Filtering and smoothing with non parametric state space models

V. Monbet ¹ joint work with T. T. Trang Chau¹, P. Ailliot² Collaboration with P. Tandeo ³, A. Cuzol ⁴ (part of inter-labex SEACS project)

> ¹Université de Rennes 1/IRMAR & INRIA/Aspi, ²UBO/LMBA, ³IMT-Atlantique (Brest), ⁴UBS/LMBA

Ideas/Motivations

State Space Models & Data Assimilation, general context

 $\begin{cases} x(t) = \mathcal{M}(x(t-1), \epsilon(t)) & \text{hidden} \\ y(t) = \mathcal{H}(x(t), \eta(t)) & \text{observed} \end{cases}$

Problem: reconstruction of x given observations y

 \rightarrow data fusion, forecasting, reanalysis

Application in meteorology or oceanology

Models M

- are biased

- need forcings, boundary conditions, etc.

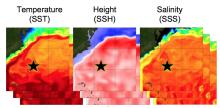
- need high computational cost

Observations

- Satellite (ex SST 40 years)
- In situ (ex rain 100 years)
- (- Numerical weather models output.)
- \rightarrow hudge databases

• Idea: replace the numerical model $\mathcal M$ by a data driven (Machine Learning) model

 \mathcal{M}_t learned on the available databases.



Particle filter (smoother)

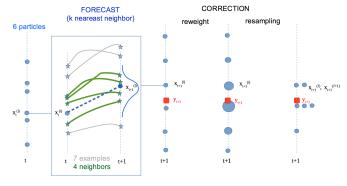
• At each time *t*, estimation of $p(x_t|y_1, \dots, y_t)$ Forecasting step

A sample of particles is generated according to the model

$$x^{(i,f)}(k) = \widehat{\mathcal{M}}_t\left(x^{(i,a)}(k-1), \epsilon^{(i)}(k)\right), \ i = 1, \cdots, N$$

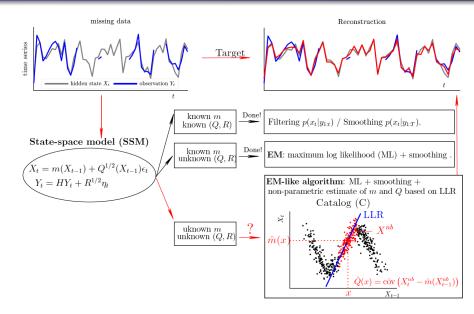
Correction step

The particle set $\{x^{(i,f)}(t)\}_{i=1,\dots,N}$ is resampled according to the likelihood to match the current observation $y^{(f)}(t)$



• Estimation of $p(x_t|y_1, \dots, y_T)$ (smoothing) needs a backward pass (CPF AS-BSS).

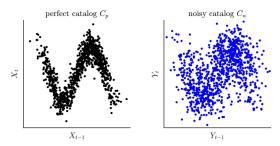
General problem, fundamental ingredients



Toy example

Model

- $\left\{ \begin{array}{ll} X_t = \sin(3X_{t-1}) + Q^{1/2}\epsilon_t, & \epsilon_t \sim \mathcal{N}(0,1) \\ Y_t = X_t + R^{1/2}\eta_t, & \eta_t \sim \mathcal{N}(0,1) \end{array} \right.$
- Joint distribution of two successive variables in 1000-catalogs, (Q=R=0.1).

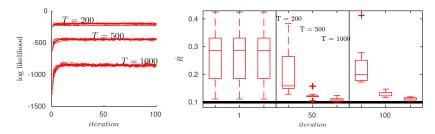


Problem

Estimation of Q, R and joint distribution of (X_{t-1}, X_t) (black scatter plot) given only $\{y_t\}_{t=1,\dots,T}$ (blue scatter plot) Remark: $\mathcal{M}(x) = \sin(3x)$ is unknown.

Results

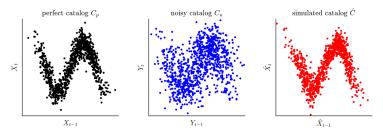
- 10 repetitions of EM-like algorithm for T = 200, T = 500, T = 1000.
- CPF-BSS is run with N_f = 20 filtering particles and N_s = 2 smoothing realizations.



• EM-like algorithm converges to the true value if the catalog is large enough.

Results

 Joint distribution of of (X_{t-1}, X_t) learned in 1000-catalogs after 100 iterations of EM-like algorithm.



• MSE between true state and estimated state

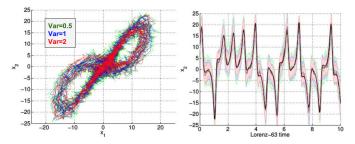
MSE	(\mathcal{M}, R)	(C_p, R)	(C_n, R)	(C_p, \hat{R})	(C_n, \hat{R})	(\hat{C}, \hat{R})
smoothing						

- The true model can be replaced by local linear regression.

- The EM like algorithm coupled to a smoothing algorithm allows to estimate the hidden state given noisy observations.

Concluding remarks

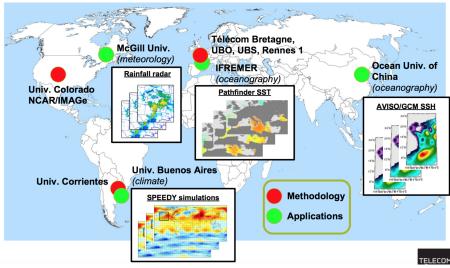
- **Smoothing+Machine learning**: the developped method allows to reconstruct the hidden state given noisy observations (for additive noise).
- Other studies have being done for **higher dimensional** data (without estimation of noise) [P. Tandeo et al.].



• Some libraries have been developed in Matlab and Python.

Next steps

- Mathematical properties of the smoother/estimators
- Spatio-temporal dynamic kernels
- Real data



Ref: P. Tandeo (IMT-Atlantique, Brest)