One-dimensional scattering and localization properties of highly oscillatory potentials

Vincent Duchêne
(joint work with I. Vukićević & M.I. Weinstein)

Geometry and Analysis seminar, Columbia University

Dec 01, 2011
1 Introduction
- A motivation for our problem
- Scattering on the line
- The case of a highly oscillatory potential

2 Discontinuities in the potential
- Jump conditions and interface correctors
- A rigorous approach

3 Low energy analysis
- Generic and exceptional potentials
- Main result
- Consequences
Motivation

\[u(x, z) e^{i \omega t} \]

\[\partial_x^2 u(x, z) + \partial_z^2 u(x, z) + k^2 n_0^2 u(x, z) = k^2 (n_0^2 - n^2(x)) u(x, z), \]

\[k = \frac{\omega}{c}, \quad n(x) \text{ the refractive index, and } n_0 \text{ the mean}. \]
Motivation

$u(x, z)$ satisfies the Helmholtz equation

$$\partial_x^2 u(x, z) + \partial_z^2 u(x, z) + k^2 n_0^2 u(x, z) = k^2 (n_0^2 - n^2(x)) u(x, z),$$

$k = \omega / c$, $n(x)$ the refractive index, and n_0 the mean.

Define $u(x, z) = F(x, z) e^{ikn_0 z}$ with

Paraxial approximation: $|2ikn_0 \partial_z F| \gg |\partial_x^2 F|$

yields the Schrödinger equation:

$$2ikn_0 \partial_z F = (-\partial_x^2 + k^2 (n_0^2 - n(x)^2)) F \equiv H F.$$

with solution

$$F = e^{-iz(2ikn_0)^{-1} H} F(x, 0).$$
Motivation

$u(x, z)$ satisfies the Helmholtz equation

$$\partial_x^2 u(x, z) + \partial_z^2 u(x, z) + k^2 n_0^2 u(x, z) = k^2 (n_0^2 - n^2(x)) u(x, z),$$

$k = \omega/c$, $n(x)$ the refractive index, and n_0 the mean.

Define $u(x, z) = F(x, z) e^{ikn_0 z}$ with

Paraxial approximation: $|2ikn_0 \partial_z F| \gg |\partial_z^2 F|

yields the Schrödinger equation:

$$2ikn_0 \partial_z F = (-\partial_x^2 + k^2(n_0^2 - n(x)^2)) F \equiv H F.$$

with solution

$$F = e^{-i z (2ikn_0)^{-1} H} F(x, 0).$$

We study the 1d, time-independent Schrödinger equation

$$(-\partial_x^2 + V(x) - k^2) \psi = 0,$$

(S) with V a localized, highly oscillatory potential.
Scattering on the line

\[(-\partial_x^2 + V(x) - k^2) \psi = 0, \quad -\infty < x < \infty. \]

Qn: What can we say when the potential is highly oscillatory?

\[V(x) \equiv q_\varepsilon(x) \equiv q(x, x/\varepsilon), \]

with \(x \mapsto q(x, \cdot) \) localized and \(y \mapsto q(\cdot, y) \) 1-periodic.
Scattering on the line

\[
(-\partial_x^2 + V(x) - k^2) \psi = 0, \quad -\infty < x < \infty.
\]

\(t(k) e^{i k x} \quad \text{and} \quad r(k) e^{-i k x} \)

\[e^q(x; k) \quad \text{and} \quad e^{-q(x; k)} \]

\textbf{Qn :} What can we say when the potential is highly oscillatory?

\[V(x) \equiv q_\epsilon(x) \equiv q(x, x/\epsilon), \]

with \(x \mapsto q(x, \cdot) \) localized and \(y \mapsto q(\cdot, y) \) 1-periodic.
Homogenization

We seek the distorted plane waves of (S) under the form

\[e^{q_\varepsilon}(x) \equiv F_\varepsilon(x, x/\varepsilon) \equiv F_0(x, x/\varepsilon) + \varepsilon F_1(x, x/\varepsilon) + \varepsilon^2 F_2(x, x/\varepsilon) + \ldots \]

Plug the Ansatz into equation

\[\left(-\left(\frac{\partial}{\partial x} + \frac{1}{\varepsilon} \frac{\partial}{\partial y} \right)^2 + q(x, y) - k^2 \right) F_\varepsilon(x, y) = 0, \]

and solve at each order.

