Kelvin-Helmholtz instabilities in shallow water
Propagation of large amplitude, long wavelength, internal waves

Vincent Duchêne1 \quad Samer Israwi 2 \quad Raafat Talhouk 2

1IRMAR, Univ. Rennes 1 – UMR 6625
2Faculté des Sciences I, Université Libanaise, Beirut

Center for Advanced Mathematical Sciences
American University of Beirut
Nov. 12, 2014
Internal gravity waves

Stratification, due to variation of salinity and temperature.

Figure: Temperature vs depth

1. Credits: Naval Research Laboratory
 http://www7320.nrlssc.navy.mil/global_nlom/
Internal gravity waves

Stratification, due to variation of salinity and temperature.

Figure: St. Lawrence Estuary

1. Credits: St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
http://myweb.dal.ca/kelley/SLEIWEX/index.php
Internal gravity waves

Stratification, due to variation of salinity and temperature.

Figure: Sulu Sea. April 8, 2003

1. Credits: NASA’s Earth Observatory (Picture of the Day July 1, 2003)
 http://earthobservatory.nasa.gov/IOTD/view.php?id=3586
1 Motivation
 - full Euler system
 - Kelvin-Helmholtz instabilities

2 Asymptotic models
 - Asymptotic models
 - Drawbacks
 - New systems

3 Numerical simulations

4 Well-posedness
The full Euler system

- Horizontal dimension $d = 1$, flat bottom, rigid lid.
- Irrotational, incompressible, inviscid, immiscible fluids.
- Fluids at rest at infinity, (small) surface tension.
The full Euler system

- Horizontal dimension $d = 1$, flat bottom, rigid lid.
- Irrotational, incompressible, inviscid, immiscible fluids.
- Fluids at rest at infinity, (small) surface tension.
The full Euler system

\[\mathbf{v}_1 = \nabla_{x,z} \phi_1 \quad \text{div} \, \mathbf{v}_1 = \Delta \phi_1 = 0 \]

\[\partial_t \phi_1 + \frac{1}{2} |\nabla_{x,z} \phi_1|^2 = -\frac{P}{\rho_1} - gz \]

\[[P] = -\sigma \, k(\zeta) \]

\[\partial_t \zeta = \sqrt{1 + |\partial_x \zeta|^2} \partial_n \phi_1 = \sqrt{1 + |\partial_x \zeta|^2} \partial_n \phi_2 \]

\[\mathbf{v}_2 = \nabla_{x,z} \phi_2 \quad \text{div} \, \mathbf{v}_2 = \Delta \phi_2 = 0 \]

\[\partial_t \phi_2 + \frac{1}{2} |\nabla_{x,z} \phi_2|^2 = -\frac{P}{\rho_2} - gz \]

\[\partial_z \phi_2 = 0 \]

\[\zeta(t, x) \]

\[d_1 \]

\[d_2 \]

\[x \]

The system can be rewritten as two coupled evolution equations in \(\zeta \) and \(\psi \equiv \phi_1|_{\text{interface}} \).

using Dirichlet-Neumann operators.
The full Euler system

The system can be rewritten as two coupled evolution equations in

\[\zeta \quad \text{and} \quad \psi \equiv \phi_{1|\text{interface}}. \]

using Dirichlet-Neumann operators.

Full Euler system (Zakharov’s formulation)

\[
\begin{align*}
\frac{\partial_t \zeta}{\partial_t \nu} &= -\frac{\partial_x \delta H}{\partial \nu}, \\
\frac{\partial_t \nu}{\partial \zeta} &= -\frac{\partial_x \delta H}{\partial \zeta},
\end{align*}
\]

with \(H = \frac{1}{2} \int_{\mathbb{R}} g(\rho_2 - \rho_1) \zeta^2 \, dx + \frac{\rho_2}{2} \int_{\mathbb{R}} \int_{-d_2}^{\zeta} |\nabla \phi_2|^2 \, dz \, dx + \frac{\rho_1}{2} \int_{\mathbb{R}} \int_{\zeta}^{d_1} |\nabla \phi_1|^2 \, dz \, dx + \sigma \int_{\mathbb{R}} (\sqrt{1 + |\partial_x \zeta|^2} - 1). \)

This system is ill-posed without surface tension.

[Ebin ’88; Iguchi, Tanaka & Tani ’97; Kamotski & Lebeau ’05]
The full Euler system

The system can be rewritten as two coupled evolution equations in
\[
\zeta \quad \text{and} \quad \psi \equiv \phi_1|_{\text{interface}}.
\]

using Dirichlet-Neumann operators.

