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Model evidence: a key quantity Definition and interpretation

Model evidence — Definition & Interpretation

» Model evidence p(yx.| M) = p(yk:) = p(YK, Yk—1, -, ¥—oc)
= Likelihood of (the infinite from the far past) observation sequence

plyr) = / dx plyk:x)p(x) (1)

It is the marginal likelihood of the data.
p(x) plays the role of the prior.
It depends on the underlying dynamics (the model).

If the dynamics is ergodic = p(x) is the invariant distribution on its attractor.

p(yx:) reflects this invariant distribution at a level of accuracy dependent on the
observation model.

@ We define p(yk:) as the climatological model evidence.

I (57 R G e Wiy 37201613730



Model evidence: a key quantity Definition and interpretation

Model evidence — Its applications

@ The marginal likelihood can be used as a general metric for model selection and
comparison.

@ Comparing the skill of several candidate models (or model settings, or boundary
conditions) in representing a given observed phenomenon.

@ Calibrating the state-space model's parameters based on the observed data by
maximizing the marginal likelihood.

@ Quantifying the evidence supporting several (potentially conflicting) theoretical
hypothesis associated to the physics of a phenomena.

@ Evidencing the existence (or non-existence) of a causal relationship between an
external forcing and an observed response.
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Model evidence: a key quantity Definition and interpretation

Statistical /climatological model evidence

@ The climatological model evidence embeds significant global information about the
system of interest.

@ The accuracy of its estimate is limited by the computational difficulty implied by
the large dimension of typical relevant problems.

@ lIts climatological character does not permit to adapt it to the present condition of
the system.

@ The model evidence has been used in various contexts, including inverse problems.

@ A typical example is the estimation of the error statistics in the source term
inversion, or discriminate sources (i.e. nuclear release - Winiarek et al., 2011 Atmos.
Env.)
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Model evidence: a key quantity Contextual model evidence

From statistical /climatological to conditional/contextual evidence

» We propose using data assimilation (DA) to
© compute model evidence,

@ and/or narrow it to the present-time context.

Proposal: (leap of faith) use instead the conditional/contextual model evidence

p(yk:) = p(yk:1lyo:)

@ yk: is used for evidence diagnostic.

@ yo. is used to specify the context.
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Model evidence: a key quantity Contextual model evidence

From statistical /climatological to conditional /contextual evidence

» It narrows the climate perspective to the context at tp:

p(ykalyo:) = /dXo p(yk:1|x0)p(xolyo:) (2)

@ The conditional pdf p(xo|yo:) plays the role of the prior density and substitutes p(x)
of the climatological model evidence.

@ p(yk:1|yo:) is much easier to compute than p(yk.) (but yet complicated in many
relevant situations)

@ p(xo|yo:) is the natural (albeit approximate) outcome of the DA machinery.

@ We will show that p(yk:1|xo) can also be estimated via DA.
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Model evidence: a key quantity Contextual model evidence

Conditional /contextual evidence: A useful iterative formula

» Contextual model evidence can be computed iteratively:
P(yk:1lyo:) HP Yilyk-1:)

@ The contextual model evidence is the product of the individual contextual
model evidences!

@ The individual context evidence p(yk|yx—1:) is often a tractable output of DA
schemes.

@ We will use this decomposition in the sequel to compute model evidence
using DA:

P(yelye_r) = /dxk P(Yilxe) p(xiYior:) 3)

p(yk|xx) is the observation likelihood and p(xx|yx—1:) is the forecast state
pdf at ty.

I (57 R G e Wiy 372016781730



Model evidence: a key quantity Computing model evi using data imilation

How to compute contextual model evidence

1. Importance sampling/Monte Carlo

@ Use a DA method up to t.

@ This provides (an approximation of) p(xo|yo:).

@ Compute the model evidence via Importance Sampling/ Monte Carlo:
© sample N members from p(xolyo:) and forecast from to to tr

@ weight each member trajectory x(Tk:)0 according to their likelihood p(yT;1|x(Tk:)0),

so as to obtain
N

Ky 1
p(yr1lyo:) = ; P(yK:1|X((J ))N

@ Importance sampling (IS): use an ensemble-DA method up to to = the
assumption N < M can be used in steps (1) and (2)

@ Evaluation of model evidence using a particle filter proposed by Reich and Cotter,
2015.

I (57 R G e Wiy 372016101730



Model evidence: a key quantity Computing model evi using data imilation

2. Filtering: Linear/Gaussian case — Kalman filter

Use a DA method up to t.

This provides (an approximation of) p(xol|yo:).

@ In the Gaussian linear case (Kalman filter), the likelihood and forecast pdfs are
Gaussian

(It possible to show that) the contextual model evidence reads

e exp (3 [y — Hix 3 oo
P(yK:1|y0:) = - ——
E \/(2w)d|Rk+HkP£HE!

