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Survey of stochastic models for wind and sea state time series
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Abstract

The knowledge of sea state and wind conditions is of central importance for many offshore and nearshore operations. In this paper, we make a
complete survey of stochastic models for sea state and wind time series. We begin with methods based on Gaussian processes, then non-parametric
resampling methods for time series are introduced followed by various parametric models. We also propose an original statistical method, based
on Monte Carlo goodness-of-fit tests, for model validation and comparison and this method is illustrated on an example of multivariate sea state
time series.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The knowledge of sea state and wind conditions is of
central importance for many offshore and nearshore operations.
For instance, wind time series permit us to evaluate the
power values produced by wind turbines, or to investigate
load matching and storage requirements [18,21]. The evolution
of sea state and wind conditions is also determinant in
coastal erosion [73]. And several questions concerning safety,
reliability and feasibility of offshore activities [55,49] as well
as maritime transport [11,2] and the drift of floating objects [5]
or oil spills are directly related to wave and wind conditions.

Even if there is a huge amount of data collected on physical
quantities related to wind and waves, they remain sparse relative
to the size of oceans (simply, one cannot observe everywhere
at the same time). Hence estimates of risks for undesired
scenarios for ocean operations are usually computed by means
of stochastic models. Often scenarios are defined as excursions
above critical values of some responses of complicated systems
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and Monte Carlo can be the only way to derive probabilities of
interest.

In this paper, we make a survey of stochastic models
for wind and sea state time series and we focus mainly on
simulation. We have chosen to consider only time series at the
scale of the sea state (i.e. with time step from 1 to 6 h) and at a
given geographical point. As a consequence, events at the scale
of waves are not modeled and no spatial information is taken
into account. Several authors have proposed spatio-temporal
models, see for instance [71,11,4] and references therein.

In Section 2, after a short description of the various
sources of data, we discuss what a good model should be
and then we briefly present various methods to deal with the
non-stationarities (interannual variability, seasonal and daily
components, . . .). Then the most famous tools for time series
modeling, i.e. the Box and Jenkins method [15] and some
extensions of it are introduced in Section 3. Non-parametric
resampling methods are described in Section 4. These methods
were rarely proposed in the literature for sea state processes
but we think that they could be of great interest for many
applications. In Section 5, various parametric models are briefly
presented. Then, in Section 6, a validation method is proposed
to measure the ability of a model to simulate realistic artificial
sequences. Finally, in Section 7 some of these methods are
illustrated on a multivariate time series describing sea state
conditions along a ferry line in the Aegean Sea.

http://www.elsevier.com/locate/probengmech
mailto:valerie.monbet@univ-ubs.fr
mailto:pierre.ailliot@univ-ubs.fr
mailto:mpre@ifremer.fr
http://dx.doi.org/10.1016/j.probengmech.2006.08.003


114 V. Monbet et al. / Probabilistic Engineering Mechanics 22 (2007) 113–126
2. Generalities

2.1. Data

The data which describe wind and sea state conditions can
be gathered in two categories:

In situ observations obtained from ships, buoys, satellites,
. . ..

Outputs of meteorological models, i.e. hindcast, nowcast or
forecast data.

Some authors have compared the quality of these different
kinds of data, see for instance [76,20,41] and references therein.
The main drawbacks of buoy data is that they often include
missing and noisy data and the longer buoy time series are
typically only about 10 years long. Satellite data are recorded
with very small time steps along the track but it generates
sparse data in time for a given location. Generally, outputs
of numerical models are easier to use because these data are
available on long period (up to 50 years) and there is no missing
data. But their quality is not always good, in particular, they are
known to be smoother as in situ data and also to underestimate
extreme events.

Let us now introduce some notations for the synthetic
parameters which are used throughout this paper. For more
precise definitions, see [40].

Hs : significant wave height (m). For Hs the most common
definitions are the average of the highest one-third of wave
heights or 4 times the standard deviation of the sea surface
elevation process. These definitions are equivalent for seas with
narrow band spectra. There is a third definition of Hs , namely
Hs = 4

√
m0, where m0 is the zeroth-order moment of the sea

state spectrum.
T : wave period (s). The most often used definitions are the

spectral peak wave period, which is the inverse of the frequency
at which the spectral density function of the elevation time
series is maximum, and the zero crossing period which is the
average time between successive zero downcrossing waves.

Θm : mean direction in which waves are traveling (degree).
U : wind intensity (m s−1). It is the mean of the speed of the

air particles at 10 m over a fixed time period (20 min in general).
Φ: wind direction (degree). It is the mean direction from

which the wind is blowing at 10 m over a fixed time period
(20 min in general).

In practice, for each sea state, the sea state parameters Hs , T
and Θm can be deduced from the wave directional spectra, and
this spectra may exhibit several peaks. It is the case for instance
when several systems coexist, such as wind sea generated by
local winds and swell radiated from distant storms. For some
applications, it can be useful to separate the wave energy into
different components (see [75]), but such separation is not
considered in this paper.

2.2. What is a good model?

First of all, the response to this question depends on what
the model is built for. The contexts of use considered in
this paper are: explanation of a physical phenomena, time
series simulation, forecasting, and time series reconstruction.
However, particular attention is paid to simulation and
reconstruction. The word reconstruction can refer to two
different problems: missing data reconstruction which uses the
observed time series itself for missing values completion [65]
and cross-reconstruction where a time series is reconstructed
given another one. For instance a wave time series can be
approximately reconstructed given a wind time series [2] or
wave time series at other locations [7].

Once the context of use is specified, the choice of the model
relies on a compromise between its ease of use and its accuracy
in describing various features of the physical phenomenon.

The ease of use can be measured qualitatively according to
several criteria:

Model robustness to the data source (ship, buoy, satellite,
meteorological model). As mentioned above, there may exist
missing or aberrant data, the data may not be recorded
at a constant time step or only descriptive statistics may
be available, such as marginal distributions or persistence
durations, for instance [72,37].

Model robustness to the nature of the process. Each sea
state parameter has specific characteristics, its evolution may
also depend on the geographical area and on the season.
Furthermore, depending on the considered application, the
process may be univariate or multivariate, and in the second
case a strong dependence may exist between the components
such as for Hs and T or Hs and U . Finally, the state space of
the considered parameters can be either finite, positive or the
torus R/2πZ for the circular processes Θm and Φ.

