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ABSTRACT

A new method for calculating return periods of various level
values from nonstationary time series data is presented. The key-
idea of the method is a new definition of the return period, based
on the Mean Number of Upcrossings of the level x (MENU
method). The whole procedure is numerically implemented and
applied to long-term measured time series of significant wave
height.

The method is compared with other more classical ap-
proaches that take into acount the time dependance for time se-
ries of significant wave height. Estimates of the extremal index
are given and for each method bootstrap confidence intervals are
computed.

The predictions obtained by means of MENU method are
lower than the traditional predictions. This is in accordance with
the results of other methods that take also into account the de-
pendence structure of the examined time series.

INTRODUCTION
The design of most marine systems, including ships, off-

shore platforms and offshore wind farms, entails the long-term
estimation of extreme values of wind and wave parameters. This
calculation is traditionally performed using the so-called Gum-
bel’s approach; a widely used method based on the annual max-
ima [1]; see also [2]. However, the accuracy of the method is
highly dependent on the size of the examined dataset. Moreover,
it is very difficult to have large datasets of in situ buoy measure-
ments, which is the most reliable source of data.

There are numerous alternatives that use additional data. To
mention only some of them, one could refer to: (i) the method
of the r-largest maximum values [3, 4], (ii) the Peaks-Over-
Threshold (POT) method [5–8], (iii) the enhanced POT method
(that takes into account the seasonality of wind and wave data)
[9], (iv) the BOLIVAR method [10, 11].

A further step would be to take into account the dependence
structure of the time series by modelling it as, e.g., a stationary
stochastic process and calculate its extremes based on the the-
ory of these processes [12, 13]. However, existing wave datasets
(measurements) has shown that can hardly be considered station-
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ary.
Recently, more advanced models for the representation of

time series of wind and wave parameters have been proposed;
see, e.g., [14–19]. These more sophisticated time series mod-
els permit us to significantly improve stochastic predictions of
extreme values. According to these, except for the stochastic
character of the series, the dependence structure and the sea-
sonality exhibited are appropriately modelled. Then, the theory
of periodically correlated stochastic processes can be used for
the extreme-value predictions; see, e.g., Middleton and Thomp-
son [20].

Another interesting method is the so-called MENU method,
according to which the HS return period for prespecified HS
level values is the time period in which the MEan Number of
Upcrossings of the level HS becomes equal to unity. The MENU
method has been presented for the first time in [21], where an
application with Gaussian synthetic data is presented. A simi-
lar approach based on the characteristic function of the Gaussian
process is shown in Naess [22]. A full account of MENU method
can be found in [23].

In the present work, the MENU method is further developed,
exploiting the nonstationary modelling of time series of HS pre-
sented in [14], and the non-Gaussian modelling of the second-
order probability structure presented in [24], to calculate return
periods from nonstationary time series of HS.

The results are also compared with results from traditional
methods. In general, MENU method gives lower estimates of re-
turn values (design values) than the traditional methods do. This
is in accordance with the findings of other works that take into
account the dependence and seasonality features of the time se-
ries [10, 11, 25].

TRADITIONAL METHODS FOR RETURN PERIOD CAL-
CULATIONS

Let us assume that, we have a stochastic sequence of inde-
pendent, identically distributed (i.i.d.) random variables, corre-
sponding to the sequence of successive maximum values of sig-
nificant wave height at fixed time intervals (e.g., months, years,
etc). This sequence is denoted by

Xmax n n Xmax n (1)

Predicting return periods and the corresponding design val-
ues by using data concerning maxima is known as the Gumbel’s
approach [1]. In this approach, when it is based on annual max-
ima, the distribution of the population of maxima, denoted by
G x , is known as n ∞ [26]. In fact, it is the Generalized Ex-

treme Value (GEV) distribution

G x;λ δ k

exp 1 k
x λ

δ
1 k

k 0

exp exp
x λ

δ
k 0

(2)

where λ δ 0, and ∞ k ∞. Note that, for k 0, the GEV
distribution is supported on ( ∞,λ δ k], while for k 0, it is
supported on [λ δ k, ∞).

There is a variety of methods for the estimation of the pa-
rameters, most of them well-known and widely used: the maxi-
mum likelihood method (MLM) [27], the method of moments, as
well as various types of linear tail-weighted least-squares meth-
ods (LSM).