One obtains

- \(F_0(x, y) = e^{q_{av}}(x) \), satisfies \((-d^2/dx^2 + q_{av} - k^2)e^{q_{av}} = 0\), with \(q_{av}(x) \equiv \int_0^1 q(x, y) dy \);
- \(F_1 \equiv 0 \);
- \(F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x, y) \), with
 - \(F_2^{(p)}(x, y) = -\frac{e^{q_{av}}(x)}{4\pi^2} \sum_{|j| \geq 1} \frac{q_j(x)}{j^2} e^{2i\pi jy} \), when \(q(x, y) = \sum_j q_j(x) e^{2i\pi jy} \),
 - \((-d^2/dx^2 + q_{av}(x) + \int_0^1 q(x, y) F_2^{(p)}(x, y) dy - k^2)F_2^{(h)}(x) = 0.\)
Homogenization

We seek the distorted plane waves of (S) under the form

\[e_+^{q\varepsilon}(x) \equiv F^\varepsilon(x, x/\varepsilon) \equiv F_0(x, x/\varepsilon) + \varepsilon F_1(x, x/\varepsilon) + \varepsilon^2 F_2(x, x/\varepsilon) + \ldots \]

Plug the Ansatz into equation

\[
\left(\left(\frac{\partial}{\partial x} + \frac{1}{\varepsilon} \frac{\partial}{\partial y} \right)^2 + q(x, y) - k^2 \right) F^\varepsilon(x, y) = 0,
\]

and solve at each order.

One obtains

- \(F_0(x, y) = e_+^{q_{av}}(x) \), satisfies \(-\frac{d^2}{dx^2} + q_{av} - k^2)e_+^{q_{av}} = 0\), with
 \[q_{av}(x) \equiv \int_0^1 q(x, y) dy ; \]
- \(F_1 \equiv 0 \);
- \(F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x, y) \), with
 \[F_2^{(p)}(x, y) = -\frac{e_+^{q_{av}}(x)}{4\pi^2} \sum_{|j| \geq 1} \frac{q_j(x)}{j^2} e^{2i\pi jy} , \text{ when } q(x, y) = \sum_j q_j(x) e^{2i\pi jy} , \]
 \[(-\frac{d^2}{dx^2} + q_{av}(x) + \int_0^1 q(x, y) F_2^{(p)}(x, y) dy - k^2) F_2^{(h)}(x) = 0. \]
Homogenization

One obtains

- \(F_0(x, y) = e^{q_{av}(x)} \), satisfies \((- \frac{d^2}{dx^2} + q_{av} - k^2)e^{q_{av}} = 0 \), with \(q_{av}(x) \equiv \int_0^1 q(x, y)dy \);
- \(F_1 \equiv 0 \);
- \(F_2 \equiv F_2^{(h)}(x) + F_2^{(p)}(x, y) \), with
 - \(F_2^{(p)}(x, y) = -\frac{e^{q_{av}(x)}}{4\pi^2} \sum_{|j| \geq 1} q_j(x) e^{2i\pi jy} \), when \(q(x, y) = \sum_j q_j(x) e^{2i\pi jy} \),
 - \((- \frac{d^2}{dx^2} + q_{av}(x) + \int_0^1 q(x, y)F_2^{(p)}(x, y)dy - k^2)F_2^{(h)}(x) = 0 \).

Asymptotic expansion of the transmission coefficient.

\[
t^{q\varepsilon}(k) = t_0(k) + \varepsilon^2 t_2(k) + O(\varepsilon^3)
\]

where

- \(t_0 = t^{q_{av}}(k) \), the transmission coefficient of \(q_{av} \);
- \(t_2 \) depends on \(q \) and \(k \), but not on \(\varepsilon \).
The homogenization fails in the two following cases:

1. \(x \mapsto q(x, \cdot) \) is discontinuous.

2. \(k \ll 1 \) and \(q_{av} \equiv 0 \).

 If \(q_{av} \equiv 0 \), then \(t^{q_{av}}(k) = 1 \), for any \(k \) (exceptional!)