Mathematical properties: amount of data needed to
accurately estimate the model, asymptotic properties of the
estimators . . ..

Necessary time for implementation of the algorithms, and
running estimation, simulation or reconstruction.

The accuracy of a model can be evaluated by comparing
statistics of the observed time series with those computed from
artificial realizations of the model. Generally, only graphical
comparisons are performed, and they do not permit us to
measure the goodness of fit. We propose in Section 6 a
formal method, based on Monte Carlo tests, to compare and
validate the models. It quantifies, in particular, the ability
to restore chosen features of the observed time series such
as the marginal cumulative distribution functions (cdf), the
distribution of annual extremes, the distribution of storm
duration, the autocovariance functions, etc.

2.3. Modeling non-stationarity

Generally, several types of non-stationary components can
be identified in meteorological time series. In particular,
there may exist interannual components induced by natural
cycles (ENSO, IPO, NAO . . .) or human activities, seasonal
components and also daily components.

Athanassoulis and Stefanakos [10] identified year-to-year
variability in sea state time series by comparing mean annual
values. Different methods have been proposed to describe
trends in time series (see [17]). For example, they can be
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approximated by a polynomial function and then eliminated
in order to obtain a trend-free time series. However, such an
approach is difficult to implement here because of the few data
with respect to the temporal scale of the events.

Seasonal components are generally easy to observe on
meteorological time series and several methods have been
proposed to describe these components (see [22], for a recent
review). Two methods are commonly used:

Let {Yt } denote the process under consideration. It can
be assumed, in a first approximation, that the following
decomposition holds [74,48,67]:

Yt = m(t)+ σ(t)Y stat
t (1)

where m and σ are deterministic periodic functions with period
one year which represent respectively the seasonal mean and
standard deviation of the process. And {Y stat

t } is assumed to be
a stationary process. Methods for estimating the deterministic
components m(t) and σ(t) and for checking the stationarity of
Y stat

t have been discussed by Athanassoulis et al. [10]. When
{Yt } is an univariate process, m and σ can be approximated
by a low-order trigonometric polynomial. Another common
approach consists in computing the estimates of the monthly
mean and the monthly standard deviation as a seasonal pattern.
The periodic functions m and σ are then deduced by repeating
the same estimated pattern over successive years [67,49]. This
last method is easily generalized to multivariate processes.
In this case, σt is a matrix which must describe interactions
between the different components.

In [14,66], the assumption that m(t) and σ(t) are
deterministic is relaxed in order to introduce random variation,
and it is assumed that

Yt = m(t)+ σ(t)(Y stat
t + εt ) (2)

where εt is a white noise process evolving at a monthly time
scale.

Another approach consists in supposing that the process is
piecewise stationary and to fit separate models for each month
or for each season of the year [18,13].

In the first method, it is assumed that the standardized
process Y stat

t is stationary, and it may be too strong an
assumption in some cases. However, its main advantage is
that the estimation of m and σ does not require a lot of
data, typically 3 or 4 years of data provide accurate estimates.
On the contrary, in order to apply the second method, more
data i is generally required since a different model is fitted
each month. Furthermore, artificial ruptures of the model are
induced between successive months. But a great advantage of
this method over the first one is that the stationarity assumptions
seem less restrictive.

Some wind and sea state time series also exhibit daily
components. The most common method to remove this
component is to use the decomposition (1), with m and σ

periodic functions with period one day (see [18,23]).
In the following, we suppose that all the studied processes

are stationary.
3. Models based on Gaussian processes

In general, wind and sea state time series cannot be assumed
to be Gaussian. For instance, the marginal distribution of
these processes are often asymmetric with positive support and
positive skewness. However, when they have a continuous state
space, it is possible to transform these time series into time
series with Gaussian marginal distributions. If the transformed
time series is supposed to be Gaussian, we can then use one of
the existing techniques to simulate Gaussian processes (ARMA
models, exact simulation methods, . . .). Let us describe more
precisely the simulation method in a general framework.

Let {Yt } be a stationary process with values in Rd . We
assume that there exists a transformation f : Rd

→ Rd and
a stationary Gaussian process {X t } such that Yt = f (X t ). The
procedure consists of three main steps:

Model calibration, which consists in determining the
function f and the second order structure of the process {X t }.
In practice, f is chosen such that the marginal distributions
and the second order structures of the processes { f (X t )}

and {Yt } match. Transformations of different nature can be
applied: Box–Cox transformation which directly operates on
the process [22], Rozenblatt transformation which is based
on the marginal distribution of the process [49] and the g-
transformation described in [61] which preserves the crossing
level of the process.

Sample generation in which realizations of the process {X t }

are generated given the second order structure estimated in the
previous step.

Mapping. In this step, the generated samples of {X t } are
transformed into samples of {Yt } using the transformation f .

This general method includes in particular the method of
Box and Jenkins [15] and the Translated Gaussian Process
method which are described more precisely hereafter.

3.1. Box and Jenkins method

The method of Box and Jenkins [15] is undoubtedly the most
usual model for wind time series [18,23,54] and sea state time
series [55,64,22,77]. It is also used in many other application
fields.

Let us first consider the univariate case for simplicity. The
transformation g = f −1 is selected in the family of the
Box–Cox transformations [22]:

g(y) = (yλ − 1)/λ for 0 < λ ≤ 1 and

g(y) = ln(y) for λ = 0.

Parameter λ is selected in such a way that the marginal
distribution of X t = g(Yt ) is roughly Gaussian. Various
methods can be used to estimate the parameter λ [18,23].
Generally, for Hs , the transformation g(y) = ln(y) is used [55,
64], the marginal distribution of this process being generally
well approximated by a lognormal distribution. For the wind
intensity, one generally applies a Box–Cox transformation with
0.5 < λ < 1 [18,54]. When the process is multivariate, a
Box–Cox transformation is usually applied independently on
each component.
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Then, once the transformation f has been selected, an
ARMA model is adjusted to the transformed time series. For the
process Hs , the following models have been proposed: AR(1)
[55], ARMA(2,2) [64], AR(20) [22] and ARMA(4,4) [77]. For
the bivariate time series (Hs, T ), Guedes Soares et al. [33]
select AR(4) or AR(5) models depending on the location. For
the wind intensity U , models AR(1) [69], AR(2) [23,54,53] or
AR(4) [57] have been used, more complex models giving no
improvement.

