2∑
j=N+1

2N+2∑
i=N+1

(
(Lµij − hpiLµ0j)ϕ̃j , φi

)
L2

The last two terms are of size O(µ1+Ñ ) because, φi = O(µ1+Ñ/2) for i ∈ {N + 1, . . . , 2N + 2} and

ϕj − ϕ̃j = O(µ1+Ñ/2) for j ∈ {0, . . . , N} and ϕ̃j = O(µ1+Ñ/2) for j ∈ {N + 1, . . . , 2N + 2}, by the
previously obtained estimates. It is informative to revisit the above calculations in the light of the
Galerkin interpretation described in Section 13.3, starting with

( 2N+2∑
j=0

Lµ0j ϕ̃j , φ
)
L2 =

∫∫
Ω

∇µ
x,zΦ̃

app · ∇µ
x,zΨ

app dx dz =
(
ϕ̃j ,

2N+2∑
i=0

Lµ0iφi
)
L2
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where Ψapp def
=
∑2N+2
i=0 Ψi(x, z)φ̃i(x). In any case, we deduce the bound on r0 the first component

of r as desired. The bounds on the other ones follow immediately since r = r0l. The bound on the
last one is obtained in the same way, using l(h)•∂tϕ = ∂tψ− ε(∂tζ)l′(h)•ϕ and replacing ∂tζ with
the formula from the first equations (that is, using the relation with the formulation eq. (13.17)),
and a little algebra.

Theorem 13.15 (Local well-posedness). Let d ∈ N⋆, N ∈ N, s ∈ N, s > 1 + d/2, h⋆ > 0, a⋆ > 0,
µ⋆ > 0, and M⋆ ≥ 0. There exist T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any
b ∈W s+1,∞(Rd), and any (ζ0,ϕ0) ∈ Hs(Rd)×Xs

µ satisfying the relation eq. (13.26),

h0
def
= 1 + εζ0 − βb ≥ h⋆ > 0, aIK |

t=0
≥ a⋆ > 0

where aIK is defined in Remark 13.16 and

M0
def
=
∣∣εζ0∣∣Hs +

∣∣εϕ∣∣
Xs

µ
+
∣∣βb∣∣

W s+1,∞ ≤M⋆,

there exists a unique (ζ,ϕ) ∈ C0([0, T/M0];H
s(Rd)×Xs

µ) solution to the Isobe–Kakinuma system,
eq. (13.24), with initial data (ζ,ϕ) |

t=0
= (ζ0,ϕ0); and we have for any t ∈ [0, T/M0]∣∣ζ(t, ·)∣∣

Hs +
∣∣ϕ(t, ·)∣∣

Xs
µ
≤ C ×

(∣∣ζ0∣∣Hs +
∣∣ϕ0

∣∣
Xs

µ

)
and infRd(1 + εζ(t, ·)− βb) ≥ h⋆/2, infRd aIK(t, ·) ≥ a⋆/2.

Remark 13.16. The scalar function aIK plays the role of the Rayleigh–Taylor sign condition for the
the water wave problem; see Theorem 2.9. It is defined as follows:

aIK
def
= 1 + εl′(h) • ∂tϕ+ ε2u ·

(
l′(h) • ∇ϕ− (l′′(h) • ϕ)(β∇b)

)
+ ε2µ−1w(l′′(h) • ϕ),

where (u, w) are defined by eq. (13.25). Its initial value, depending on (ζ0,ϕ0, b), is uniquely deter-
mined by differentiating with respect to time the relation eq. (13.26), substituting therein the value
of (∂tζ) |t=0 given by the first equation in eq. (13.24), and solving the resulting system of differen-
tial equations supplemented with the last equation in eq. (13.24)—which is of the form (13.28)—to
determine uniquely (∂tϕ) |t=0

. Notice (and compare with Remark 2.10) the identity

aIK = −∂zP app
∣∣
z=εζ

, ∂zP
app def

= −1− ε∂z
(
∂tΦ

app + ε
2 |∇x,zΦ

app|2
)
.

We immediately deduce from the above and the solvability of the problem (13.28), another
version of the theorem which is more suitable to the comparison with Theorem 2.9.

Corollary 13.17 (Local well-posedness). Let d ∈ N⋆, s ∈ N, s > 1+d/2, h⋆ > 0, a⋆ > 0, µ⋆ > 0, and
M⋆ ≥ 0. There exist T > 0 and C > 0 such that the for any (µ, ε, β) ∈ pSW, any b ∈W s+2,∞(Rd),
and any (ζ0, ψ0) ∈ Hs+1(Rd)× H̊s+1(Rd) such that

inf
x∈Rd

(
1 + εζ0 − βb

)
≥ h⋆ > 0, inf

x∈Rd
aIK |t=0 ≥ a⋆ > 0

where aIK is defined in Remark 13.16 with ϕ0 the unique solution to eq. (13.26) and l(h0)•ϕ0 = ψ0,

M0
def
=
∣∣εζ0∣∣Hs+1 +

∣∣∇ψ0

∣∣
Hs +

∣∣βb∣∣
W s+1,∞ ≤M⋆,

there exists a unique (ζ, ψ) ∈ C0([0, T/M0];H
s(Rd) × H̊s(Rd)) solution to the Isobe–Kakinuma

system under formulation eq. (13.17), with initial data (ζ, ψ) |
t=0

= (ζ0, ψ0); and we have for any
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t ∈ [0, T/M0]
65 ∣∣ζ(t, ·)∣∣

Hs +
∣∣∇ψ(t, ·)∣∣

Hs−1 ≤ C ×
(∣∣ζ0∣∣Hs+1 +

∣∣∇ψ0

∣∣
Hs

)
.

and infRd(1 + εζ(t, ·)− βb) ≥ h⋆/2, infRd aIK(t, ·) ≥ a⋆/2.

Sketch of the proof. Let us quickly discuss the key elements of the proof of Theorem 13.15, which
can be found in [341] and [226, §4]. It follows the energy method, as presented in Section 8.6, with
a few tweaks given the structure of the equations. First we extract the quasilinear structure to the
Isobe–Kakinuma system by differentiating several times the equations and neglecting order-zero
terms (for our functional setting). By direct calculations and product and commutator estimates in
Appendix II, we find that for k ∈ Nd a multi index with |k| ≤ s, applying ∂k to eq. (13.24) yields
the system of equations(

0 l(h)⊤

−l(h) ON+1

)(
(∂t + εu · ∇)∂kζ
(∂t + εu · ∇)∂kϕ

)
+

(
aIK 0⊤

0 Lµ[h, β∇b]

)(
∂kζ
∂kϕ

)
=

(
rk
rk

)
,

where aIK is defined as in Remark 13.16, and the remainder term (rk, rk) is uniformly bounded
in an appropriate space, and plays no role for the local-in-time existence and control of solutions.
Then the key idea consists in using the special symmetric structure of the equations and test the
above identity against

(∂t + εu · ∇)

(
∂t∂

kζ
∂t∂

kϕ

)
.

Then the contribution from the first term of the identity vanishes identically and from the second
term arises (up to commutator terms) E ′

k(t) where Ek is the suitable energy functional

Ek(t)
def
=
(
aIK ∂

kζ(t, ·) , ∂kζ(t, ·)
)
L2 +

(
Lµ[h, β∇b]∂kϕ(t, ·) , ∂kϕ(t, ·)

)
L2 .

One of the difficulties stemming from the structure of the equations when compared with the
situation of standard quasilinear systems discussed in Theorem 8.3 (where the hypersurface t = 0
in the space-time Rd×R is not characteristic, that is the matrix operator in front of time derivatives
is invertible), is that one cannot deduce a control of time derivatives of the unknowns—which appear
in the commutator and remainder terms—straightforwardly from the equations. Yet by combining
the last equation in the Isobe–Kakinuma system, eq. (13.24), and the system obtained by time-
differentiating the system of constraints, eq. (13.26), and substituting therein the value of ∂tζ given
by the first equation in eq. (13.7), we obtain an elliptic system of differential equations for ∂tϕ with
the same structure as eq. (13.28), and from which we can infer the desired control of ∂tϕ, from the
pointwise-in-time control of (ζ,ϕ). As a matter of fact, this process must be realized twice as the
control of ∂ta demands the control of ∂2tϕ.

Another key ingredient consists in proving that there exists 0 < c ≤ C <∞ such that

c
(∣∣ζ∣∣2

Hs +
∣∣ϕ∣∣2

Xs
µ

)
≤

s∑
|k|=0

Ek(t) ≤ C
(∣∣ζ∣∣2

Hs +
∣∣ϕ∣∣2

Xs
µ

)
.

The upper bound is easily found provided aIK, εζ, βb are sufficiently regular, and the lower bound
follows follows from eq. (13.29)—using the non-cavitation assumption h ≥ h⋆ > 0 and the linear

65This estimate shows an apparent loss of one derivative between the regularity of the data at positive time, and
the initial regularity. We can withdraw this loss of derivative by measuring the size of data with the functional

Es(t)
def
=
∣∣ζ(t, ·)∣∣2

Hs +
∣∣∇ψ(t, ·)∣∣2

Hs−1 +

s∑
|k|=0

∣∣(∂k∇ψ − εw∂k∇ζ
)
(t, ·)

∣∣2
L2 ,

which stems from considering l(h)• (∂k∇ϕ) instead of ∂k∇ψ = ∂k∇(l(h)•ϕ). Here we recognize the natural energy
functional in terms of Alinhac’s good unknowns; see Remark 2.10.
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independence of the function z 7→
(
z + 1 − βb(x)

)pi
—and, obviously, the hyperbolicity condition

that aIK is bounded from below by a positive constant.
Eventually, we obtain as usual a differential equation for the functionals Ek (with |k| ∈ {0, . . . , s})

from which—using Gronwall’s estimate and the above equivalence—the desired a priori control of
(ζ,ϕ)Hs×Xs

µ
follows. The completion of the proof uses a parabolic regularization of the equations

and a limiting procedure, as in Section 8.6.4.

As consequence to Theorem 13.12, Corollary 13.17, the equivalence between the two formulations
of the Isobe–Kakinuma model, eq. (13.7) (or eq. (13.24)) and eq. (13.17) and the stability result for
the water waves system given in [268, Theorem 4.18], we have the following result.

Theorem 13.18 (Convergence). Let d ∈ N⋆, N ∈ N, µ⋆ > 0, s ∈ N, h⋆ > 0, a⋆ > 0 and M⋆ ≥ 0.
There exist m ∈ N, T > 0 and C > 0 such that for any (µ, ε, β) ∈ pSW, any b ∈W s+m,∞(Rd), any
T ⋆ > 0 and any (ζ0, ψ0) ∈ Hs+m × H̊s+m(Rd) such that

inf
x∈Rd

(
1 + εζ0 − βb

)
≥ h⋆ > 0, inf

x∈Rd
aIK |

t=0
≥ a⋆ > 0, inf

x∈Rd
a |

t=0
≥ a⋆ > 0

where aIK is defined in Remark 13.16 and a is defined in Remark 2.10, and

M
def
=
∣∣εζ0∣∣Hs+m +

∣∣ε∇ψ0

∣∣
Hs+m−1 +

∣∣βb∣∣
W s+m,∞ ≤M⋆,

there exists a unique (ζww, ψww) classical solution to the water waves system, eq. (2.7), with initial
data

(
ζww, ψww

)
|
t=0

= (ζ0, ψ0); and a unique (ζIK, ψIK) classical solution to the Isobe–Kakinuma

model, eq. (13.17), with initial data
(
ζIK, ψIK

)
|
t=0

= (ζ0, ψ0); both defined on the time interval
[0, T/M ] and one has for any t ∈ [0, T/M ],∣∣(ζww − ζIK)(t, ·)

∣∣
Hs +

∣∣(∇ψww −∇ψIK)(t, ·)
∣∣
Hs ≤ C µ1+Ñ t

( ∣∣ζ0∣∣Hs+m +
∣∣∇ψ0

∣∣
Hs+m−1

)
,

with Ñ = 2N in the flat bottom case, and Ñ = 2⌊N/2⌋ otherwise.

Remark 13.19. The “loss of derivatives”, m ∈ N grows with N as m = 4N + p in the flat bottom
case, and m = 2N + p otherwise, with some fixed p ∈ N a universal constant (if, say, s > d/2).

13.7 Discussion and open questions

The main open question concerning the study of the Isobe–Kakinuma model, and more generally
systems of the form (13.5)–(13.6) based on different vertical distributions, is their ability to re-
produce (sufficiently regular) solutions to the water waves system to any prescribed accuracy by
taking the rank of the model in the family, N , sufficiently large. It is clear that Theorem 13.18 is
not satisfactory in that respect since—just as for the high order models in Section 11, see Propo-
sition 11.10—it exhibits a loss of derivatives, m, which grows with N . Yet this important loss of
derivative can be tracked back to the “second step” in the proof of Theorem 13.12, where smallness
of the functions ϕj , measured in powers of the shallow water parameter (see eq. (13.30)), is deduced
from the specific choice of the vertical distribution. The rest of the arguments appears fairly robust
and does not require so much regularity. Hence we can hope that solutions to the Isobe–Kakinuma
model—or to other models with the same structure—as provided by Corollary 13.17 do converge
towards the corresponding solution to the water waves system as N grows, with precision O(N−α)
with some α > 0 (and maybe O(µβN−α) where β > 0 grows with the number of derivatives that
we tolerate to lose). This hope is supported by the modal analysis in Section 13.5. As far as I know
there is essentially no rigorous result in that direction. Yet one should recall that the convergence
of the expansion displayed in eq. (13.3) was proved for a certain choice of the vertical distribution
in [355], and report that very satisfactory numerical results were obtained in [44, 421] (and refer-
ences therein). Of utmost importance concerning this matter is to provide some clues as for the
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best choice of the vertical distribution in a given situation (shallow water vs deep water, weak vs
strong nonlinearities, properties of the bottom topography, etc.).

Additionally, for fixed given N ̸= 0, all the questions asked in Section 8.7 are completely open,
and interesting as potentially giving valuable information on solutions to the water waves system. It
can be noticed that the argument in the “small-amplitude, large-time dynamics” paragraph therein,
concerning the order of the approximation to 1

µG
µ[0, βb] given by the model is rather encouraging,

and that we can hope that the result in [62] for the Saint-Venant system can be extended to the
case N ̸= 0.
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CHAPTER E

Non-hydrostatic models for interfacial waves

Toujours vouloir tout essayer, et recommencer

— Michel Berger, Le paradis blanc
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Foreword

We have introduced in Section 3 the equations extending the water waves system to the framework
of interfacial waves between two layers of incompressible, homogeneous, inviscid and immiscible
fluids with potential flows. The physical motivation for studying such systems is the reported (and
ubiquitous) existence of coherent waves traveling at the sharp interface between, say, fresh and
warm water above denser salted cold water. One can refer to e.g. [235, 213] for a small peek at
the vast literature on the subject. The main features of these waves is that they have tremendously
large amplitudes—sometimes of the order of magnitude of the layer itself—, very long wave length,
and travel over very long distances. Hence the assumptions of the shallow water regime, and in
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Figure E: Models in Chapter E (in green) and some filiations.

particular the fact that we do not impose any smallness assumption on the amplitude of the wave,
is perfectly suited to the study of such waves. It is therefore very tempting to introduce asymptotic
models for interfacial waves which are analogous to the asymptotic models for the water waves
system. This was done in the hydrostatic framework in Section 6 and non-hydrostatic models are
the subject of this chapter.

In addition to the physical motivation, there are interesting new features and challenges when
studying interfacial waves. First and foremost, as we have seen in Section 3.4, three additional
dimensionless parameters come into view, namely

α =
atop
aint

; δ =
d1
d2

; γ =
ρ1
ρ2

respectively the amplitude ratio of the free surface and interface, the depth ratio between the two
layers, and the density ratio. Hence there are plethora of interesting limits to consider. We will
focus here on the framework which is the most similar to the one-layer case66 and in particular we
will assume that the two layers are of comparable depth, both small with respect to the typical
horizontal wavelength of the flow. We have already discussed the relation between the limit of small
density contrast, γ ↗ 1 and the rigid-lid hypothesis, in Section 3.1.1, and in more details in the
hydrostatic framework in Section 6.2. Somewhat inconsistently, we will restrict henceforth to the
rigid-lid situation67 without assuming the Boussinesq approximation, yet allowing γ to approach
unity. To summarize, our results will hold for parameters in the following set.

Definition (Shallow water/Shallow water asymptotic regime). Given µ⋆, δ⋆, δ
⋆ > 0, we let

p SW

SW

=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

As discussed in Section 3.3, one of the main striking difference between the water waves system
and the corresponding interfacial waves system is the emergence of Kelvin–Helmholtz instabilities

66see e.g. [101, 54] for related studies in other physically relevant asymptotic regimes.
67see e.g. [99, 152, 153] for related studies in the free-surface framework.
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in the latter. Recall that the provided modal analysis shows that large wavenumber modes are
unstable, and that the exponential growth rate takes arbitrarily large values as the wavenumber
goes to infinity. This explains why the initial-value problem associated with the nonlinear system
is strongly ill-posed outside of the analytic framework as discussed in Section 3.5. This appears to
contradict the fact that, as we said, large interfacial waves do exist and appear remarkably stable!
An answer to this paradox has been given by Lannes in [267], by introducing interfacial tension
effects: it is shown that well-posedness is restored, and more importantly the time of existence of
solutions grows as µ ↘ 0, consistently with the fact that the hydrostatic equations for interfacial
waves are well-posed, as seen in Section 6. It should be emphasized however that interfacial tension
is not physical at the interface between two miscible fluids such as fresh and salted water; here it
plays the role of a regularizing operator acting mostly on the high (spatial) frequency component
of the flow. The real physical explanation is that mixing occurs, yet on a very thin transition layer:
the pycnocline. In the absence—to my knowledge—of a simple expression revealing the effective
influence of such mixing in the equations, we shall discard any effect when deriving asymptotic
models.

It should be emphasized however that the models studied in this manuscript behave very dif-
ferently regarding Kelvin–Helmholtz instabilities. Indeed, as the derivation focuses on the low
frequency (large wavelength) component of the flow, the high frequency behavior can be very dis-
similar between the different models, and hence with respect to the original interfacial waves system.
A key revelation of the forthcoming study is the following.

• The Miyata–Choi–Camassa model, which is analogous to the Green–Naghdi system (see
Section 8) and studied in Section 14, overestimates Kelvin–Helmholtz instabilities.

• This unfortunate behavior can be corrected through artificial—but harmless for the precision
(in the sense of consistency) of the asymptotic model—modifications, which naturally yields
fully dispersive systems analogous to the ones presented in Section 10, named Whitham–
Choi–Camassa; or regularized system. This is shown in Section 14.5.

• The Kakinuma model, which extends the Isobe-Kakinuma model (see Section 13) to the bi-
layer framework and is studied in Section 15, inherently tames Kelvin–Helmholtz instabilities.

The latter model can be expected to be useful for understanding the propagation of long in-
terfacial waves, focusing on the large-scale dynamics of the flow, and discarding small-scale effects
as irrelevant. Once again, this should not blurry the fact that mixing do occur, and may in some
circumstances play an important role on the large-scale dynamics. Models with the aim of tracking
these effects—at least at first order—should use the continuously stratified Euler equations as a
starting point. Yet as we have seen in Section 7, very little is known for this system in the shallow
water regime. An important reference—in my opinion—dealing with long weakly dispersive inter-
nal (and not interfacial) waves is [138]. The Perspectives section in that reference supports and
complements the present discussion.
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14 The Miyata–Choi–Camassa system

We introduce the weakly dispersive fully nonlinear shallow water model, known in the literature
as the Miyata–Choi–Camassa system, and introduced by Miyata [324, 325], Mal’tseva [297] and
Choi and Camassa [99, 101], and which directly echoes the Green–Naghdi model for surface gravity
waves introduced and studied in Section 8. To this aim, we start from the full bilayer interfacial
waves system with rigid-lid, namely eq. (3.15). Proposition 4.10 yields

1

µ
Gµ1 [εζ2]ψ1 = − 1

µ
Gµ[−εζ2, 0]ψ1 = ∇ · (h1(Id+µT [h1,0])

−1∇ψ1) +O(µ2) (14.1)

1

µ
Gµ,δ2 [εζ2, βb]ψ2 =

δ

µ
Gµ/δ

2

[εδζ, βδb]ψ = −∇ · (h2(Id+µT [h2, β∇b])−1∇ψ) +O(µ2/δ5), (14.2)

where h1 = 1− εζ2, h2 = 1
δ + εζ2 − βb and

T [h, β∇b]u def
=

−1

3h
∇(h3∇ · u) + 1

2h

(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ (β∇b · u)(β∇b).

Plugging these expansions into eq. (3.15) and withdrawing O(µ2) terms yields
∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |u1|2 − µεR[h1,0,u1] = −γ−1pint

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |u2|2 − µεR[h2, β∇b,u2] = −pint,

(14.3)

where

R[h, β∇b,u] def= u

3h
· ∇(h3∇ · u) + 1

2
h2(∇ · u)2,

− 1

2

(u
h
· ∇
(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u+ (β∇b · u)2

)
.

and uℓ (ℓ ∈ {1, 2}) is deduced from (ζ2, ψ1, ψ2) after solving the equation

h1∇ψ1 = h1u1 + µh1T [h1,0]u1
def
= Tµ[h1,0]u1,

h2∇ψ2 = h2u2 + µh2T [h2, β∇b]u2
def
= Tµ[h2, β∇b]u2.

As for the Green–Naghdi system, we infer a system written with only differential operators in terms
of the unknowns ζ2, u1 and u2, namely

∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),(
Id+µT [h1,0]

)
∂tu1 +

δ+γ
1−γ∇ζ2 + ε(u1 · ∇)u1 + µεQ[h1,0,u1] = −γ−1∇pint,(

Id+µT [h2, β∇b]
)
∂tu2 +

δ+γ
1−γ∇ζ2 + ε(u2 · ∇)u2 + µεQ[h2, β∇b,u2] = −∇pint,

(14.4)

where

Q[h, β∇b,u] def= −1

3h
∇
(
h3
(
(u · ∇)(∇ · u)− (∇ · u)2

))
,

+
β

2h

(
∇
(
h2(u · ∇)2b

)
− h2

(
(u · ∇)(∇ · u)− (∇ · u)2

)
∇b
)
+ β

(
(u · ∇)2b

)
(β∇b).