 In the generic case, \(t^V(k) \to 0 \) when \(k \to 0 \).

 \[\implies t^{q_\varepsilon}(k) = t^{q_{av}}(k) + \varepsilon^2 t_2(k) + O(\varepsilon^3) \] is not uniform in \(k \).
The homogenization fails in the two following cases:

1. $x \mapsto q(x, \cdot)$ is discontinuous.
2. $k \ll 1$ and $q_{av} \equiv 0$.

If $q_{av} \equiv 0$, then $t^{q_{av}}(k) = 1$, for any k (exceptional!)

In the generic case, $t^{V}(k) \to 0$ when $k \to 0$.

$$\Rightarrow t^{q_{\varepsilon}}(k) = t^{q_{av}}(k) + \varepsilon^2 t_2(k) + \mathcal{O}(\varepsilon^3)$$

is not uniform in k.

\[\begin{array}{c|c|c|c|c|c|c}
\varepsilon & 0.05 & 0.1 & 0.2 \\
\hline
|t^{q_{\varepsilon}}(k)| & 1 & 1 & 1 \\
\end{array}\]
1 Introduction
- A motivation for our problem
- Scattering on the line
- The case of a highly oscillatory potential

2 Discontinuities in the potential
- Jump conditions and interface correctors
- A rigorous approach

3 Low energy analysis
- Generic and exceptional potentials
- Main result
- Consequences
Discontinuities in the potential

$x \mapsto q(x, x/\varepsilon)$ has discontinuities at

$x_1 < x_2 < \cdots < x_n$.

Jump conditions. Any solution ψ of (S) satisfies

$$\left[\frac{d}{dx} \psi \right]_x = [\psi]_x = 0, \quad \forall x \in \mathbb{R},$$

where $[\psi]_x \equiv \psi(x^+) - \psi(x^-)$.

Interface correctors. In the homogenization expansion, one can introduce interface correctors, of the form

$$\psi_a(x) \equiv \begin{cases} \alpha \psi_-(x; k) & \text{if } x < a, \\ \beta \psi_+(x; k) & \text{if } x > a, \end{cases}$$

with

$$\begin{cases} \left(-\frac{d^2}{dx^2} + q_{av} - k^2 \right) \psi_\pm = 0, \\ \psi_\pm(x) \sim e^{\pm ikx}, \quad x \to \pm \infty. \end{cases}$$

Application to the transmission coefficient

$$t^\varepsilon(k) = t_0(k) + \varepsilon t_1^\varepsilon(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^\varepsilon(k) + \ldots$$
$x \mapsto q(x, x/\varepsilon)$ has discontinuities at

\[x_1 < x_2 < \cdots < x_n. \]

Jump conditions. Any solution ψ of (S) satisfies

\[
\left[\frac{d}{dx} \psi \right]_x = [\psi]_x = 0, \quad \forall x \in \mathbb{R},
\]

where $[\psi]_x \equiv \psi(x^+) - \psi(x^-)$.

Interface correctors. In the homogenization expansion, one can introduce interface correctors, of the form

\[
\psi_a(x) \equiv \begin{cases}
\alpha \psi_-(x; k) & \text{if } x < a, \\
\beta \psi_+(x; k) & \text{if } x > a,
\end{cases}
\]

with

\[
\left\{ \begin{array}{l}
(- \frac{d^2}{dx^2} + q_{av} - k^2) \psi_\pm = 0, \\
\psi_\pm(x) \sim e^{\pm ikx}, \ x \to \pm \infty.
\end{array} \right.
\]

Application to the transmission coefficient

\[
t^{\varepsilon}(k) = t_0(k) + \varepsilon t_1^{\varepsilon}(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^{\varepsilon}(k) + \ldots
\]
\[x \mapsto q(x, x/\varepsilon) \text{ has discontinuities at } x_1 < x_2 < \cdots < x_n. \]

Jump conditions. Any solution \(\psi \) of (S) satisfies

\[
\left[\frac{d}{dx} \psi \right]_x = [\psi]_x = 0, \quad \forall x \in \mathbb{R},
\]

where \([\psi]_x \equiv \psi(x^+) - \psi(x^-)\).