3.2. Translated Gaussian process

For wind and sea state parameters, another approach, based
on the same principle, is also popular. It is a non-parametric
method, in which the function f is selected on the basis of
the normal score transformation and the Gaussian process is
simulated by using exact simulation algorithms. This approach
was been initially proposed by Watton et al. [74] in order to
simulate realizations of the process Hs and then extended by
Borgman et al. [13] to multivariate time series (Hs, T,Θm)

and it was also applied, for example, to simulate the wind
pressure on buildings (see [30] and references therein) and by
DelBalzo et al. [24] to simulate (Hs, T,Θm) using buoy and
ship observations. In the following, it will be denoted TGP
(Translated Gaussian Process).

The normal score transformation, which permits us to
transform a continuous random variable Y into a Gaussian
variable X , is defined as

x = N−1 FY (y)

where FY is the cumulative distribution function (cdf) of Y
and N is the standard normal cdf. For multivariate variables
Y = (Y1, . . . , Yn), a first generalization consists in applying
independently the transformation on the various components:

(x1, . . . , xd) = g(y1, . . . , yd)

= (N−1 FY (1)(y1), . . . , N−1 FY (d)(yd))

with FY (i) the cdf of {Y (i)}. This method is used for example
in [13] and in [30]. However, it was shown in [49] that
this transformation does not allow us to restore the marginal
joint distribution when a strong relation exists between the
components of the process. The Rozenblatt transformation (3)
can then be used:

g : (y1, . . . , yd) →

(
N−1 FY (1)(y1), N−1 FY (2)|Y (1)=y1

(y2),

. . . , N−1 FY (d)|Y (1)=y1,...,Y (d−1)=yd−1
(yd)

)
(3)

where FY (1) denotes the cdf of Y (1) and FY (k)|Y (1)=y1,...,Y (k−1)=yk−1

the one of the conditional distribution P(Y (k)|Y (1) =

y1, . . . , Y (k−1)
= yk−1). In [49], the case of (Hs, T ) was given

as an example. In [1] a transformation which takes into account
the specificity of the circular parameters Θm is proposed for the
process (Hs,Θm). Using the same idea, in Section 7 the trans-
formation (4) is used for (U,Φ):

g : (u, φ) → (R−1 FU |Φ=φ(u), FΦ(φ)) (4)
where R denotes the cdf of a Rayleigh distribution. If we denote
(L ,Θ) = g(U,Φ), with g defined by (4), then it can be shown
that the bivariate marginal of (L cos(Θ), L sin(Θ)) is Gaussian.

Generally, the cdf used to defined the transformation f are
estimated using non-parametric methods (see [9] and references
therein). Parametric models have also been used, in particular
to approximate the tails of the distribution [74]. Several authors
have also proposed parametric models for the multivariate
distribution of metocean parameters (see [8] and references
therein, for example). [27] compare parametric models and
kernel density estimates for the joint probability of Hs and
T . And some papers concern more general approaches. For
instance [28] describe two general methods in order to derive an
approximate joint distribution from the margins. The first one
matches the correlation matrix only, whereas the second one,
which is based on a multivariate Hermite polynomial expansion
of the normal distribution, is able to match joint moments of
orders higher than two.

Once the initial process is transformed into a process which
is assumed to be Gaussian, the second order structure can be
estimated as in [13,49]. It may occur that the autocorrelation
functions of the generated time series are significantly different
from those of the initial sequence (see Section 7). Gioffre
et al. [30] have proposed a solution to this problem in the
particular case where the normal score transformation is applied
independently on the different components.

The final step consists in simulating realizations of the
stationary Gaussian process {X t } whose marginal distribution
is the standard Gaussian distribution and whose autocorrelation
function is known. Various exact simulation methods have been
proposed [13,31,58].

3.3. General discussion

The Box and Jenkins method is convenient to make
simulation, forecasting and reconstruction (see for instance
[64,32,36]). Until now, the TGP method has been only
used for simulation, however it could also be applied for
reconstruction and forecast since the underlying Gaussian
process is completely characterized.

Both Box and Jenkins and TGP methods seem robust to
noisy data [49]. These methods are easy to adapt and they have
been used for various metocean parameters, as is shown in the
references above. Their main limitation is the dimension of
the time series: it is difficult to apply these methods to time
series with several components, in particular when the relation
between the different components is complex. Indeed, in this
case it may be hard to transform the original time series into
Gaussian ones.

For the Box and Jenkins method, statistical criteria exist
to help in the choice of the order of ARMA models and to
validate the model (tests on the residuals). Moreover statistical
properties of these models are well known (see [17]). As far
as we know, convergence properties of TGP have not been
studied. When the underlying models are parametric, they
do not need a large amount of data for the estimation. In
TGP, the autocorrelation function and eventually the marginal
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distributions are estimated using non-parametric methods and
it may require larger data sets than in the case of parametric
models.

The methods discussed in this section are extensively used in
many application fields, so that they are implemented in quite a
lot of software. And they run quickly.

It has been found that these methods provide a good
description of the marginal distribution and the second order
structure of the time series. However, they cannot restore
some nonlinearities which exist in many natural phenomena.
For example, for a monovariate stationary Gaussian process
with 0 mean, the time durations of the sojourns above a
threshold s0 has the same distribution as the time durations
of the sojourns below the threshold (−s0). The transformed
time series has similar characteristics and thus cannot succeed
in reproducing both calm and storm durations if they have
different characteristics, as is generally the case for sea state
time series.

4. Resampling methods

Resampling methods have only seldom been used for
meteorological time series. The principle is simple since it
consists in randomly sampling in the data. These methods are
generally used for bootstrap estimation and it was proved that
it allows us to estimate the distribution of a wide range of
estimators in the case of independent observations [26] and also
of time series [35].

We describe here briefly standard methods for time series
resampling. More details can be found in [35] and references
therein.

4.1. Block resampling

Resampling by block is a well known method for
implementing bootstrap for time series. For a time series {yt },
blocks are defined as follows:

Bi = {yti , yti +1, . . . , yti +li }.