We let the reader complete the family of equivalent formulations listed in Section 8, and conclude
with the following compact formulation of the Miyata–Choi–Camassa system using physical
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variables (recall Section 3.4) and which one can recognize in [99, 101]:
∂th1 +∇ · (h1u1) = 0,

∂th2 +∇ · (h2u2) = 0,

ρ1∂tu1 + ρ1(u1 · ∇)u1 +∇pint + gρ1∇(h2 + b) + P[h1, 0, u1] = 0,

ρ2∂tu2 + ρ2(u2 · ∇)u2 +∇pint + gρ2∇(h2 + b) + P[h2, b, u2] = 0,

(14.5)

with h1 = d1 − ζ2 and h2 = d2 + ζ2 − b, and

P[h, b, u]
def
=

1

h
∇
(
h2
( ḧ
3
+
b̈

2

))
+
( ḧ
2
+ b̈
)
(∇b)

and where we denote ḣ = ∂th + εu · ∇h, ḧ = ∂tḣ + εu · ∇ḣ, and similarly ḃ, b̈.

Let us clarify the physical signification of these equations. The variable u1 (resp. u2) represents
the layer-averaged horizontal velocity on the upper (resp. lower) layer, or at least a valid approxi-
mation thereof in our asymptotic regime. Hence the first two equations represent the conservation
of masses. Discarding the contributions defined by P, we recover the bilayer extension of the Saint-
Venant system, given in eq. (6.12). Hence the additional terms defined by P represent a correction
to the hydrostatic pressure, valid at first order for weakly dispersive flows. Recall that ∇pint, which
physically represents the pressure at the interface, can be seen as the Lagrange multiplier associated
with the rigid-lid constraint: ∇ · (h1u1) +∇ · (h2u2) = −∂t(h1 + h2) = ∂tb.

The Miyata–Choi–Camassa system can be derived in the free-surface framework, as in [99]. Yet
in this case we cannot rely solely on Proposition 4.10 but use Proposition 4.23 as well; see [152].
In fact we can consider an arbitrary number of interfaces [94, 288], hence extending the multilayer
hydrostatic equations, eq. (6.20), to weakly dispersive flows.

A final remark is that by setting γ = 0 and δ = 1 in eq. (14.3) (respectively eq. (14.4)), we
recognize the Green–Naghdi equations for (homogeneous with free-surface) water waves, namely
eq. (8.2) (respectively eq. (8.6)).

14.1 Hamiltonian structure

We shall not dwell into the sophisticated variational structures analogous to the ones discussed
in Section 8.1.1 for the Green–Naghdi system, but simply remark that the canonical Hamiltonian
structure of the interfacial waves system (see Section 3.2) naturally extends to the Miyata–Choi–
Camassa system.

More precisely define, according to the expansion of the Dirichlet-to-Neumann operators,

HMCC
def
=

1

2

∫
Rd

(δ + γ)ζ22 + (ψ2 − γψ1)∇ ·
(
h2T

µ[h2, β∇b]−1(h2∇ψ2)
)
dx,

viewing HMCC as a functional for (ζ2, ξ2
def
= ψ2 − γψ1) and using the constraint

∇ ·
(
h1T

µ[h1,0]
−1(h1∇ψ1)

)
+∇ ·

(
h2T

µ[h2, β∇b]−1(h2∇ψ2)
)
= 0,

we find that solutions to the Miyata–Choi–Camassa equations eq. (14.3) satisfy the canonical Hamil-
ton equations

∂t

(
ζ2
ξ2

)
=

(
δξ2HMCC

−δζ2HMCC

)
.

As we have seen many times, associated with the Hamiltonian formulation and natural symmetry
groups of the system are preserved quantities.
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Related to the variation of base level for the velocity potentials we find the obvious conservation
of the excess of mass:

d

dt
Z = 0, Z

def
=

∫
Rd

ζ2 dx.

From horizontal translation invariance (in the flat bottom case) we obtain the conservation of the
horizontal impulse

d

dt
I = 0, I

def
=

∫
Rd

ζ2∇ξ2 dx. (if βb ≡ 0).

From time translation invariance we obtain the conservation of the energy

d

dt
HMCC = 0.

We also have the“trivial”—in the formulation (14.3) but not in the formulation (14.4)— conservation
laws

d

dt
V1 = 0, V1

def
=

∫
Rd

∇ψ1 dx =

∫
Rd

u1 + T [h1,0]u1 dx,

d

dt
V2 = 0, V2

def
=

∫
Rd

∇ψ2 dx =

∫
Rd

u2 + T [h2, β∇b]u1 dx.

These conservation laws were already listed in [101], where the Hamiltonian structure was mentioned
but not displayed.

14.2 Traveling waves

In the unidimensional (d = 1) and flat bottom (b ≡ 0) framework, the Miyata–Choi–Camassa
system enjoys a semi-explicit family of solitary wave solutions that is satisfying

(ζ2, u1, u2)(t, x) = (ζ2,c , u1,c , u2,c)(x − ct), lim
|x|→∞

|(ζ2,c , u′1,c , c ′2,c)|(x) = 0.

Plugging this Ansatz into the equations (14.5) and after a few algebraic computations (see [101])
we are led to the following nonlinear ordinary differential equation:

(ζ′)2 = C
ζ2(ζ − a−)(ζ − a+)

(ζ − a⋆)

where we denote ζ2,c = ζ2,c for simplicity, C = 3g(ρ2−ρ1)
c2(ρ1d2

1−ρ2d2
2 )
, a⋆ = −d1d2 ρ1d1+ρ2d2ρ1d

2
1−ρ2d2

2
, and a± are the

two roots of the quadratic equation

ζ2 + (− c2

g
− d1 + d2)ζ + d1d2

(
c2

c20
− 1
)
= 0

and c0 is the velocity of infinitesimally long wave, that is c20 = gd1d2(ρ2−ρ1)
ρ1d2+ρ2d1

.

We deduce (again see [101] for the detailed analysis) first that, as in the one-layer case, solitary
waves must be supercritical, that is |c | > |c0|. But interesting new phenomena arise. First, on
readily sees that in the situation where ρ1d

2
1 = ρ2d

2
2 is critical; in this situation no solitary wave

can exists. Less straightforward is that ρ2d
2
1 = ρ1d

2
2 is also singular. Solitary waves are necessarily of

depression type if ρ2d
2
1 < ρ1d

2
2 , and of elevation type if ρ2d

2
1 > ρ1d

2
2 , while the solution degenerates

into the flat equilibrium as
ρ2d

2
1

ρ1d
2
2
→ 1. In the other singular limit,

ρ1d
2
1

ρ2d
2
2
→ 1, the solitary waves

degenerate into a front-like solution (a bore).
The solitary wave solutions to the Miyata–Choi–Camassa system turn out to reproduce re-

markably well what is observed in field observations, laboratory experiments and solutions to the
full bilayer interfacial waves system; see Figure 14.1 for an illustration and [213] for a thorough
discussion and more references.
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Figure 14.1: Solitary wave solutions to the interfacial waves system (plain blue),
Miyata–Choi–Camassa model (green,dash-dotted), fully dispersive counterpart (red, dashed)

introduced in Section 14.5 and Korteweg-de Vries (thick black). The figure is taken from [165].
Dimensionless parameters are γ = 1, δ = 1/2, µ = ε = 1. The maximal amplitude predicted by the

Miyata–Choi–Camassa model is |amax| = 1/2, corresponding to cmax =
√

1 + 1/8 ≈ 1.06066.

14.3 Rigorous justification

The following result shows that the Miyata–Choi–Camassa system is an asymptotic model for the
bilayer interfacial waves system with precision O(µ2), in the sense of consistency. We do not
complete the rigorous justification—as was done for the Green–Naghdi system in Section 8.5—by
well-posedness, stability and convergence results, because we expect from the modal analysis of
Section 14.4 that the Miyata–Choi–Camassa system, as the interfacial waves system, is strongly ill-
posed in functional spaces of finite regularity (although this result is yet open). This does not mean
that the result below is empty, since non-trivial solutions to the interfacial waves equations (for
instance solitary waves) do exist. Moreover the result is straightforwardly adapted to a situation
where additional regularizing terms such as the contribution of interfacial tension are included.

Theorem 14.1 (Consistency). Let d ∈ N⋆, s⋆ > d/2, h⋆ > 0, µ⋆ > 0, δ⋆ ≥ δ⋆ > 0, s ∈ N and
M⋆ ≥ 0. There exists C > 0 such that for any

(µ, ε, β, δ, γ) ∈ p SW

SW

def
=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.

any b ∈Wmax{s+6,2+s⋆}(Rd), and (ζ, ψ1, ψ2) ∈ L∞(0, T ;Hmax{s+6,2+s⋆}(Rd)×H̊max{s+6,2+s⋆}(Rd)2)
solution to the interfacial waves equations, eq. (3.15), satisfying

∀t ∈ [0, T ], ∀x ∈ Rd,

{
h1(t,x)

def
= 1− εζ(t,x) ≥ h⋆ > 0,

h2(t,x)
def
= δ−1 + εζ(t,x)− βb(x) ≥ h⋆ > 0,

ess sup
t∈(0,T )

(∣∣εζ(t, ·)∣∣
H2+s⋆

+
∣∣ε∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣ε∇ψ2(t, ·)

∣∣
H1+s⋆

)
+
∣∣βb∣∣

Wmax{s+6,2+s⋆},∞ ≤M⋆,

one has 
∂tζ2 −∇ · (h1u1) = r1,

∂tζ2 +∇ · (h2u2) = r2,

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |u1|2 − µεR[h1,0,u1] = −γ−1pint + r3,

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |u2|2 − µεR[h2, β∇b,u2] = −pint + r4,
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where we denote u1 = Tµ[h1,0]
−1(h1∇ψ1), u2 = Tµ[h2, β∇b]−1(h2∇ψ2), and one has for almost

every t ∈ (0, T ), denoting M
def
=
∣∣∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H1+s⋆

,∣∣(r1(t, ·), r2(t, ·))∣∣(Hs)2
≤ C µ2

(∣∣ζ(t, ·)∣∣
Hs+6 +

∣∣∇ψ1(t, ·)
∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
,∣∣(r3(t, ·), r4(t, ·))∣∣(Hs+1)2

≤ C µ2εM
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ1(t, ·)

∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
.

Proof. The proof is exactly the same as the one of Theorem 8.2—that is a direct consequence of
Proposition 4.10, Lemma 8.10 and estimates in Sobolev spaces—once we remark the identities

1

µ
Gµ1 [εζ2]ψ1 = − 1

µ
Gµ[−εζ2, 0]ψ1,

1

µ
Gµ,δ2 [εζ2, βb]ψ2 =

δ

µ
Gµ/δ

2

[δεζ, δβb]ψ2.

Notice that the functional spaces for pint and time derivatives have not been described but are
immaterial at this stage.

Remark 14.2. Our consistency result is lazy as we allow to satisfy the mass conservation equations
up to a small remainder term. It is possible but more complicated to justify the equations eq. (14.4)
with uℓ = uℓ (ℓ ∈ {1, 2}) the layer-averaged velocities, in which case the mass conservation identities
hold exactly; see [163] for the rigorous analysis.

14.4 Modal analysis

We now linearize eq. (14.3) about the constant shear solution68 in the flat bottom case. Setting
β = 0 and

(ζ2 = ϵζ0, ψ1 = u1 · x+ ϵψ0
1 , ψ2 = u2 · x+ ϵψ0

2)

and keeping only first-order terms in ϵ yields the following system
∂tζ

0 = ∇ · (−ζ0u1 + u
0
1) = −∇ · (ζ0u2 + δ−1u0

2),

∂tψ
0
1 +

δ+γ
1−γ ζ

0 + εu1 · ∇ψ0
1 = −γ−1pint

∂tψ
0
2 +

δ+γ
1−γ ζ

0 + εu2 · ∇ψ0
2 = −pint,

(14.6)

where u0
ℓ (ℓ ∈ {1, 2}) are defined by

∇ψ0
1 = u0

1 −
µ

3
∇∇ · u0

1, ∇ψ0
2 = u0

2 −
µ

3δ2
∇∇ · u0

2.

Denoting ψ0 def
= ψ0

2 − γψ0
1 yields the identities

∇
((

(Id−µ
3∆)−1 + γδ−1(Id− µ

3δ2∆)−1
)
ψ0
1

)
= −δ−1(Id− µ

3δ2∆)−1∇ψ0 + (u0
1 + δ−1u0

2),

∇
((

(Id−µ
3∆)−1 + γδ−1(1− µ

3δ2∆)−1
)
ψ0
2

)
= (Id−µ

3∆)−1∇ψ0 + γ(u0
1 + δ−1u0

2).

From this and the rigid-lid constraint

∇ · (u0
1 + δ−1u0

2) = −(u2 − u1) · ∇ζ0,

noticing that u0
1 and u0

2 are necessarily gradient vector fields from their definition, we infer the
following constant-coefficient linearized equations:{

∂tζ
0 + cMCC(D) · ∇ζ0 − bMCC(D)ψ0 = 0,

∂tψ
0 + aMCC(D)ζ0 + cMCC(D) · ∇ψ0 = 0,

68Recall the discussion in Section 3.3: contrarily to the homogeneous case with free-surface, one cannot invoke
Galilean invariance to reduce the study to the linearization about the rest (no-shear) solution.
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where

aMCC(D)
def
= (δ + γ)−

γδ
δ+γ

δ
δ+γ (1 +

µ
3 |D|2)−1 + γ

δ+γ (1 +
µ
3δ2 |D|2)−1

(ε(u2 − u1) ·D)2

|D|2
,

bMCC(D)
def
=

1

δ + γ

(1 + µ
3 |D|2)−1(1 + µ

3δ2 |D|2)−1

δ
δ+γ (1 +

µ
3 |D|2)−1 + γ

δ+γ (1 +
µ
3δ2 |D|2)−1

|D|2,

cMCC(D)
def
=

δ
δ+γ (1 +

µ
3 |D|2)−1u2 +

γ
δ+γ (1 +

µ
3δ2 |D|2)−1u1

δ
δ+γ (1 +

µ
3 |D|2)−1 + γ

δ+γ (1 +
µ
3δ2 |D|2)−1

.

Hence we have the dispersion relation

(ω(ξ)− cMCC(ξ) · ξ)2 = aMCC(ξ)bMCC(ξ), (14.7)

which we recognize as a weakly dispersive approximation of the dispersion relation of the full
(linearized) interfacial waves system, eq. (3.12). Hence the discussion from the latter in Section 3.3
applies word-to-word, and we realize that as soon as u2 − u1 ̸= 0 Fourier modes with sufficiently
large wavenumbers are exponentially amplified (i.e. unstable) with a growth rate taking arbitrarily
large values.

This can be seen as a positive feature of the model, since it reproduces the Kelvin–Helmholtz
instabilities which hold for the original interfacial waves system, and this was in fact pointed out
in [101] (see also [287, 237]). This is however only qualitatively true. Since aMCC(D) is always
smaller than the corresponding coefficient appearing in the dispersion relation of the full (linearized)
interfacial waves system, namely

aWW(D)
def
= (δ + γ)−

γδ
δ+γ

δ
δ+γ

tanh(
√
µ|D|)√

µ|D| + γ
δ+γ

tanh(
√
µ/δ2|D|)√

µ/δ2|D|

(ε(u2 − u1) ·D)2

|D|2
,

we conclude that the critical wavenumber (which exists by continuity and is unique by monotonicity)
above which some modes are unstable is smaller for the Miyata–Choi–Camassa model than the one
of the full system; see Figure 14.2a. Interestingly, the exponential growth rate is proportional to
|(u2 − u1) · ξ| in both cases, yet with a priori different prefactors.

In order to tame Kelvin–Helmholtz instabilities, it has been suggested to include surface tension
effects, as in Section 3.1.3. Indeed, in that case—that is for eq. (3.10)—the Fourier multiplier
aMCC(D) is replaced with

aBo(D) = a(D) + µ
δ + γ

Bo
|D|2

where Bo
def
=

g(ρ2−ρ1)d2
1

σ
is the Bond number. While for sufficiently small Bond numbers one can

indeed suppress modal instabilities of the Miyata–Choi–Camassa model, one can check that the
critical value below which this property holds is smaller for the Miyata–Choi–Camassa model than
the one for the full interfacial waves system. Specifically, the dimensionless number corresponding

to Υ
def
= γ2µε4 Bo defined in Section 3.5 is

ΥMCC
def
= γµε2 Bo :

all modes are stable if ΥMCC is sufficiently small, while modes with arbitrarily large wavenumber
are unstable is ΥMCC is too large. This should be compared with the fact that, as soon as Bo <∞,
modes of the full interfacial waves system with sufficiently large wavenumbers are necessarily stable.
See Figure 14.2b for an illustration.

From the above discussion (the reader can refer to [273] for an extended modal analysis) it is
quite apparent that the Miyata–Choi–Camassa model overestimates Kelvin–Helmholtz instabilities.
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(a) Without surface tension.
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Figure 14.2: Dispersion relation. We plot (ω(ξ)− c(ξ) · ξ)2/|ξ|2 = a(ξ)b(ξ)/|ξ|2 (with µ = 1) for
the full bilayer interfacial waves system and the Miyata–Choi–Camassa model; negative values

indicate unstable modes. We set γ = 0.9, δ = 1
4 , u2 − u1 = 1

2 . Bo = ∞ in (a) and Bo = 15 in (b).
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14.5 Fully dispersive and regularized models

Many attempts have been made in order to “regularize” the Miyata–Choi–Camassa equations, that
is proposing new models with the same precision as the original model, but which are not subject
to Kelvin–Helmholtz instabilities, even without surface tension [342, 98, 58, 164, 273]. We shall
not review all these attempts but concentrate on the one put forward in [164]. The main advan-
tages of the latter is that the family of new models appears straightforwardly as a modification of
the Miyata–Choi–Camassa equations that allows a lot of flexibility to tune the linear dispersion
behavior (thus allowing to enforce either the full dispersion property or arbitrarily strong regular-
ization properties) and by construction enjoys a canonical Hamiltonian structure. The main—and
important—drawbacks is that it involves non-local operators (more precisely Fourier multipliers;
see Definition III.1).

The fairly simple observation is that one can freely modify the linear dispersion behavior at large
wavenumbers of the system without hurting its precision in the sense of consistency by inserting
suitable near-identity Fourier multipliers. In order not to break the Hamiltonian structure in the
process, we decide to introduce these operators in the Hamiltonian functional, and formally derive
the equations from Hamilton’s equations. The rigorous justification can be performed as a second
step.

Recall (see Section 14.1) that the Miyata–Choi–Camassa equations eq. (14.3) satisfy the canon-
ical Hamilton equations

∂t

(
ζ2
ξ2

)
=

(
δξ2HMCC

−δζ2HMCC

)
.

with

HMCC
def
=

1

2

∫
Rd

ζ22 + (ψ2 − γψ1)∇ ·
(
h2T

µ[h2, β∇b]−1(h2∇ψ2)
)
dx,

and (ζ2, ξ2
def
= ψ2 − γψ1), using the constraint

∇ ·
(
h1T

µ[h1,0]
−1(h1∇ψ1)

)
+∇ ·

(
h2T

µ[h2, β∇b]−1(h2∇ψ2)
)
= 0,

Define now TFµ

[h, β∇b] : u 7→ hu+ µh T Fµ

[h, β∇b]u with

T Fµ

[h,∇b]u def
=

−1

3h
∇Fµ(h3Fµ∇ · u) + 1

2h

(
∇Fµ

(
h2(∇b) · u

)
− h2(∇b)Fµ∇ · u

)
+ (∇b · u)(∇b)

where Fµ = F (
√
µ|D|) is a self-adjoint (for the L2 inner-product) Fourier multiplier—at this point

it could be any self-adjoint operator commuting with spatial derivatives—to be defined later on.
Then defining

H
Fµ

1 ,F
µ
2

MCC
def
=

1

2

∫
Rd

(δ + γ)ζ22 + (ψ2 − γψ1)∇ ·
(
h2T

Fµ
2 [h2, β∇b]−1(h2∇ψ2)

)
dx

and enforcing the constraint

∇ ·
(
h1T

Fµ
1 [h1,0]

−1(h1∇ψ1)
)
+∇ ·

(
h2T

Fµ
2 [h2, β∇b]−1(h2∇ψ2)

)
= 0

we find that the canonical Hamilton equations

∂t

(
ζ2
ξ2

)
=

(
0 1
−1 0

)(
δξ2H

Fµ
1 ,F

µ
2

MCC

−δζ2H
Fµ
1 ,F

µ
2

MCC

)
read{

∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),

∂tξ2 + (δ + γ)ζ2 +
ε
2

(
|u2|2 − γ|u1|2)− µε

(
RFµ

2 [h2, β∇b,u2]− γRFµ
1 [h1,0,u1]

)
= 0,

(14.8)
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where

RFµ

[h, β∇b,u] def= u

3h
· ∇Fµ(h3Fµ∇ · u) + 1

2
h2(Fµ∇ · u)2

− 1

2

(u
h
· ∇Fµ

(
h2(β∇b · u)

)
+ h(β∇b · u)Fµ∇ · u+ (β∇b · u)2

)
and uℓ (ℓ ∈ {1, 2}) are determined from (ζ2, ξ2) by solving the following identities{

∇ ·
(
h1T

Fµ
1 [h1,0]

−1(h1∇ψ1)
)
+∇ ·

(
h2T

Fµ
2 [h2, β∇b]−1(h2∇ψ2)

)
= 0,

T[h1,0]
Fµ
1u1 = h1∇ψ1 , TFµ

2 [h2, β∇b]u2 = h2∇ψ2.

