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Model evidence: a key quantity Definition and interpretation

Model evidence – Definition & Interpretation

IModel evidence p(yK :| M) = p(yK :) = p(yK , yK−1, ..., y−∞)
⇒ Likelihood of (the infinite from the far past) observation sequence

p(yK :) =

∫
dx p(yK :|x)p(x) (1)

It is the marginal likelihood of the data.

p(x) plays the role of the prior.

It depends on the underlying dynamics (the model).

If the dynamics is ergodic =⇒ p(x) is the invariant distribution on its attractor.

p(yK :) reflects this invariant distribution at a level of accuracy dependent on the
observation model.

We define p(yK :) as the climatological model evidence.
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Model evidence: a key quantity Definition and interpretation

Model evidence – Its applications

The marginal likelihood can be used as a general metric for model selection and
comparison.

Comparing the skill of several candidate models (or model settings, or boundary
conditions) in representing a given observed phenomenon.

Calibrating the state-space model’s parameters based on the observed data by
maximizing the marginal likelihood.

Quantifying the evidence supporting several (potentially conflicting) theoretical
hypothesis associated to the physics of a phenomena.

Evidencing the existence (or non-existence) of a causal relationship between an
external forcing and an observed response.
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Model evidence: a key quantity Definition and interpretation

Statistical/climatological model evidence

The climatological model evidence embeds significant global information about the
system of interest.

The accuracy of its estimate is limited by the computational difficulty implied by
the large dimension of typical relevant problems.

Its climatological character does not permit to adapt it to the present condition of
the system.

The model evidence has been used in various contexts, including inverse problems.

A typical example is the estimation of the error statistics in the source term
inversion, or discriminate sources (i.e. nuclear release - Winiarek et al., 2011 Atmos.
Env.)
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Model evidence: a key quantity Contextual model evidence

From statistical/climatological to conditional/contextual evidence

IWe propose using data assimilation (DA) to

1 compute model evidence,

2 and/or narrow it to the present-time context.

Proposal: (leap of faith) use instead the conditional/contextual model evidence

p(yK :)→ p(yK :1|y0:)

yK :1 is used for evidence diagnostic.

y0: is used to specify the context.
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Model evidence: a key quantity Contextual model evidence

From statistical/climatological to conditional/contextual evidence

I It narrows the climate perspective to the context at t0:

p(yK :1|y0:) =

∫
dx0 p(yK :1|x0)p(x0|y0:) (2)

The conditional pdf p(x0|y0:) plays the role of the prior density and substitutes p(x)
of the climatological model evidence.

p(yK :1|y0:) is much easier to compute than p(yK :) (but yet complicated in many
relevant situations)

p(x0|y0:) is the natural (albeit approximate) outcome of the DA machinery.

We will show that p(yK :1|x0) can also be estimated via DA.
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Model evidence: a key quantity Contextual model evidence

Conditional/contextual evidence: A useful iterative formula

IContextual model evidence can be computed iteratively:

p(yK :1|y0:) =
K∏

k=1

p(yk |yk−1:)

The contextual model evidence is the product of the individual contextual
model evidences!

The individual context evidence p(yk |yk−1:) is often a tractable output of DA
schemes.

We will use this decomposition in the sequel to compute model evidence
using DA:

p(yk |yk−1:) =

∫
dxk p(yk |xk)p(xk |yk−1:) (3)

p(yk |xk) is the observation likelihood and p(xk |yk−1:) is the forecast state
pdf at tk .
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Model evidence: a key quantity Computing model evidence using data assimilation

How to compute contextual model evidence

1. Importance sampling/Monte Carlo

Use a DA method up to t0.

This provides (an approximation of) p(x0|y0:).

Compute the model evidence via Importance Sampling/Monte Carlo:

1 sample N members from p(x0|y0:) and forecast from t0 to tT
2 weight each member trajectory x(k)

T :0 according to their likelihood p(yT :1|x(k)
T :0),

so as to obtain

p(yT :1|y0:) ≈
N∑

k=1

p(yK :1|x(k)
0 )

1

N

Importance sampling (IS): use an ensemble-DA method up to t0 =⇒ the
assumption N � M can be used in steps (1) and (2)

Evaluation of model evidence using a particle filter proposed by Reich and Cotter,
2015.

M. Bocquet (ENPC) DA for model evidence May 17, 2016 9 / 30



Model evidence: a key quantity Computing model evidence using data assimilation

2. Filtering: Linear/Gaussian case – Kalman filter

Use a DA method up to t0.

This provides (an approximation of) p(x0|y0:).