Times ti and block lengths li are sampled randomly. The
resampled time series is the sequence of blocks:

{B1, . . . , BN }.

The blocks may be overlapping or not. The length of the blocks
can for instance be sampled from the geometric distribution.
Refer to [43] for a survey and exhaustive references.

Block bootstrap has been used to derive the statistical
properties of many estimators (mean, variance, spectral density,
etc.) for time series under quite low assumptions. For instance,
several authors have shown that the block bootstrap is an
efficient method to estimate confidence intervals for any
function of the empirical mean (see [35] and references
therein). But this method may not be appropriate for
applications which involve persistence statistics. Indeed, if the
blocks are small the probabilities of sojourns in a set as well
as autocorrelation functions may not be well reproduced. If
the blocks are long the resampled time series tends to be an
exact replication of the observed time series and no innovation
is brought by the simulated time series.

As far as we know this method has never been used to
resample sea state time series. But Hogben et al. [37] proposed
a sampling method where observed time durations of sojourn
over given levels are arranged at random. The main advantage
of this method is that it can be applied when only persistence
data are available. A discussion on duration statistics for sea
state time series can be found for example in [63,42].

4.2. Resampling Markov chains

This method consists in assuming that the observed time
series is Markovian and a non-parametric method is used to
estimate transition kernels. Finally, realizations of the chain are
simulated with this empirical kernel. Generally, the transition
kernel is estimated locally using nearest-neighbor estimators.

As concerns meteorological applications, nearest-neighbor
resampling was first proposed by Young [79] to simulate
daily minimum and maximum temperatures and precipitations.
Independently, Lall et al. [44] used an analog method to
generate hydrological time series, and Buishand et al. [19] used
basically the same method for multi-site generation of artificial
meteorological time series.

Nearest-neighbor resampling for time series {yt } is based
on a very simple idea. Let us assume that we have already
generated the t − 1 first values ysim

1 , . . . , ysim
t−1. We search

in the data the k nearest neighbors of ysim
t−1. One of these

neighbors is randomly selected and the observed value for the
date subsequent to the selected point is adopted as the simulated
values at time t [19].

Various discrete probability distributions or kernels may
be used to select randomly 1 of the k nearest neighbors.
Lall et al. [44] suggested to use a kernel which assigns a
higher probability to the closer points, as for instance p j =

1/j∑k
i=1 1/ i

, j = 1, . . . , k where the point j = 1 is the closest

point and j = k the most distant. Monbet et al. [51] have
suggested a more sophisticated method which permits us to
sample points which have not been observed, as in smoothed
bootstrap methods [26]. This method, named Local Grid
Bootstrap (LGB), has also been used to simulate realizations
of the multivariate sea state processes (Hs, T ), (Hs, T,U ) [50]
and (U,Φ) [3]. It was shown that this method restores most of
the characteristics of the data, such as the marginal distribution,
the distribution of storm durations and inter-arrivals as well as
the autocovariance functions. This method is illustrated on wind
data in Section 7.

4.3. General discussion

As mentioned above, resampling methods can be used for
simulation. Some of them can also be adapted to perform
forecast and reconstruction. For instance, Ailliot et al. [2]
used a nearest-neighbor method to simulate time series of
(Hs, T,Θm) at several locations (x0, . . . , xL) along a line to
study the profitability of a maritime line in the Aegean Sea (see
also Section 7). Caires et al. [20] proposed a non-parametric
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regression method to correct outputs of meteorological models.
And another method, based on a non-parametric Hidden
Markov model is described in [52] to reconstruct Hs time series
given wind time series (see also [47]). However, one of the main
drawbacks of non-parametric methods is that their descriptive
power is almost null.

All the methods introduced in this section can be used
with noisy and missing data. Indeed, missing data do not
affect the nearest-neighbor search, and aberrant data may have
a positive probability to be resampled but this probability
can be estimated. One of their main advantages is that they
can be easily adapted for various time series (wind, wave,
circular time series, . . .) because of the few assumptions
required. For circular data, particular attention has to be paid
to the choice of the distance used for nearest-neighbor search
and kernel estimation [9]. If simulation is combined with
cross-reconstruction, the dimension of the time series is not
difficult. Indeed, when the dimension is high, simulation can
be performed in two steps: the time series of a subset of
components are generated first, then the other components are
simulated given the first time series (see [2] and Section 7).

Some asymptotic convergence properties of resampling and
reconstruction methods have been studied (see [51,52] and
references therein). In practice, it is known that a large amount
of data is needed for estimation in non-parametric methods.
Another well known drawback is the difficulty to choose the
smoothing parameters such as the bandwidth parameters which
appear in the probability density function estimators.

As concerns the computational aspects, algorithms for
resampling are generally very simple to implement but they
can be time consuming. A solution consists in working with
algorithms based on tree structures for the nearest-neighbor
search [50].

5. Parametric models

In this section, we discuss various parametric models which
have been proposed for wind and sea state time series. Linear
autoregressive models are discussed in Section 3, and we focus
now on finite state space Markov chain models and on nonlinear
autoregressive models. A section is also devoted to circular time
series.

5.1. Finite state space Markov chains

Let us briefly describe the general principle of the methods
considered in this section.

When the process has a continuous state space, it is
discretized in a finite number of classes. This allows to use a
representation as a finite state space process.

This finite state space process is then supposed to be a
Markov chain whose transition matrix is estimated from the
observed sequence.

New realizations of the process are finally simulated given
the estimated transition matrix.

The success of this method is undoubtedly mainly due to
its simplicity, and the main limitation is probably the number
of parameters which have to be estimated in the case where
no assumption is made on the shape of the transition matrix.
Various models have been proposed to reduce the number
of parameters. For instance, Vik [72] assumed that Hs is a
first-order Markov chain with tridiagonal transition matrix,
which means that only the transitions to the closest states
are allowed. The transition matrix is estimated in such a way
that the stationary distribution of the Markov chain and the
mean durations of persistence above certain levels match with
those of the observed time series. A more general approach
is proposed in [59] who introduced the Mixture Transition
Distribution model. If r is the order of the Markov chain, it
is assumed that

P(Yt = j |Yt−1 = i1, . . . , Yt−r = ir ) = λ1qi1, j + · · · + λr qir , j

with Q = (qi, j ) is a stochastic matrix and (λ1, . . . , λ2) are
positive parameters such that λ1 +· · ·+λr = 1. This model has
been fitted to time series of wind speed [59] and wind direction
[60,45]. See also [12] for a recent review on Mixture Transition
Distribution models.