The above system is equivalent to the following one involving only the unknowns (ζ2,u1,u2):
∂tζ2 = ∇ · (h1u1) = −∇ · (h2u2),

∂t
(
u1 + µT Fµ

1 [h1,0]u1

)
+ δ+γ

1−γ∇ζ2 +∇
(
ε
2 |u1|2 − µεRFµ

1 [h1,0,u1]
)
= −γ−1∇pint,

∂t
(
u2 + µT Fµ

2 [h2, β∇b]u2

)
+ δ+γ

1−γ∇ζ2 +∇
(
ε
2 |u2|2 − µεRFµ

2 [h2, β∇b,u2]
)
= −∇pint,

(14.9)

where pint is a Lagrange multiplier associated with the constraint ∇ · (h1u1) +∇ · (h2u2) = 0, and
physically represents the pressure at the interface. In physical variables (recall Section 3.4), we get
the modified Green–Naghdi systems

∂th1 +∇ · (h1u1) = 0,

∂th2 +∇ · (h2u2) = 0,

ρ1∂t
(
u1 + T F

d21
1 [h1,0]u1

)
+ ρ1∇

(
1
2 |u1|

2 −RF
d21
1 [h1,0, u1]

)
+∇pint + gρ1∇(h2 + b) = 0,

ρ2∂t
(
u2 + T F

d21
2 [h2,∇b]u2

)
+ ρ2∇

(
1
2 |u2|

2 −RF
d21
2 [h2,∇b, u2]

)
+∇pint + gρ2∇(h2 + b) = 0,

(14.10)

with h1 = d1 − ζ2 and h2 = d2 + ζ2 − b. Notice that in the examples below, F
d2
1

2 = F
d2
2

1 .
These equations have been introduced in [164]. By construction, they enjoy a canonical Hamil-

tonian structure and the discussion of Section 14.1 applies, mutatis mutandis.
A nice outcome of this Hamiltonian structure is that one can interpret solitary waves of the

system (of which we cannot expect to obtain explicit constructions as in Section 14.2) as solutions of
a constrained minimization problem, which can be studied by means of the standard concentration-
compactness strategy; see the discussion in Section 10.4. This was pursued in [165], where the
existence of small-amplitude and long-wavelength traveling wave solutions to eq. (14.9) (with slightly
supercritical velocity) are obtained, for a wide class of Fourier multipliers Fµ1 , F

µ
2 , including all of

the ones discussed below. It is proved that the shape of these solitary waves resemble the explicit
ones predicted by the Korteweg–de Vries equation in the long wave limit, for all choice of Fourier
multipliers in the aforementioned class. Shortly put, the obtained result extends Theorem 10.2 to
the bilayer framework. Numerical computations show that for larger values of the velocity (in the
bilayer framework), solitary waves still agree remarkably well with the ones of the full interfacial
wave system; see Figure 14.1.

We have yet said almost nothing about the choice of the Fourier multipliers. The first obvious
remark is that if Fµ1 = Fµ2 = Id, then eq. (14.9) is exactly the Miyata–Choi–Camassa eq. (14.4).
Moreover, the Fourier multipliers appear only on dispersive terms, that is setting µ = 0 yields the
bilayer hydrostatic equations eq. (6.7). Hence we expect that if for any s ∈ N and µ⋆ > 0 there
exists m ∈ N and Cn > 0 such that

∀ℓ ∈ {1, 2}, ∀µ ∈ (0, µ⋆],
∥∥Fµℓ − Id

∥∥
Hs+m→Hs ≤ µCs,
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then eq. (14.9) and eq. (14.4) are consistent with precision O(µ2), which is the precision of Miyata–
Choi–Camassa model; see Theorem 14.1 in Section 14.3. In other words, models with such near-
identity Fourier multipliers are as precise as the original Miyata–Choi–Camassa model. The rigorous
statement for this claim (see Theorem 14.4 below) requires however to extend Section 8.6.1 to
TFµ

ℓ (ℓ ∈ {1, 2}), which demands additional assumptions on the operators Fµℓ ; see discussion in
Section 10.5. This yields the following natural class of Fourier multipliers.

Assumption 14.3. For any ℓ ∈ {1, 2}, Fµℓ
def
= Fℓ(

√
µ|D|) with Fℓ ∈ L∞(R) real-valued and even such

that Fℓ(ξ) = 1 +O(ξ2).

It is advisable (but non-necessary for our discussion) to add—as in Assumption 10.15—the
requirement that Fℓ ∈W 1,∞(R) and for almost any ξ ∈ R, F ′

ℓ(ξ) = O((1 + |ξ|)−1), as this provides
commutator estimates suitable to the energy method.

Extending the modal analysis of Section 14.4 to the presence of the Fourier multipliers of the
form Fµ1 = F1(

√
µ|D|) and Fµ1 = F2(

√
µ|D|), we obtain the dispersion relation

(ω(ξ)− cDIT(ξ) · ξ)2 = aDIT(ξ)bDIT(ξ), (14.11)

where

aDIT(ξ)
def
= (δ + γ)−

γδ
δ+γ

δ
δ+γ (1 +

µ|ξ|2
3 F1(

√
µ|ξ|)2)−1 + γ

δ+γ (1 +
µ|ξ|2
3δ2 F2(

√
µ|ξ|)2)−1

((u2 − u1) · ξ)2

|ξ|2
,

bDIT(ξ)
def
=

1

δ + γ

(1 + µ|ξ|2
3 F1(

√
µ|ξ|)2)−1(1 + µ|ξ|2

3δ2 F2(
√
µ|ξ|)2)−1

δ
δ+γ (1 +

µ|ξ|2
3 F1(

√
µ|ξ|)2)−1 + γ

δ+γ (1 +
µ|ξ|2
3δ2 F2(

√
µ|ξ|)2)−1

|ξ|2,

cDIT(ξ)
def
=

δ
δ+γ (1 +

µ|ξ|2
3 F1(

√
µ|ξ|)2)−1u2 +

γ
δ+γ (1 +

µ|ξ|2
3δ2 F2(

√
µ|ξ|)2)−1u1

δ
δ+γ (1 +

µ|ξ|2
3 F1(

√
µ|ξ|)2)−1 + γ

δ+γ (1 +
µ|ξ|2
3δ2 F2(

√
µ|ξ|)2)−1

.

This yields two natural choices for the symbols F1 and F2.
Firstly, if we choose Fµ1 = F1(

√
µ|D|) and Fµ2 (

√
µ|D|) with

F1(ξ) =

√
3

|ξ|2

(
|ξ|

tanh(|ξ|)
− 1

)
, F2(ξ) = F1(ξ/δ), (14.12)

so that(
1 + µ

3F1(
√
µ|ξ|)2|ξ|2)−1 =

tanh(
√
µ|ξ|)√

µ|ξ| , (1 + µ
3δ2F2(

√
µ|ξ|)2|ξ|2)−1 =

tanh(
√
µ/δ2|ξ|)√

µ/δ2|ξ|

then eq. (14.11) corresponds exactly to the dispersion relation of the full interfacial waves sys-
tem; see eq. (3.12). In other words, with this specific choice the model defined by eq. (14.4) is
fully dispersive. Consistently, the modal analysis shows strong instabilities of Kelvin–Helmholtz
type for large wavenumbers. This fully dispersive system is the natural bilayer extension of the
Whitham–Green–Naghdi model we introduced and studied in Section 10, and consistently we refer
to it as the Whitham–Choi–Camassa model. Its justification as an asymptotic model for the
interfacial wave system with improved precision O(µ2(ε+β)) in the sense of consistency is given in
Theorem 14.4 below.

As a second choice, we can set Fµ1 = F1(
√
µ|D|) and Fµ2 (

√
µ|D|) with

F1(ξ) =
1

(1 + θ|ξ|2)α/2
, F2(ξ) = F1(ξ/δ)
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with θ > 0 and α ≥ 1. In this case the modal analysis shows that for u2 − u1 sufficiently small,
the Kelvin–Helmholtz type instabilities are suppressed, that is all modes are stable. We refer to
such systems as regularized Miyata–Choi–Camassa models. As put forward in [164], setting
αθ = 1

15 allows to obtain for free that the precision of the model is enhanced at the linear level,
that is its dispersion relation fits with the one of the full interfacial waves system at order O(µ3)
instead of O(µ2).

We plot in Figure 14.3 the corresponding dispersion curves. The interested reader will find
in [164] a nonlinear analysis (including the initial-value problem in the presence of surface tension)
and numerical illustrations (with time integration).

0.0 2.5 5.0 7.5 10.0
d| |

0.0

0.2

0.4

0.6

0.8

(
c

(d
))2 /(

c′ 0|d
|)2

regularized model
interfacial waves
Miyata-Choi-Camassa

Figure 14.3: Dispersion relation. We plot (ω(ξ)− c(ξ) · ξ)2/|ξ|2 = a(ξ)b(ξ)/|ξ|2 (with µ = 1) for
the full bilayer interfacial waves system (and hence the fully dispersive model), the original

Miyata–Choi–Camassa model and a regularized model; negative values indicate unstable modes.
We set γ = 0.9, δ = 1

4 , u2 − u1 = 1
2 . α = 1 and θ = 1

15 for the regularized model.

We conclude this section by rigorously justifying the class of modified Miyata–Choi–Camassa
models we introduced, in the sense of consistency. More precisely, we have the following

Theorem 14.4 (Consistency). Using the assumptions and notations of Theorem 14.1 (unless other-
wise specified), and for any Fµ1 and Fµ2 satisfying Assumption 14.3, one has

∂tζ2 −∇ · (h1u1) = r1,

∂tζ2 +∇ · (h2u2) = r2,

∂tψ1 +
δ+γ
1−γ ζ2 +

ε
2 |u1|2 − µεRFµ

1 [h1,0,u1] = −γ−1pint + r3,

∂tψ2 +
δ+γ
1−γ ζ2 +

ε
2 |u2|2 − µεRFµ

2 [h2, β∇b,u2] = −pint + r4,
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where we denote u1 = TFµ
1 [h1,0]

−1(h1∇ψ1), u2 = TFµ
2 [h2, β∇b]−1(h2∇ψ2), and one has for almost

every t ∈ (0, T )∣∣(r1(t, ·), r2(t, ·))∣∣(Hs)2
≤ C µ2

(∣∣ζ(t, ·)∣∣
Hs+6 +

∣∣∇ψ1(t, ·)
∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
,∣∣(r3(t, ·), r4(t, ·))∣∣(Hs+1)2

≤ C µ2εM
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ1(t, ·)

∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
,

with M
def
=
∣∣∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H1+s⋆

.
Moreover, if Fµ1 = F1(

√
µ|D|) and Fµ2 (

√
µ|D|) are defined by eq. (14.12), then∣∣(r1(t, ·), r2(t, ·))∣∣(Hs)2

≤ C µ2(εM̃ + βMb)
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ1(t, ·)

∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
,

with M̃
def
=
∣∣ζ(t, ·)∣∣

H2+s⋆
+
∣∣∇ψ1(t, ·)

∣∣
H1+s⋆

+
∣∣∇ψ2(t, ·)

∣∣
H1+s⋆

and Mb
def
=
∣∣b∣∣

Wmax{s+6,2+s⋆},∞ .

Proof. We begin with the first assertion. After Theorem 14.1 and using product estimates Propo-
sition II.7, we only have to show that∣∣uℓ − uGN

ℓ

∣∣
Hs+1 + µ

∣∣R[hℓ,0,uℓ]−R[hℓ,0,u
GN
ℓ ]
∣∣
Hs+1

≤ µ2 C
(∣∣ζ(t, ·)∣∣

Hs+6 +
∣∣∇ψ1(t, ·)

∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
where ℓ ∈ {1, 2}, u1 = TFµ

1 [h1,0]
−1(h1∇ψ1), u2 = TFµ

2 [h2, β∇b]−1(h2∇ψ2), u
GN
1 = TId[h1,0]

−1(h1∇ψ1),
and uGN

2 = TId[h2, β∇b]−1(h2∇ψ2). Yet from the identities

TId[hℓ, β∇bℓ]−1 − TFµ
ℓ [hℓ, β∇bℓ]−1 = TId[hℓ, β∇bℓ]−1(TFµ

ℓ − TId)TFµ
ℓ [hℓ, β∇bℓ]−1

and

TFµ
ℓ [hℓ, β∇bℓ]− TId[hℓ, β∇bℓ] = −µ

3
∇(Fµℓ − Id)

(
h3ℓF

µ
ℓ∇ · u

)
− µ

3
∇
(
h3ℓ(F

µ
ℓ − Id)∇ · u

)
+
µ

2

(
∇(Fµℓ − Id)

(
h2(β∇b) · u

)
− h2(β∇b)(Fµℓ − Id)∇ · u

)
we easily infer from Lemma 8.8 and Lemma 8.10 (which, as we said, can be extended to Fourier
multipliers Fµℓ satisfying Assumption 14.3) and the fact that for any s ∈ R, Fµℓ : Hs(Rd) → Hs(Rd)
and µ−1(Fµℓ − Id) : Hs+2(Rd) → Hs(Rd) are bounded, uniformly with respect to µ ∈ (0, µ⋆], that∣∣uℓ − uGN

ℓ

∣∣
Hs+1 ≲ µ2

(∣∣ζ(t, ·)∣∣
Hs+6 +

∣∣∇ψ1(t, ·)
∣∣
Hs+5 +

∣∣∇ψ2(t, ·)
∣∣
Hs+5

)
.

The corresponding estimate on R[hℓ,0,uℓ]−R[hℓ,0,u
GN
ℓ ] follows from similar considerations.

As for the second assertion, we simply modify the proof of Theorem 14.1 by using Theorem 10.5
in lieu of Theorem 8.2.

14.6 Bilayer Boussinesq systems and friends

In the same way the fully dispersive (Whitham–Choi–Camassa) model presented above is a natural
bilayer extension of the Whitham–Green–Naghdi system for homogeneous free-surface flows, we
can introduce generalizations of the Whitham–Boussinesq and Boussinesq systems introduced in
Section 10.6, the latter being a specific case of a family of models generalizing the “abcd”Boussinesq
systems introduced in Section iv. We refer to [373, 149] for studies on these “Boussinesq/Boussi-
nesq systems” including the derivation and justification of the models, well-posedness of the Cauchy
problem, existence of solitary waves and numerical investigations, as well as extensive lists of ref-
erences. Among them, let me point out [54] for the derivation and justification of other bilayer
models in different asymptotic regimes, and [155] for the rigorous justification of unidirectional
(scalar) models such as the Korteweg–de Vries equation, among others. Not mentioned in these
works is [116] which introduces the interesting square root depth (

√
D) model and its multilayer

extension, bearing strong similarities with the Green–Naghdi model, Miyata–Choi–Camassa or mul-
tilayer Green–Naghdi counterparts, including variational structure and explicit solitary waves, but
does not suffer from the high-frequency modal instabilities displayed in Section 14.4.
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15 The Kakinuma systems

By following the procedure which led to the Isobe–Kakinuma model in Section 13, using the vari-
ational structure of the bilayer interfacial waves system with rigid-lid, eq. (3.15) (see Section 3.2),
one obtains the following system of equations obtained by Kakinuma in [239, 240] (see also [338])



h2i1 ∂tζ2 −
∑N1

j=0 ∇ ·
(
h2i+2j+1
1

2i+2j+1∇ϕ1,j
)
+
∑N
j=0 µ

−1 4ij
2i+2j−1h

2i+2j−1
1 ϕ1,j = 0

∀i ∈ {0, 1, . . . , N1} ,

hpi2 ∂tζ2 +
∑N2

j=0 ∇ ·
(
h
pi+pj+1

2

pi+pj+1∇ϕ2,j −
pj

pi+pj
h
pi+pj
2 ϕ2,j(β∇b)

)
+
∑N2

j=0
pi

pi+pj
h
pi+pj
2 (∇ϕ2,j) · (β∇b)−

∑N2

j=0
pipj

pi+pj−1h
pi+pj−1
2 (µ−1 + |β∇b|2)ϕ2,j = 0

∀i ∈ {0, 1, . . . , N2} ,(∑N2

j=0 h
pj
2 (∂tϕ2,j)− γ

∑N1

j=0 h
2j
1 (∂tϕ1,j)

)
+ (δ + γ)ζ2

+ ε
2

(∣∣∣∑N2

j=0 h
pj
2 (∇ϕ2,j)− pjh

pj−1
2 ϕ2,j(β∇b)

∣∣∣2 + µ−1
(∑N2

j=0 pjh
pj−1
2 ϕ2,j

)2)
−γ ε2

(∣∣∣∑N1

j=0 h
2j
1 (∇ϕ1,j)

∣∣∣2 + µ−1
(∑N1

j=0 2jh
2j−1
1 ϕ1,j

)2)
= 0 ,

(15.1)
where N1, N2 ∈ N, p0, p1, . . . , pN2

are non-negative integers satisfying by convention

0 = p0 < p1 < · · · < pN2 ,

h1
def
= 1− εζ2 and h2

def
= δ−1 + εζ2 − βb are the (non-dimensionalized) depth of the upper and lower

layers, and we use the convention 0
0 = 0. When N1 = N2 = 0 (and p0 = 0), the system coincides

with the bilayer hydrostatic system, eq. (6.10).

Equivalently, the last equation in eq. (15.1) may be replaced with


∑N1

j=0 h
2j
1 (∂tϕ1,j) +

δ+γ
1−γ ζ2 +

ε
2

(∣∣∣∑N1

j=0 h
2j
1 (∇ϕ1,j)

∣∣∣2 + µ−1
(∑N1

j=0 2jh
2j−1
1 ϕ1,j

)2)
= −γ−1pint ,∑N2

j=0 h
pj
2 (∂tϕ2,j) +

δ+γ
1−γ ζ2

+ ε
2

(∣∣∣∑N2

j=0 h
pj
2 (∇ϕ2,j)− pih

pj−1
2 ϕ2,j(β∇b)

∣∣∣2 + µ−1
(∑N2

j=0 pjh
pj−1
2 ϕ2,j

)2)
= −pint

where ∇pint physically represents the pressure at the interface and can be seen as the Lagrange
multiplier associated with the rigid-lid constraint which is obtained when taking the difference
between the first two lines of eq. (15.1) (with i = 0):

N1∑
j=0

∇ ·
(
h2j+1
1

2j+1 ∇ϕ1,j
)
+

N2∑
j=0

∇ ·
(
h
pj+1

2

pj+1 ∇ϕ2,j −
pj
pj
h
pj
2 ϕ2,j(β∇b)

)
= 0.

Remark 15.1. We chose to set p̃i = 2i in contributions of the upper-layer, consistently with the
(flat) rigid-lid situation. The general case of non-flat rigid-lid, and 0 = p̃0 < p̃1 < · · · < p̃N1 is
easily inferred. Obviously, one may obtain different systems by using different vertical distribution
functions for the velocity potentials in the Lagrangian action displayed below; see Remark 13.2.
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Using physical variables (recall Section 3.4), eq. (15.1) yields the Kakinuma systems

h2i1 ∂tζ −
∑N1

j=0 ∇ ·
(
h2i+2j+1
1

2i+2j+1∇φj
)
+
∑N2

j=0
4ij

2i+2j−1h
2i+2j−1
1 φj = 0

∀i ∈ {0, 1, . . . , N1} ,

hpi2 ∂tζ +
∑N2

j=0 ∇ ·
(
h
pi+pj+1

2

pi+pj+1∇φj −
pj

pi+pj
h
pi+pj
2 φj∇b

)
+
∑N2

j=0
pi

pi+pj
h
pi+pj
2 (∇φj) · (∇b)−

∑N2

j=0
pipj

pi+pj−1h
pi+pj−1
2 (1 + |∇b|2)φj = 0

∀i ∈ {0, 1, . . . , N2} ,

ρ2

{∑N2

j=0 h
pj
2 (∂tφ2,j) + gζ2 +

1
2

∣∣∣∑N2

j=0 h
pj
2 (∇φ2,j)− pjh

pj−1
2 φ2,j(∇b)

∣∣∣2
+ 1

2

(∑N2

j=0 pjh
pj−1
2 φ2,j

)2}

−ρ1

{∑N1

j=0 h
2j
1 (∂tφ1,j) + gζ2 +

1
2

∣∣∣∑N1

j=0 h
2j
1 (∇φ1,j)

∣∣∣2 + 1
2

(∑N1

j=0 2jh
2j−1
1 φ1,j

)2}
= 0 ,

(15.2)

where h1(t, x)
def
= d1 − ζ(t, x) and h2(t, x)

def
= d2 + ζ(t, x)− b(x).

15.1 Hamiltonian structure

As aforementioned, the Kakinuma model enjoys by construction a Lagrangian structure. More
precisely, we can interpret eq. (15.1) as Euler–Lagrange equations,

δL app
K = 0

where the Lagrangian action is an approximation to the one corresponding to the full interfacial
gravity waves system (see Section 3.2) and reads

L app
K

def
=

∫ t1

t0

∫
Rd

ε

2
(δ + γ)ζ22 +

(∫ εζ2

−δ−1+βb

∂tΦ
app
2 +

ε

2µ
(∂zΦ

app
2 )2 +

ε

2
|∇xΦ

app
2 |2 dz

)
+ γ
(∫ 1

εζ2

∂tΦ
app
1 +

ε

2µ
(∂zΦ

app
1 )2 +

ε

2
|∇xΦ

app
1 |2 dz

)
dx dt, (15.3)

with

Φapp
1,K(t,x, z)

def
=

N1∑
i=0

(1− z)2iϕ1,i(t,x), Φapp
2,K(t,x, z)

def
=

N2∑
i=0

(δ−1 + z − βb)piϕ2,i(t,x). (15.4)

We have brought to light in Section 13.2 that the Isobe–Kakinuma systems could be equivalently
written as two canonical Hamiltonian evolution equations, analogous to Zakharov’s formulation of
the water waves system [424]. The same feature holds for the Kakinuma systems, as shown in [159],
and we show below how to equivalently write eq. (15.1) as two canonical Hamiltonian evolution
equations, analogous to Benjamin and Bridges’ formulation of the interfacial waves system [45]; see
Section 3.2.

Let us first introduce convenient notations: we may rewrite eq. (15.1) as
l1(h1)∂tζ2 + Lµ1 [h1]ϕ1 = 0,

−l2(h2)∂tζ2 + Lµ2 [h2, β∇b]ϕ2 = 0,

+l2(h2) • ∂tϕ2 − γl1(h1) • ∂tϕ1 + (δ + γ)ζ2 +
ε
2

(
|u2|2 + µ−1w2

2

)
− γ ε2

(
|u1|2 + µ−1w2

1

)
= 0,
(15.5)
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where l1
def
= (1, h21, . . . , h

2N1)⊤, l2
def
= (hp0 , hp1 , . . . , hpN2 )⊤, • denotes the (N1+1) or (N2+1) inner-

product, ϕ1
def
= (ϕ1,0, ϕ1,1, . . . , ϕ1,N1

)⊤, ϕ2
def
= (ϕ2,0, ϕ2,1, . . . , ϕ2,N2

)⊤, Lµ1 [h1] = (Lµ1,ij [h1])0≤i,j≤N1

and Lµ2 [h2, β∇b] = (Lµ2,ij [h2, β∇b])0≤i,j≤N2
with

Lµ1,ijφ1,j
def
= −∇ ·

(
1

2i+ 2j + 1
h2i+2j+1
1 ∇φ1,j

)
+ µ−1 4ij

2i+ 2j − 1
h2i+2j−1
1 φ1,j , (15.6)

Lµ2,ijφ2,j
def
= −∇ ·

(
1

pi + pj + 1
h
pi+pj+1
2 ∇φ2,j −

pj
pi + pj

H
pi+pj
2 φ2,j(β∇b)

)
− pi
pi + pj

h
pi+pj
2 ∇b · ∇φ2,j +

pipj
pi + pj − 1

h
pi+pj−1
2 (µ−1 + |β∇b|2)φ2,j . (15.7)

and (uℓ, wℓ)
def
=
(
∇xΦ

app
1,K , ∂zΦ

app
1,K

) ∣∣
z=εζ2

for ℓ ∈ {1, 2}, that is

u1
def
=

N1∑
i=0

h2i1 ∇ϕ1,i, u2
def
=

N2∑
i=0

(hpi2 ∇ϕ2,i − pih
pi−1
2 ϕ2,i(β∇b)), (15.8)

w1
def
= −

N1∑
i=0

2ih2i−1
1 ϕ1,i w2

def
=

N2∑
i=0

pih
pi−1
2 ϕ2,i. (15.9)

Then defining

E app
K (ζ2,ϕ1,ϕ2)

def
=

∫
Rd

1

2
(δ + γ)ζ22 +

(∫ εζ2

−δ−1+βb

1

2µ
(∂zΦ

app
2 )2 +

1

2
|∇xΦ

app
2 |2 dz

)
+ γ
(∫ 1

εζ2

1

2µ
(∂zΦ

app
1 )2 +

1

2
|∇xΦ

app
1 |2 dz

)
dx

=
1

2

∫
Rd

(δ + γ)ζ22 + γϕ1 • Lµ1ϕ1 + ϕ2 • Lµ2ϕ2 dx (15.10)

we observe that eq. (15.5) reads 0 γl1(h1)
⊤ −l2(h2)⊤

−γl1(h1) O O
l2(h2) O O

 ∂t

 ζ2
ϕ1

ϕ2

 =

δζ2E app
K (ζ2,ϕ1,ϕ2)

δϕ1E
app
K (ζ2,ϕ1,ϕ2)

δϕ2
E app
K (ζ2,ϕ1,ϕ2)

 . (15.11)

which exhibits a first (non-canonical) Hamiltonian formulation of the Kakinuma model.

