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Abstract: This article reviews the historical development of statistical weather models, from
simple analyses of runs of consecutive rainy and dry days at single sites, through to multisite
models of daily precipitation. Weather generators have been used extensively in water
engineering design and in agricultural, ecosystem and hydrological impact studies as a means
of in-filling missing data or for producing indefinitely long synthetic weather series from finite
station records. We begin by describing the statistical properties of the rainfall occurrence and
amount processes which are necessary precursors to the simulation of other (dependent) mete-
orological variables. The relationship between these daily weather models and lower-frequency
variations in climate statistics is considered next, noting that conventional weather generator
techniques often fail to capture wholly interannual variability. Possible solutions to this
deficiency – such as the use of mixtures of slowly and rapidly varying conditioning variables –
are discussed. Common applications of weather generators are then described. These include the
modelling of climate-sensitive systems, the simulation of missing weather data and statistical
downscaling of regional climate change scenarios. Finally, we conclude by considering ongoing
advances in the simulation of spatially correlated weather series at multiple sites, the
downscaling of interannual climate variability and the scope for using nonparametric
techniques to synthesize weather series.

Key words: climate change, impact assessment, stochastic model, time series, weather
generator.

I Introduction

Models of observed daily weather sequences are frequently used in water engineering
design, and agricultural, ecosystem or climate change simulations because observed
ground-based meteorological data are often inadequate in terms of their length, com-
pleteness or spatial coverage. These statistical models are also known as ‘weather
generators’ since they can in-fill missing data or produce indefinitely long synthetic
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weather series by simulating key properties of observed meteorological records (i.e.,
daily means, variances and covariances, frequencies, extremes, etc.). Daily weather
simulators are by far the most common, both because of the wide availability of
weather data on this timescale, and (relatedly) the abundance of impacts models that
are driven by daily weather inputs. To date, the majority of weather generators have
focused on the precipitation process in recognition of the dominant control exerted by
rainfall on many environmental processes, and due to the complexity of building
internally consistent, multivariable models (Hutchinson, 1995). However, companion
algorithms that simulate other meteorological variables are also in routine use.

There are two complementary ways in which these models can be viewed. In the first
instance they are stochastic models for day-to-day (and, by extension, longer-period)
variations in the weather. From this perspective the parameters of a stochastic weather
model comprise a concise distillation of certain aspects of the local climate. Secondly,
when these models are used for Monte-Carlo simulation (i.e., ‘weather generation’),
they can be regarded as elaborate random number generators whose outputs statisti-
cally resemble daily weather data at a location. It is important to note that weather
generators are not weather forecasting algorithms, and thus are quite different from
deterministic weather models, which operate by numerically integrating the partial dif-
ferential equations describing fluid flows. A major implication of this distinction is that,
while stochastic model outputs behave statistically like weather data, it is not expected
that any particular simulated weather sequence will be duplicated in weather observa-
tions at a given time in either the past or future.

In this article we provide a brief history of weather generators: from simple descrip-
tions of ‘runs’ of wet and dry days at single sites, through multivariate models, and on
to the relationships between the daily simulations and the longer-term climate. We then
sketch some of the applications of stochastic weather models that have been made in
agriculture, ecology, hydrology and simulations of regional climate change. Finally, we
speculate about future directions in weather generation techniques.

II A brief history and exposition

As mentioned in the introduction, most effort in the construction of weather generators
has been devoted to precipitation processes. Not only is precipitation the most critical
meteorological variable for many applications, but the presence or absence of precipi-
tation also typically affects the statistics of many nonprecipitation variables to be
simulated. Precipitation data exhibit distinctive and difficult characteristics which
complicate the statistical models needed to describe them. In addition to exhibiting the
correlation between values at successive time periods that is typical of all weather
variables, precipitation is unique in its mixed character as both a discrete and
continuous variable. That is, precipitation is very often exactly zero, and hence there is
a discontinuity in the probability distribution of precipitation data between the zero
and the nonzero observations.

Accordingly, most weather generators contain separate treatments of the precipita-
tion occurrence and intensity processes. The precipitation occurrence process manifests
itself in two weather states, wet or dry. A key aspect of stochastic weather models is
their representation of the tendency of wet and dry days to exhibit persistence, or
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positive serial (i.e., auto-) correlation, so that wet and dry runs tend to clump together
in time more strongly than could be expected by chance. The precipitation intensity
process pertains to the modelling and simulation of the nonzero precipitation amounts.
These are typically strongly skewed to the right, with many small values and few but
quite important large precipitation amounts. Although these concepts appear straight-
forward it has taken more than a century to formalize many of the processes within
stochastic precipitation models.

1 The precipitation occurrence process

Apparently the earliest published work on probabilistic modelling of precipitation
occurrence was that of Quetelet, who reported in 1852 (see Katz, 1985) that runs of
consecutive rainy and dry days at Brussels for 1833–50 exhibited persistence. Another
expression of this tendency for wet and dry weather to persist was provided by
Newnham (1916), who used daily rainfall records at Kew, Aberdeen, Valencia and
Greenwich, UK, to demonstrate that the probability of a ‘rain day’ is greater if the
preceding day was wet rather than dry. These two approaches – considering run
lengths and day-to-day statistical dependence – to describing the temporal dependence
of precipitation occurrences were pursued further by Besson (1924), Gold (1929) and
Cochran (1938). Williams (1952) used geometric series to model dry and wet-spell (i.e.,
consecutive runs of dry or wet days) lengths at Rothamsted Experimental Station,
Harpenden, UK (see Figure 1). The greater probability of long dry (as opposed to wet)
spells is clearly evident from Figure 1. Longley (1953) subsequently improved
geometric-series fits to observed wet and dry-spell lengths in five Canadian cities by
differentiating between the months in which the spells fell.

Gabriel and Neumann (1962) are generally credited with presenting the first
statistical model of daily rainfall occurrence. In their seminal work using rainfall data

Figure 1 The distribution of wet and dry-spell lengths at Rothamsted
Experimental Station, Harpenden, UK, 1938–47 (after Williams, 1952).
The dashed line is the best- fit for wet spells; the solid line for dry spells
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for Tel Aviv, Israel, the authors recognized that the frequency distributions for wet and
dry spell length of the types identified by Williams (1952) and Longley (1953) may arise
from a simple Markov chain model. In particular, Gabriel and Neumann (1962)
proposed the use of a first-order Markov chain for precipitation occurrence, assuming
that the probability of rainfall on any day depends only on whether the previous day
was wet or dry. This model can be fully defined by the two conditional probabilities

p01 = Pr {precipitation on day t | no precipitation on day t – l} (1a)

and

p11 = Pr {precipitation on day t | precipitation on day t – l} (1b)

which are called transition probabilities. Here the vertical bar symbol ‘|’ is read as
‘given’ or ‘conditional on’. Since there are only two possible states on a given day, the
two complementary transition probabilities are p00 = 1 – p01 (dry day following a dry
day) and p10 = 1 – p11 (dry day following a wet day).

