Séries temporelles de direction de vent

Pierre Ailliot¹, Julie Bessac², Valérie Monbet², Françoise Pène¹

²LMBA, Brest ²Univ. Rennes 1/IRMAR + INRIA/ASPI

October 24, 2014

Donnés de direction de vent

- Motivations
 - Météo
 - Pollution
 - Dimensionnement d'ouvrages
 - Covariable (vague, vitesse vent)
- Données (Ouessant, 44 ans, Δt = 6 h, mois de janvier et février)
 - Variables circulaires définies sur $\mathbb{R}/2\pi\mathbb{Z}$
 - Bimodalité (régimes)
 - Sens de rotation privilégié
- Difficultés
 - On perd les outils basés sur des distances usuelles.
 - Modèles non linéaires (régimes latents)
 - Transitions non homogènes entre les régimes

Mardia'75, Fisher'93, Mardia et Jupp'07, Holzman et al.'06, Hugues'07

Modèles de séries temporelles pour les données circulaires

• Discrétisation (Breckling, 89), (Holzmann, 06): 36 classes \rightarrow chaine de Markov

Taille de la matrice de transition...

• Wrapped Gaussian : $\Phi = Y \mod 2\pi$ avec Y de densité g

$$p(\Phi; heta) = \sum_{-\infty}^{+\infty} g(\varphi + 2k\pi), 0 \le x < 2\varphi$$

souvent difficile à calculer

- Modèle autorégressif de von Mises
 - Densité von Mises

$$f_{VM}(\Phi; \varphi, \kappa) = rac{1}{2\pi l_0(\kappa)} \exp(\kappa \cos(\Phi - \varphi)) = rac{1}{2\pi l_0(\gamma) l} \left| e^{\gamma e^{-i\Phi}} \right|$$

AR(p) pour les variables circulaires

Modèle autorégressif de von Mises

• Un processus $(\Phi_t)_{t \in \mathbb{Z}}$ est appelé processus autorégressif de von Mises d'ordre *p*, si

$$\begin{aligned} p(\Phi_t | \Phi_{t-1}, \cdots, \Phi_{t-p}) &= \frac{1}{b_t} \exp\left(\kappa_0 \cos(\Phi_t - \varphi_0) + \sum_{\ell=1}^p \kappa_\ell \cos(\Phi_t - \Phi_{t-\ell} - \varphi_\ell)\right) \\ &= \frac{1}{b_t} \left| \left(\left[\gamma_0 + \sum_{\ell=1}^p \gamma_\ell e^{i\Phi_{t-\ell}} \right] e^{-i\Phi_t} \right) \right| \end{aligned}$$

 $\bullet\,$ Pas de bimodalité \to mélange de processus autorégressifs

Ref : Breckling'89

Non homogeneous MS-AR

Processus autoregressif à chaine de Markov cachée non homogène

- La distribution de $X_t|\{X_{t'}\}_{t' < t}$, $\{\Phi_{t'}\}_{t' < t}$ ne dépend que de X_{t-1} et Φ_{t-1} et on note $p_1(x_t|x_{t-1}, \phi_{t-1}) = P(X_t = x_t|X_{t-1} = x_{t-1}, \Phi_{t-1} = \phi_{t-1})$.
- La distribution de $\Phi_t | \{\Phi_{t'}\}_{t' < t}, \{X_{t'}\}_{t' \le t}$ ne dépend que de X_t et $\Phi_{t-1}, \dots, \Phi_{t-p}$ $\rightarrow p_2 \left(\phi_t | x_t, \phi_{t-p}^{t-1}\right).$

- Remarques : cadre général
 - Si $p_1(x_t|x_{t-1}, \phi_{t-1})$ ne dépend pas de $\phi_{t-1} \rightarrow MS$ -AR classique qui inclut les HMM (p = 0).
 - Si M = 1, $\{\Phi_t\} \rightarrow AR(p)$.
 - Si p_{1,θ}(x_k |x_{k-1}, φ^{k-1}_{k-s}) ne dépend pas de x_{k-1} et est paramétrisé en utilisant une fonction indicatrice → Threshold AutoRegressive (TAR) Ref : Tong'90.

Non homogeneous MS-AR pour les variables circulaires

NHMS-AR pour la direction du vent

• L'évolution de la direction est modélisée par un AR von Mises

$$p_{2}(\Phi_{t}|x_{t}, \Phi_{t-s}^{t-1}) = \frac{1}{b(x_{t}, \Phi_{t-s}^{t-1})} \left| \exp\left(\left[\gamma_{0}^{(x_{t})} + \sum_{\ell=1}^{s} \gamma_{\ell}^{(x_{\ell})} e^{i\Phi_{t-\ell}} \right] e^{-i\Phi_{t}} \right) \right|$$

avec $\gamma_\ell^{(x)} = \kappa_\ell^{(x)} e^{i \varphi_\ell^{(x)}} \in \mathbb{C}$ pour $x \in \{1, ..., M\}$

• La probabilité de transiter d'un régime dépressionnaire à un régime anticyconique est plus grande quand le vent souflle du Nord que du Sud

$$p_1(x_t|x_{t-1},\phi_{t-1}) \propto q_{x_{t-1},x_t} f_{VM}(\phi_{t-1};\lambda_{x_{t-1},x_t},\psi_{x_{t-1},x_t})$$

- Estimation des paramètres : algorithme EM
 E-step : Forward-Backward non homogène
 M-step : estimateurs du maximum de vraisemblance (optimisation numérique)
- Consistence et identifiabilité (à une permutation près)

Choix du modèle

- $\bullet\,$ Les modèles non homogènes ont des BIC plus faibles que les modèles homogènes $\rightarrow \textit{NH}$
- Les modèles d'ordre 2 ont un BIC plus faible que les modèles d'ordre 1 $\rightarrow p = 2$
- Les BIC sont les plus faibles pour des modèles à 3 ou 4 classes.
- Le modèle à 4 classes permet de mieux reproduire la loi marginale $\rightarrow M = 4$

	М	1	2	3	4	5	6	k
Model	р	BIC						
HMS-EVM	1	7778	6326	6334	6307	6277	6385	M(M-1)+4M
NHMS-EVM	1	7778	6266	6171	6141	6158	6372	M(M+1)-1+4M
HMS-EVM	2	7568	5952	5979	5963	6051	6075	M(M-1)+6M
NHMS-EVM	2	7568	5882	5872	5882	5968	6075	M(M+1)-1+6M

Quelques résultats

• Probabilités de transition

Quelques résultats

• Lois marginales

 Structure d'ordre 2 MSAR

NH-MSAR

- Pour les directions
 - La distribution de von Mises est naturelle pour les données circulaires.
 - On en déduit un modéle auto-régressif.
 - Pour les directions de vent, on construit un modèle autorégressif à changements de régime non homogènes, qui permet de reproduire les cycles observés sur les données.
- Plus généralement
 - MSAR non homogène fournissent un cadre souple et interprétable.
 - L'inférence reste assez simple.
 - On peut les généraliser : MS-VAR, ajout de covariables, modèles spatio-temporels, etc.
 - Principale difficulté : contraindre les marginales.

Ref : Ailliot et al. '14