Full Euler system (Zakharov’s formulation)

\[
\begin{align*}
\partial_t \zeta &= -\partial_x \frac{\delta \mathcal{H}}{\delta \nu}, \\
\partial_t \nu &= -\partial_x \frac{\delta \mathcal{H}}{\delta \zeta},
\end{align*}
\]

with \(\mathcal{H} = \frac{1}{2} \int_{\mathbb{R}} g(\rho_2 - \rho_1) \zeta^2 dx + \frac{\rho_2}{2} \int_{\mathbb{R}} \int_{-d_2}^{\zeta} |\nabla \phi_2|^2 dz dx + \frac{\rho_1}{2} \int_{\mathbb{R}} \int_{\zeta}^{d_1} |\nabla \phi_1|^2 dz dx \\
&\quad + \sigma \int_{\mathbb{R}} (\sqrt{1 + |\partial_x \zeta|^2} - 1).
\]

This system is ill-posed without surface tension.

[Ebin '88; Iguchi, Tanaka&Tani '97; Kamotski&Lebeau '05]
Kelvin-Helmholtz instabilities

Linearize the system around $\zeta = 0, v = v_0$, constant.

Linearized system [Lannes&Ming]

\[
\begin{align*}
\partial_t \zeta + c v_0(D) \partial_x \zeta + b(D) \partial_x v &= 0, \\
\partial_t v + a v_0(D) \partial_x \zeta + c v_0(D) \partial_x v &= 0,
\end{align*}
\]

(L)

with $b > 0$ and

\[
a v_0(D) = g(\rho_2 - \rho_1) - |v_0|^2 \frac{\rho_1 \rho_2}{\rho_2 \tanh(d_1 |D|) + \rho_1 \tanh(d_2 |D|)} |D| - \sigma \partial_x^2
\]

There are growing modes, $e^{i(kx-\omega(k)t)}$ with $\Im(\omega(k)) \neq 0$ iff $a v_0(k) < 0$, i.e.

\[
|v_0|^2 < \left(\frac{\tanh(d_1 |k|)}{\rho_1 |k|} + \frac{\tanh(d_2 |k|)}{\rho_2 |k|} \right) \left(g(\rho_2 - \rho_1) + \sigma |k|^2 \right).
\]

- Modes are stable for $|k|$ small iff $|v_0|^2 < \frac{\rho_2 d_1 + \rho_1 d_2}{\rho_1 \rho_2} g(\rho_2 - \rho_1)$.
- There are always unstable modes if $\sigma = 0$ and $\rho_1, |v_0| \neq 0$.
- All modes are stable if $\sigma \neq 0$ and $\rho_1 \rho_2 |v_0|^2$ is sufficiently small.
Kelvin-Helmholtz instabilities

Linearize the system around $\zeta = 0, v = v_0$, constant.

Linearized system [Lannes&Ming]

$$\begin{cases}
\frac{\partial}{\partial t} \zeta + c v_0(D) \frac{\partial}{\partial x} \zeta + b(D) \frac{\partial}{\partial x} v = 0, \\
\frac{\partial}{\partial t} v + a v_0(D) \frac{\partial}{\partial x} \zeta + c v_0(D) \frac{\partial}{\partial x} v = 0,
\end{cases} \quad (L)$$

with $b > 0$ and

$$a v_0(D) = g(\rho_2 - \rho_1) - |v_0|^2 \frac{\rho_1 \rho_2}{\rho_2 \tanh(d_1|D|) + \rho_1 \tanh(d_2|D|)} |D| - \sigma \frac{\partial^2}{\partial x^2}$$

There are growing modes, $e^{ikx - \omega(k)t}$ with $\Re(\omega(k)) \neq 0$ iff $a v_0(k) < 0$, i.e.

$$|v_0|^2 < \left(\frac{\tanh(d_1|k|)}{\rho_1|k|} + \frac{\tanh(d_2|k|)}{\rho_2|k|} \right) \left(g(\rho_2 - \rho_1) + \sigma |k|^2 \right).$$

- Modes are stable for $|k|$ small iff $|v_0|^2 < \frac{\rho_2 d_1 + \rho_1 d_2}{\rho_1 \rho_2} g(\rho_2 - \rho_1)$.
- There are always unstable modes if $\sigma = 0$ and $\rho_1, |v_0| \neq 0$.
- All modes are stable if $\sigma \neq 0$ and $\rho_1 \rho_2 |v_0|^2$ is sufficiently small.
Kelvin-Helmholtz instabilities

When surface tension is present, all the modes are stable provided

$$|v_0|^2 < |v_{\text{min}}|^2 \approx 2\frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \sqrt{\sigma g (\rho_2 - \rho_1)}.$$
When surface tension is present, all the modes are stable provided

\[|v_0|^2 < |v_{\text{min}}|^2 \approx 2 \frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \sqrt{\sigma g (\rho_2 - \rho_1)}. \]

Nonlinear generalization of this criterion: [Lannes ’13]
Motivation
- full Euler system
- Kelvin-Helmholtz instabilities