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

\[
\psi_a(x) \equiv \begin{cases} \alpha \psi_-(x; k) & \text{if } x < a, \\ \beta \psi_+(x; k) & \text{if } x > a, \end{cases}
\]

with

\[
\begin{cases} \left(-\frac{d^2}{dx^2} + q_{av} - k^2 \right) \psi_\pm = 0, \\ \psi_\pm(x) \sim e^{\pm ikx}, \ x \to \pm \infty. \end{cases}
\]

Application to the transmission coefficient

\[
t^\varepsilon(k) = t_0(k) + \varepsilon t_1^\varepsilon(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^\varepsilon(k) + \ldots
\]
\[x \mapsto q(x, x/\varepsilon) \] has discontinuities at
\[x_1 < x_2 < \cdots < x_n. \]

Interface correctors. In the homogenization expansion, one can introduce *interface correctors*, of the form

\[
\psi_a(x) \equiv \begin{cases}
\alpha \psi_-(x; k) & \text{if } x < a, \\
\beta \psi_+(x; k) & \text{if } x > a,
\end{cases}
\]

with

\[
\begin{cases}
-\frac{d^2}{dx^2} + q_{av} - k^2) \psi_\pm = 0, \\
\psi_\pm(x) \sim e^{\pm ikx}, \quad x \to \pm \infty.
\end{cases}
\]

Application to the transmission coefficient

\[
t_\varepsilon(k) = t_0(k) + \varepsilon t_1^\varepsilon(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^\varepsilon(k) + \ldots
\]

where

- \(t_1^\varepsilon(k) \) comes from discontinuities in \(x \mapsto q(x, \cdot) \);
- \(t_2^\varepsilon(k) \) comes from discontinuities in \(x \mapsto \partial_x q(x, \cdot) \).
A rigorous approach

\[V = q_{av} + Q, \] with \(Q \) localized at high frequencies.

\[|||Q||| \equiv \| \langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} \|_{L^2 \to L^2} \ll 1, \]

where \(\langle D \rangle^{s} \equiv \left(1 - \frac{d^2}{dx^2}\right)^{s/2} \) and \(\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2. \)

Lippmann-Schwinger equation. \(e_{+}^{V} \), as a solution of (S), satisfies

\[e_{+}^{V} = \left(I + \left(-\partial_{x}^2 + q_{av} - k^2\right)^{-1} Q\right)^{-1} e_{+}^{q_{av}} = \left(I + R_{V} Q\right)^{-1} e_{+}^{q_{av}} \]

\[' = ' e_{+}^{q_{av}} - R_{V} Q e_{+}^{q_{av}} + R_{V} Q R_{V} Q e_{+}^{q_{av}} + \ldots \]

Application to the transmission coefficient.

\[t^{\varepsilon}(k) = t_0(k) + t_1[Q] + t_2[Q; Q] + \ldots \]
A rigorous approach

\[V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.} \]

\[||| Q ||| \equiv \| \langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} \|_{L^2 \to L^2} \ll 1, \]

where \(\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2} \) and \(\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2. \)

Lippmann-Schwinger equation. \(e_V^+ \), as a solution of (S), satisfies

\[
e^V_+ = \left(I + \left(-\frac{\partial^2}{\partial x^2} + q_{av} - k^2 \right)^{-1} Q \right)^{-1} e^{q_{av}}_+ \equiv \left(I + R_V Q \right)^{-1} e^{q_{av}}_+
\]

\[' = ' e^{q_{av}}_+ - R_V Q e^{q_{av}}_+ + R_V Q R_V Q e^{q_{av}}_+ + \ldots \]

Application to the transmission coefficient.

\[t^c(k) = t_0(k) + t_1[Q] + t_2[Q; Q] + \ldots \]
A rigorous approach

\[V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.} \]

\[\|\|Q\|\| \equiv \|\langle D\rangle^{-1}\chi^{-1}Q\chi^{-1}\langle D\rangle^{-1}\|_{L^2 \to L^2} \ll 1, \]

where \(\langle D \rangle^s \equiv (1 - \frac{d^2}{dx^2})^{s/2} \) and \(\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2. \)