In fact, the GEV distribution is a unifying representation of
the three extreme-type distributions, which are obtained as fol-
lows: (i) FT-I (Gumbel distribution), for k=0, (ii) FT-II (Fréchet
distribution), for k 0, λ=1, δ= k, (iii) FT-III (reversed Weibull
distribution), for k 0, λ= 1, δ=k.

The estimation of return periods for high levels x is based
on the formula

TR x
∆τ

1 G x
(3)

where G x is the extreme population distribution.
The use of G x instead of the initial population distribution

F x in equation (3), is justified by the fact that the two distrib-
utions G x and F x are right-tailed equivalent; see, e.g., [28].
The selection of the type of G x should be based on the behav-
iour of Gemp x (empirical distribution) at the right tail only. This
task can be processed by adopting a variety of short-cut proce-
dures or by analytical methods either of purely statistical nature
or based on a combination of physical observations and statistical
arguments [28–30].

In ocean and coastal engineering practice, equation (3) is
considered as a milestone for return-period calculations of var-
ious wave and wind parameters; see, e.g., [31]. One possible
option is to model annual maxima of significant wave height by
means of FT-I (Gumbel) distribution [32, 33]; a choice that will
be used in the sequel. Figure 1 shows that this choice is conve-
nient for the considered data.

In principle, Gumbel’s approach applied to annual maxima
forms a sound methodology for predicting long-term extreme
values and the corresponding return periods. The most serious
problem with this approach is the lack of sufficiently large ex-
treme population data samples that would permit the type of dis-
tribution to be safely selected and its parameters to be reliably
estimated.
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Moreover, the strong hypothesis of the independency of
the annual maxima, required for the application of Gumbel’s
method, can be surpassed since independency is usually achieved
in shorter time periods than year. A useful tool to approximate
the shorter time period associated with independent successive
maxima is the extremal index.

Let X1 Xn be a strictly stationary stochastic sequence
and Z1 Zn i.i.d. random variables with the same distribu-
tion F . Let Mx

n max X1 Xn and Mz
n max Z1 Zn

be the maxima of n values from the two sequences: the station-
ary and the i.i.d., respectively. For independent variables, the
followin well-known formula holds true

P Mz
n y P Z y n Fn y (4)

However, for dependent data the above relationship does not hold
and the distribution of the maximum should be determined by
using the complete distribution of the whole sequence. Luckily
in many cases there is an approximate relationship that can be
compared to eq. (4)

P Mx
n y Fθn y (5)

where θ 0 1 is the so-called extremal index. An exact de-
finition and estimators of extremal index can be found, e.g.,
in [34, 35].

In sea state time series, the observations Xt and Xt τ are for
sufficiently large time periods τ practically independent, and, on
the other hand, the probability of two extreme observations oc-
curring within the same time interval, which is not too long, is
small. These qualitative statements can be formulated as precise
criteria of time series that have an extremal index of 1, the exact
formulation of which will not be given here.

RETURN PERIODS FOR NONSTATIONARY STOCHAS-
TIC PROCESSES

In this section, a new definition of the notion of return period
associated with a given level value is introduced, which is valid
even if the underlying stochastic process is a general nonstation-
ary one. This definition will be based on the so-called “one-sided
barrier problem” or “one-sided first passage problem” [36].

Assume that X τ;β β B is a nonstationary stochas-
tic process with mean-square differentiable path functions. Let
M x ; t t T be the Mean Number of Upcrossings of the level
x by the process X τ;β β B in the time interval t t T .

Definition 1. When M x ; t t T becomes equal to
unity, the time lag (interval) T t T t will be called
the return period of X τ;β associated with the level

value x and the starting time t, and it will be denoted
by TR x t .

This definition has been first used in the context of statistical
prediction of sea-level extremes in [20]; see also [37].

The MENU method
Now, in order to implement Definition 1, we have to cal-

culate the mean number of upcrossings of the level x by the
nonstationary process X τ;β . As it is well known [12], an up-
crossing of the level x by the process X τ;β occurs when

X τ;β x and
dX τ;β

dτ
0 (6)

The total number of the upcrossings of the level x within
the time interval t1 t2 is given by the equation

CR x ; t1 t2;β
1
2

Z t2

t1
Ẋ τ;β δ X τ;β x dτ (7)

where δ is the Dirac delta function. Equation (7) was first
derived by Rice [12]. Recalling now that, for any (possibly gen-
eralized) function G x y