We now consider for φ1
def
= (φ1,0, φ1,1, . . . , φ1,N1)

⊤ and φ2
def
= (φ2,0, φ2,1, . . . , φ2,N2)

⊤ the fol-
lowing system of equations satisfied by solutions to (15.5):

∑N1

j=0 L
µ
1,ijφ1,j = h2i1

∑N1

j=0 L
µ
1,0jφ1,j ∀i ∈ {1, . . . , N1}∑N2

j=0 L
µ
2,ijφ2,j = hpi2

∑N2

j=0 L
µ
2,0jφ2,j ∀i ∈ {1, . . . , N2}∑N1

j=0 L
µ
1,0jφ1,j +

∑N2

j=0 L
µ
2,0jφ2,j = 0

l2 •φ2 − γl1 •φ1 = ξ2.

(15.12)

It is shown in [159, Lemma 6.4] that assuming sufficient regularity on the bottom topography, b, as
well as the non-cavitation assumption h1 = 1 − εζ2 ≥ h⋆ > 0 and h2 = δ−1 + εζ2 − βb ≥ h⋆ > 0,
then (ζ2, ξ2) in appropriate functional spaces defines (φ1,φ2), solution to eq. (15.12), uniquely up
to an additive constant of the form (C, γC) for (φ1,0, φ2,0). Since this constant plays no role in the
subsequent analysis, we denote the solutions

φ1
def
= S1[εζ, βb]ξ2 and φ2

def
= S2[εζ, βb]ξ2
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and finally

H app
K (ζ2, ξ2)

def
= E app

K (ζ2,S1[εζ2, β]ξ2,S2[εζ2, β]ξ2). (15.13)

Then we can perform computations analogous to the ones in Section 13.2 and deduce that sufficiently
regular solutions to the system eq. (15.1) satisfy

∂t

(
ζ2
ξ2

)
=

(
0 1
−1 0

)(
δζ2H

app
K

δξ2H
app
K

)
(15.14)

where ξ2
def
=
∑N2

j=0 h
pj
2 ϕ2,j −γ

∑N1

j=0 h
2j
1 ϕ1,j . Conversely, given (ζ2, ξ2) a sufficiently regular solution

to eq. (15.14), and defining ϕℓ = (ϕℓ,0, ϕℓ,1, . . . , ϕℓ,Nℓ
)⊤

def
= Sℓ[εζ2, βb]ξ2 for ℓ ∈ {1, 2} as a solution

to eq. (15.12), then (ζ2, ϕ1,0, . . . , ϕ1,N1
, ϕ2,0, . . . , ϕ2,N2

) satisfies eq. (15.1).
The rigorous statements and proofs of the above claims can be found in [159, §8.2].

Remark 15.2 (Preserved quantities). A consequence of the above analysis is the fact that—by
Noether’s theorem—solutions to eq. (15.1) preserve the excess of mass, energy, and horizontal im-
pulse in the flat bottom case:

d

dt
Z =

d

dt
E app
K = 0, Z

def
=

∫
Rd

ζ2 dx,
d

dt
I app

K = 0, I app
K

def
=

∫
Rd

ζ2∇ξ2 dx (if βb ≡ 0),

where ξ2
def
=
∑N2

j=0 h
pj
2 ϕ2,j − γ

∑N1

j=0 h
2j
1 ϕ1,j and E app

K is defined in eq. (15.10). Conservation laws
associated with these quantities are displayed in [159, §9].

15.2 Modal and stability analysis

The good behavior of the Kakinuma model can be seen from comparing the following modal and
stability analysis in this section with that on the Miyata–Choi–Camassa model in Section 14.4.

15.2.1 Dispersion relation

As a first step we linearize eq. (15.1) about the rest state in the flat bottom case. Specifically,
setting β = ε = 0 in eq. (15.1) yields

∂tζ
0
2 −

∑N1

j=0
1

2i+2j+1∇ · ∇ϕ01,j +
∑N
j=0 µ

−1 4ij
2i+2j−1ϕ

0
1,j = 0

∀i ∈ {0, 1, . . . , N1} ,

∂tζ
0
2 +

∑N2

j=0
1

pi+pj+1δ
−pj−1∇ · ∇ϕ02,j −

∑N2

j=0 µ
−1 pipj

pi+pj−1δ
−pj+1ϕ02,j = 0

∀i ∈ {0, 1, . . . , N2} ,(∑N2

j=0 δ
−pj (∂tϕ

0
2,j)− γ

∑N1

j=0(∂tϕ
0
1,j)
)
+ (δ + γ)ζ02 = 0 ,

(15.15)

Setting ψ0
1

def
= (ϕ01,0, ϕ

0
1,1, . . . , ϕ

0
1,N1

)⊤ and ψ0
2

def
= (δ−p0ϕ02,0, δ

−p1ϕ02,1, . . . , δ
−pN2ϕ02,N1

)⊤, denoting 1
the (N1 + 1) or (N2 + 1)-dimensional vector with coefficient 1j = 1,

A1,0
def
=

(
1

2i+ 2j + 1

)
0≤i,j≤N1

, A1,1
def
=

(
4ij

2i+ 2j − 1

)
0≤i,j≤N1

, (15.16)

A2,0
def
=

(
1

pi + pj + 1

)
0≤i,j≤N2

, A2,1
def
=

(
pipj

pi + pj − 1

)
0≤i,j≤N2

, (15.17)

the above reads 0 −γ1⊤ 1⊤

1 O O
−δ−11 O O

 ∂t

 ζ02
ψ0

1

ψ0
2

 = −

δ + γ 0⊤ 0⊤

0 −A1,0∆+ µ−1A1,1 O
0 O −δ−2A2,0∆+ µ−1A2,1

 .
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Hence the dispersion relation of the linearized system is given by

det

 δ + γ iγ1⊤ −i1⊤

−i1 −A1,0∆+ µ−1A1,1 O
−δ−1i1 O −δ−2A2,0∆+ µ−1A2,1

 = 0

which we can expand as

( γ |Ã1| |A2| + δ−1 |Ã2| |A1|)(
√
µξ) ω2 = (δ + γ)µ−1

(
|A1| |A2|

)
(
√
µξ) (15.18)

where

|A1|(ξ)
def
= det

(
A1,1 + |ξ|2A1,0

)
, |Ã1|(ξ)

def
= det

(
0 1⊤

−1 A1,1 + |ξ|2A1,0

)
,

|A2|(ξ)
def
= det

(
A1,1 + δ−2|ξ|2A1,0

)
|Ã2|(ξ)

def
= det

(
0 1⊤

−1 A2,1 + δ−2|ξ|2A2,0

)
.

Setting γ = 0 and δ = 1, we recognize the one-layer with free surface situation. It is proved in
[341, Proposition 2.1 and Theorem 2.2] that |Aℓ| and |Ãℓ| are positive for ℓ > 0, and there exists
cN1

, CN1
> 0 depending only on N1 ∈ N such that∣∣∣∣∣ |A1|(ξ)

|ξ|2|Ã1|(ξ)

∣∣∣∣∣ ≥ cN1
,

∣∣∣∣∣ |A1|(ξ)
|ξ|2|Ã1|(ξ)

− tanh(|ξ|)
|ξ|

∣∣∣∣∣ ≤ CN1
|ξ|4N1+2.

It follows that the dispersion relation, eq. (15.18), defines for any wave vector ξ ∈ R⋆, two opposite
real angular frequencies ωK(ξ):

ωK(ξ)
2

|ξ|2
=

 |A1|
|·|2|Ã1|

|A2|
δ−2|·|2|Ã2|

δ
δ+γ

|A1|
|·|2|Ã1|

+ γ
δ+γ

|A2|
δ−2|·|2|Ã2|

 (
√
µξ).

Moreover, recalling Section 3.3 and Section 3.4, we have the corresponding dispersion relation
for the linearized interfacial waves system with rigid-lid:

ωww(ξ)
2

|ξ|2
=

tanh(
√
µ|ξ|)√

µ|ξ|
tanh(

√
µδ−1|ξ|)√

µδ−1|ξ|
δ

δ+γ

tanh(
√
µ|ξ|)√

µ|ξ| + γ
δ+γ

tanh(
√
µδ−1|ξ|)√

µδ−1|ξ|

. (15.19)

Hence we immediately infer the following.

Proposition 15.3. For any N ∈ N and setting N2 = N1 = N and pi = 2i for i ∈ {0, 1, . . . , N2},
there exists a constant CN > 0, depending only on N ∈ N such that∣∣∣∣ωK(ξ)

2 − ωww(ξ)
2

|ξ|2

∣∣∣∣ ≤ CNµ
2N+1

(
(1 + δ−1)|ξ|

)4N+2

and for any fixed ξ ∈ Rd, ωK(ξ)
2 → ωww(ξ)

2 as N → ∞.

Remark 15.4. The good behavior for small wavenumbers does not extend to high wavenumbers, since
for any (N1, N2) ∈ N2 and 0 = p0 < p1 < · · · < pN2

, there exists c > 0 such that

∀ξ ∈ Rd,
∣∣∣∣ωK(ξ)

2

|ξ|2

∣∣∣∣ ≥ c > 0

while
∣∣∣ωww(ξ)2

|ξ|2

∣∣∣ → 0 as |ξ| → ∞. Yet this discrepancy can be seen as a good feature of the model,

as shown by the stability analysis in the following section.
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15.2.2 Stability analysis

Now we linearize eq. (15.1) about any solution (ζ2,ϕ1,ϕ2), in the flat bottom case (β = 0): plugging

(ζ̃2 = ζ2 + ϵζ̇, ϕ̃1 = ϕ1 + ϵϕ̇1, ϕ̃2 = ϕ2 + ϵϕ̇2)

in eq. (15.1) (where we denote as usual ϕℓ = (ϕℓ,0, ϕℓ,1, . . . , ϕℓ,Nℓ
)⊤ and similarly with dots and

tildes), keeping only first-order terms in ϵ and neglecting lower order terms in regularity:69
∂tζ̇2 + εu1 · ∇ζ̇ −

∑N1

j=0
h2j+1
1

2i+2j+1∇ · ∇ϕ̇1,j = 0 ∀i ∈ {0, 1, . . . , N1} ,

∂tζ2 + εu2 · ∇ζ̇ +
∑N2

j=0
h
pj+1

2

pi+pj+1∇ · ∇ϕ̇2,j = 0 ∀i ∈ {0, 1, . . . , N2} ,(∑N2

j=0 h
pj
2 (∂tϕ̇2,j + εu2 · ∇ϕ̇2,j)− γ

∑N1

j=0 h
2j
1 (∂tϕ1,j + εu1 · ∇ϕ̇1,j)

)
+ aKζ̇2 = 0 ,

(15.20)

where h1
def
= 1− εζ2 and h2

def
= δ−1 + εζ2 − βb, uℓ and wℓ are defined in eq. (15.8)–(15.9), and

aK
def
= (δ + γ) + ε

 N1∑
j=0

2jh2j−1
1 (∂tϕ1,j + εu1 · ∇ϕ1,j)− µ−1εw1

N1∑
j=0

2j(2j − 1)h2j−2
1 ϕ1,j


+ ε

 N2∑
j=0

pjh
pj−1
2 (∂tϕ2,j + εu2 · ∇ϕ2,j) + ε(µ−1w2 − u2 · (β∇b))

N2∑
j=0

pj(pj − 1)h
pj−2
2 ϕ2,j

 .

(15.21)

If we set {
ψ̇1 = (ϕ̇1,0, h

2
1ϕ̇1,1, . . . , h

2N1
1 ϕ̇1,N1)

⊤,

ψ̇2 = (ϕ̇2,0, h
p1
2 ϕ̇2,1, . . . , h

pN2
2 ϕ̇2,N2

)⊤,

and use the notations in Section 15.2.1, we can write eq. (15.20) compactly as 0 −γ1⊤ 1⊤

h11 O O
−h21 O O

 ∂t

 ζ̇2
ψ̇1

ψ̇2

 = −

 aK −γ1⊤(εu1 · ∇) 1⊤(εu2 · ∇)
h11(εu1 · ∇) −h21A1,0∆ O
−h21(εu2 · ∇) O −h22A2,0∆

 .

If we now freeze the coefficients in the above, we arrive—after some linear algebra—to the following
dispersion relation:

γ

h1α1
(ω − εu1 · ξ)2 +

1

h2α2
(ω − εu2 · ξ)2 = aK|ξ|2. (15.22)

where we denote, for ℓ ∈ {1, 2},

αℓ
def
=

detAℓ,0

det Ãℓ,0
, Ãℓ,0

def
=

(
0 1⊤

−1 Aℓ,0

)
. (15.23)

Solutions ω to the above dispersion relation are real for any wave vector ξ ∈ Rd if and only if

aK −
γ

h1α1

1
h2α2

γ
h1α1

+ 1
h2α2

|εu2 − εu1|2 ≥ 0. (15.24)

69Lower order terms do not play any role for the high frequency stability analysis, or short-time well-posedness of
the nonlinear problem. They can be anticipated from the results in Section 13.6, and particularly Theorem 13.15:
assuming (ζ2,ϕ1,ϕ2), (ζ̇2, ϕ̇1, ϕ̇2) ∈ C([0, T ];Xs) ∩ C1([0, T ];Xs−1) with s > 1 + d/2 and

Xs def
= Hs(Rd)×

(
H̊s+1(Rd)×Hs+1(Rd)N1

)
×
(
H̊s+1(Rd)×Hs+1(Rd)N2

)
,

we neglect all contributions bounded in Hs(Rd) (resp. Hs+1(Rd)) for the first (N1 + 1) + (N2 + 1) equations (resp.
the last equation).
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Otherwise there exists ξ ∈ Rd with |ξ| = 1 with associated wave frequencies ω(ξ) = ωr(ξ)± iωi(ξ)
with ωr(ξ), ωi(ξ) ∈ R and ωi(ξ) ̸= 0. By homogeneity, ω(λξ) = λω(ξ) for any λ ∈ R, and we
observe the high frequency instability of the problem.

Remark 15.5. We have
aK

def
= − (∂z(P

app
2 − P app

1 )) |z=εζ .
where P app

1 and P app
2 are approximate pressures in the upper and the lower layers calculated from

Bernoulli’s equations using the approximate velocity potentials that is,

P app
ℓ = −γ2−ℓ

(
ε∂tΦ

app
ℓ +

ε2

2

(
|∇Φapp

k |2 + µ−1(∂zΦ
app
k )2

)
+ δ+γ

1−γ z

)
with Φapp

ℓ defined in eq. (15.4) (with ℓ ∈ {1, 2}). Hence the stability criterion is a natural extension
of the approximate Rayleigh–Taylor criterion of the Isobe–Kakinuma model in the free-surface ho-
mogeneous case (see Remark 13.16) to interfacial waves. In fact, setting γ = 0, we recover exactly
the result of the free-surface homogeneous framework. Observe from eq. (15.21) that, contrarily
to the case of the full interfacial waves system (recall the discussion in Section 3.3), the stability
criterion is always satisfied for ε sufficiently small. Incidentally, the singular behavior as µ↘ 0 is
only apparent, as a vigilant analysis shows that µ−1wℓ (for ℓ ∈ {1, 2}) is in fact bounded. It is an
exercise of linear algebra (whose answer was kindly provided to me by T. Iguchi) to show that

α1 =
1∑N1

j=0(4j + 1)
, α2 =

1∑N2

j=0(2pj + 1)
.

Hence αℓ → 0 as Nℓ → ∞, so that the domain of stability eq. (15.24) shrinks as N1 and N2 grow.
As a last remark, if N1 = N2 = 0, one has aK = δ + γ and α1 = α2 = 1, and we recover the
hyperbolicity criterion for the bilayer hydrostatic system stated in Section 6.2.3.

Remark 15.6. An alternative approach to the one developed in this section would consist—as in Sec-
tion 14.4 and other modal analyses in this document—to linearize the Kakinuma systems, eq. (15.1),
against constant shear solutions, that is

ζ2 = 0, ϕ1,0 = u1 · x, ϕ1,1 = · · · = ϕ1,N1
= 0, ϕ2,0 = u2 · x, ϕ2,1 = · · · = ϕ2,N2

= 0

with u1 and u2 constant vectors. This yields the dispersion relation

(ω(ξ)− cK(ξ) · ξ)2 = aK(ξ)bK(ξ), (15.25)

with

aK(ξ)
def
= (δ + γ)−

γδ
δ+γ

δ
δ+γ

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)

+ γ
δ+γ

|A2|(
√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)

(ε(u2 − u1) · ξ)2

|ξ|2
,

bK(ξ)
def
=

1

δ + γ

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)

|A2|(
√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)

δ
δ+γ

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)

+ γ
δ+γ

|A2|(
√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)

|ξ|2,

cK(ξ)
def
=

δ
δ+γ

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)
u2 +

γ
δ+γ

|A2|(
√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)
u1

δ
δ+γ

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)

+ γ
δ+γ

|A2|(
√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)

.

This approach does not allow to recover the nonlinear Rayleigh–Taylor criterion, aK defined in
eq. (15.21), but only its linear approximation, namely δ + γ. On the plus side, it provides some
information outside of the high frequency limit. Yet since

|A1|(
√
µξ)

µ|ξ|2|Ã1|(
√
µξ)

→ α1 and
|A2|(

√
µξ)

δ−2µ|ξ|2|Ã2|(
√
µξ)

→ α2 as |ξ| → ∞,
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the outcome is matching: unstable modes with unbounded exponential growth arise if and only if

(δ + γ) <

γδ
δ+γ

δ
δ+γα1 +

γ
δ+γα2

(ε|u2 − u1|)2 =

γδ
α1α2

γ
α1

+ δ
α2

(ε|u2 − u1|)2.

We plot the angular frequencies provided by eq. (15.25), and compare with the corresponding for-
mula for the full interfacial waves system and Miyata–Choi–Camassa model in Figure 15.1. In the
situation at stake, instabilities arise starting from N1 = N2 = N ≥ 2.

0.0 2.5 5.0 7.5 10.0
d| |

0.0

0.2
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0.6

0.8

(
c

(d
))2 /(

c′ 0|d
|)2

interfacial waves
Kakinuma, N = 1
Kakinuma, N = 2
Kakinuma, N = 3
Miyata-Choi-Camassa

(a) Wide shot.
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d| |
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(
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(d
))2 /(

c′ 0|d
|)2

interfacial waves
Kakinuma, N = 1
Kakinuma, N = 2
Kakinuma, N = 3
Miyata-Choi-Camassa

(b) Close-up.

Figure 15.1: Dispersion relation. We plot (ω(ξ)− c(ξ) · ξ)2/|ξ|2 = a(ξ)b(ξ)/|ξ|2 (with µ = 1) for
the full bilayer interfacial waves system, Kakinuma systems and Miyata–Choi–Camassa model, as

predicted by eq. (3.12), eq. (15.25) and eq. (14.7); negative values indicate unstable modes.
We set γ = 0.9, δ = 1

4 , u2 − u1 = 1
2 , N1 = N2 = N and pi = 2i (i ∈ {0, 1, . . . , N}).
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15.3 Rigorous justification

In this section we extend some results concerning the rigorous justification of the Isobe–Kakinuma
systems as high order asymptotic models for the water waves system, which are displayed and
discussed in Section 13.6, to the Kakinuma model for interfacial waves. These results are proved
in [159, 160].

We denote p SW

SW

the set of parameters

p SW

SW

def
=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}

and we set (although this is not necessary for the well-posedness results stated afterwards){
N2 = N1 = N and ∀i ∈ {1, . . . , N2}, pi = 2i in the flat bottom case, βb ≡ 0;

N2 = 2N1 = 2N and ∀i ∈ {1, . . . , N2}, pi = i for variable bottom topographies.
(15.26)

Recall (see Section 15.1) that eq. (15.1) can be written compactly as
l1(h1)∂tζ2 + Lµ1 [h1]ϕ1 = 0,

−l2(h2)∂tζ2 + Lµ2 [h2, β∇b]ϕ2 = 0,

l2(h2) • ∂tϕ2 − γl1(h1) • ∂tϕ1 + (δ + γ)ζ2 +
ε
2

(
|u2|2 + µ−1w2

2

)
− γ ε2

(
|u1|2 + µ−1w2

1

)
= 0,
(15.27)

where l1
def
= (1, h21, . . . , h

2N1)⊤, l2
def
= (hp0 , hp1 , . . . , hpN2 )⊤, • denotes the (N1 + 1) or (N2 + 1)

inner-product, ϕℓ
def
= (ϕℓ,0, ϕℓ,1, . . . , ϕℓ,Nℓ

)⊤ and Lµℓ , uℓ, wℓ are defined in eq. (15.6) to (15.9) (for
ℓ ∈ {1, 2}).

By combining all but the last equations, we infer that solutions to eq. (15.27) must satisfy
∑N1

j=0 L
µ
1,ijϕ1,j = h2i1

∑N1

j=0 L
µ
1,0jϕ1,j ∀i ∈ {1, . . . , N1}∑N2

j=0 L
µ
2,ijϕ2,j = hpi2

∑N2

j=0 L
µ
2,0jϕ2,j ∀i ∈ {1, . . . , N2}∑N1

j=0 L
µ
1,0jϕ1,j +

∑N2

j=0 L
µ
2,0jϕ2,j = 0.