Lippmann-Schwinger equation. \(e^V_+ \), as a solution of \((S)\), satisfies

\[\langle D \rangle \chi e^V_+ = (I + \langle D \rangle \chi \mathcal{R}_V \chi \langle D \rangle \langle D \rangle^{-1} \chi^{-1}Q\chi^{-1}\langle D \rangle^{-1})^{-1} \langle D \rangle \chi e^{q_{av}}_+ \]

\[= \langle D \rangle \chi e^{q_{av}}_+ - \mathcal{R}_V Q \langle D \rangle \chi e^{q_{av}}_+ + \mathcal{R}_V Q \mathcal{R}_V Q \langle D \rangle \chi e^{q_{av}}_+ + \ldots \]

Application to the transmission coefficient.

\[t^\varepsilon(k) = t_0(k) + t_1[Q] + t_2[Q; Q] + \ldots \]
A rigorous approach

\[V = q_{av} + Q, \text{ with } Q \text{ localized at high frequencies.} \]

\[\| | Q | | \equiv \| \langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} \|_{L^2 \rightarrow L^2} \ll 1, \]

where \(\langle D \rangle^s \equiv \left(1 - \frac{d^2}{dx^2} \right)^{s/2} \) and \(\chi(x) \equiv (1 + x^2)^{-\sigma}, \sigma > 2. \)

Lippmann-Schwinger equation. \(e^V_+ \), as a solution of (S), satisfies

\[\langle D \rangle \chi e^V_+ = \left(I + \langle D \rangle \chi R_V \chi \langle D \rangle \langle D \rangle^{-1} \chi^{-1} Q \chi^{-1} \langle D \rangle^{-1} \right)^{-1} \langle D \rangle \chi e^{q_{av}}_+ \]

\[= \langle D \rangle \chi e^{q_{av}}_+ - R_V Q \langle D \rangle \chi e^{q_{av}}_+ + R_V Q R_V Q \langle D \rangle \chi e^{q_{av}}_+ + \ldots \]

Application to the transmission coefficient.

\[t^\varepsilon(k) = t_0(k) + t_1[Q] + t_2[Q; Q] + \ldots \]
Back to the periodic case

\[V = q_{av} + Q, \text{ with } Q(x) \equiv q(x, x/\varepsilon). \]

\[\implies |||Q||| = \mathcal{O}(\varepsilon). \]

\[t^\varepsilon(k) = t_0(k) + t_1[Q] + t_2[Q; Q] + \ldots \]

where

- \[t_0 = t^{q_{av}}(k), \text{ the transmission coefficient of } q_{av}; \]
- \[t_1[Q] = \int f(x)Q(x)dx = \int f(x)q(x, x/\varepsilon)dx = \sum_j \int f(x)q_j(x)e^{ijx/\varepsilon} \]
 \[\implies \varepsilon t_1^\varepsilon(k) + \varepsilon^2 t_2^\varepsilon(k) + \ldots \]
- \[t_2[Q; Q] \approx \int g(x)Q(x)Q(x)dx = \sum_{j,k} \int f(x)q_j(x)q_k(x)e^{i(j+k)x/\varepsilon} \]
 \[\implies \varepsilon^2 t_2(k) + \ldots \]

We recover

\[t^\varepsilon(k) = t_0(k) + \varepsilon t_1^\varepsilon(k) + \varepsilon^2 t_2(k) + \varepsilon^2 t_2^\varepsilon(k) + \ldots \]
1 Introduction
 - A motivation for our problem
 - Scattering on the line
 - The case of a highly oscillatory potential

2 Discontinuities in the potential
 - Jump conditions and interface correctors
 - A rigorous approach

3 Low energy analysis
 - Generic and exceptional potentials
 - Main result
 - Consequences
Generic and exceptional potentials

\[t^V(k) = \frac{2ik}{2ik - I^V(k)}, \quad I^V(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_+^V(x; k)dx. \]

Generic potential: \(I^V(k) \to \gamma \neq 0 \), and \(t^V(k) \to 0 \).

Exceptional case: \(I^V(k) \to 0 \), and \(t^V(k) \to 0 \).

\(V \equiv 0 \) is exceptional!

