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Stratified fluids and internal waves

Stratification, due to variations of salinity and temperature.

Figure : Internal wave in the St. Lawrence Estuary 1

1. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
http://myweb.dal.ca/kelley/SLEIWEX/index.php
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The full Euler system

Horizontal dimension d = 1, flat bottom, rigid lid.

The domains are described by the graph of a function.

Irrotational, incompressible, inviscid, immiscible fluids.

Fluids at rest at infinity, no surface tension.
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The full Euler system

The system can be rewritten as two coupled evolution equations in

ζ and ψ ≡ φ2|interface.

using Dirichlet-Neumann operators [Zakharov ’68,Craig-Sulem-Sulem ’92]

G[ζ]ψ ≡
(

(∂nφ2)|interface , φ1|interface
)
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Asymptotic models

First step : non-dimensionalize the system

ε ≡ a

d1
, µ ≡ d1

2

λ2
, γ ≡ ρ1

ρ2
, δ ≡ d1

d2
.

The linearized system around equilibrium is exactly solvable
 natural scaling.
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Full justification

The strategy for fully justifying a model is :

1 Construction. Asymptotic expansions of the Dirichlet-Neumann
operators in the selected regime. [Bona-Lannes-Saut ’08,VD ’11, Xu’12...]

Flattening of the domain, a priori expansion, elliptic estimates

Ex : ψ, ζ ∈ Hs+N =⇒
∣∣Gµ[εζ]ψ − µ∂x

(
(1− εζ)∂xψ

)∣∣
Hs ≤ Cµ2.

 consistency

2 Validation. A priori control of solutions in some energy space

 well-posedness, stability

=⇒ Control of the difference between the exact and approximate solution
(with corresponding initial data).

Important information include the rate of convergence, level of regularity
and/or additional assumptions required, lifespan of solutions, etc.

Any approximate solution of the asymptotic model (in the sense of
consistency) is close to the corresponding exact solution.
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Rigid lid approximation

Figure : Internal wave in the St. Lawrence Estuary 2

Free Surface vs Rigid Lid.

2. Credits : St. Lawrence Estuary Internal Wave Experiment (SLEIWEX)
http://myweb.dal.ca/kelley/SLEIWEX/index.php
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Shallow water models

Assume µ ≡ d1
2

λ2
� 1 and neglect terms of size O(µ). 3

(equivalently, horizontal velocity is constant throughout the depth of each layer).

 shallow water (Saint Venant, 1871) models

(FS)

∂tζ1 + 1
%

(
∂x (h1u1) + ∂x (h2u2)

)
= 0,

∂tζ2 + ∂x (h2u2) = 0,
∂tu1 + 1

%
∂xζ1 + ε

2
∂x
(
|u1|2

)
= 0,

∂tu2 + (δ + γ)∂xζ2 + γ
%
∂xζ1 + ε

2
∂x
(
|u2|2

)
= 0.

(RL)

∂tη + ∂x
(

h1h2
h1+γh2

v
)

= 0,

∂tv + (γ + δ)∂xη + ε
2
∂x
(

h2
1−γh

2
2

(h1+γh2)2 |v |2
)

= 0.

h1 = 1− εζ2(+ε%ζ1), h2 = δ−1 + εζ2 are the upper and lower layer depths.

% :=

√
1− γ
δ + γ

→ 0

We want to compare the solution of these two models as γ → 1 (%→ 0).

3. Thus we cannot“see” the ripples [Craig, Guyenne, Sulem ’10]
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Well-posedness results
Well-posedness of (RL) [Guyenne-Lannes-Saut’10]

Let s > 3/2, and U0 = (η0, v0)> ∈ Hs(R)2 s.t. ∃h0 > 0 with

h0
1, h

0
2 ≥ h0 and (γ + δ)(h0

1 + γh0
2)3 − ε2γ(h0

1 + h0
2)2|v0|2 ≥ h0.

Then there exists a unique, Tmax > 0 and

URL = (η, v)> ∈ C ([0,Tmax);Hs(R)2) ∩ C 1([0,Tmax);Hs−1(R)2),

solution to (RL), with initial data URL(t = 0, ·) = U0. Moreover, one has

Tmax & 1/(ε
∣∣U0
∣∣
Hs(R)2).

Well-posedness of (FS) [VD, sub.]

Same as above, but :

h0
1, h

0
2 ≥ h0 and (γ + δ)h0

2 − ε2|u0
2 − u0

1 |2 ≥ h0,

and Tmax & %/(ε
∣∣U0
∣∣
Hs(R)4).
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Long time result

Justification of rigid-lid assumption [VD, sub.]

Let ζ0
1 , ζ

0
2 , u

0
1 , u

0
2 ∈ Hs+1(R) (s > 3/2) satisfy additionally

ε
∣∣ζ0

2

∣∣
Hs+1 + ε

∣∣u0
2 − u0

1

∣∣
Hs+1 ≤ M,

ε
∣∣ζ0

1

∣∣
Hs+1 + ε

∣∣h1u
0
1 + h2u

0
2

∣∣
Hs+1 ≤ M %.(H)

Then there exists T ,C > 0 such that

1 There exists (η, v) a unique strong solution to (RL) with initial data
(η(t = 0, ·) = ζ0

2 , v(t = 0, ·) = u0
2 − γu0

1). Moreover, Tmax ≥ T/M.

2 There exists (ζ1, ζ2, u1, u2) a unique strong solution to (FS), with
initial data (ζ0

1 , ζ
0
2 , u

0
1 , u

0
2). Moreover, Tmax ≥ T/max{M, %}.