In [1] another approach is proposed for (Hs,Θm) where the
data are preprocessed before using a first-order Markov chain
model. The preprocessing consists in detecting the slope change
times by fitting a linear spline curve Hlin to the Hs time series. A
marked point process (τ, H) is then associated to Hlin, where τ
denotes the dates when the slope changes and H the significant
wave height at these dates. Then a Markov model is proposed
for the trivariate process (H, τ,Θm). It was found that this
model permits us to reproduce the cdf of Hs and Θm , as well as
the mean duration of the storms.

5.2. Nonlinear autoregressive models

In this part, we describe various autoregressive models
which have been introduced recently to model some
nonlinearities which can be observed on wind and sea state time
series.

Artificial neural networks—During the last decades,
artificial neural networks (ANN) were successfully used to
solve problems in ocean, coastal and environmental engineering
applications. ANN can be seen as particular regression models
in which the link function simulates the circulation of the
information in a biological neural network. The parameters
of the regression model are generally estimated by maximum
likelihood or least square methods. See for instance [34] for
an introduction to ANN. ANN was used in order to model
the evolution of U [68,53] and (Hs, T ) [25,46]. The results
obtained by these authors show that ANN models permit us
to obtain better short term forecasts than those obtained with
linear autoregressive models. Arena et al. [7] illustrate how
multivariate ANN can be used to reconstruct Hs time series in
buoy networks.

Time-varying autoregressive models—Huang et al. [39] use
a time-varying autoregressive model of order 2 in order to
forecast the wind speed. The coefficients of the model are
estimated in real time following the idea of Young et al. [78].



V. Monbet et al. / Probabilistic Engineering Mechanics 22 (2007) 113–126 119
The autoregressive model of order r is given by:

Ut =

r∑
i=1

at,iUt−i + εt . (5)

Let Ψt = (at,1, . . . , at,r ), then{
Ψt = ψt−1 + Γt−1
Γt = HΓt−1 + Ωt

(6)

where I is the identity matrix, H is a diagonal matrix and
Ω is a zero white noise vector. Γ is a vector of dummy
parameters which is either a white noise process or a random
walk process. The unknown parameter vector Ψ is either a
random walk process or a smoothed integrated random walk
process depending on the matrix H . The parameters of model
(5) and (6) are estimated by a Kalman filter with state vector Ψ
given observation vector {u1, . . . , ut }.

Scotto et al. [62] have proposed a Self-Exciting Threshold
AutoRegressive model for the process Y = Hs . It is assumed
that:

Yt =

r∑
i=1

a(St )
i Yt−i + b(St ) + σ (St )εt

with St = i if and only if Yt−d ∈ [ri , ri+1] for a fixed integer d.
Here, r1 < r2 < · · · < rM are parameters of the model and εt
denotes a Gaussian white noise. It is a switching autoregressive
model, in which the regime at time t only depends on the last
values of the process. In practice, the identified model has 2
regimes, the evolution in the different regimes being described
by AR(10) models and d = 7, which corresponds to a delay of
21 h. The authors compare the results obtained with this model
and those corresponding to an AR(22) model. The sequences
simulated with the Self-Exciting Threshold AutoRegressive
model was shown to have features closer to the data than those
simulated with the model AR(22), in particular as concern the
marginal distribution and the autocorrelation function.

Ailliot et al. [2] proposed a Markov Switching AutoRegres-
sive model (MS-AR) for the wind intensity. In MS-AR mod-
els the observed proposed {Yt } is represented by an autoregres-
sive model of order r with parameters depending on a non-
observable Markov chain {St }. This hidden variable represents
the “weather type”. More precisely, a bivariate process {St , Yt }

follows a MS-AR model if {St } is a Markov chain on a finite
space {1, . . . ,M} with M > 0 the number of regimes. This
process is supposed to be hidden.

Conditionally to {St }, {Yt } is a non-homogeneous Markov
chain of order r ≥ 0 on Y ⊂ Rd . More precisely, we
assume that the conditional distribution of Yt given {Yt ′}t ′<t
and {St ′}t ′≤t only depends on St and Y t−1 = (Yt−1, . . . , Yt−r ).
Then, it is assumed that for each st ∈ {1, . . . ,M} and yt−1 ∈

Yr , the conditional distribution P(Yt |Y t−1 = yt−1, St = st )

is a gamma distribution with mean
∑p

i=1 a(st )
i yt−i + b(st ) and

standard deviation σ (st ).
MS-AR models are simple generalizations of Hidden

Markov models (HMM), which correspond to the case r = 0.
In [2], a non-homogeneous MS-AR models is also proposed
for the process (U,Φ), where the transition probabilities of the
hidden Markov chain {St } depend on the wind direction. More
precisely, it is assumed that {St } is a non-homogeneous Markov
chain on {1, . . . ,M} with a transition matrix such that

P(St = j |St−1 = i) ' πi, j exp(κ( j) cos(Φt − φ( j)))

where Π = (πi, j )i, j∈{1,...,M} is a stochastic matrix,
(κ( j)) j∈{1,...,M} are positive parameters and (φ( j)) j∈{1,...,M}

denote parameters in [0, 2π [. This model is validated on wind
data in the North Atlantic in [3], and it is shown that the
model restores the marginal distributions, the autocorrelation
functions and the distribution of the durations of storms as well
as their inter-arrivals. This model is also validated on wind data
in the Aegean Sea in Section 7.

GARCH model—GARCH models have been proposed in
[69] for the process Y = U . In this paper, it is supposed that U
is Markovian of order r , the conditional distribution of Yt given
(Yt−1, . . . , Yt−r ) being described by a gamma distribution with
mean

µt =

r∑
i=1

ai Yt−i + b

and variance

σ 2
t = α +

p∑
i=1

λi (Yt−i − µt−i )
2
+

q∑
i=1

κiσ
2
t−i .

