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Abstract

Directional wave spectra generally exhibit several peaks due to the coexistence of wind sea gen-
erated by local wind conditions and swells originating from distant weather systems. This paper
proposes a new algorithm for partitioning such spectra and retrieving the various systems which
compose a complex sea-state. It is based on a sequential Monte-Carlo algorithm which allows to
follow the time evolution of the various systems. The proposed methodology is validated on both
synthetic and real spectra and the results are compared with a method commonly used in the litera-
ture.
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1 Introduction

For a wide range of marine activities (structural design, marine energy exploitation, forecasting, climate
assessment, etc), an accurate description of the sea states, or more generally of wave climate, is crucial.
The waves existing at a specific location are generally classified as wind sea when they are generated
locally by the wind or swell when they are radiated from distant wind systems. The resulting sea state
can be described by a spectrum which provides information about the energy transmitted by all existing
wave systems. Figure 1 shows an example of series of directional spectra considered in this work. This
set of spectra show the time evolution of the distribution of wave energy as a function of the frequency
and direction at a fixed location. Such spectra are not easy to handle (nor to store) and it is often
more convenient to extract synthetic parameters which characterize their main features. During the last
decades, several partitioning algorithms have been proposed in order to identify the wave systems as well
as their features from time series of directional wave spectra.

Most partitioning methods [4], [3] are based on Gerling’s [1] and Hasselman’s ([7], [6]) works and consist
in a three steps algorithm. In the first step, the spectrum is separated in several areas, each of them
being associated with a spectral energy peak. In [1], a time-consuming recursive algorithm, which assigns
each spectrum value to a path of steepest ascent associated with a local peak, is used. All paths leading
to the same peak are assigned to a distinct spectral partition. In more recent works ([5], [16]), this
step is improved using efficient image processing routines developed in topographic imagery for making
watershed delineations ([17], [18]). Although this approach is now used in most of the partitioning
algorithms, some authors ([2], [11]) propose an alternative method to identify the most important energy
peaks of a spectrum; they first locate the peaks within the spectrum looking for the global maximum,
then associate each peak to an area delimited around it and the process is repeated for the next maximum,
etc. (see for instance [20] for a comparison of the two methods). Once the partition is obtained, each
area is associated with a wave system which can be characterized by synthetic parameters such as the
corresponding significant wave height, the position of the peak in frequency and direction and sometimes
also some frequential and directional spreading parameters. Unrealistic wave systems, associated for
example with noise in the spectrum, are sometimes identified. Specific procedures allow merging these

1



t = 782, H
s
 = 1.16

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 788, H
s
 = 1.21

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 794, H
s
 = 1.13

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 800, H
s
 = 1.03

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 806, H
s
 = 0.99

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 812, H
s
 = 1.1

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 818, H
s
 = 1.26

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

t = 824, H
s
 = 1.38

0.3

0.2

0.1

90

60

30
0330

300

270

240

210 180
150

120

Figure 1: Time series of WWIII spectra (6 hours between successive spectra). The time given in the titles
corresponds to the number of hours since the beginning of 2009.

artifacts with the identified physical wave systems. The following step of the partitioning process consists
in identifying wind sea and swell systems. First, the wind sea is identified using local wave age criteria
as in [19]. This approach has also been implemented in [14] where specific cases for which the method
may fail to correctly separate wind sea and swell are highlighted. This problem is further discussed and
improved in [8]. Then swell systems with close peaks are merged and the areas with low total energy are
negelected. Some algorithms, such as the Spectral Partitioning for Operational Parameters Identification
(denoted SPOP in the sequel) algorithm (see [10]), perform an additional step where specific parametric
spectrum models are fitted in order to improve the values of the parameters associated to each system and
to insure that the total energy of the resulting spectrum is equal to the one of the reference (observed)
spectrum. The last step is a clustering task which allows to track the systems in time and link together
the wave systems identified at successive time steps. Cross-assignment is usually performed on the system
parameters using classical clustering algorithms.