It was noted by Gabriel and Neumann (1962) that this simple model for rainfall
occurrence was able to describe closely the persistent nature of daily precipitation
occurrence patterns, and that certain other properties of the occurrence series could be
derived from the two transition probabilities. Of particular importance are the long-run
(i.e., climatological) relative frequency of precipitation days

p01π = (2a)
1 + p01 – p11

and the first-lag autocorrelation of the precipitation occurrence series

r1 = p11 – p01 (2b)

Because of the persistent nature of daily rainfall occurrence one finds in practice that the
conditional probability in (1b) is larger than that in (1a), so that p01 < π< p11 and r1 > 0.
Furthermore, the lengths of the alternating wet and dry spells produced by the first-
order Markov model are independent, with those lengths distributed according to the
geometric distribution

Pr{X = x} = p(1 – p)x – 1, x = 1, 2, 3, . . . (3)

where p = p01 for dry spells and p = 1 – p11 for wet spells. These authors pointed out
further that the average number of wet days, and the variance of the number of wet
days, within a string of T consecutive days under the first-order Markov model can be
computed as

E[N(T)] = πT (4a)

and

1 + r1
Var[N(T)] ≈ π (1 – π) T (4b)

1 – r1

respectively. Equations (4a) and (4b) can thus pertain to rainfall occurrence statistics for
monthly (T ≈ 30) or seasonal (T ≈ 90) periods. Usually the parameters of the precipita-
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tion generation models are fit separately for the 12 calendar months, in order to allow
for seasonal cycles in the precipitation statistics. Equation (4b) is an approximation that
holds for large T, although this approximation was found to be very close for monthly
totals in the Tel Aviv data, and subsequently for other locations as well (e.g., Gregory et
al., 1993; Wilks, 1999a).

Equations (2)–(4) illustrate the use of the first-order Markov model to characterize
important aspects of the precipitation occurrence climate. This model also provides a
very convenient and efficient means of generating sequences of random numbers that
resemble (i.e., simulate) the corresponding real weather data. For each simulated day, a
random number u is drawn from the interval [0,1] in a way that any real number (up to
the precision of the computer) in that interval is equally likely to be picked. In practice
these are usually produced by widely available computer algorithms called uniform
pseudo-random number generators (e.g., Press et al., 1986; Bratley et al., 1987). Note,
however, that there are a number of surprising and subtle pitfalls in the generation of
uniform random numbers, and in particular that the simplest of these algorithms (as
might be implemented as part of a computer’s operating system) can have serious defi-
ciencies that may compromise the results of stochastic simulations. See, for example,
Press et al. (1986) for a brief exposition and guide to improved algorithms, or Knuth
(1997), which is the standard reference on this subject.

Once the random number u has been generated, whether the next day in the sequence
is wet or dry is determined using (1). If the previous day (t – 1) was dry, then day t is
simulated to be wet if u ≤ p01, and otherwise it is also dry. If the previous day was wet,
then the current day is simulated to be wet if u ≤ p11, and is dry otherwise (cf. Figure
2a). Because first-order Markov models fit to daily precipitation data yield p01 < π< p11,
the simulations yield sequences of wet and dry days that are more persistent than
independent draws according to the climatological probability π.

For some climates it has been found that the simple first-order Markov model
generates synthetic rainfall series with too few long dry spells (e.g., Buishand, 1977;
1978; Racsko et al., 1991; Guttorp, 1995). Dennett et al. (1983), Singh and Kripalani
(1986), Jones and Thornton (1997) and Wilks (1999a) addressed this deficiency by
considering Markov chains of higher order. These techniques increase the length of the
Markov model’s ‘memory’ of antecedent wet and dry days. For example, second-order
Markov chains use the wet/dry state on both the preceding day, and two days prior,
such that eight transition probabilities pijk must be defined. Here each of the indices i,
j, k may be either one (wet) or zero (dry). Hence, p101 would be the probability of a wet
day given that the previous day was dry, and the day before that was wet. Third and
higher-order Markov chains can be similarly defined, although the number of
parameters (i.e., transition probabilities) required increases exponentially as the order
increases, being 2k for a kth-order chain. When only the dry spells are not adequately
modelled by the first-order Markov model it is possible to improve the statistics of the
simulated dry spells using ‘hybrid-order’ Markov models, in which the Markov
‘memory’ extends further back in time for the dry spells only (Stern and Coe, 1984;
Wilks, 1999a).

When deciding among models having different degrees of complexity, one must
judge how elaborate a model is justified by the data. Gabriel and Neumann (1962)
compared the first-order Markov model for precipitation occurrence at Tel Aviv with
the next simplest model, namely, independent Bernoulli (i.e., binomial) occurrences,
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Figure 2 Flowcharts for daily weather generation using the WGEN
framework and (a) Markov chain and (b) spell-length models for the
precipitation component. Numbers in square brackets refer to
equations in the text

(a)

(b)
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using a Chi-square goodness-of-fit test. While this is a reasonable approach when only
two alternatives are being considered, ambiguities in such statistical tests arise when
multiple comparisons are made, for example when choosing among Markov models of
zeroth (Bernoulli distribution), first and second orders. The usual approach in circum-
stances like this is to employ an objective order-selection criterion such as Akaike’s
information criterion (AIC – Akaike, 1974) or the Bayesian information criterion (BIC –
Schwarz, 1978). Both AIC and BIC are likelihood-based criteria, in that they choose the
model having the largest maximized likelihood, after application of a penalty that
increases with the number of free parameters allowed by each of the models
considered. (The likelihood function is notationally analogous to the probability distri-
bution function or the probability density function; but the data are considered as fixed,
while values of the parameters associated with the global maximum of this function are
the fitted maximum likelihood estimates.) The AIC and BIC differ only in the forms of
their penalty functions. Gates and Tong (1976) concluded that second-order Markov
dependence was justified according to the AIC for the Tel Aviv precipitation data
considered by Gabriel and Neumann (1962). However, Katz (1981) concluded first-
order dependence for these data was adequate on the basis of the BIC, which he also
showed to be asymptotically consistent (i.e., the BIC is correct on average for suffi-
ciently large data samples). Since many years of meteorological data are typically
available for fitting stochastic weather models, this consistency result is a strong
argument for use of the BIC in this context.