The identified model is of order r = 2 and it is shown that it
makes it possible to predict the heteroscedasticity present in the
wind time series.

5.3. Models for circular data

In Section 5, we have introduced a first family of model
for directional time series. Circular time series can also be
described by autoregressive models. Let {Φt } be a stationary
process with values in R/2πZ. Mainly three types of
autoregressive models have been proposed in the literature for
such time series, and the use of these models for time series of
wind direction is discussed in [16].

Models are obtained by “wrapping” a real valued process
(Wrapped Autoregressive model). One supposes that Φt =

Yt modulo 2π with {Yt } a real valued process which follows
an autoregressive model.

Models are obtained by using a “link function”, g : R →

(−π, π) strictly monotonous and checking g(0) = 0. This
function is used to transform a real valued autoregressive
process {Yt } into a process Φt = g(Yt ) with values on the torus
R/2πZ.

Models by specifying directly the density of the conditional
distribution P(Φt |Φt−1, . . . ,Φt−k). It is for example the case
of the autoregressive model of Von Mises proposed initially
in [16]. The Von Mises distribution with parameters (θ0, k) is
defined by its density:

f (θ) =
1

2π I0(k)
eκ cos(θ−θ0)
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for φ ∈ R/2πZ with k > 0 the concentration and θ0 ∈

R/2πZ the mean direction. The Von Mises autoregressive
model is then defined in the following way: it is supposed that
P(Φt |Φt−1, . . . ,Φt−k) follows a Von Mises distribution with
parameters (θt , kt ) given by

κt eiθt = κ0eiφ0 + κ1eiφt−1 + · · · + κpeiφt−p

with κ0, κ1, . . . , κp ∈ R+ and Φ0 ∈ R/2πZ. In this model, the
concentration kt changes in time (heteroscedastic model) but it
can also be assumed to be constant.

HMM have also been proposed for time series of wind
direction. In [45], discrete (multinomial) distributions are used
whereas in [38] continuous (wrapped-normal) distributions are
used.

5.4. General discussion

A parametric model is generally build for a particular task
and describes particular features of the data. For instance,
ANN are currently used for short term forecasts (for time
lag varying from 3 to 48 h) and reconstruction. Pittalis et al.
[56] and Tsai et al. [70] used ANN to reconstruct Hs and
(Hs, T ) missing data in a buoy network. ANN have also been
extensively applied to correct wind outputs of meteorological
models (see [29] and references therein). One drawback of
ANN is the large number of parameters that they involve and
their lack of interpretability. MS-AR and GARCH models are
more parsimonious and physically interpretable. They can be
used to generate artificial sequences which restore specific
features of the data (heteroscedasticity, existence of several
meteorological regimes, . . .) as is illustrated in Section 7.

The form of the model has to be specified and this is
generally time expensive because it requires a precise study of
the data before the construction of the model. It also limits the
possibilities to export the model to other time series. However,
once the model is chosen, the estimation of the parameters
can be performed automatically and should require less data
than for non-parametric models. In general, the parameters
are estimated using the methods of maximum likelihood or
least square. When maximum likelihood is used the existence
of missing values may complicate the statistical inference.
Statistical criteria such as Akaike (AIC) or Schwartz Bayesian
(BIC) criteria can be used to select the best model.

Most of the parametric models discussed in this section
are usual for time series, and software is available to fit these
models.

6. Validation and comparison method

In the previous sections, various stochastic models are
proposed for wind and sea state time series. And we need
criteria to choose among these models. In this section, we
present a general validation method, based on Monte Carlo
tests, which can be used to measure the ability of a model to
simulate realistic synthetic time series.

The most widespread method for model validation consists
in comparing certain statistics calculated from the observations
with those corresponding to the considered model. In general,
several criteria are used, such as the matching of the mean and
the variance of the marginal distributions, or more generally
its cdf. When the temporal dependence is important for
the applications, other features are also considered, like the
autocorrelation functions or the distribution of the time duration
of sojourns below or above given levels.

Meanwhile, the authors often perform only visual compar-
isons. Such an approach remains not entirely satisfactory be-
cause it does not make it possible to decide whether the ob-
served differences are significant or not. A more formal method,
based on Monte Carlo tests, is proposed below. For the sake
of simplicity, it is presented in the simple case of comparing
means, but its generalization to other statistics is straightfor-
ward.

Let {yt }t=1,...,T be an observed sequence of a real valued
process {Yt } with mean m and {Z t } a process corresponding to
the model which has to be validated. The mean of the marginal
distribution of {Z t } is denoted m0. We want to test

H0 : m = m0 versus H1 : m 6= m0. (7)

The considered test statistic is the empirical mean Y =
1
T

∑T
t=1 Yt , and the associated decision rule is given by

H0 is rejected if y =
1
T

T∑
t=1

yt ∈ R(α)

where α is the level of the test. The critical region R(α) is such
that PH0(Y ∈ R(α)) = α.

In order to compute R(α), we need to know the distribution
of the test statistic Y when H0 is true. When the model
is complex, it is not always possible to derive the exact
distribution of the test statistic. In this case, we can use the
Monte Carlo method described hereafter to approximate this
distribution:

Simulate B time series of length T with the model:

{z(1)1 , . . . , z(1)T }

...

{z(B)1 , . . . , z(B)T }.

Compute the empirical mean z(i) =
1
T

∑T
t=1 z(i)t for each

simulated sample i = 1, . . . , B.
Approximate the distribution of Y under H0 by the empirical

distribution of {y(1), . . . , y(B)}. This allows us to compute an
approximation of PH0(Y ∈ R) for any region R ⊂ R or
equivalently deduce an approximative critical region R̃(α) such
that 1

B card({i ∈ {1, . . . , B}|z(i) ∈ R̃(α)}) = α.
Finally, H0 will be accepted if and only if y ∈ R̃(α).
This framework can be applied to compare other features

like cdf or autocorrelation functions. For this, a test statistic has
to be chosen. As concern cdf, the most popular test statistic
is probably the Kolmogorov–Smirnov distance. However, it
is well known that it is more sensitive near the center of
the distribution than at the tails. Due to this limitation, many
analysts prefer to use the Anderson–Darling statistic which
gives more weight to the tails. But, as this is an integrated
deviation, like the Cramer–Von Mises or chi-square distance,
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Fig. 1. Map of the Aegean sea. Maritime line (x1, . . . , xN ) (stars) and point x0
(circle).

it can mask local differences. In [6], a more sensitive test
statistic was proposed, which permits us to measure locally the
goodness-of-fit. This method is used in the next subsection to
validate and compare three models.