Most of the partitioning methods proposed in the literature are very similar and their differences mostly
lie in the tuning of some of the algorithm’s parameters such as, for instance, the definition of the closeness
of two swell peaks. A limitation of the watershed delineations approach is that it may fail to separate
systems with close frequencies and directions. For instance, Figure 2 shows the spectrum obtained
when mixing two Jownswap spectra which parameters correspond respectively to typical values for swell
and wind sea systems. The resulting spectrum exhibits only one local maximum and thus standard
partitioning methods will not be able to retrieve the two systems except if the directional distribution
provides extra-information. Figure 1 provides another example of such situation. The first spectra in the
sequence clearly exhibit two well separated wave systems: a swell propagating from the west-north-west
and a wind sea propagating from the north with wider directional and spectral spreading and with higher
peak frequency. The distance between the two peaks decreases progressively so that the last spectrum has
only one local maximum although it is likely that the two wave systems are still present. In such situation,
using the partition obtained at the previous time step may help retrieving the two wave systems. In the
methodology introduced in this paper, this is done by assuming that the synthetic spectral parameters
associated to the various wave systems follow simple stochastic models. Since these spectral parameters
are not observable, they are introduced as a hidden process and the sequence of observed spectra is
related to the hidden sequence using standard parametric models for wave spectrum. The tracking of the
various wave systems becomes a natural output of the algorithm such that no post treatment is required;
this is another expected advantage of our methodology over watershed delineations approaches.

The performance of the algorithm is illustrated using a time series of wave spectra in the North East
Atlantic (5W,45N) retrieved from the wind-wave model WWIII run by the ARGOSS company. The time
series covers the period from January to March 2009 with a spectrum every hour. A short part of the
sequence is shown on Figure 1.

The partitioning algorithm is described in Section 2. Then in Section 3, the stochastic models used to

2



0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

(m
2 /H

z)

(Hz)

Figure 2: Spectrum (solid line) obtained by mixing a JONSWAP spectrum with parameters Hs = 3m, Tp = 8s
and γ = 5 (dotted line) and a JONSWAP spectrum with parameters Hs = 1m, Tp = 5s and γ = 2 (dashed line).

describe the time evolution of the wave systems are detailed. In Section 4, numerical results are first
presented for a synthetic sequence of spectra. Then the results obtained on the WWIII spectra are
discussed and compared to the results obtained using the SPOP algorithm. Conclusions and perspectives
are given in Section 5.

2 Methodology

A directional wave spectrum S(ω, θ; t) is a scalar function which provides information about the dis-
tribution of the wave energy as a function of the frequency w and the direction θ at the observation
time t ∈ {1, ..., T }. Many engineering studies rely on synthetic sea-state parameters which summarize
the information contained in the directional wave spectra, such as the significant wave height Hs, the
peak period Tp and the mean wave direction θm. Various parametric models have also been proposed
in the literature for reconstructing directional spectra from the synthetic sea-state parameters (see e.g.
[12]). Hereafter, we denote Spar(ω, θ;X) the directional spectrum obtained by multiplying a JONSWAP
spectrum with shape parameter γ for the frequency distribution and a cos2s function for the angular
distribution with X = (Hs, Tp, γ, θm, s). This parametric form has been chosen in this work because it
is probably the most common one and it can accommodate a wide range of spectrum shapes but the
method proposed hereafter can easily handle other parametric models.

Sea-states are generally composed of several superimposed wave systems and the usual unimodal para-
metric models such as the one introduced above are not appropriate in such cases Hereafter we thus
assume that

S(ω, θ; t) =

Kt
∑

k=1

Spar(ω, θ;X
(k)(t)) + Sres(ω, θ; t) (1)

with Kt the number of wave systems at time t and X(k)(t) =
(

H
(k)
s (t), T

(k)
p (t), γ(k)(t), θ

(k)
m (t), s(k)(t)

)

the

synthetic parameters associated with the system number k at time t. Sres(ω, θ; t) represents the difference
between the observed and the parametric spectra and may model the observation error but also the error
due to a bad specification of the parametric model. Finally, we denote X(t) =

(

X(1)(t), ..., X(Kt)(t)
)

and

Spar(ω, θ;X(t)) =

Kt
∑

k=1

Spar(ω, θ;X
(k)(t)) (2)

the parametric spectrum associated to X(t). (X(1), ...X(T )) is an unobserved time series of synthetic
sea-sate parameters that we would like to retrieve from the sequence of observed spectra.