(15.28)

We can now state the justification of the Kakinuma model as a shallow water model for the
interfacial waves system, eq. (3.15), in the sense of consistency.

Theorem 15.7 (Consistency). Let d ∈ N⋆, N ∈ N, h⋆ > 0, µ⋆ > 0, δ⋆ ≥ δ⋆ > 0 and M⋆ ≥ 0.
Let s ∈ N be such that s ≥ 4(N + 1) and s > d/2 + 1. There exists C > 0 such that for any
(µ, ε, β, δ, γ) ∈ p SW

SW

, any b ∈ W s+1,∞(Rd), T > 0 and (ζ2,ϕ1,ϕ2) solution to eq. (15.27) and

satisfying

∀x ∈ Rd, h1(t,x)
def
= 1−εζ(t,x) ≥ h⋆ > 0 h2(t,x)

def
= δ−1+εζ(t,x)−βb(x) ≥ h⋆ > 0 (15.29)

uniformly for t ∈ (0, T ) and

M
def
= ess sup

t∈(0,T )

(∣∣εζ2(t, ·)∣∣Hs

)
+
∣∣βb∣∣

W s+1,∞ ≤M⋆,

then, denoting ψ2
def
= l2(h2) • ϕ2 and ψ1 = l1(h1) • ϕ1, one has

∂tζ2 − 1
µG

µ
1 [εζ2]ψ1 = r1

∂tζ2 − 1
µG

µ,δ
2 [εζ2, βb]ψ2 = r2,

∂t(ψ2 − γψ1) + (δ + γ)ζ2 +
(
ε
2 |∇ψ2|2 − µε

( 1µG
µ,δ
2 [εζ2, βb]ψ2 + ε∇ζ2 · ∇ψ2)

2

2(1 + µ|ε∇ζ2|2)

)
−γ
(
ε
2 |∇ψ1|2 − µε

( 1µG
µ
1 [εζ2]ψ1 + ε∇ζ2 · ∇ψ1)

2

2(1 + µ|ε∇ζ2|2)

)
= r0,
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where Gµ,δ2 [εζ2, βb] and Gµ1 [εζ2] are defined after eq. (3.15) and for almost every t ∈ (0, T ),∣∣rℓ(t, ·)∣∣Hs−4(N+1) ≤ C µ1+2N
∣∣∇ψℓ(t, ·)∣∣Hs−1 (ℓ ∈ {1, 2}),∣∣r0(t, ·)∣∣Hs−4(N+1) ≤ C µ1+2N ε
(∣∣∇ψ2(t, ·)

∣∣2
Hs−1 + γ

∣∣∇ψ1(t, ·)
∣∣2
Hs−1

)
,

Proof. The result is a direct consequence of Theorem 13.12 once we remark the identities

1

µ
Gµ1 [εζ2]ψ1 = − 1

µ
Gµ[−εζ2, 0]ψ1,

1

µ
Gµ,δ2 [εζ2, βb]ψ2 =

δ

µ
Gµ/δ

2

[δεζ, δβb]ψ2

as well as corresponding scaling arguments on

Lµ1 [h1] = Lµ[h1,0], Lµ2 [h2, β∇b] = Lµ[h2, β∇b],
u1[h1,ϕ1] = u[h1,0,ϕ1], u2[h2, β∇b,ϕ2] = u[h2, β∇b,ϕ2],

w1[h1,ϕ1] = −w[h1,0,ϕ1], w2[h2,ϕ2] = w[h2, β∇b,ϕ2]

where Lµ, u and w are defined in eq. (13.23) and eq. (13.25) (with slight but obvious misuse of
notations as for the dependency with respect to N).

Remark 15.8. As for the Isobe–Kakinuma model (see Theorem 13.12 and the Remark afterwards),
the statement of the consistency result is in the opposite direction with respect to other consis-
tency statements in this document, and in particular Theorem 14.1, where solutions to the master
equations are shown to satisfy the model up to a small remainder terms. One of the benefits from
this choice is that there exists a large class of solutions to eq. (15.27) as in the above consistency
statement, by the well-posedness result below. However it does not allow—directly—to compare these
solutions with regular solutions of the interfacial waves system (such as solitary waves for instance);
see [160] for such a statement. The next result is the last of this document.

Theorem 15.9 (Local well-posedness). Let d ∈ N⋆, N ∈ N, s ∈ N, s > 1 + d/2, h⋆ > 0, a⋆ > 0,
µ⋆ > 0, δ⋆ ≥ δ⋆ > 0 and M⋆ ≥ 0. There exist T > 0, C > 0 such that for any (µ, ε, β, δ, γ) ∈ p SW

SW

,

any b ∈ W s+2,∞(Rd), and any (ζ0,ϕ0,1,ϕ0,2) ∈ Hs(Rd) × Xs
µ × Xs

µ satisfying the compatibility
condition eq. (15.28), the non-cavitation assumptions

h0,1
def
= 1− εζ0 ≥ h⋆ > 0, h0,2

def
= δ−1 + εζ0 − βb ≥ h⋆ > 0,

the hyperbolicity condition

aK −
γ

h0,1α1

1
h0,2α2

γ
h0,1α1

+ 1
h0,2α2

|εu2 − εu1|2 ≥ a⋆ > 0 (15.30)

where aK is defined in eq. (15.21) and αℓ (ℓ ∈ {1, 2}) in (15.23), and

M0
def
=
∣∣εζ0∣∣Hs +

∣∣εγ 1
2ϕ0,1

∣∣
Xs

µ
+
∣∣εϕ0,2

∣∣
Xs

µ
+
∣∣βb∣∣

W s+2,∞ ≤M⋆,

there exists a unique (ζ2,ϕ1,ϕ2) ∈ C0([0, T/M0];H
s(Rd) × Xs

µ × Xs
µ) solution to the Kakinuma

system, eq. (15.27), with initial data (ζ2,ϕ1,ϕ2) |t=0
= (ζ0,ϕ0,1,ϕ0,2); and for any t ∈ [0, T/M0]∣∣ζ2(t, ·)∣∣Hs +

∣∣γ 1
2ϕ1(t, ·)

∣∣
Xs

µ
+
∣∣ϕ2(t, ·)

∣∣
Xs

µ
≤ C ×

(∣∣ζ0∣∣Hs +
∣∣γ 1

2ϕ0,1

∣∣
Xs

µ
+
∣∣ϕ0,2

∣∣
Xs

µ

)
,

infRd(1− εζ(t, ·)) ≥ h⋆

2 , infRd(δ−1 + εζ(t, ·)− βb) ≥ h⋆

2 , infRd

(
aK − ε2

γ
h1α1

1
h2α2

γ
h1α1

+ 1
h2α2

|u2 − u1|2
)
≥ a⋆

2 .



15. The Kakinuma systems 230

In the above, we denoted

Xs
µ

def
=
{
ϕ = (ϕ0, ϕ1, . . . , ϕN ) ∈ H̊s+1(Rd)×Hs+1(Rd)N ,

∣∣ϕ∣∣2
Xs

µ

def
=

N∑
i=0

∣∣∇ϕi∣∣2Hs +

N∑
j=1

µ−1
∣∣ϕj∣∣2Hs <∞

}
.

where N = N1 or N = N2, depending on the size of the vector stake.

Remark 15.10. As the formula for aK involves time derivatives and the hypersurface t = 0 in the
space-time Rd × R is characteristic, the definition of its initial value demands some clarifications.
We infer (∂tϕ1, ∂tϕ2) |t=0

by differentiating eq. (15.28), replacing (∂tζ) |t=0
therein using eq. (15.27)

with i = 0, and solving the resulting system of differential equations supplemented with the last
equation in eq. (15.27) (calling on [159, Lemma 6.4]).

Remark 15.11. The compatibility condition eq. (15.28) imposed on the initial data (and propagating
for positive times) is not a limitation of the result. As discussed in Section 15.1, it is proved
in [159, Lemma 6.4] that under the assumptions of Theorem 15.9 and for any ξ0 ∈ H̊s+1(Rd),
there exists (ϕ0,1,ϕ0,2) ∈ Xs

µ × Xs
µ (unique up to an additive constant) solution to eq. (15.28)

satisfying additionally l2(h0,2) • ϕ0,2 − γl1(h0,1) • ϕ0,1 = ξ0. Hence we could rewrite the above

statement using as initial data (ζ0, ξ0) in a neighborhood of the origin in Hs(Rd) × H̊s+1(Rd)—in
fact Hs+1(Rd)× H̊s+1(Rd) to secure uniform estimates—as in Corollary 13.17.

Sketch of the proof. The complete proof is provided in [159, 160]. The strategy of the proof is very
similar to that of Theorem 13.15, yet there is an additional key ingredient in order to obtain the
sharp hyperbolicity criteria h1 ≥ h⋆ > 0, h2 ≥ h⋆ > 0, and eq. (15.30).

When we extract the quasilinear structure to the Kakinuma system we find that for k ∈ Nd a
multi index with |k| ≤ s, solutions to eq. (15.27) satisfy the system

Aµ
1∂t

∂kζ2
∂kϕ1

∂kϕ2

+Aµ
0

∂kζ2
∂kϕ1

∂kϕ2

 =

 rk
rk,1
rk,2

 (15.31)

where the remainder term (rk, rk,1, rk,2) is uniformly bounded in an appropriate space, and plays no
role for the local-in-time existence and control of solutions; and, recalling the notations h1 = 1−εζ,
h2 = δ−1 + εζ − βb, l1(h1)

def
= (1, h21, . . . , h

2N1
1 )⊤, l2(h2)

def
= (hp02 , h

p1
2 , . . . , h

pN2
2 )⊤,

A1
def
=

 0 −γl1(h1)⊤ l2(h2)
⊤

γl1(h1) O O
−l2(h2) O O


and, defining (Lµ1 ,L

µ
2 ) by eq. (15.6)–(15.7), (u1,u2) by eq. (15.8) and aK by eq. (15.21),

A0
def
=

 aK −γl1(h1)⊤(εu1 · ∇) l2(h2)
⊤(εu2 · ∇)

−γ(εu1 · ∇)⋆l1(h1) γLµ1 [h1] O
(εu2 · ∇)⋆l2(h2) O Lµ2 [h2, β∇b]

 .

While this structure has the same symmetry properties as the one exhibited for the Isobe–Kakinuma
model in the sketch of the proof of Theorem 13.15, it should be pointed out that the energy
estimate inferred by testing the above against (∂t∂

kζ2, ∂t∂
kϕ1, ∂t∂

kϕ2)
⊤ is not satisfactory. Indeed,

considering for simplicity the case of the Saint-Venant system, that is N1 = N2 = 0, we see that for

any U
def
= (η,φ1,φ2) ∈ X

def
= L2(Rd) × H̊1(Rd) × H̊1(Rd), and denoting V

def
= (η,∇φ1,∇φ2), we

have

〈
U ,A0U

〉
X−X′ =

∫
Rd

V ·A0V dx with A0
def
=

 δ + γ −γεu⊤
1 εu⊤

2

−γεu1 γh1 Idd Od
εu2 Od h2 Idd

 .
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and the coercivity of the energy functional is equivalent to the positiveness of the matrix A0. Since

detA0 = (h1h2)
d
(
(δ + γ)− γ |εu1|2

h1
− |εu2|2

h2

)
,

we see that coercivity may fail even when u1 = u2, in discrepancy with the hyperbolicity condition
eq. (15.30) which for the Saint-Venant system reads simply (see Theorem 6.12)

(δ + γ)− γ
ε2|u2 − u1|2

h1 + γh2
≥ a⋆ > 0.

However, we can write A0 = Ã0 + T0 with

Ã0
def
=

 δ + γ ε γh1v
⊤

h1+γh2
ε γh2v

⊤

h1+γh2

ε γh1v
h1+γh2

h1 Idd Od

ε γh2v
h1+γh2

Od h2 Idd

 , T0
def
=

 0 −γεu⊤ εu⊤

−γεu Od Od
εu Od Od

 ,

with u
def
= γh2u1+h1u2

h1+γh2
, v = u2−u1. The contribution from T0 can be treated as an advection term,

and we have as desired
det Ã0 = (h1h2)

d
(
(δ + γ)− γ ε2|v|

h1+γh2

)
.

Following this approach in the general case N1, N2 ∈ Nd, we rewrite eq. (15.31) as

Aµ
1 (∂t + εu · ∇)

∂kζ2
∂kϕ1

∂kϕ2

+ Ãµ
0

∂kζ2
∂kϕ1

∂kϕ2

 =

 rk
r̃k,1
r̃k,2

 (15.32)

where u
def
= γh2α2u1+h1α1u2

h1α1+γh2α2
, with α1, α2 defined in eq. (15.23), A1 is as above and

Ã0
def
=

 aK γθ1l1(h1)
⊤(εv · ∇) θ2l2(h2)

⊤(εv · ∇)
γθ1(εv · ∇)⋆l1(h1) γLµ1 [h1] O
θ2(εv · ∇)⋆l2(h2) O Lµ2 [h2, β∇b]


with v

def
= u2 − u1, θ1

def
= h1α1

h1α1+γh2α2
, θ2

def
= γh2α2

h1α1+γh2α2
. We will then obtain energy estimates by

testing eq. (15.32) against

(∂t + εu · ∇)

∂kζ2
∂kϕ1

∂kϕ2

 ,

and using that the contribution from the first term vanishes identically. The last key ingredient
consists in showing that, restricting to the flat bottom case for the sake of readability (the case of
variable topography adds only lower order contributions) there exists c, C > 0 such that for any

U
def
= (η,φ1,φ2) ∈X

def
= L2(Rd)× (H̊1(Rd)×H1(Rd)N1)× (H̊1(Rd)×H1(Rd)N2) we have

c
(∣∣η∣∣2

L2 +
∣∣φ1

∣∣2
X0

µ
+
∣∣φ2

∣∣2
X0

µ

)
≤
〈
U ,A0U

〉
X−X′ ≤ C

(∣∣η∣∣2
L2 +

∣∣φ1

∣∣2
X0

µ
+
∣∣φ2

∣∣2
X0

µ

)
.

After integrating by parts we find〈
U ,A0U

〉
X−X′ =

(
aKη, η

)
L2

+ γ
(
h1A1,0D1∇φ1, D1∇φ1

)
L2 + γµ−1

(
h−1
1 A1,1D1φ1, D1φ1

)
L2

+
(
h2A2,0D2∇φ2, D2∇φ2

)
L2 + µ−1

(
h−1
2 A2,1D2φ2, D2φ2

)
L2

+ 2ε
(
η, γθ1v · (1 •D1∇φ1) + θ2v · (1 •D2∇φ2)

)
L2
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where Aℓ,0 and Aℓ,1 (for ℓ ∈ {1, 2}) have been defined in eq. (15.16)–(15.17), and D1 and D2 are
the diagonal matrices

D1 = diag(1, h21, . . . , h
2N1
1 ), D2 = diag(hp02 , h

p1
2 , . . . , h

pN2
2 ).

The upper bound is obvious by product estimates, and the lower bound is the crucial element. From
the non-cavitation assumptions h1 ≥ h⋆ > 0, h2 ≥ h⋆ > 0, and using that when withdrawing their
first (null) row and column A1,1 and A2,1 are definite positive, we infer immediately the L2-control
of φ1, φ2—except the first component. The remaining control follows from the lower bounds70

∀ψ1 ∈ RN1+1, A1,0ψ1 •ψ1 ≥ α1(1 •ψ1)
2, ∀ψ2 ∈ RN2+1, A2,0ψ2 •ψ2 ≥ α2(1 •ψ2)

2,

and the fact that the matrix  aK −γθ1|v| −θ2|v|
−γθ1|v| γh1α1 0
−θ2|v| 0 h2α2


is positive-definite under the hyperbolicity criterion eq. (15.30), in addition to the non-cavitation
assumptions.

From the above, we infer a priori energy estimates on smooth solutions satisfying the compati-
bility condition, hyperbolicity criterion and non-cavitation assumptions, as in the statement. The
remaining of the proof is very similar to that of Theorem 13.15, and we conclude here.

70In order to see this, set ℓ ∈ {1, 2}, introduce

Ãℓ,0
def
=

(
0 1⊤

−1 Aℓ,0

)
and notice

(Ãℓ,0)
−1 =

(
qℓ,0 q⊤

−q Qℓ,0

)
with qℓ,0 =

detAℓ,0

det Ãℓ,0
= αℓ and Qℓ,0 is non-negative, since for any ϕ ∈ RNℓ+1, denoting

(
ζ
ψ

)
= (Ãℓ,0)

−1

(
0
ϕ

)
, we

have

ϕ •Qℓ,0ϕ =

(
0
ϕ

)
•
(
qℓ,0 q⊤

−q Qℓ,0

)(
0
ϕ

)
=

(
ζ
ψ

)
•
(

0 1⊤

−1 Aℓ,0

)(
ζ
ψ

)
= ψ •Aℓ,0ψ ≥ 0,

where the positivity of Aℓ,0 follows from

ψ •Aℓ,0ψ =

∫ 1

0
(ψ • z)2 dz, z

def
= (zp0 , zp1 , . . . , zpNℓ ).

Now, for any ψ ∈ RNℓ+1, we set η
def
= 1 •ψ, ϕ

def
= Aℓ,0ψ, and remark

ψ •Aℓ,0ψ =

(
0
ψ

)
•
(

0 1⊤

−1 Aℓ,0

)(
0
ψ

)
=

(
η
ϕ

)
•
(
qℓ,0 q⊤

−q Qℓ,0

)(
η
ϕ

)
= qℓ,0η

2 + ϕ •Qℓ,0ϕ,

which gives the thesis.
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This is the end [...] of our elaborate plans, the end of
everything that stands, the end.

— Jim Morrison, The End
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I Numerics

I.1 Numerical schemes

In the forthcoming Appendix I.5 we present some numerical experiments, which have been generated
using spectral methods, and the explicit four-step Runge–Kutta scheme for the time integration. In
order to simplify the exposition, we will focus in this section on the use of such numerical scheme
on the initial-value problem for the Whitham equation, eq. (x), which in dimensionless variables
reads

∂tζ + ∂x
(
L(D)ζ + 3ε

4 ζ
2
)
= 0 . (I.1)

where L(D) =
√

tanh(
√
µ|D|)√

µ|D| , and ε, µ > 0 are dimensionless parameters. The discussion can be

extended without any change to general class of self-adjoint linear Fourier multipliers L(D), and in
particular to the Korteweg–de Vries equation, eq. (viii). When ε ≪ 1 and solutions are computed
over large times, or when the operator L(D) is of high order (i.e. the problem is stiff) as in the

Korteweg–de Vries equation, it is beneficial to solve eq. (I.1) for η
def
= exp(t ∂xL)ζ, that is

∂tη +
3ε
4 exp(t ∂xL)∂x

(
(exp(−t ∂xL)η)2

)
= 0 .

Solvers based on such representation are often called exponential integrators; see [330] for more
details and references. We shall stick to eq. (I.1) for simplicity in this presentation.

I.1.1 Fourier spectral methods

There are many textbooks introducing spectral methods, e.g. [401] (I also like [419, Chapter V]),
and only the basics shall be recalled here. In this section, time is freezed and we consider only the
discretization in space.

Periodization Our first approximation consists in considering eq. (I.1) on a periodic domain of
period 2L rather than on the full real line. We apply a periodization operator, for instance

ζp(x)
def
=
∑
ℓ∈Z

ζ(x+ 2Lℓ).

In practice, we consider functions ζ rapidly decreasing (with |x|) and choose L sufficiently large so
that ζ decays up to machine precision for |x| ≥ L, and so the difference between ζp and ζ on [−L, L]
is immaterial.

The Fourier multiplier L(D) (respectively ∂x), extended as an operator from S ′(R) (the tem-
pered distributions) to itself, maps periodic functions to periodic functions and acts by pointwise

multiplication on the kth coefficients of the Fourier series with
√

tanh(
√
µπ|k|/L)√

µπ|k|/L (respectively iπk
L ).

However, since L(D) is a nonlocal operator, L(D)ζp ̸= (L(D)ζ)p. Yet the symbol being smooth, its
inverse Fourier transform (and derivatives), which we denote K,71 is exponentially decaying, and
hence

L(D)(ζp − ζ)(x) =
1√
2π

∑
ℓ∈Z⋆

∫
R
K(x− y)ζ(y + 2Lℓ) dy

is exponentially decaying on [−L, L] with respect to L, provided that ζ(x) is exponentially decaying
with |x|. As a consequence, for ζ exponentially decaying, the error made by the periodization
procedure is exponentially decaying with L.

71More properties on the Whitham Kernel K (and its periodic counterpart) can be found in [173].
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Fourier spectral methods On a problem with periodic boundary conditions, Fourier spectral meth-
ods consist in approaching solutions considering finite Fourier sums of the form

ζp(x) ≈
⌈N/2⌉−1∑
k=−⌊N/2⌋

ake
i
π
L kx. (I.2)

In practice, we give ourselves the values (ζ(xi))i=1,··· ,N at the regularly spaced collocation points

xi
def
= −L + 2i L

N , and use the discrete Fourier transform (computed efficiently with a Fast Fourier
transform (FFT)) to deduce the coefficients ak. In that way, the coefficients ak are related to the
coefficients of the infinite Fourier series

ζp(x) =
∑
k∈Z

cke
i
π
L kx (I.3)

through the relation

ak =
∑
j∈Z

ck+jN.

With an abuse of definition, we will still refer to ak as “Fourier coefficients”, and will identify ak and
ck+2jN for any j ∈ Z. That ak encompasses a full series of Fourier coefficient is of course unavoidable

as ei
π
L kx and ei

π
L (k+jN)x are indistinguishable on the discrete grid x ∈ {x1, · · · , xN}, and is called

aliasing. For functions in the Schwartz space, Fourier coefficients decrease exponentially fast, and
hence the error between (I.2) and (I.3) is exponentially decaying with respect to δx−1 ∝ N/L; this
is called spectral accuracy and is, together with the extraordinary efficiency of the FFT (whose
cost grows theoretically as N log(N)), the main reason for the popularity of spectral methods. The
simplicity of the resulting numerical codes is another incentive for using them.