7. Example: Simulation of multivariate sea state time series
along a maritime line

In this section, an example is proposed in order to illustrate
some of the models discussed in the previous sections. The data
sets considered in this part have also been used in [2]. The
initial objective of this study was to estimate the profitability of
the maritime line Piraeus–Heraklion (Aegean Sea) for a given
passenger ship. For that, we had at our disposal two data sets:

3 years of data (from October 1999 to September 2002)
describing the sea state conditions (i.e. (Hs, T,Θm)) at N = 17
points along the maritime line. These points will be denoted
(x1, . . . , xN ).

11 years (from January 1992 to December 2002) of wind
data at a point denoted x0, located near the middle of the
maritime line (see 1).

The sea state data have been produced using the WAM
model by the National Center for Marine Research (NCMR),
and the wind data are reanalysis data produced by ECMWF.
The amount of sea state data is clearly too small in order to get
reliable estimates of the variability of the sea state conditions,
and thus we have proposed to use a stochastic generator. In [2],
this sea state generator is combined with a crossing simulator.
This crossing simulator is based on polar diagrams which
describe the response of the passenger ship under consideration
in different conditions. These diagrams permit us to compute,
according to the sea state conditions on the maritime line, if the
crossing can be done in normal conditions, or has to be delayed
or canceled. And as a final result, we can deduce estimates of
the distribution of canceled and delayed crossings. In this paper,
we will only focus on the sea state generator.

The Piraeus–Heraklion line is located in the Aegean Sea,
which is a relatively closed sea. Thus we can consider that the
Table 1
Results of the Monte Carlo tests for the wind time series

TGP LGB MS-AR

FU 0.282 [0.003] 0.000 [0.001] 0.078 [0.005]
FΦ 0.003 [0.000] 0.001 [0.000] 0.004 [0.000]
F(U,Φ) 0.210 [0.001] 0.000 [0.001] 0.000 [0.001]
Fextr 0.012 [0.012] 0.025 [0.009] 0.137 [0.008]
CU 0.000 [0.001] 0.006 [0.003] 0.001 [0.000]
F[U>1/2] 0.000 [0.007] 0.046 [0.006] 0.015 [0.002]
F[U<1/3] 0.000 [0.007] 0.068 [0.002] 0.042 [0.003]

The first value is the observed statistic wobs and the value in bracket the cut-
off value wα with α = 0.05. The null hypothesis is rejected at the level α if
wobs < wα .

waves are essentially generated by local winds and it seems
natural to perform the simulation in two steps. At first, a
stochastic model is used to simulate artificial wind conditions
at x0, and then the sea state conditions corresponding to these
artificial wind conditions are cross-reconstructed. These two
steps are described more precisely hereafter.

Simulation of artificial wind conditions
In order to simulate artificial wind conditions at x0, we have

tried three different methods:
The TGP method discussed in Section 3. The transformation

(4) is used to transform the original time series and an exact
simulation method is used to simulate the underlying Gaussian
process.

The LGB method discussed in Section 4.
The non-homogeneous MS-AR model introduced in

Section 5. In order to simulate the wind direction, we have used
a simple finite state Markov chain of order 1 (see Section 5.1).

These different methods have been fitted to the wind data for
the months of August. Then, they have been validated using the
method described in Section 6. In order to check the realism of
the simulated sequences, the list of criteria just below has been
used.
FU : cdf of the marginal distribution of U .
FΦ : cdf of the marginal distribution of Φ.
F(U,Φ): cdf of the bivariate distribution of {U,Φ}.
Fextr: cdf of the monthly maxima of U .
CU : autocorrelation function of U .
F[U>1/2]: cdf of sojourn durations above level 1/2 max(u), with
max(u) the largest wind speed in the observed time series.
F[U<1/3]: cdf of sojourn durations below level 1/3 max(u).

The cdf FU , FΦ and F(U,Φ) are important criteria since
the distribution of the wind is strongly related to the
distribution of the sea state parameters. Fextr describes the
interannual variability of the process at a monthly scale. The
autocorrelation function CU is a usual measure of linear
dependence in time. Finally, the cdf of sojourn durations
F[Y>1/2] and F[Y<1/3] describe the time duration of the stormy
and calm conditions. These durations are also strongly related
to the severity of the sea state conditions.

For each criteria, Monte Carlo tests have been run on the
basis of N = 1000 synthetic time series, each of them having
the same length as the initial wind time series. The results are
given in Table 1. According to this table, the TGP method
successfully reproduces the bivariate marginal distribution of
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Fig. 2. Autocorrelation function of the wind intensity U (left), cumulative distribution functions of sojourn durations over 1/2 max(U ) = 8.05 m s−1 (middle) and
below 1/3 max(U ) = 5.35 m s−1 (right). The time in the abscissa is expressed in days. Solid: observation, dashed: TGP model, dotted 95% interquantile interval
for TGP model.

Fig. 3. cdf of the marginal distribution of the wind intensity U (left) and the wind direction Φ (right). Solid: observation, dashed: LBG model, dotted 95%
interquantile interval for LGB model.