(4)

Ry, Pf(: observation and forecast error covariances — Hy: observation operator.
. 2 _
Notation remark: [|x||z = x" A" 'x.
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Model evidence: a key quantity Computing model evi using data imilation

2. Filtering: nonlinear/Gaussian case — ensemble Kalman filter

Using an ensemble Kalman filter (EnKF), the Kalman filter formula for model evidence
now becomes

ﬁ exp ( 2 llye = Hkxk”R +Y) YT)

kel 271' d |Rk + YkYT‘

p(yx:1|yo:)

@ Y, = H X, are the normalized observation anomalies, and X, the forecast
anomalies.

@ The inversion of R + Y, Y{ can be done in ensemble subspace.

@ The estimation is exact when the models are linear, the initial condition and
observation errors are Gaussian and when the ensemble perturbation span the full
range of uncertainty.
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3. Smoothing

Use a DA method up to tp.
This provides (an approximation of) p(xol|yo:).
Use a smoothing DA method to estimate p(yr:1|yo:)

Compute the evidence with a saddle-point approximation (Laplace method):

p(ykalyo:) = /dxo p(y7:1%0)p(xo0]yo:)
1 K
o~ /dxo exp <—2 ; llyx — HkMieo(x0)| |z, + In P(XOYO:)>

= /dxo exp (—L(yk:1,%o0))

~ exp(—E(yK;1,x8)) (5)
[V L£(x5)]

@ How to obtain x; characterizes the problem: 4DVar, En-smoother...
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3. Smoothing — En4DVar

Ensemble-4DVar (En4DVar ) (see nomenclature by Lorenc, 2013)

@ The state is parameterized in the ensemble space: xo = Xo + Xow

@ The evidence is marginalized over the coefficient vector w:
p(ykalyo.) = /dw p(yk:|w)p(wlyo:) (6)

@ Using the Laplace approximation on the analysis (the minimum w*) the evidence
reads:

exp (2 10 vk = HMico ()[R, — 3 Iw* 1)

¢@mwnﬁum\m+zL4wFRﬁw

p(yk:1lyo:) =~
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3 . Smoothing — IEnKS

(Quasi-Static) Iterative Ensemble Kalman Smoother (IEnKS)

@ The initial condition and the ensemble at t, are sequentially updated first by
assimilating y1 in the first step, then y> in the second step and so on until yk.

@ The analysis at k, x}, and the normalized anomaly matrix, X}, are both defined at
to, and used in the subsequent step.

@ Each single contextual evidence p(y«|yk—1:) corresponds to the quasi-static analysis
of the IEnKS (Bocquet and Sakov, 2014).

@ The iterative formula for model evidence and Laplace approximation on the analysis
of the IEnKS gives

K exp (_% llyx — HkMk:o(X:)‘|;k+y;(Y;)T>
p(yx:1]yo:) ~ H
k=1 \/(27r)d ‘Rk +Y;§ (YE)T‘

(8)
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Model evidence: Numerical results Setup

Model evidence — Numerical experiments

Schematic diagram of a forecast--assimilation cycle and
contextual model evidence (CME) computation

K-long evidencing window

x —
EnKF-based
% Trajectory

®
observations
True/Correct model 7%,

Incorrect model Zz,

Forced L63 Model

dx_( )4+ A t9dy_ +)\_6dz_ s
dt—ay X i cos dt—px y — xz i sin dt_Xy z

Correct A\; = 0; Incorrect Ao € {—8:8} ; 6 = 140°.

L95 Model
dxm
dt
Correct F; = 8; Incorrect Fp € {5 : 11}.
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Model evidence: Numerical results Time series

Model evidence time series

(a) L63 correct (A 1=0, K=10)

(b) L95 correct (F 1=8, K=10)

550
. T —
200 } f [ ’V ‘ U I WA \
—_ | |
> 400 i 1~ ‘
o
B_600 —IS ] % -600F
o —EnKF o
-8007— En-4D-Vai 1
-1000f—IEnKS 1 e
200 400 £00 800 1000 - 200 400 600 800 1000

time
(c) L63 incorrect (x0=8, K=10) (d) L95 incorrect (F0=1 1, K=10)

~700] "
—_— 4 - K ¥\
400 7
S -600, S -800
g '\ . S
= -800 ‘ ‘ R -850
~1000 : -900
200 400 600 800 1000 200 400 600 800 1000
time time
DA for model evidence

May 17, 2016 16 / 30



Time series
Pdf of model evidence — L63

(a) pdf of CME - correct L63 (k1=0, K=10)
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Time series
Pdf of model evidence — L95

(a) pdf of CME - correct L95 (F1=8, K=10)
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Model evidence: Numerical results Dependence on the forcing and evidencing window

Model evidence versus forcing and length of window

(a) L63 (K=10) (b) L95 (K=10)
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Model evidence: Numerical results Which is right?