The algorithm proposed in this paper computes successive approximations of Xt by cycling through the
following steps.

Simulation of a large number of possible scenarios (also called particles in the sequel) at time t coherent
with the systems identified at the previous time step, i.e. Xt−1. In practice, we make the assumptions
described hereafter.
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• Each of the Kt−1 systems present at time t− 1 can persist, merge with another system or vanish at
time t. When they persist, the parameters of the systems are assumed to evolve according to the
simple stochastic models described in Section 3 which can be easily simulated.

• New swell and wind sea systems may appear between time t− 1 and time t. The distributions used
to generate the spectral parameters of the new systems are described in Section 3 .

In this work, we have limited the number of new wave systems to one of each type (i.e. one swell and
one wind sea) at each time step but this assumption could easily be relaxed. This leads to a maximum
number of Kt−1+2 wave systems, and each of these wave systems can actually be present or not at time
t. We have Pt = 2Kt−1+2 possible combinations of wave systems which will be denoted M1,..., MPt

.
Step 1 of the algorithm (see Table 1) consists in listing these possibilities. In Step 2.a, N possible values
of the spectral parameters for each combination of wave systems are generated. These values are denoted
Xi,Mp

(t) for i ∈ {1, ..., N} and p ∈ {1, ..., Pt} and the stochastic models which are used to generate these
NPt scenarios are described more precisely in Section 3.

Weighting of the scenarios simulated in the previous step (Step 2.b). The weights are linked to the
distance between the observed spectrum and the spectrum associated to the simulated spectral parameters
and are given by

πi,Mp
(t) = φ(S(:, t);Si,Mp

(:, t),Ω) (3)

where S(:, t) denotes a vector which contains the observed spectrum, Si,Mp
(:, t) the parametric spec-

trum reconstructed from Xi,Mp
(t) at the same frequencies and directions than the observed spectrum

and φ(.;µ,Ω) the probability density function of a multivariate Gaussian distribution with mean µ and
covariance matrix Ω (see Eq. (9) for more details). According to Eq. (1), the weight πi,Mp

(t) can be
interpreted as the probability of observing S(ω, θ; t) if Xi,Mp

(t) is the correct partition at time t and
Sres(:, t) is a Gaussian vector with zero mean and covariance matrix Ω. The choice of the Gaussian
probability density function is usual in the statistical literature and in particular when working with
particle filters. It allows the definition of a weight based on the usual Euclidean distance and associate
larger weight to parametric spectra which are close to the observed ones.

Selection of the best combination of wave systems (Step 3). Different methods have been tested in order
to chose the optimal combination of wave systems at time t, i.e. the best value p0(t) ∈ {1, ..., Pt}. The
first criterion was based on the following quantities

ΠMp|X(t) ∝ ΠMp
(t)ΠX|Mp

(t) (4)

which aimed at estimating the posterior probability of the model p ∈ {1, ..., Pt} given the data, following
standard methods in Bayesian statistics (see e.g. [15]). In this expression, (ΠMp

(t))p∈{1,...,Pt} is inter-
preted as a prior distribution on the set of possible combinations of wave systems at time t and ΠX|Mp

(t)
is defined as the mean weight

ΠX|Mp
(t) =

1

N

N
∑

i=1

πi,Mp
(t)

and may be interpreted as the likelihood of the observed spectrum if p is the correct combination of
wave systems at time t. In practice, we obtained better results when replacing the mean by a quantile
in order to filter out the less likely values of Xi,Mp

(t). In the following, ΠX|Mp
(t) is defined as the

empirical quantile of (pi,Mp
(t))i∈{1,...,N} associated to the probability q and p0(t) as the value of p which

maximizes (ΠMp|X(t))p∈{1,...,Pt} where ΠMp|X(t) is defined by Eq. (4). In practice, the choice of the prior
distribution permits to favor or penalize some combinations of wave systems. This is further discussed
in Section 4.