Asymptotic models
- Asymptotic models
- Drawbacks
- New systems

Numerical simulations

Well-posedness
Asymptotic models may be constructed from asymptotic expansions of the Dirichlet-Neumann operators, w. r. t. given dimensionless parameters.

\[\epsilon \overset{\text{def}}{=} \frac{a}{d_1}, \quad \mu \overset{\text{def}}{=} \frac{d_1^2}{\lambda^2}, \quad \gamma \overset{\text{def}}{=} \frac{\rho_1}{\rho_2}, \quad \delta \overset{\text{def}}{=} \frac{d_1}{d_2}, \quad \text{Bo}^{-1} \overset{\text{def}}{=} \frac{\sigma}{g(\rho_2 - \rho_1)\lambda^2}. \]
Asymptotic models : examples

Precision $O(\mu)$

Shallow water (a.k.a Saint-Venant) system (+ surface tension)

$$\begin{cases}
\partial_t \zeta + \partial_x w &= 0, \\
\partial_t \left(\frac{h_1 + \gamma h_2}{h_1 h_2} w \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 h_2)^2} |w|^2 \right) &= \frac{\gamma + \delta}{Bo} \partial_x^2 \left(\frac{\partial_x \zeta}{1 + \mu \epsilon^2 |\partial_x \zeta|^2} \right),
\end{cases}$$

with $h_1 = 1 - \epsilon \zeta$ and $h_2 = \frac{1}{\delta} + \epsilon \zeta$ and

$$\frac{h_1 + \gamma h_2}{h_1 h_2} w \overset{\text{def}}{=} \frac{1}{h_2(t, x)} \int_{-\frac{1}{\delta}}^{\epsilon \zeta(t, x)} \partial_x \phi_2(t, x, z) \, dz - \frac{\gamma}{h_1(t, x)} \int_{\epsilon \zeta(t, x)}^{1} \partial_x \phi_1(t, x, z) \, dz.$$
Asymptotic models : examples

Precision $O(\mu^2)$

Green-Naghdi system [Miyata’85; Mal’tseva’89; Choi&Camassa’99]

\[
\begin{cases}
 \partial_t \zeta + \partial_x w = 0, \\
 \partial_t \left(\frac{h_1+\gamma h_2}{h_1 h_2} w + \mu Q[\zeta] w \right) + (\gamma + \delta) \partial_x \zeta + \frac{\varepsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 h_2)^2} |w|^2 \right) = \mu \varepsilon \partial_x (R[\zeta, w])
\end{cases}
\]

with $h_1 = 1 - \varepsilon \zeta$ and $h_2 = \frac{1}{\delta} + \varepsilon \zeta$ and

\[
\frac{h_1 + \gamma h_2}{h_1 h_2} w \overset{\text{def}}{=} \frac{1}{h_2(t, x)} \int_{-\frac{1}{\delta}}^{\varepsilon(t,x)} \partial_x \phi_2(t, x, z) \, dz - \frac{\gamma}{h_1(t, x)} \int_{\varepsilon(t,x)}^{1} \partial_x \phi_1(t, x, z) \, dz.
\]

\[
Q[\zeta] w \overset{\text{def}}{=} -\frac{1}{3} \left(h_2^{-1} \partial_x \left(h_2^3 \partial_x (h_2^{-1} w) \right) + \gamma h_1^{-1} \partial_x \left(h_1^3 \partial_x (h_1^{-1} w) \right) \right),
\]

\[
R[\zeta, w] \overset{\text{def}}{=} \frac{1}{2} \left(\left(h_2 \partial_x (h_2^{-1} w) \right)^2 - \gamma \left(h_1 \partial_x (h_1^{-1} w) \right)^2 \right) + \frac{1}{3} \left(h_2^{-2} \partial_x \left(h_2^3 \partial_x (h_2^{-1} w) \right) - \gamma h_1^{-2} \partial_x \left(h_1^3 \partial_x (h_1^{-1} w) \right) \right).
\]
Shallow water models and KH instabilities

Qn: How well do shallow water models predict KH instabilities?
Shallow water models and KH instabilities

Qn : How well do shallow water models predict KH instabilities?