An alternative to Markov chain models for simulating precipitation occurrences is
the use of spell-length models. Rather than simulating rainfall occurrences day by day,
spell-length models operate by fitting probability distributions such as (3) to observed
relative frequencies of wet and dry-spell lengths. This kind of model is sometimes
called an ‘alternating renewal process’ (Buishand, 1977; 1978; Roldan and Woolhiser,
1982), in that random numbers are generated alternately from the wet and dry spell-
length distributions (Figure 2b). That is, a new spell length L is generated only when a
run of consecutive wet or dry days has come to an end, at which point a new spell of
the opposite type is simulated. Of course, if geometric distributions (3) are used to
model the lengths of wet and dry spells the resulting synthetic series will exhibit the
same characteristics as the equivalent first-order Markov process (1). Higher-order
Markov chains have spell-length distributions associated with them that are general-
izations of the geometric distribution. Precipitation occurrence sequences with different
statistical characteristics can be obtained using different distributions for the
frequencies of spell lengths. Such distributions include the truncated negative binomial
(Buishand, 1977; 1978; Roldan and Woolhiser, 1982), the negative binomial distribution
(Wilby et al., 1998; Wilks, 1999a), and the mixed geometric distribution (Racsko et al.,
1991). For climates where (1) or (3) yield very long dry spells with insufficient
frequency, these more elaborate choices for modelling precipitation occurrence have
been found to yield more realistic results in this regard (Buishand, 1977; 1978; Racsko et
al., 1991; Wilks, 1999a). However, this method can be susceptible to poor parameter
estimates in arid regions or wherever less than 25 years of observations is available
(Roldan and Woolhiser, 1982).
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2 The precipitation amount process

The next necessary element of a weather generator is a model for the nonzero precipi-
tation amounts on wet days. The most prominent statistical feature of daily precipita-
tion amounts is that their distribution is strongly skewed to the right. That is, very small
daily precipitation amounts are quite common, while the large daily precipitation
amounts that are most important to hydrological, agricultural and engineering impacts
are comparatively rare. Todorovic and Woolhiser (1975) were the first to produce a daily
stochastic precipitation generator, by combining the first-order Markov model for daily
precipitation occurrence described above with a statistical model for daily nonzero pre-
cipitation amounts. Their choice for modelling the amounts was the exponential distri-
bution, whose probability density function is

1 –x
f(x) = exp (5)

µ µ

The exponential distribution is probably the simplest reasonable model for daily pre-
cipitation amounts, as it requires specification of only one parameter, µ, yet reproduces
qualitatively the strong positive skewness exhibited by daily precipitation data. The
average nonzero precipitation amount according to (5) is µ, and the corresponding
variance σ2 = µ2. Exponential distributions have also been used by Richardson (1981)
and Wilby (1994), among others.

A number of more elaborate models have also been proposed for the distribution of
daily precipitation amounts given the occurrence of a wet day. The two-parameter
gamma distribution has been the most popular choice (e.g., Thom, 1958; Katz, 1977;
Buishand, 1977; 1978; Stern and Coe, 1984; Wilks, 1989; 1992), and has the probability
density function

(x/β)α – 1 exp[–x/β]
f(x) = (6)

β Γ(α)

This distribution involves two parameters: the shape parameter α and the scale
parameter β. The factor Γ(α) is the gamma function (see, e.g., Abramowitz and Stegun,
1984, or Wilks, 1995) evaluated at α. This distribution has mean µ = αβ, and variance
σ2 = αβ2. For α ≤ 1 gamma distributions are qualitatively similar to exponential distrib-
utions (5) in concentrating most of the probability near zero and producing large pre-
cipitation amounts only rarely. For α = 1 gamma distributions (6) reduce to exponential
distributions (5), but in general the additional parameter in (6) allows more flexible
accommodation of rainfall amount frequencies, and so improves the realism of
stochastic precipitation models.

Another natural generalization of the exponential distribution (5) is the mixed
exponential distribution, which is simply a probability mixture of two one-parameter
exponential distributions. Its probability density function is

α –x 1 – α –x
f(x) = exp + exp (7)

µ1 µ1 µ2 µ2

[

[ [

]

] ]
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Mathematically, (7) indicates a superposition of two ordinary exponential distributions
(5) whose respective means are µ1 and µ2. From the standpoint of simulation, (7)
indicates that the first exponential distribution is used to generate the precipitation
amounts with probability α, and the second is used with probability 1 – α, where the
third parameter α is called the mixing parameter. The mixed exponential distribution
has mean µ = αµ1 + (1 – α)µ2 and variance σ2 = αµ1

2 + (1 – α)µ2
2 + α (1 – α)(µ1 – µ2)2.

First suggested as a model for daily precipitation amounts by Woolhiser and Pegram
(1979), the mixed exponential distribution has been used comparatively rarely.
However, it has been reported to provide substantially better overall fits to daily pre-
cipitation data than the gamma distribution (Woolhiser and Roldan, 1982; Foufoula-
Georgiou and Lettenmaier, 1987; Wilks, 1998; 1999a), and in particular Wilks (1999a)
reports better representation of the frequencies of the very largest precipitation
amounts.

Figure 3 illustrates the differences between the three probability distributions (5)–(7)
for the case of daily January (liquid-equivalent) precipitation at Ithaca, New York, for
the years 1900–98, by comparing the respective fitted probability density functions with
a histogram of the data. There were a total of 1499 January wet days during this period.
All three distributions capture the most prominent characteristic of this data, namely,
its very strong positive skewness. Because of this skewness the larger precipitation
amounts that are most important in many applications are comparatively rare, so that
the portion of the graph depicting daily precipitation greater than about 15 mm has
been enlarged vertically in the inset for clarity. It is evident that the exponential distri-
bution (5) (dashed line) underestimates the frequencies of both the very small and very
large precipitation amounts, while overestimating probabilities for amounts near 5 mm.
The gamma distribution (6) (solid line) improves the representation of the small
amounts substantially, but improves the representation of large amounts only slightly,
so that frequencies of amounts near 5 mm are also over-represented by this gamma dis-
tribution. The mixed exponential distribution (7) (grey line) is clearly the best of the
three over the full range of the data. This qualitative comparison of the fits of these three
distributions is consistent both with AIC (Akaike, 1974) and BIC (Schwarz, 1978)
statistics. Values of the maximized (log-) likelihoods minus the corresponding BIC
penalty functions are 764.6 for the exponential distribution, 784.4 for the gamma distri-
bution and 836.6 for the mixed exponential distribution.