Thus if \(q_{av} \equiv 0 \) (or more generally exceptional), the expansion

\[t^{q_\varepsilon}(k) = t^{q_{av}}(k) + \varepsilon^2 t_2(k) + O(\varepsilon^3) \]

is not uniform in \(k \).
Generic and exceptional potentials

\[t^V(k) = \frac{2ik}{2ik - I^V(k)}, \quad I^V(k) \equiv \int_{-\infty}^{\infty} V(x)e^{-ikx}f_+(x; k)dx. \]

Generic potential: \(I^V(k) \to \gamma \neq 0 \), and \(t^V(k) \to 0 \).

Exceptional case: \(I^V(k) \to 0 \), and \(t^V(k) \to 0 \).

\(V \equiv 0 \) is exceptional!

Thus if \(q_{av} \equiv 0 \) (or more generally exceptional), the expansion

\[t^{q_\epsilon}(k) = t^{q_{av}}(k) + \epsilon^2 t_2(k) + \mathcal{O}(\epsilon^3) \]

is not uniform in \(k \).
Generic and exceptional potentials

Thus if $q_{av} \equiv 0$ (or more generally exceptional), the expansion

$$t^{q_{\epsilon}}(k) = t^{q_{av}}(k) + \epsilon^2 t_2(k) + \mathcal{O}(\epsilon^3)$$

is not uniform in k.

Vincent Duchêne

1d scattering and localization properties of highly oscillatory potentials

Dec 01, 2011
Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

\[f_+^V(x; k) = e^{ikx} + \int_x^\infty \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y)f_+^V(y)dy. \]

This can be generalized to

\[f_+^V(x; k) = f_+^W(x; k) + \int_x^\infty \frac{f_+^W(x; k)f_-^W(y; k) - f_-^W(x; k)f_+^W(y; k)}{\text{Wron}[f_+^W(x; k), f_-^W(x; k)]} V(y)f_+^V(y)dy. \]

\[\Rightarrow \quad \frac{k}{t^V(k)} = \frac{k}{t^W(k)} - \frac{1}{2i} l^{[V,W]}(k), \quad l^{[V,W]}(k) \equiv \int f_-^W(\cdot; k)(V-W)f_+^V(\cdot; k). \]

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires \(q_\varepsilon \equiv q(x, x/\varepsilon) \), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows \(k \) to lie in a complex strip \(\Im(k) < \alpha \).
Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

\[f_+^V(x; k) = e^{ikx} + \int_x^\infty \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y)f_+^V(y)dy. \]

This can be generalized to

\[f_+^V(x; k) = f_+^W(x; k) + \int_x^\infty \frac{f_+^W(x; k)f_-^W(y; k) - f_-^W(x; k)f_+^W(y; k)}{\text{Wron}[f_+^W(x; k), f_-^W(x; k)]} V(y)f_+^V(y)dy. \]

\[\Rightarrow \quad \frac{k}{t^V(k)} = \frac{k}{t^W(k)} - \frac{1}{2i} l^{[V,W]}(k), \quad l^{[V,W]}(k) \equiv \int f_-^W(\cdot; k)(V-W)f_+^V(\cdot; k). \]

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires \(q_\varepsilon \equiv q(x, x/\varepsilon) \), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows \(k \) to lie in a complex strip \(\Im(k) < \alpha \).
Volterra equations

The Jost solutions are uniquely defined as the solution of Volterra equations

\[f_+^V(x; k) = e^{ikx} + \int_x^\infty \frac{e^{ik(y-x)} - e^{ik(x-y)}}{2ik} V(y)f_+^V(y)dy. \]

This can be generalized to

\[f_+^V(x; k) = f_+^W(x; k) + \int_x^\infty \frac{f_+^W(x; k)f_-^W(y; k) - f_-^W(x; k)f_+^W(y; k)}{Wron[f_+^W(x; k), f_-^W(x; k)]} V(y)f_+^V(y)dy. \]

\[\Rightarrow \quad \frac{k}{t^V(k)} = \frac{k}{t^W(k)} - \frac{1}{2i} I_{[V,W]}(k), \quad I_{[V,W]}(k) \equiv \int f_-^W(\cdot; k)(V-W)f_+^V(\cdot; k). \]

Our analysis uses mostly integration by parts on these identities, with well-chosen potentials.