Figure : Stability domains for full Euler (green), Saint-Venant (purple) and Green-Naghdi (blue)

$$
\varepsilon^2 |w|_2^2 \propto \frac{1}{\sqrt{\mu |k|}} \propto \frac{|k|^2}{\mu Bo} \
$$
Shallow water models and KH instabilities

Qn : How well do shallow water models predict KH instabilities?
A : The classical GN model follows the same behavior [Choi&Camassa ’99]
However, whereas Saint-Venant underestimates, Green-Naghdi overestimates KH instabilities [Jo&Choi ’02; Lannes&Ming]

Qn : Can we do better?
A : [Nguyen&Dias ’08; Choi,Barros&Jo ’09; Cotter,Holm&Percival ’10; Boonkasame&Milewski’14; Lannes&Ming]

Strategy :
1. Change of unknowns
2. BBM trick
3. .../...
Shallow water models and KH instabilities

Qn : How well do shallow water models predict KH instabilities?
A : The classical GN model follows the same behavior \[\text{[Choi&Camassa '99]}\]
However, whereas Saint-Venant underestimates, Green-Naghdi overestimates KH instabilities \[\text{[Jo&Choi '02; Lannes&Ming]}\]

Qn : Can we do better?
A : \[\text{[Nguyen&Dias '08; Choi,Barros&Jo '09; Cotter,Holm&Percival '10; Boonkasame&Milewski'14; Lannes&Ming]}\]

Strategy :
1. Change of unknowns
2. BBM trick
3. .../...
Construction of our model

The original GN system

\[
\begin{aligned}
\partial_t \zeta + \partial_x w &= 0, \\
\partial_t \left(\frac{h_1 + \gamma h_2}{h_1 h_2} w + \mu Q[\zeta] w \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 h_2)^2} |w|^2 \right) &= \mu \epsilon \partial_x (R[\zeta, w]) \\
&+ \frac{\gamma + \delta}{Bo} \partial_x^2 \left(\frac{\partial_x \zeta}{1 + \mu \epsilon^2 |\partial_x \zeta|^2} \right),
\end{aligned}
\]

with \(h_1 = 1 - \epsilon \zeta\) and \(h_2 = \frac{1}{\delta} + \epsilon \zeta\) and

\[
Q[\zeta] w \overset{\text{def}}{=} -\frac{1}{3} \left(h_2^{-1} \partial_x \left(h_2^3 \partial_x (h_2^{-1} w) \right) + \gamma h_1^{-1} \partial_x \left(h_1^3 \partial_x (h_1^{-1} w) \right) \right),
\]

\[
R[\zeta, w] \overset{\text{def}}{=} \frac{1}{2} \left(\left(h_2 \partial_x (h_2^{-1} w) \right)^2 - \gamma \left(h_1 \partial_x (h_1^{-1} w) \right)^2 \right) + \frac{1}{3} w \left(h_2^{-2} \partial_x \left(h_2^3 \partial_x (h_2^{-1} w) \right) - \gamma h_1^{-2} \partial_x \left(h_1^3 \partial_x (h_1^{-1} w) \right) \right).
\]
Construction of our model

The GN system with improved (and nonlocal!) frequency dispersion

\[
\begin{align*}
\partial_t \zeta + \partial_x w &= 0, \\
\partial_t \left(\frac{h_1 + \gamma h_2}{h_1 h_2} w + \mu \mathcal{Q}_F[\zeta] w \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 h_2)^2} |w|^2 \right) &= \mu \epsilon \partial_x (\mathcal{R}_F[\zeta, w]) \\
&+ \frac{\gamma + \delta}{\text{Bo}} \partial_x^2 \left(\frac{\partial_x \zeta}{1 + \mu \epsilon^2 |\partial_x \zeta|^2} \right),
\end{align*}
\]

with \(h_1 = 1 - \epsilon \zeta \) and \(h_2 = \frac{1}{\delta} + \epsilon \zeta \) and

\[
\begin{align*}
\mathcal{Q}_F[\zeta] w &\overset{\text{def}}{=} -\frac{1}{3} \left(h_2^{-1} \partial_x F_2^\mu \left(h_2^3 \partial_x F_2^\mu (h_2^{-1} w) \right) + \gamma h_1^{-1} \partial_x F_1^\mu \left(h_1^3 \partial_x F_1^\mu (h_1^{-1} w) \right) \right), \\
\mathcal{R}_F[\zeta, w] &\overset{\text{def}}{=} \frac{1}{2} \left(\left(h_2 \partial_x F_2^\mu (h_2^{-1} w) \right)^2 - \gamma \left(h_1 \partial_x F_1^\mu (h_1^{-1} w) \right)^2 \right) \\
&+ \frac{1}{3} \omega \left(h_2^{-2} \partial_x F_2^\mu \left(h_2^3 \partial_x F_2^\mu (h_2^{-1} w) \right) - \gamma h_1^{-2} \partial_x F_1^\mu \left(h_1^3 \partial_x F_1^\mu (h_1^{-1} w) \right) \right).
\end{align*}
\]

where \(F_i^\mu = F_i(\sqrt{\mu|D|}) \).