Given a distribution to represent the nonzero precipitation amounts, simulations are
accomplished through computer algorithms that generate random numbers according
to the fitted distribution. For each day the precipitation occurrence model simulates wet
conditions, a new random variate from the fitted distribution for nonzero precipitation
amounts is generated (Figure 2). Much more on these algorithms can be found in
Devroye (1986) or Bratley et al. (1987).

Most stochastic weather generators make the assumption that precipitation amounts
on wet days are independent, and follow the same distribution. Allowing different
probability distributions for precipitation amounts depending on that day’s position in
a wet spell (e.g., the mean rainfall on a wet day following a wet day might be greater
than on a wet day following a dry day) has been considered by Katz (1977), Buishand
(1977; 1978), Chin and Miller (1980) and Wilks (1999a), but allowing this extra
complexity often makes little difference to the result. Similarly, the autocorrelation
between successive nonzero precipitation amounts in daily series is sometimes (statis-
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tically) significantly different from zero, but is typically quite small and usually of little
practical importance (Katz, 1977; Buishand, 1977; 1978; Foufoula-Georgiou and
Lettenmaier, 1987). In contrast, accounting for serial correlation of nonzero precipitation
amounts is essential if the precipitation model has an hourly (or smaller) rather than a
daily time step (Katz and Parlange, 1995).

Figure 3 Comparison of the histogram for the 1499 January wet-day
(liquid-equivalent) precipitation amounts at Ithaca, New York, for
1900–98, with corresponding fitted exponential (5) (dashed line),
gamma (6) (solid line) and mixed exponential (7) (grey line) probability
density functions. Inset shows enlargement of the graph for daily
precipitation greater than about 15 mm

Precipitation (mm)
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Another approach to accounting for correlation in the nonzero precipitation amounts
is the use of multistate (i.e., greater than the 2 states in Equation 1) Markov models.
These Markov models simulate both precipitation occurrence and amounts, by defining
different ranges of precipitation amounts as constituting distinct states. Transition prob-
abilities among all possible pairs of states are then estimated from data, and used in
simulation. For example, for southeast England in spring, Gregory et al. (1993) found
that there is a 16% probability that a rainfall total of greater than 6.62 mm will be
equalled or exceeded on the following day, but only a 5.7% chance that such a day will
be followed by a dry day. Gregory et al. (1993) also found that first-order Markov
models yielded smaller discrepancies in seasonal precipitation totals if specified ranges
of daily precipitation totals are used to condition the rainfall amounts on the following
day. Haan et al. (1976) followed a similar approach. The validity of this multistate
Markov approach clearly rests on the choice of the number of states and their ranges
(i.e., the upper and lower rainfall thresholds) and on the distributions used for wet-day
amounts in any given state. These models involve comparatively large numbers of
parameters, and thus require quite long data records in order to be estimated well.

3 Other meteorological variables

Until now the discussion has been restricted to daily stochastic precipitation models.
However, it was noted at the outset that for many practical applications weather
generators must produce additional meteorological variables. For example, sensitivity
analyses of crop models have revealed that inputs of mean temperature values consis-
tently result in overstimated yields. Therefore, accurate crop productivity estimates
require synthetic data that reproduce observed daily variability in driving meteorolog-
ical variables other than precipitation as well (Richardson, 1985; Nonhebel, 1994;
Semenov and Porter, 1995; Semenov et al., 1998). The most widely cited model of daily
weather variables (Richardson, 1981), developed to support models of crop
development and yield, also includes simulations of daily maximum temperature,
minimum temperature and solar radiation. Stochastic weather models of the type
originally proposed by Richardson (1981), and now widely referred to as WGEN (for
‘Weather Generator’ as in Richardson and Wright, 1984), condition the statistics of the
daily nonprecipitation variables on occurrence or nonoccurrence of precipitation.
However, this conditioning is weakly defined and is only a proxy for other unspecified
processes such as cloud cover, which affect temperature and solar radiation
(Hutchinson, 1995).

In WGEN models, the statistical process underlying the nonprecipitation variables is
a first-order vector (i.e., multiple variables modelled simultaneously) autoregression.
Here the meaning of ‘first order’ is the same as for the Markov chains described above:
the statistics of the current day’s values are fully defined by the values on the previous
day. The equation governing this process can be written

z(t) = [A] z (t – 1) + [B] ε(t) (8)

where z(t) is a K-dimensional vector of standard Gaussian (i.e., normally distributed,
with zero mean and unit variance) values for today’s nonprecipitation variables,
z(t – 1) is the corresponding vector for the previous day, and [A] and [B] are K × K
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matrices of parameters. The K-dimensional vector ε(t) of independent standard normal
variables is known alternatively as ‘error’, or white-noise forcing. Here K is the number
of nonprecipitation variables being simulated, so that K = 3 in the Richardson model for
maximum temperature, minimum temperature and solar radiation. Decomposing (8)
into scalar notation, each of the K elements of z(t) is specified as a linear combination of
all K values for the previous day z(t – 1), and the three random quantities ε(t). In the
original Richardson (1981) model, for example, K = 3 and

zk(t) = ak,1 z1 (t – 1) + ak,2 z2 (t – 1) + ak,3 z3(t – 1)
(9)

+ bk,1 ε1(t) + bk,2 ε2(t) + bk,3 ε3(t)

where z1, z2 and z3 correspond to maximum temperature minimum temperature, and
solar radiation, respectively. The first line in (9) corresponds to the first term in (8), in
which today’s value is expressed as a function of all three of yesterday’s values, as in
an ordinary regression equation. The second line in (9), corresponding to the second
term in (8), provides the random variation that allows the generator to produce
different weather sequences. For each new day to be simulated, a realization for each of
the εk is produced by a standard normal random number generator (e.g., Devroye, 1986;
Press et al., 1986; Bratley et al., 1987), and then the linear combination of these (through
the b coefficients) provides properly correlated random contributions to the new zk.