Eβ G X τ1;β Y τ2;β
Z ∞

∞

Z ∞

∞
G x y fτ1 τ2 x y dxdy

(8)
where fτ1 τ2 x y is the joint probability density of the random
vector X τ1;β Y τ2;β , and applying the ensemble average

operator Eβ in both sides of equation (7), we obtain

Eβ CR x ; t1 t2;β
1
2

Z t2

t1

Z ∞

∞

Z ∞

∞
ẋ δ x x fτ τ x ẋ dxdẋdτ

(9)
Integrating equ. (9) with respect to x, and observing that

Eβ CR x ; t1 t2;β is not but the quantity M x ; t1 t2 appear-
ing in Definition 1 above, we easily obtain

M x ; t1 t2
Z t2

t1
J x ;τ dτ (10)

where

J x ;τ
1
2

Z ∞

∞
ẋ fτ τ x ẋ dẋ (11)
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Observing that, fτ τ x ẋ is an even function with respect
to the second argument ẋ (see, e.g., Levine [38, Vol. 1, pp. 201,
424]), equ. (11) can also be written in the following form

J x ;τ
Z ∞

0
ẋ fτ τ x ẋ dẋ (12)

Note that, relation (10) is totally independent from the spe-
cific type of the underlying bivariate distribution considered.

It should be emphasized that M x ; t1 t2 is dependent
on both time instants t1 and t2, since the underlying process
X τ;β β B may be nonstationary.

In accordance with Definition 1, the return period TR x t
associated with the level x and the starting time t is calculated
as the unique value T for which

M x ; t t T 1 (13)

Let it be noted that, the above definition of return period
TR x t can be applied for any level value x (high or low) and
any starting time t. Accordingly, seasonal weather windows can
be obtained in this manner.

Implementation of MENU method
Let us now turn to the calculation of the mean num-

ber of upcrossings M x ; t t T (and of the associated re-
turn periods for various level values x ) for a specific form of
periodically-correlated stochastic processes. Assume that, a sto-
chastic process X τ;β admits of the representation [14]:

X τ;β G τ σ τ W τ;β (14)

where G τ and σ τ are deterministic time-dependent peri-
odic functions and W τ;β is a zero-mean stationary stochas-
tic process, which will be called hereafter the residual stochastic
process.

Especially, the function G τ is defined as

G τ Xmean µ τ (15)

where Xmean is the overall mean value of the process X τ , and
µ τ is the seasonal mean value [14]. Note that, sometimes a
slowly varying (e.g. linear) trend is used instead of a fixed mean
value. However, since the identification of the trend is still ques-
tionable, it has been decided to discard it, using instead the over-
all mean value Xmean. In addition, the function σ τ is the sea-
sonal standard deviation of the process.

For the numerical implementation of the MENU method use
is only made of the joint probability density function f XẊ

τ τ s1 s2 .
In order to evaluate the latter we need, apart from the represen-
tation of the process, eq. (14), the representation of the process
Ẋ τ;β :

Ẋ τ;β Ġ τ σ̇ τ W τ;β σ τ Ẇ τ;β (16)

obtained by differentiating eq. (14). The functions Ġ τ and σ̇ τ
are the derivatives of G τ and σ τ with respect to τ. According
to their definition, all these functions Ġ τ and σ̇ τ are periodic.

Equations (14) and (16) are considered as a linear system
(time-dependent transformation) defining X τ;β and Ẋ τ;β by
means of W τ;β and Ẇ τ;β 1. Thus, the problem is reduced to
the evaluation of the time-invariant bivariate pdf f WẆ

τ τ v1 v2 .
The density f WẆ

τ τ v1 v2 can be obtained by means of vari-
ous ways; see [24]. In the present work, the process Ẇ τ is ap-
proximated using finite differences, and the density f WẆ

τ τ v1 v2

is calculated from the density f WW
τ τ ∆τ u1 u2 (second-order den-

sity of W τ at the time instances τ and τ ∆τ), by means of the
bivariate linear transformation:

W τ W τ

Ẇ τ
W τ ∆τ W τ

∆τ
(17)

where ∆τ is the (fixed) sampling interval of the stationary resid-
ual series W τ .