After decomposition (I.2), the action of Fourier multipliers—and in particular differentiation—
can be obtained exactly via multiplication on the discrete Fourier coefficients, and only nonlinear
terms require some attention. The simplest way to approximately compute products is by pointwise
multiplication on collocation points (which can be obtained from the discrete Fourier coefficients
via discrete inverse Fourier transform), and then apply the discrete Fourier transform. Since

ζ2p(xi) =
( ⌈N/2⌉−1∑
k=−⌊N/2⌋

ake
i
π
L kxi

)2
=

⌈N/2⌉−1∑
j=−⌊N/2⌋

⌈N/2⌉−1∑
l=−⌊N/2⌋

ajale
i
π
L (j+l)xi

one obtains

ζ2p(x) ≈
⌈N/2⌉−1∑
k=−⌊N/2⌋

bke
i
π
L kx with bk =

∑
j+l∈{k−N,k,k+N}

ajal.

For j, k, l ∈ {−⌊N/2⌋, · · · , ⌈N/2⌉ − 1}, the contribution ajal such that j + l ̸= k is a spurious
effect from aliasing, and sometimes contributes to numerical instabilities. In order to suppress such
terms, one can add a sufficient number of modes72 (in the case of quadratic nonlinearity, the so-
called Orszag’s 3/2 rule [349]) with coefficients set to zero, so that ajal = 0 when |j+l−k| = N (with
j, k, l ∈ {−⌊N/2⌋, · · · , ⌈N/2⌉−1}). The use of such dealiasing techniques separate (Galerkin) spectral
approximations (since the error of the approximation is orthogonal to the expansion functions) from
pseudospectral approximations [348]. The dealiasing technique deserves some comments. Firstly, it
can be performed exactly only for power nonlinearities, and the number of additional coefficients
grows with the power, as (p+ 1)/2 where p is the power. This prevents its use (again, if perfection
is aimed at) for the second Whitham equation, eq. (ix), for instance. Secondly, it should be noticed

72In practice it is more convenient to use low-pass filters, that is set to zero extreme modes, so as to work with
vectors with a fixed given length.
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that the magnitude of the error generated by the spurious aliasing term is not necessarily greater
(nor smaller) than the contributions omitted from the exact formula: by eq. (I.3),

ζ2p(x) =
(∑
k∈Z

cke
i
π
L kx
)2

=
∑
j∈Z

∑
l∈Z

cjcle
i
π
L (j+l)x.

Finally, low-pass filters, Π, having discontinuous symbols, they do not enjoy good commutator
properties (that is, [Π, ζ] is not regularizing of order −1); it is hence advisable for equations of
quasilinear type to use regularized (at least Lipschitz) symbols. In practice, one can use when pos-
sible sufficiently many modes, N, so that discrete Fourier coefficients decrease to machine precision
with room to spare and hence dealiasing is theoretically immaterial, and use dealiasing only when
it appears necessary or beneficial.

In any case, we find that for data with exponentially decaying Fourier coefficients, the error
made using the Fourier (pseudo-)spectral method is exponentially decaying with N/L (in addition
to the error exponentially decaying with L from the periodization procedure).

I.1.2 Time integration

After discretization in space using the Fourier (pseudo-)spectral method, eq. (I.1) becomes a system
of differential equations,

dU

dt
= F(t, U) ,

where U(t) is the N-dimensional vector of discrete Fourier coefficients of ζp at time t.

We numerically solve the initial-value problem using the explicit four-step Runge–Kutta method
(RK4). Hence, given δt the timestep, we compute the approximate value of U(t + δt) from the
knowledge of U(t) with the formula

U(t+ δt) = U(t) + δt
6

(
U1 + 2U2 + 2U3 + U4

)
where 

U1 = F(t, U(t)),

U2 = F(t+ δt
2 , U(t) +

δt
6 U1),

U3 = F(t+ δt
2 , U(t) +

δt
2 U2),

U4 = F(t+ δt, U(t) + δt U3) .

The RK4 method is a fourth-order method, meaning that the local truncation error is on the order
of O(δt5), while the total accumulated error is of the order of O(δt4).

Working with stiff problems (since operators at stake, and in particular space-differentiation are
not bounded), the RK4 method suffers from numerical instabilities unless a Courant–Friedrichs–
Levy (CFL) type smallness condition on the timestep is ensured (see [401, §10] or [419, §5.4]). This
is not a strong issue in practice, since we aim at high accuracy on smooth functions, and that the
exponential rate of spectral methods associated with the algebraic rate of the RK4 method will
typically urge to use small time step-size/space intervals ratios anyway.

I.1.3 Code samples and validation

In this section we validate the numerical method by propagating in time a solitary wave for the
Whitham equation, eq. (I.1). Given a velocity c > 1 (sufficiently small; see Figure vi), the solitary
wave ζ(t, x) = ζc(x− ct) satisfies

−cζc + L(D)ζc +
3ε
4 ζ

2
c = 0 .
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The profile ζc can be numerically obtained by using the Fourier spectral method, and solving the
resulting system of nonlinear equations

G(U) = 0

by a standard Newton iteration,

U(m+1) = U(m) − δU(m) with Jac(G(U))|U=U(m)δU
(m) = G(U(m))

where U(m) denotes the mth iterate, and where Jac(G(U)) is the Jacobian of G(U) with respect to U ∈ CN.
Due to the translation invariance of the problem, the Kernel of the Jacobian of the continuous
(infinite-dimensional) vector-field is non-empty when evaluated at the solution ζc, since ∂xζc is an
element of the nullspace. It is hence advisable to add the corresponding spectral projection to
Jac(G(U)). The initial iterate U(0) can be chosen from the explicit KdV solitary wave; see Section v.

Our numerical illustrations have been performed using the Julia language [50]. We provide
below a self-contained code, favoring conciseness and readability to performance.

First we generate the solitary wave solution to eq. (I.1) (with ε = µ = 1) of velocity c = 1.1,
using N = 211 modes on the torus of half-period L = 60. Figure I.1 represents the outcome. The
alteration of values at collocation points is of the order of 10−16, i.e. machine precision, when
multiplying by two the number of modes, N, or both N and the half-period, L, indicating a maximal
resolution of the real-line problem.

1 using FFTW ,LinearAlgebra
2 " Compute the solitary wave of the Whitham equation with velocity c. "
3 function SolitaryWaveWhitham (;c=1.1,N=2^11,L=60)
4 # Initialize
5 dx = 2*L/N; X = -L:dx:L-dx #mesh of collocation points
6 dk = pi/L; K = dk.* [0:N÷2-1 ; -N÷2:-1] #Fourier wavenumbers
7 FFT = exp.(-1im*K*(X.-X[1]) ’) #FFT as a matrix operator
8 IFFT= exp.(1im*K*(X.-X[1]) ’)/length(X) # IFFT as a matrix operator
9 Dx = 1im * K #Differentiation (symbol)
10 LD = sqrt.(tanh.(K)./K); LD[1]=1 #Fourier multiplier L(D) (symbol)
11 Z = 2*(c-1)*sech.(sqrt (3/2*(c-1))*X).^2 # Initial guess (KdV formula)
12 #Solve G(Z) = 0
13 for i in 1:10 #Newton iteration with maximum 10 steps
14 G = -c*Z+ifft(LD.*fft(Z))+3/4*Z.^2 #Compute G(Z)
15 if norm(G) <10^(-15) break end #Stop if |G(Z)| is below tolerance
16 JacG = (IFFT*( Diagonal(LD)*FFT) #Compute Jac(G(Z))
17 +Diagonal (3/2*Z .-c))
18 dxZ = ifft(Dx.*fft(Z));
19 dZ = dxZ./norm(dxZ); Proj = dZ*dZ’ #Compute the projection onto span(∂Z)
20 Z = Z - ( JacG + Proj ) \ G #Compute next Newton iterate
21 end
22 return X,real.(Z),K,fft(Z)
23 end

Then we integrate in time eq. (I.1) starting with this solitary wave, using the pseudospectral
method (without dealiasing) and explicit RK4 solver, with 105 time steps on t ∈ [0, 40]. The
comparison of the numerically computed solution and the exact solution (obtained from the previous
function by a Fourier phase shift) is represented in Figure I.2. Augmenting the number of modes,
N, or decreasing the time step-size, δt, by a factor of two does not significantly improve (nor
deteriorates) the accuracy.

1 " Solve the initial -value problem for the Whitham equation with a solitary wave
as initial data."

2 function SolveWhitham (;T=40,dt =0.0004)
3 # Initialize mesh of collocation points X, Fourier wavenumbers K
4 # and initial data (Z = values at collocation points, U = Fourier coefficients)
5 X,Z,K,U=SolitaryWaveWhitham(c=1.1,N=2^11,L=60)
6 Dx = 1im * K #Differentiation (symbol)
7 LD = sqrt.(tanh.(K)./K); LD[1]=1 #Fourier multiplier L(D) (symbol)
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(a) Physical space (b) Same as (a), in log scale (c) Discrete Fourier coefficients
(modulus, in log scale)

Figure I.1: Computed solitary wave of eq. (I.1) with velocity c = 1.1.

8 #Solve ∂t U = F(U)
9 F(U) = -Dx.*LD.*U - 3/4*Dx.*fft(ifft(U).^2)
10 for i in dt:dt:T # Iterate explicit solver RK4
11 U1 = F( U )
12 U2 = F( U + dt/2 * U1 )
13 U3 = F( U + dt/2 * U2 )
14 U4 = F( U + dt * U3 )
15 U = U + dt/6 * ( U1 + 2*U2 + 2*U3 + U4 )
16 end
17 return (X,real.(ifft(U)),K,U)
18 end

(a) Physical space (b) Fourier coefficients (modulus, in log scale)

Figure I.2: Difference between the computed solution at final time and the translated initial data.

I.2 The special case of the (Whitham–)Green–Naghdi system

Let us describe further on the numerical scheme we employ in Appendix I.5 later on when integrating
in time the (one-dimensional with flat bottom) Green–Naghdi equations (see Section 8) and their
fully dispersive counterparts (see Section 10), which read in dimensionless variables ∂tζ + ∂x(hu) = 0,

∂tv + ∂x
(
ζ + εuv − ε

2u
2 − µε

2 h
2(∂xFu)

2
)
= 0

(I.4)
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where h = 1+εζ and F is the Fourier multiplier operator with symbol F (k) =
√

3
µ|k| tanh(µ|k|) −

3
µ|k|2 ;

and v and u are related through the elliptic equation

v = u− µ

3h
∂x
(
h3∂xFu

)
. (I.5)

Sufficiently regular solutions to the Green–Naghdi equations satisfy the above, replacing F by the
identity. By Lemma 8.9, u is uniquely determined by eq. (I.5) from sufficiently regular (v, ζ) with
infR(1+εζ) > 0, and we can solve eq. (I.4) as evolution equations for (ζ, v). The presence of Fourier
multipliers naturally leads to Fourier pseudospectral methods described above. As emphasized in
Section 9,73 one of the difficulties when integrating in time eq. (I.4) is that we are led to solve the
elliptic problem eq. (I.5) at each time-step. However, it turns out to be not too costly—at least in
the one-dimensional framework—to solve the elliptic problem at each time step while maintaining
high resolution thanks to the efficiency of pseudospectral methods and of the Krylov subspace
iterative method GMRES for solving the elliptic problem.

Let us now be more precise. We use the same Fourier pseudospectral approach as outlined in the
previous section, i.e., we approximate the solution u, ζ via discrete Fourier transforms. With this
spatial discretization, eq. (I.4) become finite-dimensional systems of ODEs coupled with a system
of equations of the form 

dζ̂

dt
= G1(ζ̂, û),

dv̂

dt
= G2(ζ̂, û, v̂),

M[ζ̂]û = v̂

(I.6)

where ζ̂(t), û(t), v̂(t) are the N-dimensional vectors of discrete Fourier coefficients, and M[ζ̂] is an
N-by-N matrix. The two ODEs in system (I.6) are integrated with the standard explicit fourth
order Runge–Kutta method. The system of linear equations in (I.6) is a convolution in the space

of Fourier coefficients: the matrix M(ζ̂) is constructed using (inverse) Fast Fourier Transform
and multiplication in collocation points. As already mentioned, the inversion is performed with
the very efficient Krylov approach GMRES [368] (typically using M[0], which is diagonal, as a
preconditioner). This numerical method has been discussed and successfully employed in a variety
of computationally challenging situations in [151].

I.3 The special case of the Isobe–Kakinuma systems

Under the formulation (13.17), the Isobe–Kakinuma model discussed in Section 1374 has a structure
similar to the one of the Green-Naghdi system described above, namely two scalar evolution equa-
tions involving variables which can be described as solutions of a system of differential equations.
As such the strategy described in the previous section applies mutatis mutandis. More precisely we
solve a systems of ODEs coupled with a system of equations of the form

dζ̂

dt
= G1(ζ̂, ϕ̂

′
0, ϕ̂1, . . . , ϕ̂N ),

dv̂

dt
= G2(ζ̂, ϕ̂

′
0, ϕ̂1, . . . , ϕ̂N ),

M[ζ̂](ϕ̂′0, ϕ̂1, . . . , ϕ̂N ) = Lv̂

(I.7)

where ζ̂(t), v̂(t), ϕ̂′0(t), ϕ̂1(t), . . . , ϕ̂N (t) denote the N-dimensional vectors of discrete Fourier coeffi-
cients, of the corresponding variables in (13.17) (because the variables ψ and ϕ0 belong to Beppo
Levi spaces and in view of satisfying periodic boundary conditions it is convenient to use the closed

73see also references therein for alternative approaches to the numerical integration of the Green–Naghdi system.
74In fact this structure is common to all the high order models presented in Section 12 and Section 13.
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form of the equations in terms of v
def
= ∂xψ and ϕ′0

def
= ϕ0−ψ instead), and L and M[ζ̂] are (N+1)N-

by-(N + 1)N matrix (with N the rank of the Isobe–Kakinuma model). We can then follow exactly
the strategy described in the previous section.

I.4 The special case of the water waves system

Numerical methods based on conformal mapping allow to solve very efficiently the time integration
of the water waves system, eq. (2.2), in the framework of horizontal dimension d = 1. The idea of
using conformal mapping to transform the Laplace problem, eq. (2.4) into an equivalent Laplace
problem in a more convenient—and in particular fixed—domain can be found75 as early as in [69,
350, 210] (the latter acknowledging the original idea in [263] on the linearized equations) and has
been revisited several times,in particular in [169, 100, 426, 336, 285, 318, 406, 321] (see also [416,
284, 218, 222, 223, 6, 415] for the use of the conformal mapping in studies on the initial-value
problem).

We briefly recall some principles below, following closely the exposition in [100], and in particular
restricting ourselves to the flat bottom situation (in addition to dimension d = 1). The first
step (after the non-dimensionalization, Section 2.4) consists in introducing suitable holomorphic
coordinates, that is a map

(X,Y )[εζ(t, ·)] : (ξ, η) ∈ R× (−δ, 0) 7→ (x, y) ∈ {(x, y) ∈ R2 : −1 < y < εζ(t, x)}

which is a conformal transformation when identifying the real plane and complex plane (and un-
rescaling variables), i.e. is differentiable and satisfies the anisotropic Cauchy-Riemann equations

∂ξX = ∂ηY ; µ∂ξY = −∂ηX.

The function Y satisfies the Laplace problem
µ∂2ξY + ∂2ηY = 0 in R× (−δ, 0),
Y (t, ·, 0) = εζ(t,X(t, ·, 0)),
Y (t, ·,−δ) = −1.

(I.8)

Solving eq. (I.8) in Fourier space and denoting denoting z(t, ξ) = ζ(t,X(t, ξ, 0)), we find

Y (t, ·, η) =
η

δ
+ ε

sinh(
√
µ|D|(δ + η))

sinh(
√
µδ|D|)

z(t, ·),

and the Cauchy-Riemann equations, yield

∂ξX(t, ·, η) = 1

δ
+ ε

√
µ|D| cosh(√µ|D|(δ + η))

sinh(
√
µδ|D|)

z(t, ·).

Up to here δ > 0 is a free parameter, possibly depending on the time variable, t ∈ R. In the
periodic framework—which we will use henceforth unless otherwise noted—it is convenient to set
the parameter so that the conformal map preserves the periodicity (with same period).76 Using the
above equation, we see that this can be done provided we choose

δ(t) = 1 + ε
1

L

∫ L/2

−L/2
z(t, ξ) dξ,

75in the context of the time integration of the evolution equations with general initial data. Holomorphic coordinates
can also be used to compute or construct special solutions such as traveling waves [340, 279, 394, 381, 110, 32]; see
also the recent [114, 167, 108, 144] and references therein.

76This discussion is of course essential in view of numerical simulations using Fourier (pseudo-)spectral methods.
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where L is the wave period. Setting η = 0 in the above identity, we obtain

∂ξX(t, ·, 0) = 1

δ
+ ε

√
µ|D| cotanh(√µδ|D|)ζ(t,X(t, ·, 0)), (I.9)

which—after integration—implicitly defines X(t, 0, ·) up to a constant which can be arbitrarily set,
and hence z(t, ·) = ζ(t,X(t, ·, 0)) and as a result the holomorphic coordinates (X,Y )(t, ·, ·), from
the knowledge of the surface deformation ζ(t, ·).

As a second step we rewrite the water waves system, eq. (2.7), using the holomorphic coordi-
nates. Denoting Φ the solution to eq. (2.8) (with flat bottom and dimension d = 1), we have that

F (t, ξ, η)
def
= Φ(t,X(t, ξ, η), Y (t, ξ, η)) satisfies

µ∆ξF + ∂2ηF = 0 in R× (−δ, 0),
F (t, ·, 0) = ψ(t,X(t, ·, 0)),
(∂ηF )(t, ·,−δ) = 0,

which is immediately solvable in Fourier space. By using the chain rule we can rewrite the two equa-

tions in eq. (2.7) equivalently using the unknowns X(t, ·, 0), Y (t, ·, 0), and f(t, ·) def
= ψ(t,X(t, ·, 0)).

Yet these equations are not readily under the form of evolution equations for which {t} × R are
non-characteristic hypersurfaces in the space-time R × R. It demands some clever manipulations
and the help of analytic function theory to arrive at the following set of two evolution equations:

∂tz −
(1+εIµ,δ

0 z)( 1
µGµ,δ

0 f)

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

+ µε(∂ξz)H
µ,δ
0 ∂ξ

( 1
µGµ,δ

0 f

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

)
= µεq0∂ξz,

∂tf + z + ε
2

(∂ξf)
2−µ( 1

µGµ,δ
0 f)2

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

+ µε(∂ξf)H
µ,δ
0 ∂ξ

( 1
µGµ,δ

0 f

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

)
= µεq0∂ξf,

(I.10)

where we define the following Fourier multipliers

Gµ,δ0
def
=

√
µ|D| tanh(√µδ|D|), Hµ,δ0

def
=

cotanh(
√
µδ|D|)

√
µ|D|

, Iµ,δ0
def
=

√
µ|D| cotanh(√µδ|D|),

(we use the convention cotanh(0)
0 = 0, that is we first subtract the average before applying Hµ,δ0 )

and77

q0 =
1

L

∫ L/2

−L/2
(1 + εIµ,δ0 z)Hµ,δ0 ∂ξ

( 1
µGµ,δ

0 f

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

)
+ ε

(∂ξζ)(
1
µGµ,δ

0 f)

(1+εIµ,δ
0 z)2+µε2(∂ξz)2

dξ.

Remark I.1. In the real-line setting, we set δ = 1, and q0 = 0, accordingly with the limit L→ ∞. The
action of Hµ,δ0 ∂ξ must be precised, since it is not a Fourier multiplier in the sense of Definition III.1,
due to the singularity at wavenumber ξ = 0. Yet it applies to functions which can be decomposed as
∂ξf0 + f1 where f0 ∈ L2(R) and f1 ∈ L1(R) (we measure here spatial decay at infinity rather than
regularity). The singularity is removed for the first contribution, and the Fourier transform of the

second contribution is continuous at ξ = 0, hence its pointwise multiplication with
iξ cotanh(

√
µδ|ξ|)√

µ|ξ| =
1
ξ

iξ√
µ tanh(

√
µξ) defines a distribution via the Cauchy principal value, and its inverse Fourier transform

is well-defined in L∞(R).

The numerical strategy for numerically solving eq. (2.7) for given initial data (ζ0, ψ0) then
consists in the following steps:

77In [100], the authors choose to prescribe q0 = 0 rather than the choice of the origin of the the X-coordinate in
the physical domain (say X(t, 0, 0) = 0), which causes a (possibly time-dependent) spatial shift.
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• First we solve eq. (I.9) with ζ = ζ0, and infer the corresponding initial data

z |
t=0

= ζ0(t,X(0, ·, 0)) and f |
t=0

= ψ0(t,X(0, ·, 0)).

Numerically solving eq. (I.9) demands an iteration scheme78 which requires to evaluate ζ0 at
any given location x, either through a specified formula or a reconstruction from its values at
collocation points (e.g. through the Fourier spectral method). In the latter case each iteration
costs O(N2) operations where N is the number of collocation points. Hence this step can be
relatively costly, but needs to be performed only once.

• Then we integrate in time eq. (I.10). Since the equations involve only pointwise operations and
Fourier multiplications (and extracting average values, that is the first Fourier coefficient),
the equations—after differentiating the second one to consider periodic or spatially decay-
ing functions—are perfectly suited to Fourier pseudospectral methods presented in ?? I.1.1.
Thanks to the efficiency of the Fast Fourier Transform, each time-step of your favorite time-
integration scheme will require O(N log(N)) operations.

• At prescribed time t = T , we can plot solutions—and in particular the surface deformation
through the graph

(
X(T, ·, 0), z = ζ(T,X(T, ·, 0))

)
—using again eq. (I.9) to infer X(T, ·, 0).

Optionally, if we desire to recover the values of solutions in physical space, (ζ(T, ·), ψ(T, ·)) at
prescribed collocation points (to compare with the results of other models for instance), then
we need to use a costly interpolation.79

Remark I.2. It should be pointed out that the time integration of eq. (I.10) through Fourier pseudo-
spectral methods turns out to be much more efficient than the corresponding time integration of
the (Whitham–)Green–Naghdi system, eq. (I.6) or the Isobe–Kakinuma model, eq. (I.7), due to the

expensive operation of inverting M(ζ̂) at each time step. This does not mean that the latter models
are pointless! One should recall that the present strategy for solving the water waves system is limited
to simple geometries, and in particular dimension d = 1.80 Moreover, as pointed out in [18], the
conformal mapping method suffers from “anti-resolution” for large-amplitude waves: the location of
gridpoints after solving eq. (I.9) turn out to spread out near wave crests, which in practice demands
the use of a much greater number of modes to resolve the flow accurately, even in smooth situations.