Notation (Fourier multiplier): \(\mathcal{F}_i^\mu u(\xi) = F_i(\sqrt{\mu|\xi|}) \hat{u}(\xi) \). \(\partial_x = iD \).
Construction of our model

The GN system with improved (and nonlocal !) frequency dispersion

\[
\begin{align*}
\partial_t \zeta + \partial_x w &= 0, \\
\partial_t \left(\frac{h_1 + \gamma h_2}{h_1 h_2} w + \mu Q^F[\zeta] w \right) + (\gamma + \delta) \partial_x \zeta + \frac{\epsilon}{2} \partial_x \left(\frac{h_1^2 - \gamma h_2^2}{(h_1 h_2)^2} |w|^2 \right) &= \mu \epsilon \partial_x (R^F[\zeta, w]) \\
&+ \frac{\gamma + \delta}{Bo} \partial_x^2 \left(\frac{\partial_x \zeta}{1 + \mu \epsilon^2 |\partial_x \zeta|^2} \right),
\end{align*}
\]

\[
Q^F[\zeta] w \overset{\text{def}}{=} -\frac{1}{3} \left(h_2^{-1} \partial_x F_i^\mu \left(h_2^3 \partial_x F_i^\mu (h_2^{-1} w) \right) + \gamma h_1^{-1} \partial_x F_1^\mu \left(h_1^3 \partial_x F_1^\mu (h_1^{-1} w) \right) \right),
\]

\[
R^F[\zeta, w] \overset{\text{def}}{=} \frac{1}{2} \left(\left(h_2 \partial_x F_2^\mu (h_2^{-1} w) \right)^2 - \gamma \left(h_1 \partial_x F_1^\mu (h_1^{-1} w) \right)^2 \right)
+ \frac{1}{3} w \left(h_2^{-2} \partial_x F_2^\mu \left(h_2^3 \partial_x F_2^\mu (h_2^{-1} w) \right) - \gamma h_1^{-2} \partial_x F_1^\mu \left(h_1^3 \partial_x F_1^\mu (h_1^{-1} w) \right) \right).
\]

where \(F_i^\mu = F_i(\sqrt{\mu|D|}) \).

Examples: \(F_i^\mu = \frac{1}{\sqrt{1 + \mu \theta_i |D|^2}} \) or \(F_i^\mu = \sqrt{\frac{3}{\delta - i \sqrt{\mu |D|} \tanh(\delta - i \sqrt{\mu |D|}) - \frac{3}{\delta - 2i \mu |D|^2}}. \)
Motivation

Asymptotic models

Numerical simulations

Well-posedness

Promotion…

Our systems

1. can be tuned to reproduce (formally) the formation of the Kelvin-Helmholtz instabilities, or to suppress them;

2. preserves natural quantities:

\[I \overset{\text{def}}{=} \int_{-\infty}^{\infty} \zeta \, dx, \quad V_i \overset{\text{def}}{=} \int_{-\infty}^{\infty} h_i^{-1} w + \mu Q_i^F[\zeta] w \, dx, \]

\[E \overset{\text{def}}{=} \int_{-\infty}^{\infty} (\gamma + \delta) \zeta^2 + \frac{2(\gamma + \delta)}{\mu \epsilon^2 \text{Bo}} (\sqrt{1 + \mu \epsilon^2 |\partial_x \zeta|^2} - 1) + \frac{h_1 + \gamma h_2}{h_1 h_2} |w|^2 \]

\[+ \mu \frac{\gamma}{3} h_1^3 (\partial_x F_1^\mu \frac{w}{h_1})^2 + \mu \frac{1}{3} h_2^3 (\partial_x F_2^\mu \frac{w}{h_2})^2 \, dx \]

3. possesses symmetry groups

\[x \mapsto x + \alpha , \quad t \mapsto t + \alpha , \quad (x, u_1, u_2) \mapsto (x + \alpha t, u_1 + \alpha, u_2 + \alpha) \]

4. enjoys a Hamiltonian structure.
Motivation
- full Euler system
- Kelvin-Helmholtz instabilities

Asymptotic models
- Asymptotic models
- Drawbacks
- New systems

Numerical simulations

Well-posedness
Numerical scheme

Spatial discretization: spectral method

- \[u(t, x) \approx \sum_j u(t, x_j) \frac{\sin(\pi(x-x_j)/h)}{\pi(x-x_j)/h} \text{ with } x_j = jh. \]
- \[F(D)u \approx \sum_j u(t, x_j)F(D) \frac{\sin(\pi(x-x_j)/h)}{\pi(x-x_j)/h} = M_F(u(t, x_j))_j. \]

\[\Rightarrow \text{exponential accuracy for smooth functions} \]

\[2^9 = 512 \text{ points gives machine precision } (10^{-18}) \]

Time evolution: High order Runge-Kutta scheme (Matlab’s ode45)

- Reasonable CFL condition \(\Delta t \leq Ch \)
- High order scheme = high accuracy (here, typically \(10^{-10} \))
Numerical scheme

