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Rain in the continental Tropics 

● Monsoon regime

● Predominance of convection

● In the Sahel: Mesoscale Convective Systems
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How much information does a rain / no rain mask 
contain ?   

● RRad(x, y, t) :series of instantaneous radar rain fields 
measured by Xport radar in Burkina Faso in 2012, 
aggregated to a spatial resolution of 2.8 km, 7.5 min 
sampling period.

● RRad are binarized by thresholding to generate a mask 
MRad:

MRad and Rrad have same mean and variance by 
construction.

=> Multiscale comparison of MRad and Rrad through 
wavelet transform.
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Spectral comparison of MRad and RRad   

● Spectral energy:

  Quasi-indentical

● Spectral energy of the difference:

  The two fields are significantly 
different only for scales finer than 
22 km and 30 min. 

=> At 1°, 1day, the correlation 
between PF and R is 0.96
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Spectral comparison of MRad and MTAP   

● Spectral energy:

 - Similar spectra

 - Small deficit of variance for 
TAPEER's mask in fine scales (<5.6 
km and <30min): radar rain mask is 
more scattered.
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Spectral comparison of MRad and MTAP   

● Cospectral energy:

    concentrated around 
    45 km, 2~4 h

● Wavelet coefficients' correlation: 
(wavelet coherence)

    consistency of large scales        
    variations, fine scales nearly     
    uncorrelated 
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Toward a probabilistic approach of rain detection
● At high resolution the relation between clouds IR brightness temperature and 

the occurrence of precipitation is not deterministic: FAR>0.45 at 3km 
resolution.

● This advocates for a probabilistic approach of rain detection from satellite.    

● Fine scale variations in satellite rain masks are not representing actual rain / 
no rain variability. These random variations can be considered as a ''noise''. 
Let's suppress it ! 

=> Wavelet based optimal filtering (Turner et al. 2004): wavelet coefficients 
are weighted to minimize the mean square difference with the radar mask. 
Large scale coefficients are retained, small scale ones are filtered out.   

Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of Precipitation from Continental Radar Images. Part 
III: Operational Nowcasting Implementation (MAPLE). J. Applied Meteorology, 43(2), 231-248.
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Wavelet-based optimal filtering

● Wavelet transform :    M(X)  => WM(X, LS, LT) 

● Weights determination for filtering:    

α(LS, LT)  =  cov(Wsat(LS, LT), Wradar(LS, LT)) / var(Wsat(LS, LT))

● Inverse WT :    α(LS, LT) WI(X, LS, LT) => IOF(X)

●  MOF is no more a mask. It is the mean value of  M over a fuzzy neighborhood 
around (x,y,t). It can be interpreted as a probability of rain, or a precipitating 
fraction. 

  

8

Filtering

MTAP
MOF



Residuals analysis after filtering

● Residuals MOF-Mrad analyzed through 
wavelet transform

● Distribution of wavelet coefficients: 

A Pearson-type model at each scale 

● Autocorrelation: rapidly decreasing
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Wavelet-based optimal filtering + random signal

● Stochastic re-generation of the filtered-out fine scale variability.

● Inverse WT :    α(LS, LT) WM(X, LS, LT) + βrand(X, LS, LT) => Mrand(X)

● Because the result Mrand must be bounded between 0 and 1 some control is 
necessary: generated random variations are normalized (by the local value of 
the PF). 

● The IWT is not performed down to the finest scale to avoid discretization 
issues.
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Generated PF fields properties
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Variances at scales  (8h,1°) (4h,0.5°) 
(2h,25km) (1h,12km) (30min,6km)

Spatial variograms

Temporal variograms

2012 season radar data for the learning 
2013 season for validation



Generated PF fields properties
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Precipitating fractions at 6km, 30min resolution



Simulating Rcond variability

● Estimated value of Rcond at the resoltion 1° × 1° × 8h

● Fine scale Rcond variability generated through  a mutiplicative cascade:

- A “volume” 2Δx*2Δy*2Δt is devided into 8 sub-volumes Δx*Δy*Δt  

- Rcond,1/8 = τR *  Rcond with τR randomly drawn from a pre-defined distribution

- The distribution for τR depends 

on τ = FP1/8 / FP . It is parmetrized

as a gamma.
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Generated R fields properties
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Distribution of 6km, 30min rain rates:

2013 rainy season (May-October)  

Simulated sequence (2013-05-27)

Radar observed

Simulated

15:30 16:00 16:30



Diurnal Cycle of rain occurrence 
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Mean diurnal cycle, 2012-2013

Black dots:
raw satellite 
detection fields

Colored lines: 
simulated 
ensembles

The filtering and adding of random variations preserved the diurnal cycle.



Conclusions 

● A convenient framework to use time-area averages as constrain.

● At each scale the variations are partially deterministic and partially stochastic.

● The autocorrelation is constrained through the wavelet energy spectrum.

● Temporal and spatial variability handled by one process.  

● The method can be seen as a stochastic downscaling or constrained simulation.

● Enables to quantify uncertainty on estimated precipitating fraction / cumulated 
depth at any resolution.  

 



Perspectives   

● A more global perspective: how variable are the estimated parameters in space and 
time?

 => Verify it using radar data from other climatic areas. For spatial-only variability 
spaceborne radars (TRMM-PR, GPM-DPR).     

● A better way to handle Rcond variability. Under sahelian weather this variability is 
essentially driven by the convective or stratiform type of precipitation

● Use the generated fields to force an hydrological model.
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