I.5 Numerical experiments

In this section we discuss the results of fairly naive numerical experiments, as an illustration
of the improved accuracy of solutions to the (fully dispersive) Whitham–Green–Naghdi system
(WGN) and solutions to the Isobe–Kakinuma model (IK) with respect to solutions to the stan-
dard Serre–Green–Naghdi system (SGN), for approximating solutions to the water waves system.
These experiments have been set up using numerical scripts written in the Julia language [50],
and more specifically the package developed in collaboration with P. Navaro which available at
https://github.com/WaterWavesModels/WaterWaves1D.jl. The numerical schemes for the time
integration of the SGN and WGN systems, based on the strategy presented in Appendix I.2, has
been written in collaboration with C. Klein and used in much more demanding situations in [151].
The numerical scheme for the time integration of the IK systems uses the same strategy, as dis-
played in Appendix I.3. Finally, the numerical scheme for the time integration of the water waves

78In the numerical experiments of Appendix I.5 we simply use the contraction mapping fixed point algorithm, since
the Newton algorithm turns out to be less efficient.

79Alternatively, one may evaluate at the collocation points defined by X(T, ·, 0) some data defined on regularly-
spaced collocation points, which requires O(N2) operations.

80The high order spectral methods presented in Chapter D, including the so-called spectral methods mentioned in
footnote 52, are valuable substitutes in dimension d = 2. The interested reader can find in [414] a thorough numerical
investigation and comparison—in dimension d = 1—along with important bibliographic references of several methods
which extend to the framework of dimension d = 2.

https://github.com/WaterWavesModels/WaterWaves1D.jl
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system, following the strategy presented in Appendix I.4, is based on a preliminary version written
by L. Emerald.

In these numerical simulations we will observe the evolution of an initial disturbance of the
surface elevation, with zero velocity, depending on scales of the system determined by the dimen-
sionless parameters ε and µ. We restrict ourselves to the flat bottom situation and dimension d = 1,
and set

ζ |
t=0

(x) = exp(−|x|3), ψ |
t=0

≡ 0, (I.11)

so that the initial disturbance is spatially localized but not smooth. We compute numerically the
emerging solution to the water waves system, eq. (2.7), to the Serre–Green–Naghdi system, eq. (8.2),
to the Whitham–Green–Naghdi system, eq. (10.2), and to the Isobe–Kakinuma model, eq. (13.7)
with N = 1 and (p0, p1) = (0, 2), for several values of ε and µ.

We use the pseudospectral method (without dealiasing) with N = 210 collocation points on the
torus of half-period L = 15, and the standard explicit RK4 solver with 104 time steps on t ∈ [0, 10].
The time evolution of the free surface predicted by the models and a snapshot of the difference
between the water waves solution and the corresponding solutions of the weakly dispersive models
for ε ∈ {0.5, 0.25, 0.125} are represented in Figure I.3 (µ = 1), Figure I.4 (µ = 0.1), and Figure I.5
(µ = 0.01). The corresponding ℓ∞-norm of the differences (at collocation points defined by the
water waves numerical solution) are aggregated in Table I.1.

Some comments are in order. Firstly the numbers in Table I.1 and features in Figures I.3 to I.5
do not vary significantly when the number collocation points or time steps are multiplied by two
except when explicitly stated in the discussion below, so that the solutions can be considered as
numerically resolved. We notice that spurious oscillations are visible in some plots, prominently
Figures I.3b and I.4d. These appear to be due to aliasing issues on the numerical solver for the
water waves system (the numerical solutions to other models do not exhibit such a noticeable rise of
the high-frequency modes amplitudes, at least up to this timescale) associated with the fact that the
initial data is not smooth, and hence Fourier modes with large wavenumbers retain relatively large
amplitude. These oscillations disappear—or at least are tamed—when using dealiasing (according to
Orszag’s 3/2 rule), even when N = 211 collocation points are used (in fact in this case oscillations
are no longer visible even without dealiasing). Additional spurious oscillations arise specifically
on the numerical solution to the Isobe–Kakinuma model in Figure I.3b. A quick glance at the
animation in Figure I.3a shows that the oscillations are artifacts generated when the numerical
solution approaches what appears to be a singularity in the form of a gradient catastrophe (more
precisely a plunging wave breaking). The computed solution cannot be considered as valid after
this time, and is not computed (because the GMRES algorithm does not converge) when using
N = 211 collocation points.

Finally the perceptive reader may be disappointed that the figures in Table I.1 do not quite
fit the theory of convergence obtained in this manuscript, that is—roughly speaking—O(µ2t) for
the Serre–Green–Naghdi model, O(µ2εt) for the Whitham–Green–Naghdi model, and O(µ3t) for
the Isobe–Kakinuma model. This is partly explained by the fact that the theory is limited to the
timescale t = O(1/ε). Indeed, when µ is small, the simulation is performed over a time range
significantly larger than 1/ε, and we observe the appearance of rapid modulations starting at the
location where the Saint–Venant system would have produced a singularity. Even though the
solutions to the dispersive equations remain smooth, steep gradients are produced which result in a
large increase of Sobolev norms, that our theory is not able to digest. Roughly speaking, “µ ceases
to be small”. Notice in particular that when ε = 1, the accuracy of the numerical solution at time
t = 10 does not improve as µ decreases, and indeed the main error is seen to lie at the location of
steep gradients. Yet this explanation does not explain some results when εt is of order O(1). To
my understanding, the situation is due to the fact that our initial data is not sufficiently regular.
Using Gaussian initial data instead we do recover the expected accuracy for sufficiently small µ.
This may serve as a pointer that the order of accuracy may not be the most desirable feature to



I. Numerics 244

look for in an asymptotic model, but that its robustness, that is its ability to produce fair results
in a wide range of situations, is a key attribute.

t = 1 t = 10

ε = 0.5 ε = 0.25 ε = 0.125 ε = 0.5 ε = 0.25 ε = 0.125

Serre–Green–Naghdi

µ = 1 0.0666 0.0595 0.0538 0.116 0.137 0.133

µ = 0.1 9.08 10−3 7.86 10−3 7.36 10−3 0.0441 0.0263 0.0279

µ = 0.01 7.05 10−4 3.14 10−4 2.74 10−4 0.144 0.0242 5.46 10−3

Whitham–Green–Naghdi

µ = 1 0.0201 0.0109 5.58 10−3 0.0573 0.0296 0.0133

µ = 0.1 3.81 10−3 1.7 10−3 8.63 10−4 0.0204 4.4 10−3 1.47 10−3

µ = 0.01 2.6 10−4 7.98 10−5 3.8 10−5 0.0909 7.14 10−3 7.03 10−4

Isobe–Kakinuma

µ = 1 0.0148 0.0118 0.0105 0.0634 0.0444 0.0443

µ = 0.1 1.15 10−3 6.86 10−4 5.8 10−4 3.26 10−3 2.64 10−3 2.29 10−3

µ = 0.01 5.35 10−5 4.0 10−5 3.74 10−5 0.0112 7.54 10−4 8.58 10−5

Table I.1: Errors produced by the Serre–Green–Naghdi, the Whitham–Green–Naghdi and the
Isobe–Kakinuma models.
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(a) Evolution in time. µ = 1, ε = 0.5 (b) Difference at time t = 10. µ = 1, ε = 0.5

(c) Evolution in time. µ = 1, ε = 0.25 (d) Difference at time t = 10. µ = 1, ε = 0.25

(e) Evolution in time. µ = 1, ε = 0.125 (f) Difference at time t = 10. µ = 1, ε = 0.125

Figure I.3: Disintegration of a heap of water, eq. (I.11), according to the water waves system and
the Serre–Green–Naghdi, Whitham–Green–Naghdi and Isobe–Kakinuma models

in “deep” water situations (µ = 1).
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(a) Evolution in time. µ = 0.1, ε = 0.5 (b) Difference at time t = 10. µ = 0.1, ε = 0.5

(c) Evolution in time. µ = 0.1, ε = 0.25 (d) Difference at time t = 10. µ = 0.1, ε = 0.25

(e) Evolution in time. µ = 0.1, ε = 0.125 (f) Difference at time t = 10. µ = 0.1, ε = 0.125

Figure I.4: Disintegration of a heap of water, eq. (I.11), according to the water waves system and
the Serre–Green–Naghdi, Whitham–Green–Naghdi and Isobe–Kakinuma models

in moderately shallow water situations (µ = 0.1).
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(a) Evolution in time. µ = 0.01, ε = 0.5 (b) Difference at time t = 10. µ = 0.01, ε = 0.5

(c) Evolution in time. µ = 0.01, ε = 0.25 (d) Difference at time t = 10. µ = 0.01, ε = 0.25

(e) Evolution in time. µ = 0.01, ε = 0.125 (f) Difference at time t = 10. µ = 0.01, ε = 0.125

Figure I.5: Disintegration of a heap of water, eq. (I.11), according to the water waves system and
the Serre–Green–Naghdi, Whitham–Green–Naghdi and Isobe–Kakinuma models

in shallow water situations (µ = 0.01).
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II Technical tools

We provide elementary proofs of product, commutator and composition estimates, based on the
following Hölder, Hausdorff-Young, interpolation and Sobolev embedding inequalities. The price to
pay for the simplicity of the proof is that results are restricted to Sobolev spaces with integer indices;
adapting proofs to Sobolev spaces with real indices would require for instance the Littlewood–Paley
technology; see [13]. The reader can refer to [268, Appendix B] for sharp results and relevant
references.

II.1 Basic inequalities

Lemma II.1 (Hölder inequality). Let d, n ∈ N⋆, n ≥ 2, r, p1, . . . , pn ∈ (0,+∞] such that

1

p1
+ · · ·+ 1

pn
=

1

r
.

There exists C > 0 such that for any fi ∈ Lpi(Rd) (i ∈ {1, . . . , n}),
∏n
i=1 fi ∈ Lr(Rd) and∣∣ n∏

i=1

fi
∣∣
Lr ≤ C

n∏
i=1

∣∣fi∣∣Lpi
.

Proof. The case n = 2 and r = 1 is the standard Hölder inequality following from Young’s inequality,
i.e. the concavity of the logarithm. The case r ∈ (0,+∞) is deduced applying the case r = 1 to
|fi|r ∈ Lpi/r(Rd), the case r = ∞ is obvious. The result for n ≥ 2 follows by induction on n.

Lemma II.2 (Hausdorff-Young inequality). Let d ∈ N⋆, p ∈ [1, 2] and denote q ∈ [2,+∞] such that

p−1 + q−1 = 1. There exists C > 0 such that for any f ∈ Lp(Rd), f̂ ∈ Lq(Rd) and∣∣f̂ ∣∣
Lq ≤ C

∣∣f ∣∣
Lp .

Proof. The case p = 1 is obvious from its integral representation, the case p = 2 is Parseval’s
theorem, and the case 1 < p < 2 follows from Riesz–Thorin interpolation theorem.

Lemma II.3 (Interpolation inequality). Let d ∈ N⋆ and s, s−, s+ ∈ R such that s− < s+ and
s− ≤ s ≤ s+. There exists C > 0 such that for any f ∈ Hs+(Rd),∣∣f ∣∣

Hs ≤ C
∣∣f ∣∣θ

Hs−

∣∣f ∣∣1−θ
Hs+ ,

with θ = s+−s
s+−s− .

Proof. We have ∣∣f ∣∣2
Hs ≲

∫
Rd

|f̂ |2⟨·⟩2s dx =

∫
Rd

(
|f̂ |⟨·⟩s−

)2θ (
|f̂ |⟨·⟩s+

)2(1−θ)
dx

and we conclude by Hölder’s inequality.

Lemma II.4 (Sobolev embedding). Let d ∈ N⋆, and p ∈ [2,+∞] Let s ∈ R such that s > d( 12 − 1
p ).

There exists C > 0 such that for any f ∈ Hs(Rd), f ∈ Lp(Rd) and∣∣f ∣∣
Lp ≤ C

∣∣f ∣∣
Hs .

Proof. We have with q = p
p−1 and r = 2(p−1)

p−2 ((q, r) = (2,∞) if p = 2, and (q, r) = (1, 2) if p = ∞)

∣∣f ∣∣
Lp ≲

∣∣f̂ ∣∣
Lq =

(∫
Rd

|f̂ |q⟨·⟩sq⟨·⟩−sq
) 1

q

≲
∣∣f ∣∣

Hs

∣∣⟨·⟩−sq∣∣ 1q
Lr

where we used Hausdorff-Young inequality applied to the inverse Fourier transform, and then
Hölder’s inequality. Notice ⟨·⟩−sq ∈ Lr(Rd) since sqr > d.
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II.2 Product, commutator and composition estimates

Proposition II.5. Let d ∈ N⋆, s ∈ N, and s1, s2 ∈ R satisfying s1 ≥ s, s2 ≥ s and s1 + s2 > s+ d/2.
There exists C > 0 such that for any f ∈ Hs1(Rd) and g ∈ Hs2(Rd), then fg ∈ Hs(Rd) and∣∣fg∣∣

Hs ≤ C
∣∣f ∣∣

Hs1

∣∣g∣∣
Hs2

.

Proof. Let us first deal with the case s = 0. The case s1 = 0 or s2 = 0 is straightforward by Sobolev
embedding, Lemma II.4. Otherwise there exists pi > 2 such that 1

2 − 1
pi
< si

d and 1
p 1

+ 1
p 2

= 1
2 .

The result follows from Hölder’s inequality, Lemma II.1, and again Sobolev embedding.
We consider now the case s ∈ N⋆. By Leibniz rule, we have for any k ∈ Nd with |k| ≤ s:

∂k(fg) =
∑

i+j=k

(
k

i

)
(∂if)(∂jg).

we estimate each summand using the s = 0 case:∣∣(∂if)(∂jg)∣∣
L2 ≲

∣∣∂if ∣∣
Hs1−|i|

∣∣∂jg∣∣
Hs2−|j| ,

and the result follows.

Corollary II.6. Let d ∈ N⋆ and s ∈ N. The space Hs(Rd) is a Banach algebra as soon as s > d/2.

Proposition II.7. Let d ∈ N⋆, s ∈ N and s⋆ > d/2. There exists C > 0 such that for any f ∈
Hmax({s⋆,s})(Rd) and g ∈ Hs(Rd), one has fg ∈ Hs(Rd) and∣∣fg∣∣

Hs ≤ C
∣∣f ∣∣

Hs⋆

∣∣g∣∣
Hs + C

〈∣∣f ∣∣
Hs

∣∣g∣∣
Hs⋆

〉
s>s⋆

where we recall the notation ⟨C⟩a>b =

{
C if a > b,

0 otherwise.

Proof. We consider the Leibniz rule for any k ∈ Nd with |k| ≤ s:

∂k(fg) =
∑

i+j=k

(
k

i

)
(∂if)(∂jg)

and estimate each summand independently.
If |k| ≤ s⋆, we may apply Proposition II.5 with s1 = s⋆ − |i| and s2 = s− |j|, and deduce∣∣(∂if)(∂jg)∣∣

L2 ≲
∣∣f ∣∣

Hs⋆

∣∣g∣∣
Hs .

Assume now |k| > s⋆. If |i| ≤ s⋆, we have as above
∣∣(∂if)(∂jg)∣∣

L2 ≲
∣∣f ∣∣

Hs⋆

∣∣g∣∣
Hs . If |j| ≤ s⋆,

we obtain symmetrically
∣∣(∂if)(∂jg)∣∣

L2 ≲
∣∣f ∣∣

Hs

∣∣g∣∣
Hs⋆

. In the remaining cases, we let s1, s2 ∈ R
be such that s⋆ < |i| ≤ s1 ≤ |k|, s⋆ < |j| ≤ s2 ≤ |k| and s1 + s2 = |k| + s⋆. By Proposition II.5
and Lemma II.3, we deduce∣∣(∂if)(∂jg)∣∣

L2 ≲
∣∣f ∣∣

Hs1

∣∣g∣∣
Hs2

≲
∣∣f ∣∣θ

Hs⋆

∣∣f ∣∣1−θ
Hs

∣∣g∣∣1−θ
Hs⋆

∣∣g∣∣θ
Hs

with θ = |k|−s1
|k|−s⋆ = s2−s⋆

|k|−s⋆ . We conclude by Young’s inequality.

Remark II.8. A close inspection on the proof shows that the result may be sharpened by assuming
only f ∈ L∞(Rd) ∩ H̊max{s⋆,s}(Rd) and one has∣∣fg∣∣

Hs ≤ C
(∣∣f ∣∣

L∞ +
∣∣∇f ∣∣

Hs⋆−1

)∣∣g∣∣
Hs + C

〈∣∣∇f ∣∣
Hs−1

∣∣g∣∣
Hs⋆

〉
s>s⋆

.
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Proposition II.9. Let d ∈ N⋆, k ∈ Nd, and s⋆ > d/2. There exists C > 0 such that for any
f ∈ H̊max{1+s⋆,|k|}(Rd) and g ∈ H |k|−1(Rd), [∂k, f ]g ∈ L2(Rd) and∣∣[∂k, f ]g∣∣

L2 ≤ C
∣∣∇f ∣∣

Hs⋆

∣∣g∣∣
H|k|−1 + C

〈∣∣∇f ∣∣
H|k|−1

∣∣g∣∣
Hs⋆

〉
|k|−1>s⋆

.

Proof. By Leibniz rule, we have

[∂k, f ]g =
∑

i+j=k,i ̸=0

(
k

i

)
(∂if)(∂jg).

We then proceed as in the proof of Proposition II.7 with ∂if = ∂ ĩ∂ef , ĩ+e = i, |̃i|+|j| = |k|−1.

Proposition II.10. Let n, d, s ∈ N⋆, and s⋆ > d/2. There exists C > 0 such that for any f ∈
Hmax({s,s⋆})(Rd), Hmax({s,s⋆})(Rd) and∣∣fn∣∣

Hs ≤ C
∣∣f ∣∣n−1

Hs⋆

∣∣f ∣∣
Hs .

Proof. The case n = 1 is trivial, and the case n = 2 is a particular case to Proposition II.7. We
first notice ∣∣fn∣∣

L2 ≲
∣∣f ∣∣n−1

L∞

∣∣f ∣∣
Hs ≲

∣∣f ∣∣n−1

Hs⋆

∣∣f ∣∣
Hs

by Sobolev embedding, Lemma II.4.

Now consider k ∈ Nd and |k| = s. By the general Leibniz rule, we have to estimate

∣∣ n∏
i=1

∂jif
∣∣
L2

where
∑n
i=1 ji = k . We may consider without loss of generality that |ji| ≥ 1 for any i ∈ {1, . . . , n}

thanks to the Sobolev embedding Hs⋆ ⊂ L∞ as above. We have

∣∣ n∏
i=1

∂jif
∣∣
L2 ≲

n∏
i=1

∣∣∂jif ∣∣
Lpi

≲
n∏
i=1

∣∣∂jif ∣∣
Hsi

,

as soon as
∑n
i=1

1
pi

= 1
2 (using Lemma II.1) and si >

d
2 (1−

2
pi
) (using Lemma II.4)

Let us first consider the case s ≤ s⋆. We choose si = s⋆ − |ji| for i ∈ {0, . . . , n − 1} and
sn = s − |jn|. Recall, since n ≥ 1, that 1 ≤ |ji| ≤ s − 1, and hence 1 ≤ si ≤ s⋆ − 1 for any
i ∈ {1, . . . , n}. Then we set pi = 2 s⋆

s⋆−si ∈ (2,+∞), so that si = s⋆(1 − 2
pi
) > d

2 (1 − 2
pi
), and∑n

i=1
2
pi

= n− 1
s⋆

∑n
i=1 si = 1, and the result follows.

Let us now consider the case s > s⋆. We choose si such that

max({|ji|, s⋆}) < si + |ji| < min({s, s⋆ + |ji|}) and

n∑
i=1

si = (n− 1)s⋆.

This is possible since 1 ≤ |ji| ≤ s − 1 and hence one has max({|ji|, s⋆}) < min({s, s⋆ + |ji|}) and∑n
i=1 max({|ji|, s⋆}) < (n− 1)s⋆+ s <

∑n
i=1 min({s, s⋆+ |ji|}). Then we set as above pi = 2 s⋆

s⋆−si .
Finally, we use the interpolation estimate of Lemma II.3:∣∣∂jif ∣∣

Hsi
≲
∣∣f ∣∣θi

Hs

∣∣f ∣∣1−θi
Hs⋆

with θi =
si+|ji|−s⋆
s−s⋆ . This completes the proof, remarking that

∑n
i=1 θi = 1.
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Proposition II.11. Let d, s ∈ N⋆, and s⋆ > d/2. Let F : R → R such that F ∈ Cs(R) and F (0) = 0.
For any M > 0, there exists C > 0 such that for any f ∈ Hmax({s,s⋆})(Rd) satisfying∣∣f ∣∣

Hs⋆
≤M,

then F (f) ∈ Hs(Rd) and ∣∣F (f)∣∣
Hs ≤ C

∣∣f ∣∣
Hs .

Proof. By the Sobolev embedding, Lemma II.4, there exists C > 0, such that for any f ∈ Hs⋆(Rd),∣∣f ∣∣
L∞ ≤ C

∣∣f ∣∣
Hs⋆

. Hence we can define a closed interval, I such that for any f ∈ Hs⋆(Rd),

supp f ⊂ I.

It follows from the mean value theorem that∣∣F (f)∣∣
L2 =

∣∣F (f)− F (0)
∣∣
L2 ≤ sup

x∈I
|F ′(x)|

∣∣f ∣∣
L2 .

We now use Faà di Bruno’s formula: for any k ∈ Nd such that |k| = s, we have

∂kF (f) =

|k|∑
n=1

∑
j1,...,jn ̸=0

j1+···+jn=k

Cj1,...,jn F
(n)(f)×

n∏
i=1

∂jif.

We have
∣∣F (n)(f)

∣∣
L∞ ≤ supx∈I |F (s)(x)| and we estimate

∣∣ n∏
i=1

∂jif
∣∣
L2 ≲

∣∣f ∣∣n−1

Hs⋆

∣∣f ∣∣
Hs

as in the proof of Proposition II.10.

Remark II.12. The estimates can be sharpened by making use of the following Gagliardo–Nirenberg
estimate (see e.g. [399]): for any s ∈ N, and k ∈ Nd such that |k| ≤ s, and any s⋆ > d/2, there
exists C > 0 such that for any u ∈ Hmax{s,s⋆}(Rd),∣∣∂kf ∣∣

L2s/|k| ≤ C
∣∣f ∣∣1−|k|/s

L∞

∣∣∇f ∣∣|k|/s
Hs−1 .