Spatial discretization: spectral method

- \(u(t, x) \approx \sum_j u(t, x_j) \frac{\sin(\pi(x-x_j)/h)}{\pi(x-x_j)/h} \) with \(x_j = jh \).
- \(F(D)u \approx \sum_j u(t, x_j)F(D) \frac{\sin(\pi(x-x_j)/h)}{\pi(x-x_j)/h} = M_F(u(t, x_j))_j \).

\[\Rightarrow \text{exponential accuracy for smooth functions} \]
\[2^9 = 512 \text{ points gives machine precision (10}^{-18}) \]

Time evolution: High order Runge-Kutta scheme (Matlab’s ode45)

- Reasonable CFL condition \(\Delta t \leq Ch \)
- High order scheme = high accuracy (here, typically \(10^{-10} \))
1 Motivation
 - full Euler system
 - Kelvin-Helmholtz instabilities

2 Asymptotic models
 - Asymptotic models
 - Drawbacks
 - New systems

3 Numerical simulations

4 Well-posedness
Strategy (ideas…)

The system may be rewritten as

\[
\begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} \partial_t \begin{pmatrix} \zeta \\ w \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ a & c \end{pmatrix} \partial_x \begin{pmatrix} \zeta \\ w \end{pmatrix} = \text{“l.o.t”}
\]

where

\[
\begin{align*}
a \bullet & \overset{\text{def}}{=} \left(a_0(\epsilon \zeta) - \epsilon^2 \tilde{a}_0(\epsilon \zeta)|w|^2 \right) \bullet - \frac{1}{B_0} \partial_x \left(a_1(\epsilon \zeta) \partial_x \bullet \right) + \mu \partial_x F_i^\mu \left(\tilde{a}_1(\epsilon \zeta) w^2 \partial_x F_i^\mu \bullet \right) \\
\end{align*}
\]

\[
\begin{align*}
b \bullet & \overset{\text{def}}{=} b_0(\epsilon \zeta) \bullet - \mu \partial_x F_i^\mu \left(b_1(\epsilon \zeta) \partial_x F_i^\mu \bullet \right) \\
c \bullet & \overset{\text{def}}{=} c_0(\epsilon \zeta) \bullet - \mu \partial_x F_i^\mu \left(c_1(\epsilon \zeta) \partial_x F_i^\mu \bullet \right)
\end{align*}
\]

The symmetrizer defines a natural energy:

\[
\vert(\zeta, w)\vert^2_{X_0} \overset{\text{def}}{=} \left(a \zeta, \zeta \right)_{L^2} + \left(b w, w \right)_{L^2}.
\]

Hyperbolicity conditions

If \(h_1 = 1 - \epsilon \zeta > h_0 \) and \(h_2 = \delta^{-1} + \epsilon \zeta > h_0 \), then \(a_0, a_1, b_0, b_1 > 0 \).
Strategy (ideas…)

The system may be rewritten as

\[
\begin{pmatrix}
1 & 0 \\
0 & b
\end{pmatrix} \partial_t \begin{pmatrix}
\zeta \\
w
\end{pmatrix} + \begin{pmatrix}
0 & 1 \\
a & c
\end{pmatrix} \partial_x \begin{pmatrix}
\zeta \\
w
\end{pmatrix} = \text{“l.o.t”}
\]

where

\[
a \bullet \overset{\text{def}}{=} (a_0(\epsilon \zeta) - \epsilon^2 \tilde{a}_0(\epsilon \zeta)|w|^2) \bullet - \frac{1}{B_0} \partial_x (a_1(\epsilon \zeta) \partial_x \bullet) + \mu \partial_x F_i^\mu (\tilde{a}_1(\epsilon \zeta) w^2 \partial_x F_i^\mu \bullet)
\]

\[
b \bullet \overset{\text{def}}{=} b_0(\epsilon \zeta) \bullet - \mu \partial_x F_i^\mu (b_1(\epsilon \zeta) \partial_x F_i^\mu \bullet)
\]

\[
c \bullet \overset{\text{def}}{=} c_0(\epsilon \zeta) \bullet - \mu \partial_x F_i^\mu (c_1(\epsilon \zeta) \partial_x F_i^\mu \bullet)
\]

The symmetrizer defines a natural energy:

\[
\left| (\zeta, w) \right|^2_{X^0} \overset{\text{def}}{=} \left(a \zeta, \zeta \right)_{L^2} + \left(b w, w \right)_{L^2}
\]

Hyperbolicity conditions

If \(h_1 = 1 - \epsilon \zeta > h_0 \) and \(h_2 = \delta^{-1} + \epsilon \zeta > h_0 \), then \(a_0, a_1, b_0, b_1 > 0 \).
Strategy (ideas...)