Reestimation of the spectral parameters (Step 4). The previous step leads to an estimate of the best
combination of wave systems p0(t) together with a set of weighted particles (Xi,Mp0(t)

(t), πi,Mp0(t)
(t))

from which we retrieve a first estimate of Xt by taking the weighted mean over the more likely particles

X
(0)
t =

1
∑

i∈A πi,Mp0(t)
(t)

∑

i∈A

πi,Mp0(t)
(t)Xi,Mp0(t)

(t)
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where A represents the set of the 100(1 − q) percent highest values of πi,Mp0(t)
(t). The directional

spectrum associated to X
(0)
t is generally close to the observed spectrum but we refine the value by adding

a numerical optimization step. The function that we minimize, defined as

φ(S(:, t);Spar(:, Xt),Ω)

is a distance between the observed and the parametric spectra. We run the optimization algorithm

starting from X
(0)
t . This leads to an updated value of the spectral parameters which is close to X

(0)
t but

fits better to the observed spectrum. The systems with very low energy (significant wave height below
0.1 meter) are removed before going to the next step.

The different steps of the algorithm are summarized in Table 1. At time t, Step 1 consists in listing all
the possible combinations of sea state systems given the combination selected at t− 1. In Step 2, a large
number of particles is simulated for each combination and weights are associated to the particles. In
Step 3 the weights, which can be interpreted as the likelihoods of the observed spectrum if the particles
give the correct partition, are used to find the best combination. Finally, Step 4 consists in a numerical
optimization step which permits to improve the parameters of the selected combination in order to better
match with the observed spectrum.

Step 1 Steps 2 Step 3 Step 4

List of possible a. Simulation of the particles Selection of the best Reestimation
combinations b. Computation of weights combination

(M1,ΠM1(t)) →



































(X1,M1(t), π1,M1 (t))
...

(XqN,M1(t), πqN,M1(t))
...

(XN,M1(t), πN,M1(t))

ր

Xt−1

...
... →















(XqN,Mp0(t)
(t), πqN,Mp0(t)

(t))
...

(XN,Mp0(t)
(t), πqN,Mp0(t)

(t))

→ X
(0)
t → Xt

ց

(MPt
,ΠMPt

(t)) →



































(X1,MPt
(t), π1,MPt

(t))
...

(XqN,MPt
(t), πqN,MPt

(t))
...

(XN,MPt
(t), πN,MPt

(t))

Table 1: Graph summarizing the different steps of the algorithm.

3 Stochastic models for the wave systems

The various tests which we have conducted indicate that the realism of the stochastic models used to
generate new wave systems and simulate the time evolution of existing wave systems is a crucial factor
to retrieve good partitions. These models must be designed so as to permit an efficient exploration of the
domain of the spectral parameters. In particular, the simulations should cover a domain which contains
only realistic values given the situation at the previous time step and the climatology of the point of
interest but which is also large enough to explore all the possible scenarios. Furthermore, the simulations
should not be too much time consuming.

First partition of the spectra

In order to calibrate these stochastic models a first partition has been performed using the local wave age
(ratio of wave and wind celerities) criterion. More precisely, we first compute the separation period (see
[8]) Ts =

4
3
2π
g
U where U denotes the wind speed and assume that wave components with a period lower

than Ts and a direction θ such that cos(θ − Φ) > 0, where Φ denotes the wind direction, are generated
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by local winds whereas others correspond to swells. Spectral parameters (Hs, Tp,...) are then extracted
from each part of the wave spectra. This simple method permits to retrieve two time series of spectral
parameters, one for the wind seas and one for the swells. These time series have been used to estimate
the parameters of the stochastic models introduced in this section.

Simulation of the time evolution of the wave systems

If zt−1 denotes the value of one of the spectral parameters with positive values (ie Hs, Tp, γ or s) at time
t− 1, possible values of this parameter at time t were simulated according to

zt = s+ |zt−1 − zmin + et| (5)

where et denotes a Gaussian variable with zero mean and standard deviation σdyn. The values of zmin,
which correspond to the minimum value of the random variable zt, and σdyn, which describes the temporal
variability of zt, are given in Table 3. Generally zmin is small compared to the typical values of zt−1 and
|zt−1 − zmin + et| > 0. In this case Eq. 5 reduces the usual random walk model

zt = zt−1 + et (6)

which was used for the directional parameter θm. Each spectral parameter is simulated independently
from the others. Using more realistic models, which take into account for example that Tp decreases with
time in swell events (see e.g. Figure 5) or the strong relation between Hs and Tp, may help improving the
results obtained with the methodology introduced in this paper and this has to be further investigated
(see e.g. [13]).