3 Pour tout 0 ≤ t < T/max{M, %},

ε
∥∥η − ζ2

∥∥
L∞([0,t];Hs)

+ ε
∥∥v − (u2 − γu1)

∥∥
L∞([0,t];Hs)

≤ C M %,

ε
∥∥ζ1

∥∥
L∞([0,t];Hs)

+ ε
∥∥h1u1 + h2u2

∥∥
L∞([0,t];Hs)

≤ C M %.
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Numerical experiment

∀t ∈ [0,T ],
∥∥V − VRL

∥∥
L∞([0,t];X s)

≤ C M % .

−40 −30 −20 −10 0 10 20 30 40

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

 
surface

interface

velocity

momentum

Sketch of the proof Higher order approximation
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Concluding remarks

We proved well-posedness and stability of the flow (for large time)
predicted by Saint Venant models.

Can we rigorously justify the Saint Venant models, and the rigid lid
assumption for the full Euler system in the shallow water regime ?

The full Euler system is ill-posed in Sobolev spaces !
[Ebin ’88, Iguchi-Tanaka-Tani ’97, Kamotski-Lebeau ’05]

Discontinuity of the tangential velocity at the interface induces
Kelvin-Helmholtz instabilities

The flow is regularized when

the effect of surface tension is taken into account [Lannes ’13] ;

we replace the sharp interface with continuous stratification ;

mixing is allowed [Audusse-Bristeau-Perthame-Sainte Marie ’11].
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Vincent Duchêne Bi-fluidic shallow water models and the rigid-lid approximation 11 / 11



Concluding remarks

We proved well-posedness and stability of the flow (for large time)
predicted by Saint Venant models.

Can we rigorously justify the Saint Venant models, and the rigid lid
assumption for the full Euler system in the shallow water regime ?

The full Euler system is ill-posed in Sobolev spaces !
[Ebin ’88, Iguchi-Tanaka-Tani ’97, Kamotski-Lebeau ’05]

Discontinuity of the tangential velocity at the interface induces
Kelvin-Helmholtz instabilities

The flow is regularized when

the effect of surface tension is taken into account [Lannes ’13] ;

we replace the sharp interface with continuous stratification ;

mixing is allowed [Audusse-Bristeau-Perthame-Sainte Marie ’11].
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Thank you for your attention !
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Sketch of the proof

1 Change of variables. Use V ≡ (ζ1, ζ2, us = u2 − γu1,m = γh1u1 + h2u2).

∂tζ1 + 1
%∂xm + 1−γ

γ% ∂x

(
h1

m−h2us
h1+h2

)
= 0,

∂tζ2 + ∂x

(
h2

h1+h2
(h1us + m)

)
= 0,

∂tus + (δ + γ)∂xζ2 +
1

2
∂x

(
γ(m+h1us )2−(m−h2us )2

γ(h1+h2)2

)
= 0,

∂tm + γ h1+h2

% ∂xζ1 + (γ + δ)h2∂xζ2 + ∂x

(
h1(m−h2us )2+γh2(m+h1us )2

γ(h1+h2)2

)
= 0.

∂tV +
(1

%
L% + B[V ]

)
∂xV = 0.

2 Construction of an approximate solution. V = V app + W .

∂tW +
(1

%
L% + B[V app + W ]

)
∂xW = O(%) and W

∣∣
t=0

= O(%).

3 Separation between “modes”.

Back
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1 Change of variables. Use V ≡ (ζ1, ζ2, us = u2 − γu1,m = γh1u1 + h2u2).

∂tV +
(1

%
L% + B[V ]
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2 Construction of an approximate solution. V = V app + W .

∂tW +
(1

%
L% + B[V app + W ]
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∂xW = O(%) and W
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t=0

= O(%).

Show that :

Control of Vapp ≈ (0, η, v , 0)> +O(%) for t ∈ [0,T/M] ;
A priori control of W : bounded of size O(%) on [0,T/max{M, %}] ;
Blow-up criterion ⇒ V = Vapp +W well-defined on [0,T/max{M, %}] ;
V − VRL = W +O(%) = O(%).

3 Separation between “modes”.

Back
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Sketch of the proof

1 Change of variables. Use V ≡ (ζ1, ζ2, us = u2 − γu1,m = γh1u1 + h2u2).

∂tV +
(1

%
L% + B[V ]

)
∂xV = 0.

2 Construction of an approximate solution. V = V app + W .

∂tW +
(1

%
L% + B[V app + W ]

)
∂xW = O(%) and W

∣∣
t=0

= O(%).

3 Separation between “modes”. Roughly speaking, the flow behaves as the
superposition of two modes :

slow (or baroclinic) mode supported on variables ζ2, v ;
fast (or barotropic) mode supported on variables ζ1,m ;

The heart of the matter is to prove that coupling effects between the two
modes are small.

Back
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Higher order approximate solution

∀t ∈ [0,T ],
∥∥V − V s

app + V f
app

∥∥
L∞([0,t];X s

ul)
≤ C M %2 .
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Figure : Comparison with improved approximation Back
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Steps of the strategy

Slow mode approximate solution

∃V s
app ≡ (%ζ̆1, ζ2, v , %

2m̆) satisfying (FS) with precision O(%2).

But : %ζ̆1 − ζ0
1 = O(%), %2m̆ −m0 = O(%).

Fast mode approximate solution
From initial data (ζ0

1 − %ζ̆1, 0, 0,m
0),

∃V f
app ≡ u+(x −

√
1 + δ−1/%) + u−(x −

√
1 + δ−1/%)

satisfying (FS) with precision O(%2).
But : we have nonlinearities (coupling effects)

Control of coupling effects
Use (initial) localization in space :

(1 + | · |2)σζ0
1 , (1 + | · |2)σζ0

2 , (1 + | · |2)σu0
s , (1 + | · |2)σm0 ∈ Hs(σ > 1/2).

Spatial localization persists with time.
 The two modes interact strongly only for t = O(%).

Back
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