Computation of the integral: Which is right?

Comparison with:

© Hermite-Gauss quadrature with 32 degrees - for L63
@ IS/Monte Carlo with 10° particles - for L63 and L95

(a) L63 correct (A ’ =0)

(b) L95 correct (F 1=8)
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Model evidence: Numerical results Discriminating power

Discriminating power versus forcing and length of window
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Premiscs
The attribution problem

Detection and Attribution (D&A) : definition

e Formal definition (IPCC guidance paper, 2009):
« Attribution is the process of evaluating the relative contributions of
multiple causal factors to a change or event with an assignment of
confidence »

Evidencing the causal influence of several factors

long term trends
(e.g. global warming)
e Focus may be either on:
weather or climate-related events
(e.g. heatwave)
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Attribution — standard approach

e Define the event based on threshold exceedance of an ad-hoc
climate index.

e Derive the likelihood of the event in two model ensembiles:
— factual world (e.g. HIST) => p1
— counterfactual world (e.g. NAT) => p0

e Derive the « fraction of attributable risk » (FAR)

FAR=1- 2

y4

« It is very likely (>90%) that CO2 emissions have increased the
frequency of occurrence of 2003-like heatwaves by a factor at least two.»
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Attribution of climate related events Premises

Limitations of the standard approach

e Limitations:
— computationally costly procedure.
— long delays in producing analysis after an event occurrence.

e The challenge is to design a system/procedure that allows for near
real time event attribution.
“The overarching challenge for the community is to move beyond research-
mode case studies and to develop systems that can deliver regular, reliable
and timely assessments in the aftermath of notable weather and climate-
related events, typically in the weeks or months following (and not many years
later as is the case with some research-mode).” Stott et al. (2013)

our philosophy: find ways to piggyback on meteorological centers’
infrastructure, rather than build up a new one from scratch.
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Y
Event definition: Standard approach versus DADA

© Standard Approach - Event occurrence based on ad hoc condition like a scalar
index ®(Y) exceeding a threshold u = p; = P(®(Y) > u)

@ Hard to compute - Mathematically intractable in many practical cases
@ Simulation based

© DADA Proposal - Use of the tightest possible occurrence definition =

fily)={we@ | [[Y(w)—yl[[<h} h—0and FAR=1— 21

@ In DADA we wish to evaluate f5 1(y) - The likelihood (model evidence) associated to the
observation y of the event of interest in each two worlds (factual and counter-factual)

@ Easy to estimate! (sometimes ...)

@ The model evidence can be obtained as a side-product of DA procedures aimed at inferring the
state-vector

The D&A "grand challenge” associated to the design of an operational platform

for near real time attribution of weather events may be solved by piggybacking on
existing Data Assimilation meteorological routines.
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Attribution of climate related events Attribution of extreme events using data assimilation

Extreme event attribution — DADA approach

@ Forced L63 model with stochastic noise (Palmer, 1999, J. Climate):

dz Bz +
— — =xy — Bz+ v,
a Y

dt

@ (v, vy, vz) € N(0,0qls)
@ Factual A\; = 20; Counter-factual \g = 0

dx dy .
=o(y — x) + Ajcos0; + vy o =px—y—xz+ NAisin6; + v,

PDFO

PDF1

9 Factual
-0 Counter-Factual
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Attribution of extreme events using data assimilation
DADA application — Forced L63 Model

GINI index is a measure of the discriminating skill, ranging from 0 for no discrimination to 1 for perfect
discrimination
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Conclusion

@ Data assimilation is used to compute model evidence

@ in the contextualization = (ensemble)-DA method used up to to,
@ in the model evidence computation = (ensemble)-DA method used to
assimilate from t; to tr.

@ The accuracy of this DA-based estimate scales with the sophistication of the DA
method (IS— EnKF — IEnKS).

@ To be (further) assessed upon exact calculation of p(yr.) (via quadrature or
massive Monte Carlo).

@ The model evidence is used as a new way to address the problem of attribution of
climate-related event - DADA.

@ The DADA approach has proven to be effective on low-order models and respond to
the need of timely attribution evaluation.
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Conclusion

Conclusion

Fundamental questions that requires attention:

@ The choice of the DA method is not trivial and (unsurprisingly) related to the
degree of nonlinearity of the problem.

Model error is a central concern.
It is so also for standard methods of attribution.

Indeed it can mask the factor whose casual attribution is under scrutiny = confuse
discrimination between factual and counter-factual worlds.

(2]
o
o
o

A DA-based method for attribution has the potential to deal with issue taking
advantage of the knowledge in model error treatment in DA schemes.
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Conclusion
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