Thus, applying the standard formula of the change of vari-
ables, we get [39]

f WẆ
τ τ v1 v2 ∆τ f WW

τ τ ∆τ v1 v1 ∆τ v2 (18)

Considering eqs. (14) and (16) as a bivariate time-dependent
linear transformation, and applying once again the standard for-
mula of the change of variables, the density f XẊ

τ τ s1 s2 is ex-
pressed in terms of the density f WẆ

τ τ v1 v2 as follows:

f XẊ
τ τ s1 s2

1
σ2

τ
f WẆ
τ τ

s1 gτ

στ

s2 ġτ στ s1 gτ σ̇τ

σ2
τ

(19)
where gτ G τ , στ σ τ , ġτ Ġ τ , σ̇τ σ̇ τ .

1From now on, for brevity and without loss of generality, the chance variable
β will be omitted from the argument of the stochastic processes X τ , Ẋ τ , W τ ,
Ẇ τ .
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Thus, the whole procedure can be considered as a subse-
quent application of two bivariate transformations of the form

w1 ẇ1 h w1 w2 w1
w2 w1

∆τ
(20)

x ẋ w ẇ G τ σ τ w Ġ τ σ̇ τ w σ τ ẇ

(21)

Let us now turn to the calculation of the quantity
M x ; t1 t2 , by first examining the integrand in the right-hand
side of equ. (10). This is a time-dependent function J x ;τ
for fixed its first argument x = f ixed. The integrand reveals a
periodic character, which is due to the periodic (with period
Tyear 1 year) functions included in the density f XẊ

τ τ s1 s2 . Tak-
ing into account this character, the integral of the right-hand side
of equ. (10) is simplified as follows

M x ; t1 t2 n
Z t1 Tyear

t1
J x ;τ dτ ℜ t1 t2;Tyear (22)

where n t2 t1 Tyear ( x integer part of x).
The residual part ℜ t1 t2;T becomes zero, if we select

t2=nTyear.
Finally, according to Definition 1, the time interval TR T ,

which corresponds to the value M x t t T =1, will be called
the return period of X τ associated with the level value x and
the starting point t. The above described calculations are re-
peated for various fixed level values x of X τ . In this way,
we obtain the well-known return-value diagram.

APPLICATION TO TIME SERIES OF SIGNIFICANT
WAVE HEIGHT

In the present section, the MENU method will be applied to
time series of significant wave height to obtain return period esti-
mates. The results will be compared with results of the following
methods: a) the standard (annual) Gumbel’s method, where the
return periods are extrapolated for annual maxima, and b) the
weekly Gumbel’s method, where weekly maxima are considered
instead of annual ones.

For this purpose, we will use two datasets: one WAM
(hindcast) datapoint with coordinates (45oN, 12oW) in the cen-
tral Atlantic Ocean and one from buoy measurements (51.85oN,
155.92oW, NOAA’s buoy 46003) in the north Pacific Ocean.
Hindcast data are widely used in design problems because they
are available in a worldwide grid. However, it is well known
that hindcast time series are particularly smooth and may un-
derestimate significant wave height. This is the reason we shall
also compare the method using bouy time series. On the other

hand, in situ measurements have missing values that have been
assumed to be missing at random and they have not been filled
in.

In MENU method, the joint probability density function
f WW
τ τ ∆τ u1 u2 , i.e. the second-order density of W τ at the time

instances τ and (τ ∆τ) is modeled by a Plackett copula model
[24]. Other copulas have been tested, in particular extreme value
copula, but none of them fits so well to the data as Plackett does.
The two alternatives of Gumbel’s method are directly applied to
the time series of significant wave height, without any particular
time series modeling.

For each method, the return periods are estimated and asso-
ciated 90% bootstrap confidence intervals are computed. In the
case of the Gumbel’s methods, the distribution fitted to the data is
first used to generate a large number of samples. Then, a Gumbel
distribution is fitted to these artificial samples and finally confi-
dence intervals are deduced. Since MENU method is considered
to be an exact method, confidence intervals can be omitted. If
confidence intervals are to be added, artificial time series have to
be generated as follows. Firstly the seasonal component of ob-
served time series is removed using the model (14) in order to
obtain the stationary process W τ . Then W τ is transformed to
a Gaussian process Wg τ using g-transform of [40] and a large
number of artificial Gaussian time series with the same spectrum
as Wg τ is generated. Finally inverse transformations are ap-
plied. It may be verified that the generated time series and the
reference ones have the same statistical properties as in [41].