Simulation of new swell systems

The new swell systems are randomly drawn in the time series of swells identified using the period separa-
tion method described above. In order to allow swell systems with spectral parameters different from the
ones identified using the separation method, a Gaussian noise with zeros mean and standard deviation
σnew given in Table 3 is added.

Simulation of new wind sea systems.

The spectral parameters of the new wind sea systems are simulated conditionally to the wind conditions.
Various simplified models have been proposed in the literature to relate the parameters Hs and Tp of the
wind sea to the local wind speed U and the fetch F . If the local water depth is sufficiently deep and the
wind is blowing long enough, power law functions of the form

Hs = AUαUFαF , Tp = BUβUF βF

are generally used (see e.g. [9] and references therein).

Applying the log-transformation leads to linear models

log(Hs) = log(A) + αU log(U) + αF log(F ) (7)

log(Tp) = log(B) + βU log(U) + βF log(F ) (8)

where the fetch F is an unobserved variable and αU , αF , βU and βF are unknown parameters. If we
model F as a random variable with log-normal distribution, we get a usual Gaussian linear model which
parameters can be estimated using standard procedure. It may also be interesting to include the wind
direction in the model since it may be closely related to the fetch and more generally the characteristics
of the wind field which generates the wave systems. In practice the wind direction Φ may be introduced
as a categorical variable Φcat (we use 8 sectors of 45 degrees) or as a continuous variable (in which case
we perform regression on cos(Φ) and sin(Φ)) in the linear model.

The various models have been fitted to the data using the least-square method. According to Table 2, the
best model is the most complicated one where the wind direction is included as a categorical variable and
interaction between wind speed and wind direction is considered. In this model, distinct linear regression
models of the form (Eq. 7-8) are fitted in each wind sector and the parameters values are shown on
Figure 3. These values are coherent with the ones reported in the literature (see e.g. [9]).
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Model Np R2
aj

log(Hs) ∼ log(U) 2 0.7498
log(Hs) ∼ log(U) + cos(Φ) + sin(Φ) 4 0.7784
log(Hs) ∼ log(U) + Φcat 13 0.7885
log(Hs) ∼ log(U) ∗ Φcat 24 0.8080
log(Tp) ∼ log(U) 2 0.4054
log(Tp) ∼ log(U) + cos(Φ) + sin(Φ) 4 0.4854
log(Tp) ∼ log(U) + Φcat 13 0.5233
log(Tp) ∼ log(U) ∗ Φcat 24 0.5711

Table 2: Number of parameters Np (second column) and adjusted R2 coefficient (third column) for the various
regression models described in the first column. The sign ’+’ corresponds to the linear model without interaction
and the sign ’∗’ to the linear model with interactions.
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(8) (bottom) as a function of the wind direction (x-axis). Grey lines are 95% confidence intervals.
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Hs(m) Tp(s) γ θm(rad) s

zmin 0 0 1 NA 1
σdyn (swell) 0.3 0.3 0.5 0.1 1

σdyn (wind sea) 0.3 0.3 0.7 0.1 2.5
σnew (swell) 1.5 1.5 4 0.3 15

Constraints [0, 20]

[

√

Hs

0.1 , 20

]

[1, 100] [0, 2π] [1, 100]

Table 3: Value of the parameters used to simulate the time evolution of the spectral parameters (s and σdyn,
see Section 3) and the arrival of new systems (σnew , see Section 3) and constraints imposed on the parameters
values in the reeestimation step.

4 Numerical Results

In this section, the algorithm introduced in the previous sections is validated on two datasets. In Section
4.1, we first consider time series of synthetic spectra in order to validate the methodology in an idealized
situation where the ”true” partitions are known. Then, in Section 4.2 we focus on the time series of
WWIII spectra and compare the results obtained with the dynamical partitioning and SPOP algorithms.