\[
\begin{pmatrix}
1 & 0 \\
0 & b
\end{pmatrix}
\partial_t \begin{pmatrix}
\zeta \\
w
\end{pmatrix}
+ \begin{pmatrix}
0 & 1 \\
a & c
\end{pmatrix}
\partial_x \begin{pmatrix}
\zeta \\
w
\end{pmatrix}
= \text{“l.o.t”}
\]

\[
\begin{align*}
\mathbf{a} & \overset{\text{def}}{=} (a_0(\epsilon \zeta) - \epsilon^2 \tilde{a}_0(\epsilon \zeta) |w|^2) \cdot - \frac{1}{B_0} \partial_x (a_1(\epsilon \zeta) \partial_x \cdot) + \mu \partial_x F_i^\mu (\tilde{a}_1(\epsilon \zeta) w^2 \partial_x F_i^\mu \cdot)
\end{align*}
\]

\[
\begin{align*}
\mathbf{b} & \overset{\text{def}}{=} b_0(\epsilon \zeta) \cdot - \mu \partial_x F_i^\mu (b_1(\epsilon \zeta) \partial_x F_i^\mu \cdot)
\end{align*}
\]

The symmetrizer defines a natural energy:

\[
\left| (\zeta, w) \right|^2_{X_0} \overset{\text{def}}{=} (a \zeta, \zeta)_{L^2} + (b w, w)_{L^2}.
\]

Hyperbolicity conditions

If \(h_1 = 1 - \epsilon \zeta > h_0 \) and \(h_2 = \delta^{-1} + \epsilon \zeta > h_0 \), then \(a_0, a_1, b_0, b_1 > 0 \).

If \(F_i(\xi) \lesssim |\xi|^{-\sigma} \) and \(\epsilon^2 |w|^2 (1 + (\mu B_0)^{1-\sigma}) \) sufficiently small, then

\[
\left| (\zeta, w) \right|^2_{X_0} \approx \left| \zeta \right|^2_{L^2} + \frac{1}{B_0} \left| \partial_x \zeta \right|^2_{L^2} + |w|^2_{L^2} + \mu \left| \partial_x F_i^\mu w \right|^2_{L^2}.
\]
A priori estimates

\[
\begin{pmatrix}
a & 0 \\
0 & b
\end{pmatrix} \partial_t \begin{pmatrix}
zeta \\
\omega
\end{pmatrix} + \begin{pmatrix}
0 & a \\
a & c
\end{pmatrix} \partial_x \begin{pmatrix}
zeta \\
\omega
\end{pmatrix} = \text{"l.o.t"}
\]

Usual strategy: multiply the system with \(\Lambda^s = (1 + |D|^2)^{s/2} \) and use commutator estimates to control \(X^s \) norm, \(s > 1/2 + 1 \):

\[
\| (\zeta, \omega) \|_{X^s}^2 \approx |zeta|_{H^s}^2 + \frac{1}{Bo} |\partial_x zeta|_{H^s}^2 + |\omega|_{H^s}^2 + \mu |\partial_x F_i \partial^\alpha \omega|_{H^s}^2.
\]

Here, we cannot estimate

\[
\sim ([\Lambda^s, a] \partial_x \omega, \Lambda^s \zeta)_{L^2} \quad \text{and/or} \quad ([\Lambda^s, a] \partial_t \zeta, \Lambda^s \zeta)_{L^2}.
\]

Instead, work with

\[
\| (\zeta, \omega) \|_{EN}^2 \approx \sum |\partial^\alpha zeta|_{L^2}^2 + \frac{1}{Bo} |\partial_x \partial^\alpha zeta|_{L^2}^2 + |\partial^\alpha \omega|_{L^2}^2 + \mu |\partial_x F_i \partial^\alpha \omega|_{L^2}^2.
\]

where the sum is over \(|\alpha| \leq N \), \(\alpha \) multi-indices in space \textit{and time}.

Differentiate \(\alpha \) times, extract leading order system for \((\partial^\alpha zeta, \partial^\alpha \omega)\)

\[
\implies \text{control of } \| (\partial^\alpha zeta, \partial^\alpha \omega) \|_{X^0}.
\]
A priori estimates

\[\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \partial_t \begin{pmatrix} \zeta \\ \omega \end{pmatrix} + \left(\begin{array}{cc} 0 & a \\ a & c \end{array} \right) \partial_x \begin{pmatrix} \zeta \\ \omega \end{pmatrix} = \text{"l.o.t"} \]

Usual strategy: multiply the system with \(\Lambda^s = (1 + |D|^2)^{s/2} \) and use commutator estimates to control \(X^s \) norm, \(s > 1/2 + 1 \):

\[|(\zeta, \omega)|^2_{X^s} \approx |\zeta|_{H^s}^2 + \frac{1}{Bo} |\partial_x \zeta|_{H^s}^2 + |\omega|_{H^s}^2 + \mu |\partial_x F^\mu_i \omega|_{H^s}^2. \]