In the Gaussian linear case (Kalman filter), the likelihood and forecast pdfs are
Gaussian

(It possible to show that) the contextual model evidence reads

p(yK :1|y0:) =
K∏

k=1

exp
(
− 1

2

∥∥yk −Hkxf
k

∥∥2

Rk+HkPf
k

HT
k

)
√

(2π)d
∣∣Rk + HkPf

kHT
k

∣∣ (4)

Rk , Pf
k : observation and forecast error covariances – Hk : observation operator.

Notation remark: ‖x‖2
A = xTA−1x.
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Model evidence: a key quantity Computing model evidence using data assimilation

2. Filtering: nonlinear/Gaussian case – ensemble Kalman filter

Using an ensemble Kalman filter (EnKF), the Kalman filter formula for model evidence
now becomes

p(yK :1|y0:) '
K∏

k=1

exp
(
− 1

2

∥∥yk −Hkxf
k

∥∥2

Rk+YkYT
k

)
√

(2π)d |Rk + YkYT
k |

Yk = HkXk are the normalized observation anomalies, and Xk the forecast
anomalies.

The inversion of Rk + YkYT
k can be done in ensemble subspace.

The estimation is exact when the models are linear, the initial condition and
observation errors are Gaussian and when the ensemble perturbation span the full
range of uncertainty.
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Model evidence: a key quantity Computing model evidence using data assimilation

3. Smoothing

Use a DA method up to t0.

This provides (an approximation of) p(x0|y0:).

Use a smoothing DA method to estimate p(yT :1|y0:)

Compute the evidence with a saddle-point approximation (Laplace method):

p(yK :1|y0:) =

∫
dx0 p(yT :1|x0)p(x0|y0:)

∝
∫

dx0 exp

(
−1

2

K∑
k=1

||yk − HkMk←0(x0)||2Rk
+ ln p(x0|y0:)

)

=

∫
dx0 exp (−L(yK :1, x0))

' exp (−L(yK :1, x
∗
0 ))√

|∇2
x0L(x∗0 )|

(5)

How to obtain x∗0 characterizes the problem: 4DVar, En-smoother...
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Model evidence: a key quantity Computing model evidence using data assimilation

3. Smoothing – En4DVar

Ensemble-4DVar (En4DVar ) (see nomenclature by Lorenc, 2013)

The state is parameterized in the ensemble space: x0 = x0 + X0w

The evidence is marginalized over the coefficient vector w:

p(yK :1|y0:) =

∫
dw p(yK :1|w)p(w|y0:) (6)

Using the Laplace approximation on the analysis (the minimum w?) the evidence
reads:

p(yK :1|y0:) '
exp

(
− 1

2

∑K
k=1 ‖yk − HkMk:0(x?

0 )‖2
Rk
− 1

2
‖w?‖2

)
√

(2π)Kd
∏K

k=1 |Rk |
∣∣∣IN +

∑K
k=1 (Y?

k )T R−1
k Y?

k

∣∣∣ (7)
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Model evidence: a key quantity Computing model evidence using data assimilation

3 . Smoothing – IEnKS

(Quasi-Static) Iterative Ensemble Kalman Smoother (IEnKS)

The initial condition and the ensemble at t0 are sequentially updated first by
assimilating y1 in the first step, then y2 in the second step and so on until yK .

The analysis at k, x?
k , and the normalized anomaly matrix, X?

k , are both defined at
t0, and used in the subsequent step.

Each single contextual evidence p(yk |yk−1:) corresponds to the quasi-static analysis
of the IEnKS (Bocquet and Sakov, 2014).

The iterative formula for model evidence and Laplace approximation on the analysis
of the IEnKS gives

p(yK :1|y0:) '
K∏

k=1

exp

(
− 1

2
‖yk − HkMk:0(x?

k )‖2

Rk+Y?
k (Y?

k )T

)
√

(2π)d
∣∣∣Rk + Y?

k (Y?
k )T
∣∣∣ (8)
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Model evidence: Numerical results Setup

Model evidence – Numerical experiments

Forced L63 Model

dx

dt
= σ(y − x) + λi cos θ

dy

dt
= ρx − y − xz + λi sin θ

dz

dt
= xy − βz (9)

Correct λ1 = 0; Incorrect λ0 ∈ {−8 : 8} ; θ = 140◦.