4.1 Simulated data

Time series of synthetic spectra have been simulated by adding a noise to the spectra identified by
applying the SPOP algorithm to the time series of WWIII spectra. More precisely, at each time step t,
a spectrum is simulated using Eq. (1) where Xt denotes the vector of sea state parameters identified at
time t using SPOP (see Figure 5) and Sres is simulated from a multivariate Gaussian distribution with
zero mean and covariance matrix Ω defined as

Ωij = σ2 exp

(

−λ1

∣

∣

∣

∣

1

ωi

−
1

ωj

∣

∣

∣

∣

− λ2(1 − cos(θi − θj))

)

, i, j = 1, · · · , nd. (9)

where {(ωi, θi)}i=1,··· ,nd
denotes the frequency-direction bands into which the spectrum is discretized.

In practice, we have fixed the values λ1 = 0.5 and λ2 = 10 but let the value of σ vary from 0 to 0.03
(the latter case corresponds to an observation error with a Hs of about 2.32 meters) in order to check
the performance of the extraction algorithm when the noise to signal ratio increases. The terms λ1 and
λ2 model respectively the correlation between the different frequency and direction with λ1 = λ2 = 0
corresponding to the independent case.

The algorithm is run with N = 1000 particles and the number of wave systems is limited to three systems
with a maximum of two swells and one wind sea. This corresponds to physically realistic values for the
location considered in this work. The weights Eq. (3) are computed with the covariance matrix Eq. (9)
and the values σ = 0.1, λ1 = 0.5 and λ2 = 10. We use a different value of σ to generate the spectra
and for the extraction algorithm since this value is generally unknown for practical applications. In the
selection step (see Section 3), we consider the quantiles of order q = 0.95 to select the best particles for
each combination of sea-states. The prior distribution is defined so as to promote persisting systems and
penalize the arrival of new swells when swell systems already exist. More precisely, the prior probability
of a combination with at least one persisting system is 1.4 times higher than the probability of the other
combinations, the prior probability of a combination with two persisting swells is 1.1 times higher and
the prior probability of a combination where a new swell is added when one swell is already existing is
1.4 times smaller than the probability of the other combinations. Finally, in the reestimation step, we
impose the constraints given in Table 3 on the parameters in order to avoid convergence to unrealistic
values.

At each time step t, we obtain three different spectra: the ”true” spectrum SSPOP (t) reconstructed using
Eq. (2) and the sea state parameters obtained using the SPOP algorithm, the noisy spectrum SSIM (t)
obtained by adding a noise to SSPOP (t), which has been used as input to the dynamical partition
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Figure 4: Left panel: median of the distances D(SDY N (t), SSPOP (t)) (full line) and D(SDY N (t), SSIM (t))
(dashed line) as a function of the median of the noise level D(SSPOP (t), SSIM (t)) (x-axis). Right panel: mean
number of systems in SDY N (t) (stars) and SSPOP (t) (dotted line) as a function of the median of the noise level
D(SSPOP (t), SSIM (t)) (x-axis).

algorithm and the spectrum SDY N (t) reconstructed using Eq. (2) and the sea state parameters identified
by the dynamical partition algorithm. In order to measure the distance between these different spectra,
we define

D(S1, S2) = 4

√

∫ +∞

0

∫ 2π

0

|S1(ω, θ; t)− S2(ω, θ; t)| dθdω (10)

where S1 and S2 denote two spectra. This quantity is homogeneous to a significant wave height (meters).
Figure 4 shows the evolution of distances D(SDY N (t), SSPOP (t)) and D(SDYN (t), SSIM (t)) as a function
of the noise level D(SSPOP (t), SSIM (t)). It indicates that the reconstructed spectra SDYN (t) are closer
to the true spectra SSPOP (t) than to the noisy ones SSIM (t) and thus that the algorithm is robust
to observation errors. This good behavior lets us expect that the algorithm will perform well on buoy
spectra which are known to be noisy and thus difficult to analyze with classical extraction algorithms.
Figure 4 also shows that our methodology tends to underestimate the number of wave systems when
the noise level is low. We performed visual inspection and found that some wind sea systems with low
energy are not retrieved. It generally occurs when the wind direction does not match the mean direction
of the wind sea system (see Figure 5 around time 400 for example). For higher noise levels, the algorithm
tends to identify too many wave systems but still identifies the main systems. The extra systems which
are identified have a low energy and the values of γ and s associated with them would correspond to
unrealistic spectra with an important spreading in frequency and direction; a post-treatment based on
these parameters could be easily implemented to filter out the non-physical systems.