Specific parameter values in the [A] and [B] matrices are computed from the simul-
taneous and lagged (by one day) correlations among the nonprecipitation variables
considered. In the conventional implementation of WGEN (Richardson and Wright
1984), average values of these correlations – computed by combining data from 31 USA
stations and across all seasons – are used to compute fixed [A] and [B] matrices that are
used for any location and in any season. Hayhoe (1998), working with Canadian data,
has found that geographic and especially seasonal departures from these commonly
assumed correlations can be quite large, particularly for the correlations involving solar
radiation. At high latitudes these correlations tend to be high in summer, and low or
even negative in winter. For some applications these discrepancies may be only of
minor importance. For example, Richardson (1985) found that the output from a wheat
model was not sensitive to daily variations in the solar radiation. However, many users
would be well advised to compute their own location and season-specific [A] and [B]
matrices.

Once they have been generated using (8), the z(t) are transformed to weather
variables in a way that depends on whether the day has been simulated to be wet or
dry. Most WGEN implementations assume first-order Markov dependence (1) for pre-
cipitation occurrence (Figure 2a), although direct simulation of wet and dry spells
(Figure 2b) has also been employed (e.g., Semenov and Porter, 1995). In either case, each
of the K nonprecipitation weather variables is computed for each day according to

µk,0(t) + σk,0(t) zk(t) if day t is dry

Tk(t) = (10)
µk,1(t) + σk,1(t) zk(t) if day t is wet

where each Tk is any of the nonprecipitation variables, µk,0 and σk,0 are its mean and
standard deviation for dry days, and µk,1 and σk,1 are its mean and standard deviation
for wet days. The seasonal dependence of the means and standard deviations in (10) is
usually achieved through Fourier harmonics (i.e., sine and cosine functions) that vary

{



D.S. Wilks and R.L. Wilby 341

smoothly through the year, simulating the annual cycle for each of these parameters.
Note that even though the z(t) as produced by (8) have Gaussian distributions, the
resulting nonprecipitation weather variables T are not necessarily also Gaussian
because of the random application of dry or wet-day means and variances in (10)
(Katz 1996), although in practice the simulated distributions are often close to
Gaussian. The means and variances of the Ts in (10) depend not only on the dry and
wet-day means and variances on the right-hand side of (10) but also on the uncondi-
tional rain-day probability (Katz, 1996), which for first-order Markov dependence is
given by (2a).

A number of formulations for producing more than the basic set of three nonprecip-
itation variables in the WGEN framework have been proposed. In addition to
maximum temperature, minimum temperature and solar radiation, the model of Wallis
and Griffiths (1997) also simulates daytime winds, night-time winds and daily dew
point through a straightforward extension of (8) to include K > 3 nonprecipitation
variables. Parlange and Katz (1999) followed a similar approach to simulate wind speed
and dew point in addition to temperatures and radiation, and furthermore subjected
the wind speed data to a square-root transformation in order to simulate better its
skewed distribution. Less comprehensive algorithms were used by Bruhn et al. (1980)
to add simulation of daily minimum relative humidity; and by Richardson and Nicks
(1990) also to simulate wind speed and wind direction.

Figure 2 shows flowcharts for the basic WGEN structure when 1) the precipitation
submodel is based on a first-order Markov chain; and 2) when it is based on direct
simulations of spell lengths. In this figure, numbers in square brackets refer to
equation numbers in the foregoing text. Regardless of how the precipitation
occurrences are handled, the nonprecipitation submodels (right-hand sides of the
panels) are identical.

III Relationships between daily models and their climatic statistics

While most weather generators operate on a daily time step, their output nevertheless
exhibits longer-term variations that are the counterparts of lower-frequency variations
in real weather data. For example, both weather generator output and observed
weather data will exhibit different monthly mean temperature or monthly total precip-
itation in different years. A natural way to characterize these variations is to compute
the variance of these monthly quantities, which is often referred to as the interannual
variance. Of course one would like the interannual variability in weather generator
output to match closely the corresponding variability in the observed data, and it has
been suggested (Gregory et al., 1993) that this comparison provides a crucial test of the
similarity of synthetic and real climates.

Comparison of the precipitation statistics is particularly informative. Let S(T) be the
sum of T consecutive daily precipitation amounts, which will correspond to a monthly
precipitation total if T ≈ 30. The statistics of the synthetic S(T) climate can be expressed
in terms of its long-term mean E[S(T)] and interannual variance Var[S(T)] according to
(e.g., Gregory et al., 1993; Katz and Parlange, 1998):
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E[S(T)] = E[N(T)] µ = T π µ (11a)

and

Var[S(T)] = E[N(T)] σ2 + Var[N(T)] µ2 (11b)

Here N(T) is the number of wet days during the T consecutive days, E[N(T)] is the
climatological average of this quantity (4a), and Var[N(T)] is the corresponding
variance (given by (4b), under first-order Markov dependence). The N(T) statistics
depend only on the model chosen to represent the precipitation occurrences. The
quantities µ and σ2 in (11) are respectively the mean and variance of the daily nonzero
precipitation amounts, expressions for which are given in the text above, following each
of the three probability density functions (5)–(7).

Markov-chain and spell-length precipitation occurrence models both yield
practically exact reproductions of the average number of wet days E[N(T)], and the
probability density functions that are commonly used to represent daily nonzero
precipitation likewise recover the average wet-day amount µ essentially exactly
(Wilks, 1999a). Thus, (11a) indicates that weather generator models will necessarily
reproduce the climatological precipitation averages. The situation for simulated
temperature and solar radiation averages is similar: the average z produced by (8) is 0,
so that (because π is simulated correctly) the results from (10) will exhibit the correct
monthly means to the extent that the conditional means µk,0 and µk,1 are correctly
specified. These considerations imply that ‘validating’ a weather generator by
examining only its reproduction of monthly or seasonal mean values is naive. That is,
simulated and observed time-mean values will be different only to the extent that: 1)
the comparison is made using a comparatively short simulated record from the
generator, so that differences can be ascribed to sampling variations; 2) the specifica-
tions for within-year variations of the parameters (particularly the harmonic functions
specifying the annual cycles of µk,0 and µk,1) require refinement; or 3) the generator has
been implemented incorrectly.

The issue of simulated interannual variability is more difficult. It seems to be a
general characteristic of weather generator models that their interannual variability is
smaller than that of the corresponding observed data (e.g., Buishand, 1977; 1978;
Gregory et al., 1993; Katz and Parlange, 1993; 1998; Wilks, 1989; 1999a). For the case of
precipitation, (11b) indicates that this deficiency must arise from shortcomings in
simulation of Var[N(T)], or σ2, or both; because the average quantities E[N(T)] and µ are
well simulated in any properly constructed generator. One possible cause for the
behaviour could be that the component submodels are not sufficiently complex. Katz
and Parlange (1998) and Wilks (1999a) investigated the effects of progressively more
elaborate models for precipitation occurrence (second and third-order Markov chains
and progressively more elaborate nonzero precipitation amount models), and found
that the synthetic interannual variances could be increased but still fell short of
observed climatic variability on average.