We deduce, under the (respective) assumptions of Propositions II.7, II.9, II.10 and II.11,∣∣fg∣∣
Hs ≤ C

(∣∣f ∣∣
L∞

∣∣g∣∣
Hs +

∣∣f ∣∣
Hs

∣∣g∣∣
L∞

)
,∣∣[∂k, f ]g∣∣

L2 ≤ C
(∣∣∇f ∣∣

L∞

∣∣g∣∣
H|k|−1 +

∣∣∇f ∣∣
H|k|−1

∣∣g∣∣
L∞

)
,∣∣∂k(fg)− f∂kg − g∂kf

∣∣
L2 ≤ C

(∣∣∇f ∣∣
L∞

∣∣∇g∣∣
H|k|−2 +

∣∣∇f ∣∣
H|k|−2

∣∣∇g∣∣
L∞

)
,∣∣fn∣∣

Hs ≤ C
∣∣f ∣∣n−1

L∞

∣∣f ∣∣
Hs ,∣∣F (f)∣∣

Hs ≤ C(
∣∣f ∣∣

L∞)
∣∣f ∣∣

Hs .

II.3 Estimates with non-decreasing functions

We sometimes need to deal with nonlinear estimates involving a non square-integrable function,
typically when a non-trivial topography is taken into account. We extend the result of the previous
section to this framework.
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Lemma II.13 (Interpolation inequality). Let d ∈ N⋆ and s, s−, s+ ∈ N such that s− < s+ and
s− ≤ s ≤ s+. There exists C > 0 such that for any f ∈W s+,∞(Rd),∣∣f ∣∣

W s,∞ ≤ C
∣∣f ∣∣θ

W s−,∞

∣∣f ∣∣1−θ
W s+,∞ ,

with θ = s+−s
s+−s− .

Proof. We use the identity, valid for any e ∈ Nd such that |e| = 1 and any λ > 0:

(−∂ef)(x) =
∫ +∞

0

(∂2ef − λ2f)(x+ se)e−λs ds+ λf(x),

which follows by integration by parts. We deduce, with λ =
(
2
∣∣∂2ef ∣∣

L∞/
∣∣f ∣∣

L∞

)1/2
∣∣∂ef ∣∣

L∞ ≤ 2
√
2
∣∣f ∣∣

L∞

∣∣∂2ef ∣∣
L∞ ,

and the result is proved for (s−, s, s+) = (0, 1, 2). One obtains the result for (s−, s, s+) = (0, s, s+)
with any 0 < s < s+ by induction on s+ ≥ 2 (the equality cases s = 0 or s = s+ being straightfor-
ward), and the general case is immediately deduced.

Proposition II.14. Let d ∈ N⋆, s⋆ > d/2 and s ∈ N. There exists C > 0 such that for any
f ∈W s,∞(Rd) and g ∈ Hs(Rd), one has fg ∈ Hs(Rd) and∣∣fg∣∣

Hs ≤ C
(∣∣f ∣∣

W s,∞

∣∣g∣∣
L2 +

∣∣f ∣∣
L∞

∣∣g∣∣
Hs

)
≤ 2C

∣∣f ∣∣
W s⋆,∞

∣∣g∣∣
Hs + C

〈∣∣f ∣∣
W s,∞

∣∣g∣∣
Hs⋆

〉
s>s⋆

.

Proof. The result is an immediate consequence of Leibniz rule, Lemma II.3 and Lemma II.13, and
Young’s inequality.

Proposition II.15. Let d ∈ N⋆, s⋆ > d/2, k ∈ Nd. There exists C > 0 such that for any f ∈
W |k|,∞(Rd) and g ∈ H |k|−1(Rd), [∂k, f ]g ∈ L2(Rd) and∣∣[∂k, f ]g∣∣

L2 ≤ C
(∣∣∇f ∣∣

L∞

∣∣g∣∣
H|k|−1 +

∣∣∇f ∣∣
W |k|−1,∞

∣∣g∣∣
L2

)
≤ 2C

∣∣∇f ∣∣
W s⋆,∞

∣∣g∣∣
H|k|−1 + C

〈∣∣∇f ∣∣
W |k|−1,∞

∣∣g∣∣
Hs⋆

〉
|k|−1>s⋆

.

Proof. We use once again Leibniz rule, Lemma II.3 and Lemma II.13, and Young’s inequality.

Proposition II.16. Let d, s ∈ N⋆, and s⋆ > d/2. Let I ∋ 0 be a closed interval, F : I → R such that
F ∈ Cs(I) and F (0) = 0. For any M > 0, there exists C > 0 such that for any f ∈W s,∞(Rd) and
g ∈ Hmax({s,s⋆})(Rd) satisfying

supp(f + g) ⊂ I and
∣∣f ∣∣

L∞ +
∣∣g∣∣

Hs⋆
≤M,

and for any k ∈ Nd such that |k| = s, one has ∂k(F (f + g)) = Fk +Gk with∣∣Fk

∣∣
L∞ ≤ C

∣∣g∣∣
W s,∞ and

∣∣Gk

∣∣
L2 ≤ C

(∣∣f ∣∣
Hs +

∣∣g∣∣
W s,∞

)
.

Proof. By reasoning as in the proof of Proposition II.11, we are left with the estimate of a sum of
products of the form (

n1∏
i=1

∂jif

)(
n2∏
i=1

∂jig

)
.
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where n ∈ {1, . . . , |k|}, n1 + n2 = n, and ii ̸= 0 (i ∈ {1, . . . , n1}), jj ̸= 0 (j ∈ {1, . . . , n2}) are such
that i1 + · · ·+ in1

+ j1 + · · ·+ jn2
= k. We may separate between two cases, depending on whether

n1 = 0 or n1 ̸= 0. We estimate as in Proposition II.10, if n1 ∈ N⋆,∣∣ n1∏
i=1

∂jif
∣∣
L2 ≲

∣∣f ∣∣n1−1

Hs⋆

∣∣f ∣∣
H|k1|

and similarly, if n2 ∈ N⋆, ∣∣ n2∏
i=1

∂jig
∣∣
L∞ ≲

∣∣g∣∣n2−1

L∞

∣∣g∣∣
W |k2|,∞ .

We conclude by using Lemma II.3, Lemma II.13, and Young’s inequality.

Proposition II.17. Let d, s ∈ N⋆, s⋆ > d/2 and k ∈ Nd. Let I ∋ 0 be a closed interval, F : I → R
such that F ∈ Cs(I) and F (0) = 0. For any M > 0, there exists C > 0 such that for any
f ∈W |k|,∞(Rd) and g ∈ Hmax({|k|,s⋆+1})(Rd) satisfying

supp(f + g) ⊂ I and
∣∣f ∣∣

W 1,∞ +
∣∣g∣∣

H1+s⋆
≤M,

and for any h ∈ H |k|−1(Rd), one has
[
∂k, F (f + g)

]
h ∈ L2(Rd) and∣∣[∂k, F (f + g)

]
h
∣∣
L2 ≤ C

(∣∣h∣∣
H|k|−1 +

∣∣∇f ∣∣
W |k|−1,∞

∣∣h∣∣
L2 +

〈∣∣∇g∣∣
H|k|−1

∣∣h∣∣
Hs⋆

〉
|k|−1>s⋆

)
.

If, additionally, one has
∣∣f ∣∣

W 1+s⋆,∞ +
∣∣g∣∣

H1+s⋆
≤M , then we may write the above as∣∣[∂k, F (f + g)

]
h
∣∣
L2 ≤ C

(∣∣h∣∣
H|k|−1 +

〈(∣∣∇f ∣∣
W |k|−1,∞ +

∣∣∇g∣∣
H|k|−1

)∣∣h∣∣
Hs⋆

〉
|k|−1>s⋆

)
.

Proof. The result is obtained with a combination of the techniques used in Proposition II.9, Propo-
sition II.15 and Proposition II.16.

II.4 Estimates for functions on the flat strip

All the product, results concerning functions defined on Rd have counterparts for functions defined
on the strip S = (−1, 0)× Rd. For f ∈ L2(S), we denote for s ∈ N, Λsf = (Id−∆)s/2f where the
differentiation applies to the horizontal variable x ∈ Rd, and remark∥∥Λsf∥∥2

L2(S)
=

∫∫
S
|Λsf |2 dx dz =

∫ 0

−1

∣∣f(z, ·)∣∣2
Hs(Rd)

dz.

Let us write as an example a counterpart to the product estimate.

Proposition II.18. Let d, s ∈ N⋆, s⋆ > d/2. There exists C > 0 such that for any f ∈ Hmax{s⋆,s}(Rd)
and g ∈ L2(S) such that Λsg ∈ L2(S), one has Λs(fg) ∈ L2(S) and∥∥Λs(fg)∥∥

L2(S)
≤ C

∣∣f ∣∣
Hs⋆

∥∥Λsg∥∥
L2(S)

+
〈∣∣f ∣∣

Hs

∥∥Λs⋆g∥∥
L2(S)

〉
s>s⋆

.

Proof. We have, for any k ∈ Nd such that |k| = s,∥∥∂k(fg)∥∥2
L2(S)

=

∫∫
S
|∂k(fg)|2(x, z) dx dz =

∫ 0

−1

∣∣∂k(fg)(·, z)∣∣2
L2(Rd)

dz

≲
∫ 0

−1

∣∣f ∣∣2
Hs⋆

∣∣g(·, z)∣∣2
Hs +

〈∣∣f ∣∣2
Hs

∣∣g(·, z)∣∣2
Hs⋆

〉
s⋆>k

dz

=
∣∣f ∣∣2

Hs⋆

∥∥Λsg∥∥2
L2(S)

+
〈∣∣f ∣∣2

Hs

∥∥Λs⋆g∥∥2
L2(S)

〉
s⋆>k

,

and the result follows.

Remark II.19. The result obviously generalizes to z 7→ f(z, ·) ∈ L∞(−1, 0;Hmax{s⋆,s}(Rd)).
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III Index of notations

• The notation a ≲ b means that a ≤ C0 b, where C0 is a nonnegative constant whose exact
expression is of no importance. a ↗ b means a → b, a < b and a ↘ b means a → b, a > b.
a(ξ) = O(b(ξ)) means |a|(ξ) ≲ b(ξ) almost everywhere, with multiplicative constant inde-
pendent of ξ ∈ R. We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the
parameters λ1, λ2,. . . and whose dependence on the λj is generally assumed to be nondecreas-
ing. Straightforward dependence with respect to other parameters may be omitted.

• For s ∈ R, ⌊s⌋ denotes the largest integer smaller or equal to s; ⌈s⌉ denotes the smallest
integer larger or equal to s.

• Id is the identity operator. For d ∈ N⋆, Idd is the d× d identity matrix, Od is the d× d null
matrix, O a null matrix, 0 a null vector, e a unit vector, ez the vertical unit vector.

• We use the multi-index notation for multi-dimensional differentiation: for k = (k1, k2) ∈ N2,
∂(k1,k2)f(x, y) = ∂k1x ∂

k2
y f(x, y) and |k| = k1+ k2. For i, j ∈ N2,

(
i
j

)
=
(
i1
j1

)(
i2
j2

)
. If k ∈ N, then

∂k = ∂k is the standard differentiation operator.

• For 1 ≤ p <∞ and d ∈ N⋆, we denote Lp(Rd) the Lebesgue spaces associated with the norm

|f |Lp
def
=

(∫
Rd

|f(x)|p dx
) 1

p

<∞.

The real inner product of any functions f1 and f2 in the Hilbert space L2(Rd) is denoted by(
f1, f2

)
L2

def
=

∫
Rd

f1(x)f2(x) dx.

The space L∞(Rd) consists of all essentially bounded, Lebesgue-measurable functions f with
the norm ∣∣f ∣∣

L∞
def
= ess supx∈Rd |f(x)| <∞.

We define similarly Lploc(Rd) the locally p-integrable functions such that the above holds when
restricting the integration (or essential supremum) to x ∈ K for any K ⊂ Rd compact.

• For k ∈ N, we denote the Sobolev space Hk(Rd) the subspace of L2(Rd) such that all weak
derivatives of order k are square-integrable, endowed with∣∣f ∣∣2

Hk

def
=

∑
|k|≤k

∣∣∂kf ∣∣2
L2 .

Similarly, we denote byW k,∞(Rd) def
= {f ∈ L∞(Rd) : ∀0 ≤ |k| ≤ k, ∂kf ∈ L∞(Rd)} endowed

with its canonical norm, and Ck(Rd) def
= {f ∈ L∞(Rd) : ∀0 ≤ |k| ≤ k, ∂kf ∈ C0(Rd)}, where

C0(Rd) denotes the space of (scalar) continuous functions. We denote the Beppo Levi space

H̊k+1(Rd) def
= {f ∈ L2

loc(Rd) : ∇f ∈ Hk(Rd)d}, endowed with the semi-norm∣∣f ∣∣
H̊k+1

def
=
∣∣∇f ∣∣

Hk .

• We denote D(Rd) the space of infinitely differentiable functions with compact support, and
S(Rd) the Schwartz space of smooth rapidly decreasing functions.

• For any real constant s ∈ R, Hs(Rd) denotes the Sobolev space obtained by completing S(Rd)
for the norm |f |Hs

def
= |Λsf |L2 < ∞, where Λ is the Fourier multiplier (see Definition III.1)

Λ
def
= (Id−∆)1/2 = (Id+|D|2)1/2.
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• We use double bars for norms associated to functional spaces defined on Ω ⊂ Rd+1. For
instance, square-integrable functions on Ω are endowed with the norm∥∥Φ∥∥2

L2(Ω)

def
=

∫∫
Ω

|Φ(x, z)|2 dx dz.

Sobolev and Beppo Levi spaces with integer indices Hk(Ω) and H̊k+1(Ω) are defined as above.

• For functions defined on Ω ⊂ Rd+1 = {(x, z) : x = (x1, . . . , xd)}, we denote the gradients

∇x
def
= (∂x1 , . . . , ∂xd

)⊤ and ∇x,z
def
= (∂x1 , . . . , ∂xd

, ∂z)
⊤ (where ⊤ is the transpose operator),

and ∆x = ∇x · ∇x, ∆x,z = ∇x,z · ∇x,z.

• Given X any of the previously defined functional spaces, we denote by X ′ its topological dual,

endowed with the norm
∣∣φ∣∣

X′
def
= sup{|φ(f)| :

∣∣f ∣∣
X

≤ 1}; and by ⟨·, ·⟩X′−X the (X ′ − X)
duality brackets.

• For T > 0 and any of the previously defined functional spaces, X, we denote L∞(0, T ;X)
the space of functions such that u(t, ·), taking values in the Banach space X, is essentially
bounded for t ∈ (0, T ), and denote the associated norm∥∥u∥∥

L∞(0,T ;X)

def
= ess sup

t∈(0,T )

∣∣u(t, ·)∣∣
X

< ∞.

Spaces Lp(0, T ;X) for p ∈ [1,∞) are defined similarly. For k ∈ N, and I a real interval,
Ck(I;X) denotes the space of X-valued continuous functions on I with continuous derivatives
up to order k.

Definition III.1 (Fourier multipliers). Let F ∈ L∞
loc(Rd) be such that there exists C > 0 and m ∈ R

such that for almost every ξ ∈ Rd,
|F (ξ)| ≤ C⟨ξ⟩m.

For any s ∈ R, we denote F = F (D) : Hs(Rd) → Hs−m(Rd) the operator defined by F̂g = F ĝ, i.e.

∀g ∈ S(Rd), ∀x ∈ Rd, (Fg)(x) =
1

(2π)d

∫
Rd

∫
Rd

ei(x−y)·ξ F (ξ) g(y) dy dξ .

The operator is continuously extended to g ∈ Hs(Rd) by the density of S(Rd) in Hs(Rd).

Figure III.1: Sketch of the fluid domain and notations.
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For the sake of readability, we use different fonts for physical variables (e.g. x , z , ζ, u,Φ,ψ)
and corresponding dimensionless variables (e.g. x, z, ζ,u,Φ, ψ). Here are some key notations:

g is the gravitational acceleration.

d is the reference depth at rest.

x ∈ Rd is the horizontal space variable, z ∈ R the vertical space variable, t ∈ R the time.

ζ(t, x) represents the surface deformation. b(x) represents the bottom topography.

h(t, x) = d + ζ(t, x)− b(x) is the height of the fluid layer at time t and position x ∈ Rd.

ρ(t, x , z) is the fluid mass density at time t and position (x , z) ∈ Rd+1.

U(t, x , z) is the flow velocity, U and w its horizontal and vertical components.

P (t, x , z) is the pressure inside the fluid, patm(t, x) the pressure at the surface.

When U = ∇x,zΦ, ψ(t, x) is the trace of the velocity potential, Φ, at the surface.

u(t, x) is a (typically layer-averaged) horizontal velocity.

v(t, x) is (typically) a scaled tangent velocity at the surface ∇ψ(t, x), or a shear velocity.

Asymptotic regimes are characterized as admissible sets of dimensionless parameters. These
are defined, together with dimensionless versions of the above variables, in eq. (2.6) (in the
one-layer case) and in eq. (3.13) (in the bilayer case).

µ measures the strength of dispersive effects.

ε measures the strength of nonlinear effects.

β measures the strength of topography effects.

Additionally, in the bilayer framework,

γ measures the density contrast.

α measures the size of surface deformations with respect to interface deformations.

δ is the upper layer depth to lower layer depth ratio.

Bo is the Bond number measuring the ratio of gravity forces over capillary forces.

Definition III.2 (Shallow water asymptotic regime). Given µ⋆ > 0, we let

pSW
def
=
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1]

}
.

Definition III.3 (Long wave asymptotic regime). Given µ⋆ > 0 and θ > 0, we let

pLW
def
=
{
(µ, ε, β) : µ ∈ (0, µ⋆], ε ∈ [0, θµ], β ∈ [0, θµ]

}
.

Definition III.4 (Shallow water/shallow water asymptotic regime). Given µ⋆, δ⋆, δ
⋆ > 0, we let (in

the free-surface framework)

p SW

SW

def
=
{
(µ, ε, β, α, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], α ∈ (0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}

or (in the rigid-lid framework)

p SW

SW

def
=
{
(µ, ε, β, δ, γ) : µ ∈ (0, µ⋆], ε ∈ [0, 1], β ∈ [0, 1], δ ∈ [δ⋆, δ

⋆], γ ∈ [0, 1)
}
.
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IV Asymptotic models: another reader’s digest

Lannes offered a reader’s digest of asymptotic models for the water waves system in [268, Ap-
pendix C]. Let us augment this digest with a brief a review of the main asymptotic models derived
and discussed in the present monograph.

The full Euler equations, eq. (1.1) page 3, are the“master”equations for (free-)surface gravity
waves, from which all other models are subsequently derived. When restricting to homogeneous
fluids and potential flows, the corresponding equations are called water waves system, eq. (2.2)
page 7. In the presence of two layers of homogeneous fluids with a free interface, we arrive at
interfacial waves systems, eq. (3.1) page 18, or eq. (3.5) page 19 (among other formulations) in
the rigid-lid situation.

Hydrostatic equations can be derived as first order asymptotic models the shallow water limit.
Starting from the full Euler equations we arrive at the hydrostatic Euler equations, eq. (7.3)
page 79 and, assuming additionally that the density is (continuously) stratified, eq. (7.10) page 82.
Starting from the full Euler system we arrive at the Saint-Venant system, eq. (5.4) page 48.
Starting from the interfacial waves system we arrive at the bilayer hydrostatic systems, eq. (6.3)
page 54 in the free-surface case and eq. (6.12) page 63 in the rigid-lid case.

By keeping the next order terms in shallow water asymptotic expansions, we arrive at the
(Serre–)Green–Naghdi system, eq. (8.9) page 91 in the one-layer (homogeneous) framework,
and at the Miyata–Choi–Camassa system, eq. (14.5) page 209 in the bilayer framework (with
rigid lid). These systems have fully dispersive counterparts, which we named respectively the
Whitham–Green–Naghdi system, eq. (10.5) page 133, and the Whitham–Choi–Camassa
system, eq. (14.10)–(14.12) page 216.

These models can be simplified in the long wave regime, that is assuming additional smallness
on the data and bottom topography. One arrives in the one-layer (homogeneous) framework at the
Boussinesq systems, eq. (10.13) page 142—or eq. (vii) page ix—and fully dispersive counterparts,
namedWhitham–Boussinesq systems, eq. (10.12) page 142. Obviously Boussinesq-type systems
for interfacial waves system can be (and have been) derived, but are not discussed in this monograph.

By keeping an arbitrary number of terms in shallow water asymptotic expansions, we arrive at
Friedrichs-type (sometimes called Boussinesq-type) systems, in particular the high order shallow
water systems, eq. (11.16) page 156, and the extended Green–Naghdi systems, eq. (11.18)
page 157. Other strategies yield different high order systems, such as the augmented Green–
Naghdi system, eq. (12.13) page 175 and the“multilayer” Green–Naghdi system, eq. (12.18)
page 177; as well as the Isobe–Kakinuma systems, eq. (13.8) page 186. The latter has an
extension to the bilayer framework (with rigid lid) which we named the Kakinuma systems,
eq. (15.2) page 221.

Some interplays between these models (and others) are represented in Figure B page 46, Figure C
page 88, Figure D page 150, Figure E page 206, as well as Figure 6.2 page 68, Figure 7.1 page 80,
and Figure 7.2 page 81.
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le long d’un canal rectangulaire, etc. J. Math. Pures Appl., 17(2):47–52, 1873. (cit. pp. 151

and 153)
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K. Kalimeris, E. Părău, J. M. Vanden-Broeck, and E. Wahlén, editors, Nonlinear Wa-
ter Waves, Tutorials, Schools, and Workshops in the Mathematical Sciences, pages 53–69.
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[287] R. Liska and B. Wendroff. Analysis and computation with stratified fluid models. J. Comput.
Phys., 137(1):212–244, 1997. (cit. p. 213)

[288] P. L.-F. Liu and X. Wang. A multi-layer model for nonlinear internal wave propagation in
shallow water. J. Fluid Mech., 695:341–365, 2012. (cit. p. 209)



Bibliography 276

[289] J. C. Luke. A variational principle for a fluid with a free surface. J. Fluid Mech., 27:395–397,
1967. (cit. pp. 8 and 184)

[290] P. Lynett and P. L.-F. Liu. Linear analysis of the multi-layer model. Coastal Engineering,
51(5-6):439–454, 2004. (cit. p. 183)

[291] P. Lynett and P. L.-F. Liu. A two-layer approach to wave modelling. Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci., 460(2049):2637–2669, 2004. (cit. p. 183)

[292] P. A. Madsen, H. B. Bingham, and H. Liu. A new Boussinesq method for fully nonlinear
waves from shallow to deep water. J. Fluid Mech., 462:1–30, 2002. (cit. p. 183)

[293] P. A. Madsen, H. B. Bingham, and H. A. Schäffer. Boussinesq-type formulations for fully
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