- Requires \(q_\varepsilon \equiv q(x, x/\varepsilon) \), (almost-)periodic in the fast variable, and some regularity in the slow variable.
- Allows \(k \) to lie in a complex strip \(\Im(k) < \alpha \).
Introduction

Discontinuities in the potential

Low energy analysis

Main result

Convergence of the transmission coefficient

Assume \(q_\varepsilon = q(x, x/\varepsilon) = \sum_{j \neq 0} q_j(x) e^{2i\pi j x/\varepsilon} \) is smooth and exponentially decaying at infinity. Then there exists \(\varepsilon_0 > 0 \) and \(K \) a compact subset of \(\mathbb{C} \) such that \((\varepsilon, k) \in [0, \varepsilon_0) \times K \), one has

\[
\left| \frac{k}{t^{\sigma_{\text{eff}}^\varepsilon}(k)} - \frac{k}{tq_\varepsilon(k)} \right| \leq \varepsilon^3 C(K, |V|),
\]

where \(\sigma_{\text{eff}}^\varepsilon \) is the effective potential well defined by

\[
\sigma_{\text{eff}}^\varepsilon(x) \equiv -\varepsilon^2 \Lambda_{\text{eff}}(x) \equiv -\frac{\varepsilon^2}{(2\pi)^2} \sum_{j \neq 0} |q_j(x)|^2 j^2.
\]
Consequences

\[
\frac{k}{t^{q\varepsilon}(k)} = k + \frac{\varepsilon^2}{2i} \int_{-\infty}^{\infty} \Lambda_{\text{eff}}(x) \, dx + \mathcal{O}(\varepsilon^3),
\]

This allows to expand \(t^{q\varepsilon}(k) \), apart from a shrinking subset around \(k^* \equiv i \frac{\varepsilon^2}{2} \int \Lambda_{\text{eff}}. \)

This is true in particular

- uniformly for \(k \in \mathbb{R} \): \(\sup_{k \in \mathbb{R}} |t^{\sigma_{\text{eff}}}(k) - t^{q\varepsilon}(k)| = \mathcal{O}(\varepsilon). \)
- if \(k = \varepsilon^2 \kappa, \kappa \neq i \frac{\int \Lambda_{\text{eff}}}{2} \):

\[
\lim_{\varepsilon \to 0} t^{q\varepsilon}(\varepsilon^2 \kappa) = \frac{\kappa}{\kappa - i \frac{\int \Lambda_{\text{eff}}}{2}}.
\]

This universal scaled limit is the transmission coefficient for a Dirac-distribution potential: \((-\partial_x^2 - \delta(x) \int \Lambda_{\text{eff}} - \kappa^2)\psi = 0.\)
Consequences
Introduction

Discontinuities in the potential

Low energy analysis

Consequences (continued)

\[
\frac{k}{t^{q_\varepsilon}(k)} = k + \frac{\varepsilon^2}{2i} \int_{-\infty}^{\infty} \Lambda_{\text{eff}}(x) dx + O(\varepsilon^3),
\]

t^{q_\varepsilon} has a pole in the upper half plane

\[
k_\varepsilon \approx i\frac{\varepsilon^2}{2} \int \Lambda_{\text{eff}} + O(\varepsilon^3).
\]

(using Rouché argument).

Edge bifurcation of point spectrum

\[H_{q_\varepsilon} \equiv (-\partial_x^2 + q_\varepsilon)\] has a point eigenvalue at energy

\[E_\varepsilon = k_\varepsilon^2 \approx -\frac{\varepsilon^4}{4} \left(\int \Lambda_{\text{eff}}\right)^2 + O(\varepsilon^5).\]
Consequences (continued)

Edge bifurcation of point spectrum

\(H_{q\varepsilon} \equiv (-\partial_x^2 + q\varepsilon) \) has a point eigenvalue at energy

\[
E_{\varepsilon} = k_{\varepsilon}^2 \approx -\frac{\varepsilon^4}{4} \left(\int \Lambda_{\text{eff}} \right)^2 + \mathcal{O}(\varepsilon^5).
\]

This indicates the existence of a solution \(u(x, z) e^{i\omega t} \), localized in \(x \), for a careful choice of \(k = \omega/c \).