Probably the most appealing explanation for this ‘missing variance’ is that climate
statistics in the real world change somewhat from year to year, and that the simpler
weather generator forms discussed thus far cannot capture this contribution to weather
variability because their statistics vary only through a fixed annual cycle. Klugman and
Klugman (1981) were among the first to examine this issue, and attributed model non-



D.S. Wilks and R.L. Wilby 343

stationarity to climatic change. A more common view currently is that the nonstation-
arity results from interannual climate variations. For example, Figure 4 shows
interannual variations in three climatic quantities that are also stochastic rainfall
parameters, namely: the conditional dry and wet-day probabilities 1 – p01 and p11, and
the mean wet-day amount µ. For this site, it is evident that year-to-year precipitation
variability includes contributions both from random within-year fluctuations, and from
contributions deriving from more systematic longer-period variations in these three
parameters.

Figure 4 Annual time-series of the spring (a) conditional dry-day
probabilities, p00, (b) conditional wet-day probabilities, p11, and (c)
mean wet-day amounts, µ at Kempsford, UK, 1881–1990

(c)

(b)

(a)
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It has been found that a relatively simple and straightforward approach to simulating
interannual variability better is to condition the weather generator parameter set on a
covariate. That is, different parameter sets are chosen for simulation in different years,
depending on the value of some external variable. For example, much of the variation
evident in Figure 4 is strongly correlated with large-scale, free-atmosphere vorticity
over Britain (Wilby, 1997). Simple covariates that have been used successfully to
condition the choice of stochastic model parameters include the monthly statistics
themselves (Wilks, 1989), long-range forecasts of the monthly statistics (Briggs and
Wilks, 1996), or even random numbers (Jones and Thornton, 1997). Katz and Zheng
(1999) used a ‘hidden’ mixture approach to capture some interannual variability not
exhibited by a stationary weather generator formulation.

More commonly, the stochastic model parameters are conditioned on some aspect of
large-scale atmospheric circulation (e.g., Hay et al., 1991; Bardossy and Plate, 1992;
Woolhiser et al., 1993; Hughes and Guttorp 1994a; Katz and Parlange, 1993; 1996; Wallis
and Griffiths, 1997; Kiely et al., 1998) or by a hierarchy of precipitation mechanisms (e.g.,
Sansom and Thomson, 1992). For example, Wilby (1995) simulated daily precipitation
for sites in the UK using the Lamb Weather Type (Lamb, 1972) (LWT) categories, sub-
classified by the presence or absence of weather fronts. Table 1 compares the probability
of a frontal system under anticyclonic, cyclonic and purely directional airflows, as well
as the corresponding likelihood of precipitation occurrence at Kempsford, UK. From
such information LWTs may be used to condition both the probability of frontal
weather (over the British Isles as a whole) and the occurrence of precipitation at
individual stations. However, the veracity of weather pattern models depends upon the
chosen weather classification system and on the observed links between model
parameters and circulation classes remaining constant through time (Wilby, 1994; 1997).
More recent examples of the circulation-based weather generators have favoured the
use of continuous atmospheric variables as an alternative to conditioning by discrete
weather categories (e.g., Conway et al., 1996).

In a comparable study of interannual precipitation variability at selected sites in the
UK, Wilby (1998) employed the North Atlantic Oscillation Index (NAOI) and North
Atlantic sea surface temperature (SST) anomalies as conditioning variables. For
example, Figure 5 demonstrates that weak but statistically significant correlations may
be detected between p11, p00 and µ, and spring (March–May) North Atlantic SST
anomalies, 1901–90. It is noteworthy that for this site – with the exception of the spring
p11 parameter – the correlation strengths were not generally improved by lagging the
SST anomalies (cf. Colman, 1997). In this unusual case, spring wet-spell persistence p11
at Kempsford, Cotswolds, UK was most strongly correlated with SST anomalies in the
preceding winter (November–December). However, the over-riding implication of the

Table 1 The probability of frontal weather (F > 0) and of precipitation occurrence (π)
by circulation type at Kempsford in the Cotswolds, UK, 1970–90

Circulation type Probability (F > 0) Probability (π) (F > 0) Probability (π) (F = 0)

Anticyclonic 0.58 0.15 0.10
Cyclonic 0.75 0.74 0.65
Directional 0.70 0.53 0.40
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study was that the realism of stochastic rainfall models may be enhanced using
mixtures of slowly and rapidly varying conditioning variables (in this case, monthly
SST anomalies and daily vorticity, respectively).

Figure 5 The relationship between spring North Atlantic sea surface
temperatures and spring (a) conditional dry-day probabilities, p00,
(b) conditional wet-day probabilities, p11, and (c) mean wet-day
amounts, µ at Kempsford, UK, 1901–90

(c)

(b)

(a)
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IV Weather generator applications

1 Modelling of weather and climate-sensitive systems

As mentioned above, much of the motivation for the development of weather generator
models has been to support computer models of crop growth and development. Widely
distributed crop modelling packages include built-in weather generation algorithms as
a standard component (e.g., Richardson and Nicks, 1990). Richardson (1985) outlines
the use of long synthetic weather series to estimate more smoothly (than with a com-
paratively short observed climate record) the frequency distributions of simulated
wheat yields. Long synthetic weather series have also been used to examine the impact
of extreme weather events or severe droughts on crop behaviour (e.g., Mearns et al.,
1984) or long-term rates of soil erosion (e.g., Favis-Mortlock et al., 1991; 1997). Stern et
al. (1982) computed weather statistics of relevance to a particular agricultural setting, by
deriving them from a fitted weather generator model without having to rely directly on
their occurrence frequencies in a short observed record. WGEN models have also found
application in sensitivity studies of crop model responses to changes in climatic
variability that can be controlled through judicious adjustments of the generator
parameters (Nonhebel, 1994; Semenov and Porter, 1995; Mearns et al., 1996; Riha et al.,
1996).