Hindcast data
As a first example, we present results computed us-

ing the hindcast time series of significant wave height.
Before going further, the distribution of Gumbel’s model
(scale=1.3,location=13.6) is compared with the distribution of
the GEV model (shape=-0.02, scale=1.1, location=13.7), using
the time series of annual maxima. In Figure 1, a well-known re-
sult is shown on gumbel paper, i.e. the confidence intervals of
GEV distribution are larger than the Gumbel’s ones.

Then, the extremal index is estimated for the stationarized
time series and plotted on Figure 2. The Ferro and Segers esti-
mator is used. In practice the extremal index is compute for eaxh
year and the mean is plotted. One can observe that if weekly
maxima are considered for the estimation of return periods, the
extremal index is equal to unity independently of the level chosen
for the time series of weekly maxima. As in Ferro and Segers,
we also deduce the run length (number of points in each inde-
pendant cluster) with bootstrap confidence intervals (Fig. 3). We
observe that the run length is close to 1 for all levels of the time
series of the weekly maxima.

In the sequel, the results of MENU method are compared
with the ones of the two Gumbel’s methods; see Figure 4. We
observe that the estimation of the return period is not signifi-
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Figure 1. Distribution (on Gumbel paper) for the hindcast data. Dots
: observed annual maxima, Plain line: Gumbel distribution (dashed line
: corresponding 90% confidence interval), Dashed-dotted: GEV (dotted
line : corresponding 90% confidence interval)
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Figure 2. Extremal index for the hindcast data, original stationary time
series (-+), weekly maxima (-*)

cantly different. The confidence intervals of the weekly Gum-
bel’s model (scale=1.5,location=6.2) are narrower than the ones
of the annual model. Moreover, for lower levels of significant
wave height the MENU method gives larger estimates for return
periods than the two Gumbel’s approaches. One possible rea-
son could be that hindcast time series is particularly smooth (as
it is often the case in hindcast datasets) and it tends to lead to
larger duration of exceedance time than in buoy measurements.
For higher values of significant wave height the MENU method
gives lower return periods, although the results from all three
methods are very close.
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Figure 3. Run length for the hindcast data ; Top : original stationary time
series (-+) with .95% confidence interval (:.); Bottom : weekly maxima (-*)
with .95% confidence interval (:)
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Figure 4. Return values for hindcast data estimated from Gumbel’s ap-
proach with annual maxima (blue -*), Gumbel’s approach with weekly
maxima (black o-) and MENU method (red +-). (Confidence intervals are
plotted for Gumbel’s estimators as follows: annual maxima dashed blue
line, weekly maxima dotted black line).

Buoy data
The return values estimators are now obtained using data

from NOAA’s buoy 46003. The data preprocessing showed that
the time series consists of 21 years with a 3-hourly time interval
and about 25% missing values. The extremal index is estimated
for the stationarized time series and plotted in Figure 5. We can
conclude again that the use of weekly maxima leads to constant
extemal index equal to unity.

Then, the return periods are computed and compared in Fig-
ure 6. One can remark that the obtained estimations are quite
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Figure 5. Extremal index for NOAA buoy data, original stationary time
series (-+), weekly maxima (-*)
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Figure 6. Return values for NOAA buoy data estimated from Gumbel’s
approach with annual maxima (blue -*), Gumbels approach with week
maxima (black o-) and MENU method (red +-); for Gumbel’s estima-
tions confidence intervals are plotted, annual maxima : dashed blue line,
weekly maxima : dotted black line.

different. For instance, concerning the 100-year return period,
the annual Gumbel’s method (scale=2.1, location=7.3) yields a
return value approximately equal to 19 m, the weekly Gumbel’s
method (scale=1.3, location=2.7) to 16 m and the MENU method
18.3 m. Note also that, only MENU estimates lie in the intersec-
tion of both confidence intervals.

CONCLUSIONS
In this paper, a new method for calculating return periods of

various level values from nonstationary time series is applied to

long-term data of significant wave height. The key idea of the
method is a new definition of the return period concept based on
the MEan Number of Upcrossings of a level value x (MENU
method).

In the present work, the MENU method is applied for the
first time to non-Gaussian data, and return-period calculations
for various level values are produced by means of real data. The
present application takes fully advantage of the appropriate mod-
elling of the second-order probability structure of the stochastic
process developed in [24].

Results are compared with results obtained from two vari-
ants of Gumbel’s approach (annual and weekly maxima). All
comparison results show that predictions based on MENU
method are in agreement with predictions from traditional meth-
ods.
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