Here, we cannot estimate

\[\rightsquigarrow \left([\Lambda^s, a] \partial_x \omega, \Lambda^s \zeta \right)_{L^2} \text{ and/or } \left([\Lambda^s, a] \partial_t \zeta, \Lambda^s \zeta \right)_{L^2}. \]

Instead, work with

\[|(\zeta, \omega)|_{\mathcal{E}N} \approx \sum |\partial^\alpha \zeta|_{L^2}^2 + \frac{1}{Bo} |\partial_x \partial^\alpha \zeta|_{L^2}^2 + |\partial^\alpha \omega|_{L^2}^2 + \mu |\partial_x F^\mu_i \partial^\alpha \omega|_{L^2}^2. \]

where the sum is over \(|\alpha| \leq N \), \(\alpha \) multi-indices in space \(\text{and time} \).

Differentiate \(\alpha \) times, extract leading order system for \((\partial^\alpha \zeta, \partial^\alpha \omega) \)

\[\implies \text{control of } |(\partial^\alpha \zeta, \partial^\alpha \omega)|_{X^0}. \]
Well-posedness

Assume that \((\zeta^0, w^0) \in E^N\) with \(N\) large enough (time-derivatives given by the system);

\[
|\epsilon \zeta^0|_{L^\infty} < \min \left\{ 1, \frac{1}{\delta} \right\}, \quad \epsilon^2 \sum_{|\alpha| \leq 1} \left(|\partial^\alpha w^0|_{L^\infty}^2 + (\mu \text{ Bo})^{1-\sigma} \sum_{|j| \leq M} \left| (\sqrt{\mu \partial_x F}_i^\mu)^j \partial^\alpha w^0 \right|_{L^\infty}^2 \right) < C(\epsilon \zeta^0).
\]

Then there exists \(C, T\) and a unique strong solution \((\zeta, w)\) to the Green-Naghdi system for \(t \in [0, T)\), and

\[
\forall t < T, \quad |(\zeta, w)|_{EN}(t) \leq C |(\zeta^0, w^0)|_{EN} \exp(Ct),
\]

and the hyperbolicity conditions remain satisfied.

Remarks:

- This result allows to fully justify the models w.r.t. the full Euler system [Lannes ‘13]
- \(C, T^{-1}\) are uniformly bounded with respect to \(\gamma \in [0, 1], \epsilon \in [0, 1], \mu \in [0, \mu_{\text{max}}]\), and also \(\sigma \in \mathbb{R}^+\).
- The time domain is \([0, T/\epsilon)\) if a stronger hyperbolicity condition is satisfied.
- If \(\sigma \geq 1\) or \(\mu = 0\), the result is also valid without surface tension (\(\text{Bo}^{-1} = 0\)), and

\[
|(\zeta, w)|_{EN} = |\zeta|_{H^N}^2 + |w|_{H^N}^2.
\]
Well-posedness

Well-posedness of the Green-Naghdi models

Assume that \((\zeta^0, w^0) \in E^N\) with \(N\) large enough (time-derivatives given by the system);

\[
|\epsilon \zeta^0|_{L^\infty} < \min \left\{ 1, \frac{1}{\delta} \right\}, \quad \epsilon^2 \sum_{|\alpha| \leq 1} \left(|\partial^\alpha w^0|_{L^\infty}^2 + (\mu \Bo)^{1-\sigma} \sum_{|j| \leq M} |(\sqrt{\mu} \partial_x F_i^\mu)^j \partial^\alpha w^0|_{L^\infty}^2 \right) < C(\epsilon \zeta^0).
\]

Then there exists \(C, T\) and a unique strong solution \((\zeta, w)\) to the Green-Naghdi system for \(t \in [0, T)\), and

\[
\forall t < T, \quad \left| (\zeta, w) \right|_{EN}(t) \leq C \left| (\zeta^0, w^0) \right|_{EN} \exp(Ct),
\]

and the hyperbolicity conditions remain satisfied.

Remarks:

- This result allows to fully justify the models w.r.t. the full Euler system [Lannes '13]
- \(C, T^{-1}\) are uniformly bounded with respect to \(\gamma \in [0, 1], \epsilon \in [0, 1], \mu \in [0, \mu_{\text{max}}]\), and also \(\sigma \in \mathbb{R}^+\).
- The time domain is \([0, T/\epsilon]\) if a stronger hyperbolicity condition is satisfied.
- If \(\sigma \geq 1\) or \(\mu = 0\), the result is also valid without surface tension \((\Bo^{-1} = 0)\), and

\[
\left| (\zeta, w) \right|_{EN} = \zeta^2_{HN} + w^2_{HN}.
\]
Thank you for your attention!