Weather generators also provide an attractive way to provide weather inputs for
ecological models. Friend et al. (1997) obtained principal driving variables for a com-
prehensive terrestrial ecosystem dynamics model from a WGEN-type generator.
WGEN techniques were also used to construct high-resolution, gridded daily
bioclimatic data sets using monthly station data in the Vegetation/Ecosystem Modeling
and Analysis Project, VEMAP (Kittel et al., 1995). This data set has facilitated analyses
of the spatial variability in ecosystem processes at the continental scale, as well as
ecosystem sensitivity to climate change (Schimel et al., 1997). Similarly, He (1997) used
simulated weather to study hydrologic effects on the Great Lakes of increasing water
withdrawals for the irrigation of nearby crop lands. Pickering et al. (1988) used
generated weather series to investigate effects of weather variability on pollution
movement through hydrologic systems.

2 Simulation of missing weather data

Another common use of stochastic weather models is the estimation of missing meteo-
rological data. One pervasive problem in crop modelling is that very few locations
report daily solar radiation data, but this meteorological variable is critically important
for simulation of both photosynthesis and evaporation, and thus all aspects of plant
growth and development. Richardson and Wright (1984) and Hanson et al. (1994)
provide maps for the USA on which the radiation statistics µ3,0, µ3,1, σ3,0 and σ3,1 (cf.
Equation 10) are interpolated as smooth contour plots. Similarly, Dennett et al. (1983)
describe the spatial interpolation of weather generator parameters to evaluate
agricultural potential at a site between two locations where weather observations are
available, and Hutchinson (1986; 1995) describes spatial interpolation of weather
generator parameters more generally.

A different kind of missing-data problem occurs when only monthly or seasonal
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statistics are available for a site, and weather generator parameters are needed for
simulation at the daily timescale. Since the monthly statistics (Equation 11, for precipi-
tation) depend on the daily parameters, one can exploit these relationships to develop
specifications for the daily parameters in terms of the known monthly statistics. The
accuracy of this process is improved for locations at which the average number of wet
days per month (and thus the unconditional probability of a wet day, π) is available, in
addition to the monthly precipitation totals from which the monthly precipitation mean
and variance can be computed. Hershfield (1970) found approximately linear relation-
ships for selected USA locations between πand the two Markov transition probabilities
(1), and Hutchinson (1986) confirmed (different) linear relationships for these variables
in Australian data. Geng et al. (1986) extended this kind of empirical linear ‘inverting’
of (11) to include the gamma distribution (6) parameters α and β, and for varied
climates in different parts of the world. However, Hutchinson (1995) has pointed out
that such linear, empirical specification equations are valid only over the range of their
calibration data, and thus can lead to serious errors or even nonsense (e.g., negative
probabilities) if extrapolated too far. A more theoretically satisfying approach to this
problem is to use (11) directly to define the relationships between the daily parameters
on the right-hand sides, in terms of the monthly or seasonal statistics on the left-hand
sides (e.g., Katz, 1996; Wilks, 1992; 1999b).

3 Downscaling, and regional climate change scenarios

Another application where weather generators have found much use is in the con-
struction of ‘scenarios’ of climate change, in order to investigate the impacts of those
changes as portrayed by response models. Weather generators are attractive here
because long samples of future climatic data are clearly not available, but estimates of
the consequences of prospective climate changes are needed with some urgency. In this
context, the relationships between daily weather generator parameters and climatic
averages such as (11) can be used to characterize the nature of future daily statistics on
the basis of more readily available time-averaged climate-change information. The
resulting weather generator models are then used to simulate daily series of indefinite
lengths representative of altered climates (Wilks, 1992; Katz, 1996). Another appealing
characteristic of using weather generators for climate-change studies is that changes in
climatic variability, in addition to changes in climatic means, can be easily simulated.

The relationships between the parameters characterizing weather series at different
spatial scales can also be used to ‘downscale’; i.e., disaggregate from large (climate
model) to local scales before impact simulation (Dubrovsky, 1997; Semenov and Barrow,
1997; Wilks, 1999b). Most such climate-change impacts assessments have been
concerned with agriculture (e.g., Wilks, 1988; Kaiser et al., 1993; Mearns et al., 1997;
Semenov and Barrow, 1997) although weather-generator methods have also been used
to simulate effects of climate changes on ecosystem dynamics (Strandman et al., 1993),
erosion potential (Favis-Mortlock and Boardman, 1995) and other aspects of hydrology
(Valdes et al., 1994; Wilby et al., 1994).
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V Future directions

1 Simultaneous weather simulation at multiple sites

The stochastic weather models described so far are of limited value for modelling
certain spatially distributed processes. That is, using these relatively simple single-site
models for simultaneous simulation of weather sequences at multiple points, for
example to evaluate regional hydrological or agricultural behaviour, requires that the
quite strong spatial correlation in weather be ignored.

One approach to simultaneous weather simulation at multiple locations is through
the multivariate normal distribution (e.g., Wilks, 1995), the properties of which are very
well known, and which is very convenient conceptually and computationally. Bardossy
and Plate (1992) and Hutchinson (1995) have described multisite precipitation
simulation based on the multivariate normal, which relies on transformation of distrib-
utions of daily precipitation at the sites to normal distributions. This model tacitly
assumes that the same characteristic spatial scale applies to both precipitation
occurrence and precipitation amount, and also has some difficulty capturing the inter-
mittent (mixed discrete and continuous) nature of precipitation fields.

Another approach to simultaneous weather simulation at multiple sites is through
models that explicitly (but stochastically) simulate the spatially distributed physical
phenomena that generate weather. These have been primarily models of precipitation
(e.g., Waymire et al., 1984; Cox and Isham 1988). A somewhat similar approach is the use
of ‘hidden’ Markov models to simulate stochastically the effects of large-scale
atmospheric circulation on local weather (e.g., Hughes and Guttorp, 1994b; Hughes et
al., 1999).

Recently Wilks (1998) described a generalization of the precipitation part of simple
WGEN-type models, described in previous sections, to simultaneous weather
simulation at multiple sites. Wilks (1999c) extends this approach to include nonprecip-
itation variables also. Here the idea is to retain the single-site model parameters at each
location to be simulated, and to drive each of these local WGEN models with random
numbers that are spatially correlated. The key step in constructing such a model is then
specification of the spatial correlation structure of the random numbers, which can be
done using a straightforward, empirical algorithm.