4.2 WWIII data

The algorithm has then been tested on the time series of WWIII spectra. In practice, we use the
same parameters values than in the previous section except that the number of particles is increased
to N = 10000 in order to better explore the space of the spectral parameters and reduce the sampling
variability. This leads to a significant increase of the CPU time with about 10 hours (only 15 minutes for
SPOP) of computational time on a standard laptop to process three months of data. Using more realistic
dynamical models would permit to largely reduce the number of particles and the computational time.

The time series of extracted sea state parameters are shown on Figure 5. These plots show periods of
time with one clearly dominating swell which has a smooth temporal evolution. At other periods, two
swell systems with higher temporal variability are extracted. This is further discussed below. Figure
6 shows a quantile-quantile plot of the distances between the reconstructed spectra SDYN (t) and the
observed WWIII spectra, denoted SWWIII(t), against the distances between SSPOP (t) and SWWIII(t).
The quantiles of the dynamical partitioning method are significantly smaller than those corresponding to
the SPOP method. It means that the dynamical partitioning method reproduces more accurately the time
series of WWIII spectra, but it also tends to identify a higher number of systems (2.1 systems in average
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Figure 5: Time series of parameters Hs, Tp, θm and s extracted using SPOP (top panels) and extracted using
the dynamical partitioning method from simulated spectra time series without noise (second line), a noise with
σ = .03 (third line) and from WWIII spectra (bottom panels). The black and dark gray points correspond to
swell systems and the light gray to wind sea systems. The x-axis is the time in hour from the beginning of 2009.

0 5 10
0

2

4

6

8

10

SPOP

D
yn

am
ic

 e
xt

ra
ct

io
n

Figure 6: Quantile-quantile plot of D(SDYN (t), SWWIII(t)) (y-axis) against D(SSPOP (t), SWWIII(t)) (x-axis).

against 1.6 for SPOP). The visual inspections we performed confirmed that the dynamical partitioning
algorithm tends to over-estimate the number of systems and sometimes extracts wave systems with
spectral parameters close to each other. It permits to reproduce the shapes of the WWIII spectra which
are sometimes too complex to be accurately reconstructed with a single JONSWAP-cos2s spectrum. For
instance, Figure 7 shows the sequence of spectra identified using the dynamical partitioning algorithm
on the sequence of WWIII spectra shown on Figure 1. Three systems are identified by the algorithm at
each time step of this sequence, one for the swell system which can be reasonably modeled by a single
JONSWAP-cos2s but two for the wind sea system which exhibits a more complex asymmetric shape.
Using more complex parametric models for the spectra could help solving this issue. Using a post-
treatment to merge the wave systems with spectral parameters close to each other (see e.g. [10]) may
also lead to an improvement of the outputs of the algorithm and produce more realistic climatologies.
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Figure 7: Example of time series of WWIII spectra (first line) and reconstructed spectra (second line). The
time given in the titles corresponds to the number of hours since the beginning of 2009.

5 Conclusions

A new method for partitioning directional wave spectra has been introduced. It is based on a state-
space formulation which uses simple stochastic models to describe the dynamics of the wave systems and
parametric models to relate the observed spectra to the synthetic parameters of the various systems.
The partition obtained at a given time uses the information available at the previous time step and the
method permits in particular to track automatically the time evolution of the wave systems.

The algorithm has first been validated on time series of synthetic spectra and the good results which
have been obtained indicate that the model is robust to observation errors. The algorithm has then been
validated on time series of WWIII spectra and the results have been compared with the ones obtained
using an approach largely discussed in the literature. Again, the results are promising but the algorithm
tends to identify too many systems when the shape of the spectrum is complex and can not be modeled as
a mixture of JONSWAP-cos2s spectrum. We believe that this could be improved by using more flexible
parametric models for the directional spectra. We have also observed that the algorithm is sensitive
to the stochastic models used to describe the dynamics of the wave systems. The models which are
used in this paper are very simple and refining them could also lead to substantial improvements. The
methodology should now be validated on other datasets including in-situ measurements. We will also
consider extending the approach in a space-time context and using the information available at other
locations to build an a priori distribution. This could lead to an improvement of the partitions and also
enable a tracking of the wave systems in space and time.
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