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Introduction
Ideas/Motivations

@ State Space Models & Data Assimilation, general context

{ X(t) = M(x(t —1),€(t))  hidden
y(t) = H(x(t),n(t)) observed

Problem: reconstruction of x given observations y
— data fusion, forecasting, reanalysis

@ Application in meteorology or oceanology

Models M Observations

- are biased - Satellite (ex SST 40 years)

- need forcings, boundary conditions, - In situ (ex rain 100 years)

etc. (- Numerical weather models output. )
- need high computational cost — hudge databases

@ Idea: replace the numerical model M by a data driven (Machine Learning) model
M; learned on the available databases.
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Particle filter (smoother)

@ At each time t, estimation of p(x¢|y1,- -+, ¥t)

Forecasting step

Introduction

A sample of particles is generated according to the model
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@ Estimation of p(x¢|y1,- -, ¥1) (smoothing) needs a backward pass (CPF AS-BSS).
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Introduction
General problem, fundamental ingredients

missing data Reconstruction
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EM-like algorithm: ML + smoothing +
non-parametric estimate of m and @ based on LLR
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Introduction
Toy example

@ Model
X = sin(3X,_1) + Q'/%¢;, e ~N(0,1)
Y = X; + R'/2q;, nt ~ N(0,1)
@ Joint distribution of two successive variables in 1000-catalogs, (Q=R=0.1).

perfect catalog C,, noisy catalog C,,

Xt

@ Problem
Estimation of Q, R and joint distribution of (X;_1, X;) (black scatter plot) given only
{Vt}t=1,... 7 (blue scatter plot)
Remark: M(x) = sin(3x) is unknown.
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Introduction
Results

@ 10 repetitions of EM-like algorithm for T = 200, T = 500, T = 1000.
@ CPF-BSS is run with N¢ = 20 filtering particles and Ns = 2 smoothing realizations.
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@ EM-like algorithm converges to the true value if the catalog is large enough.
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Introduction
Results

@ Joint distribution of of (X;_1, X;) learned in 1000-catalogs after 100 iterations of
EM-Ilike algorithm.

perfect catalog C, noisy catalog C), simulated catalog C'

Xt

@ MSE between true state and estimated state

MSE (M,R) (Cp,R)  (Cn,R) (Cp,R) (Cn,R) (C,A)
smoothing | 0.0475 0.0477 0.0604 0.0519 0.0589 0.0503
- The true model can be replaced by local linear regression.
- The EM like algorithm coupled to a smoothing algorithm allows to estimate the
hidden state given noisy observations.
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Introduction
Concluding remarks

@ Smoothing+Machine learning: the developped method allows to reconstruct the
hidden state given noisy observations (for additive noise).

@ Other studies have being done for higher dimensional data (without estimation of
noise) [P. Tandeo et al.].
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@ Some libraries have been developed in Matlab and Python.
@ Next steps

- Mathematical properties of the smoother/estimators

- Spatio-temporal dynamic kernels

- Real data
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