2 Modelling interannual climate variability

As noted previously, seasonal and interannual climate variability is not always
captured adequately by conventional weather generators. This deficiency is an artifact
of the simplifying assumptions made by the models and/or the absence of low-
frequency predictor variables. Further to Wilby’s (1998) analysis of precipitation data
for central England, Figure 6 shows spatial variations in the correlation strengths
between the NAOI and seasonal p11 series for the period 1961–90 using a network of
over 90 precipitation stations distributed throughout the British Isles. It is evident that
the strongest positive correlations actually occurred in northern and western Scotland,
the English Lake District and Wales, with a marked west–east gradient in the
correlation field for winter (DJF). The same season had weak (and statistically insignif-
icant) negative correlations in central and south-east England. During the transitions
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Figure 6 Correlations between the seasonal North Atlantic
Oscillation Index and conditional wet-day probabilities, p11 across the
British Isles, 1961–90. Correlation coefficients of ± 0.35 are significant at
p = 0.05
Source: Wilby et al. (1999)
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between winter and spring (MAM), and then from spring to summer (JJA), there were
progressive retreats of the area of significant positive correlations and an expansion of
the negative correlation field. For summers there was a breakdown of the dipole pattern
with statistically insignificant correlations over all the British Isles. However, by
autumn (SON) significant positive correlations emerge once again in northern and
western Scotland.

The correlation fields shown in Figure 6 have two implications for weather
generation. First, it is clear that the modest gains in the simulation of seasonal precipi-
tation reported for Wilby’s (1998) model reflect the location of the two test sites (i.e.,
Kempsford, central England, and Durham, northeast England) with respect to the
regions of strongest forcing. Had sites been chosen in highland Scotland, for example,
it is probable that the incorporation of the slowly varying predictor (i.e., the NAOI)
would have yielded more significant gains in model performance relative to the
vorticity-only model, particularly in winter. Secondly, it is evident that the strength of
NAOI forcing of WGEN parameters is highly seasonal, accounting for as much as 40%
of the interannual variability in wintertime p11 over parts of western Scotland, but
having little or no influence in summer at the same sites. Therefore improved repre-
sentations of interannual precipitation variability in downscaling schemes by means of
low-frequency predictor variables (such as the NAOI) will be spatially and seasonally
specific.

The strength of correlations between slowly varying predictors and WGEN
parameters at individual sites may also be increased by optimizing the predictor
domain. This is accomplished by inverting the correlation search, using a fixed target
site (e.g., Kempsford) and searching a global predictor set for the spatial domain of
strongest correlation(s). For example, the weak positive correlation (shown in Figure 5a)
between spring p00 and North Atlantic SST anomalies was obtained using sea-surface
temperature anomalies averaged over the domain 40° N – 60° N, 35° W – 5° E.
However, as Figure 7 indicates, this domain (shown by the grey shading) only partially
samples the region of significant correlations. Given the correlation field for spring, it
would be legitimate to employ a predictor domain that extends further south, even as
far as 20° N. Alternatively, the shape of the predictor domain might be modified in the
case of autumn (when weak and/or negative correlations at the western edge of the
domain ‘dilute’ the strongly positive correlations to the east). In the case of summer and
autumn it might even be reasonable to employ an additional predictor domain such as
the ocean region off the eastern seaboard of the USA.

The preceding examples suggest that slowly varying predictors have explanatory
power for certain meteorological variables, in certain regions and seasons, under
present climate conditions. However, the validity of using such empirical relationships
for statistically downscaling future precipitation will depend on 1) the ability of GCMs
faithfully to reproduce large-scale forcing patterns (such as the NAO) under current
climate conditions (see, for example, Davies et al., 1997; Osborn et al., 1999); 2) the extent
to which global warming will affect future interdecadal climate variability (e.g.,
Trenberth and Hoar, 1997); and 3) the stationarity of the empirical relationships
between mesoscale forcing and local-scale meteorological responses (Wilby, 1997).
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Figure 7 Correlations between seasonal SSTs and conditional dry-day probabilities (p00) at Kempsford, UK,
for the period 1881–1990. Positive correlations are indicated by solid isolines, a dotted line is the zero
correlation isoline and negative correlations are indicated by dashed isolines. The contour interval is 0.1 and
correlation coefficients of ± 0.2 (thicker isolines) are significant at p = 0.05. The predictor domain used by
Wilby’s (1998) downscaling model is shown in grey
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3 Nonparametric approaches

Finally, we conclude with a brief description of nonparametric (i.e., not requiring that
particular theoretical probability distributions be assumed) approaches to stochastic
simulation of weather series. Many modern nonparametric statistical methods involve
‘resampling’ (e.g., Efron, 1982), which means that large ersatz samples are synthesized
by repeatedly but randomly copying data values from an existing finite record. For the
case of weather series, an important complication that usually invalidates simple
resampling schemes is the prominent time correlation evident in these data, the
modelling of which is the subject of much of this review. That is, simply concatenating
a random sample of daily weather data (even if restricted to a single month or season)
will simulate the original series poorly because the prominent time correlation will be
destroyed by the resampling process.

More complex procedures to resample weather series in ways that also capture the
important time correlations have been described by Young (1994), Lall and Sharma
(1996), Lall et al. (1996) and Rajagopalan et al. (1997). Recently, Bardossy (1998) has
proposed the use of an algorithm known as simulated annealing to reshuffle simple
resampled data in a way that important statistical properties of the original series
(especially, but not limited to, the time correlation) are reconstituted also. The simulated
annealing approach is quite intensive computationally, but may prove to be especially
useful for simulating series with very short (minutes or hours) time steps.

These nonparametric methods are attractive in that subjective judgements about
most appropriate model forms and probability distributions are avoided, and
furthermore as data-based methods they can capture deviations from theoretical
probability distributions for the individual variables, and nonlinearities in the relation-
ships among variables. On the other hand, being based wholly on the observed data
they are somewhat limited in the range of extreme values that can be generated,
although ‘smoothed’ resampling schemes (e.g., Rajagopalan et al., 1997) ameliorate this
problem somewhat. Another difficulty with the nonparametric methods for some appli-
cations is that future climate regimes cannot be easily constructed through simple
parameter adjustments.

VI Concluding remarks

From the preceding review it is evident that there have been considerable advances in
weather generation research in the 150 years since Quetelet’s pioneering study. As in
many other branches of meteorology there is an ongoing need for critical assessment of
emergent techniques as well as for comparisons between conventional and refined
model formulations. The widespread and growing use of regionally specific, environ-
mental impacts models implies a corresponding demand for high integrity weather
data. For as long as there remains a mismatch between the data that our limited obser-
vational networks can supply and that which the impacts community requires, there
will be a continuing need for statistical weather generation.
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