L95 Model
dxm

dt
= xm−1 (xm+1 − xm−2)− xm + Fi m = 1, ...,M (10)

Correct F1 = 8; Incorrect F0 ∈ {5 : 11}.
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Model evidence: Numerical results Time series

Model evidence time series
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Model evidence: Numerical results Time series

Pdf of model evidence – L63

−200 −150 −100 −50
0

0.05

0.1

p
d
f 
−

 l
o
g
(p

1
)

(a) pdf of CME − correct L63 (λ
1
=0, K=10)

 

 

IS

EnKF

En-4D-Var

IEnKS

−200 −180 −160 −140 −120 −100 −80 −60 −40
0

0.02

0.04

p
d
f 
−

 l
o
g
(p

0
)

(b) pdf of CME − incorrect L63 (λ
0
=8, K=10)

−68 −66 −64 −62 −60
0.075

0.08

0.085

0.09

0.095

log(p
1
)

p
d
f 
−

 l
o
g
(p

1
)

(c) Zoom on panel (a)

−130 −120 −110 −100 −90 −80 −70 −60 −50
0

0.01

0.02

log(p
0
)

p
d
f 
−

 l
o
g
(p

0
)

(d) Zoom on panel (b)

M. Bocquet (ENPC) DA for model evidence May 17, 2016 17 / 30



Model evidence: Numerical results Time series

Pdf of model evidence – L95
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Model evidence: Numerical results Dependence on the forcing and evidencing window

Model evidence versus forcing and length of window
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Model evidence: Numerical results Which is right?

Computation of the integral: Which is right?

Comparison with:

1 Hermite-Gauss quadrature with 32 degrees - for L63

2 IS/Monte Carlo with 106 particles - for L63 and L95
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Model evidence: Numerical results Discriminating power

Discriminating power versus forcing and length of window
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Attribution of climate related events Premises

The attribution problem
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Attribution of climate related events Premises

Attribution – standard approach
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Attribution of climate related events Premises

Limitations of the standard approach
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Attribution of climate related events DADA approach

Event definition: Standard approach versus DADA

1 Standard Approach - Event occurrence based on ad hoc condition like a scalar
index Φ(Y) exceeding a threshold u ⇒ pi = P(Φ(Y) ≥ u)

Hard to compute - Mathematically intractable in many practical cases
Simulation based

2 DADA Proposal - Use of the tightest possible occurrence definition ⇒
fi (y) = {ω ∈ Ω | ||Y(ω)− y|| ≤ h} h→ 0 and FAR = 1− f0(y)

f1(y)

In DADA we wish to evaluate f0,1(y) - The likelihood (model evidence) associated to the
observation y of the event of interest in each two worlds (factual and counter-factual)
Easy to estimate! (sometimes ...)
The model evidence can be obtained as a side-product of DA procedures aimed at inferring the
state-vector

The D&A ”grand challenge” associated to the design of an operational platform
for near real time attribution of weather events may be solved by piggybacking on
existing Data Assimilation meteorological routines.
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Attribution of climate related events Attribution of extreme events using data assimilation

Extreme event attribution – DADA approach

Forced L63 model with stochastic noise (Palmer, 1999, J. Climate):

dx

dt
= σ(y − x) + λi cos θi + vx

dy

dt
= ρx − y − xz + λi sin θi + vy

dz

dt
= xy − βz + vz

(vx , vy , vz ) ∈ N (0, σQ I3)
Factual λ1 = 20; Counter-factual λ0 = 0
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Attribution of climate related events Attribution of extreme events using data assimilation

DADA application – Forced L63 Model

GINI index is a measure of the discriminating skill, ranging from 0 for no discrimination to 1 for perfect
discrimination
DADA - STANDARD
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Conclusion

Conclusion

Data assimilation is used to compute model evidence

1 in the contextualization ⇒ (ensemble)-DA method used up to t0,
2 in the model evidence computation ⇒ (ensemble)-DA method used to

assimilate from t1 to tT .

The accuracy of this DA-based estimate scales with the sophistication of the DA
method (IS→ EnKF → IEnKS).

To be (further) assessed upon exact calculation of p(yT :0) (via quadrature or
massive Monte Carlo).

The model evidence is used as a new way to address the problem of attribution of
climate-related event - DADA.

The DADA approach has proven to be effective on low-order models and respond to
the need of timely attribution evaluation.
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Conclusion

Conclusion

Fundamental questions that requires attention:

1 The choice of the DA method is not trivial and (unsurprisingly) related to the
degree of nonlinearity of the problem.

2 Model error is a central concern.

3 It is so also for standard methods of attribution.

4 Indeed it can mask the factor whose casual attribution is under scrutiny ⇒ confuse
discrimination between factual and counter-factual worlds.

5 A DA-based method for attribution has the potential to deal with issue taking
advantage of the knowledge in model error treatment in DA schemes.
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Conclusion
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