Fig. 4. Wind roses for the data (left) and the data simulated with the non-homogeneous MS-AR model (right).
the process but fails to reproduce its dynamics. This is also
illustrated on Fig. 2. According to this figure, the model
underestimates the first coefficients of the autocorrelation
function and also the durations of the calm and stormy periods.
It indicates that the transformed time series is not Gaussian,
although its bivariate marginal distribution is Gaussian. On the
opposite, the LGB method successfully describes the dynamics
of the process but cannot restore the marginal distribution of
U and (U,Φ). According to Fig. 3 this method simulates too
many data close to the mode of the distributions. It is a well
known problem of this kind of algorithm, and better results
could perhaps be obtained with another choice of the bandwidth
parameters. However, the search of appropriate parameters is
fastidious since there is no automatic criterion. As concerns
the non-homogeneous MS-AR model, the model with M =

2 regimes and autoregressive models of order p = 1 has
been selected with BIC, and the results obtained with this
model are better than the ones corresponding to LGB and
TGP. Indeed, this model reproduces all the criteria, except the
bivariate marginal distribution. According to Fig. 4, the model
simulates too many wind from the north-west and not enough
from the north, but the distribution of the wind intensity in each
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Table 2
Maximum likelihood estimates for the non-homogeneous MS-AR model

a(i)1 b(i) σ (i) πi,i φ(i) κ(i)

Regime 1 (i = 1) 0.85 0.82 1.27 0.96 1.64 1.47
Regime 1 (i = 2) 0.53 2.11 2.24 0.95 1.59 2.71

Fig. 5. Evolution of the wind speed at x0 in August 2002. The dash-dotted
[resp. solid] line represents the date when the first [resp. second] regime is the
most likely. The regimes have been identified using the Viterbi algorithm.

Fig. 6. Distribution of the wind direction in the two regimes (identified using
the Viterbi algorithm). Regime 1 on the left and regime 2 on the right.

sector seems to be well reproduced. A better description of this
bivariate distribution could probably been obtained by using a
more sophisticated model for the wind direction and a higher
number of regimes.

Another advantage of this model over the other models
considered in this section is its physical interpretability. The
maximum likelihood estimates are given in Table 2. According
to this table, one important difference between the two regimes
is the value of the conditional standard deviation σ , which is
higher in the second regime. It indicates that the second regime
is associated to weather conditions in which the wind speed
evolves quickly, whereas the first regime corresponds to steady
wind speed conditions (low volatility). This is illustrated on
Fig. 5. And the two regimes are associated to different wind
directions (see Fig. 6), the first one corresponding mainly to
Northerlies and the second one to Westerlies. This relation is
described through the parameters φ and κ .

Reconstruction of the sea state conditions

The sea state conditions {H (sim)
s , T (sim),Θ (sim)

m } correspond-
ing to the simulated wind {U (sim),Φ(sim)

} are reconstructed by a
nearest-neighbor resampling method. In practice, at each time t
and each location xi , (H

(sim)
s (xi , t), T (sim)(xi , t),Θ (sim)

m (xi , t))
Table 3
Results of the Monte Carlo tests for the sea state time series at location 16

FHs FΘm FT F(Hs ,Θm ) F(Hs ,T )
0.007 [0.004] 0.000 [0.002] 0.017 [0.011] 0.000 [0.001] 0.017 [0.011]
F(U,Hs ) CHs F[Hs>1/2] F[Hs<1/3]

0.027 [0.005] 0.024 [0.001] 0.011 [0.001] 0.031 [0.005]

The first value is the observed statistic wobs and the value in brackets the cut-
off value wα with α = 0.05. The null hypothesis is rejected at the level α if
wobs < wα .

= (Hs(xi , s∗), T (xi , s∗),Θm(xi , s∗)) where s∗ is a solution of

min
s

{ω1‖U (sim)(t)e
√

−1Φ(sim)(t)
− U (s)e

√
−1Φ(s)

‖

+ω2‖H (sim)
s (xi0 , t − 1)e

√
−1Θ (sim)

m (xi0 ,t−1)

− Hs(xi0 , s − 1)e
√

−1Θm (xi0 ,s−1)
‖

+ω3‖T (sim)(xi0 , t − 1)− T (xi0 , s − 1)‖}

where ω1, ω2, ω3 denote fixed weights, ‖.‖ denotes the
euclidean norm and xi0 is the point of the line {x1, . . . , xN }

which is the closest to x0 (i0 = 16). Here, ω1, ω2, ω3 are chosen
empirically.

We have used this simple method to compute the sea
state conditions corresponding to the artificial wind conditions
simulated with the non-homogeneous MS-AR model. Then, in
order to check the realism of these artificial sea state conditions,
we have performed Monte Carlo tests, and the list of criteria just
below has been used.
FHs : cdf of the marginal distribution of Hs .
FΘm : cdf of the marginal distribution of Θm .
FT : cdf of the marginal distribution of T .
F(Hs ,Θm ): cdf of the bivariate marginal distribution of
(Hs,Θm).
F(Hs ,T ): cdf of the bivariate marginal distribution of (Hs, T ).
F(U,Hs ): cdf of the bivariate marginal distribution of (U, Hs).
CHs : autocorrelation function of Hs .
F[Hs>1/2]: cdf of sojourn durations above level 1/2 max(Hs).
F[Hs<1/3]: cdf of sojourn durations below level 1/3 max(u).

Table 3 shows that all the considered statistics are well
reproduced at location 16 (located near the middle of the
maritime line), except the marginal distributions of Θm and
(Hs,Θm). This bivariate distribution is shown on Fig. 7 and the
lack of fit is in accordance to the one identified on the simulated
wind time series: the proportion of wave coming from the north
is underestimated. The joint distribution of U and Hs is shown
on Fig. 8.

8. Concluding remarks

In this paper, we make a review of stochastic models for
metocean time series. The models are classified in three groups:
non-parametric models
models based on Gaussian approximations
other parametric models.

For each group of models, we discuss the possible uses
of the models, their advantages and drawbacks, etc. Then
a quantitative method is proposed to measure the ability of
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Fig. 7. Wave roses for the data at location 16 (left) and for the simulated sequences (right).

Fig. 8. Joint distribution of U (x-axis) and Hs (y-axis). Data on the left and model on the right.
a model to restore chosen statistical features like marginal
distribution, covariance functions, durations, etc., and this
method allows us to validate or compare models for given data.
And finally an example is discussed where a stochastic model is
used to generate a multivariate time series {U,Φ, Hs, T,Θm} at
several locations along a ferry line in the Aegean Sea (Greece).

Finally, a lot of tools and methods are available for modeling
metocean time series and the choice of a model depends on the
nature of the studied process (univariate or bivariate, intensity
and/or direction, . . .), of the considered location and also on the
objectives of the users.

The review focus on models for time series at the scale
of the sea state. And, as a consequence, we have neglected
many usual and interesting aspects of metocean studies, such as,
for instance, linear and nonlinear models for waves, extremes,
spatial process, . . ..
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